
Annals of Operations Research (2022) 312:883–908
https://doi.org/10.1007/s10479-021-04467-5

ORIG INAL RESEARCH

Impacts of synergies on software project scheduling

Zsolt T. Kosztyán1,2,3 · Eszter Bogdány4 · István Szalkai5 ·Marcell T. Kurbucz1,6

Accepted: 23 November 2021 / Published online: 21 December 2021
© The Author(s) 2021

Abstract
The adequate allocation of human resources is one of the most important success factors in
software projects. Although project teams can be regarded as complex systems in which a
team’s performance is highly influenced by the interdependencies among teammembers, the
allocationmethods applied to date have focused only on individual skills and consider project
teams as units of isolated workers. The existing software project scheduling problem (SPSP)
is extended to (1) consider different skills and efficiencies of employees and (2) examine
the pairwise synergies between them, as well as to (3) handle the flexible structure of the
project that is used in flexible management, such as agile project management. To better
understand the impact of synergies on the project’s cost, the solutions of the traditional and
extended SPSP versions are analyzed and compared on the generated project networks. The
results show not only that this factor has a highly significant impact but also that the project
cost strongly depends on the structural parameters of the synergy network (e.g., topology,
network size and degree centrality). Among these parameters, a low degree of centrality and
some topologies, most notably star and circular networks, obtained the highest reduction in
the projects’ total cost.

Keywords Software project scheduling · Staffing · Synergy network · Social network ·
Genetic algorithm

B Zsolt T. Kosztyán
kosztyan.zsolt@gtk.uni-pannon.hu

1 Department of Quantitative Methods, University of Pannonia, Veszprém 10 Egyetem Street, 8200,
Hungary

2 Institute of Advanced Studies (iASK), Kőszeg 14 Chernel Street, 9730, Hungary

3 MTA-PE Budapest Ranking Research Group, 10 Egyetem Street, 8200 Veszprém, Hungary

4 Department of Management, University of Pannonia, Veszprém 10 Egyetem Street, 8200, Hungary

5 Department of Mathematics, University of Pannonia, Veszprém 10 Egyetem Street, 8200, Hungary

6 Department of Computational Sciences, Wigner Research Centre for Physics, Budapest 29-33
Konkoly-Thege Miklós Street, 1121, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04467-5&domain=pdf
http://orcid.org/0000-0001-7345-8336
http://orcid.org/0000-0002-0121-6781

884 Annals of Operations Research (2022) 312:883–908

1 Introduction

The tasks of allocating human resources and scheduling play a critical role in the success of
software development projects and, consequently, in competition in the IT industry (Nan and
Harter 2009). To reduce development costs and beat the market, companies have to make
reliable project plans; however, efficient allocation of workers is a uniquely difficult and
challenging problem, particularly for medium- to large-scale projects (see, e.g., Minku et al.
2013). For instance, in China alone, more than 40% of software projects were unsuccessful
due to incoherent planning of project tasks and human resources (Ding and Jing 2003).

In the literature on software development, the common issue of resource allocation and task
scheduling is referred to as the software project scheduling problem (SPSP) (see, e.g., Vega-
Velázquez et al. 2018), which is a special kind of multiskill resource-constrained project
scheduling problem (MS-RCPSP) (Myszkowski et al. 2019; Tirkolaee et al. 2019). The
efficiency of solving this problem is usually related to several factors. On the one hand, the
development process should be as short as possible, thus allowing the allocation of resources
to other profitable processes as soon as possible. On the other hand, the associated cost should
beminimal. Thismultiobjective naturemakes planning evenmore complicated and, as a result
of the increasing size of software projects, makesmanual scheduling almost impossible (Shen
et al. 2018).

Research on this topic has intensified rapidly in recent years; however, due to the above-
mentioned reasons, such research has mostly focused on the technical improvements of
computer-aided planning. Even though human aspects are an important factor in the success
of software projects and should be a key research area within the field of software project
planning, existing studies have only explored the human properties of task selection and
scheduling to a limited extent (Shen et al. 2018).

In this study, we extend the traditional SPSP with pairwise synergies between employees
and present a novel matrix-based approach that can handle employees’ interdependencies,
their different skills and efficiencies, and provide support for agile software development.1

Then, we analyze and compare the solutions of the traditional and the extended SPSP versions
on projects from generated project networks2 to evaluate the impact of synergies on their
costs. It will be shown that this factor has a highly significant impact that is strongly influenced
by the structural parameters of the synergy networks (e.g., topology, network size and degree
centrality).

The rest of this paper is organized as follows. Section 2 presents a review of the studies of
both the scheduling process of the software projects and the synergy of workers. Sections 3
and 4 introduce the extended SPSP and the hybrid genetic algorithm proposed to solve this
problem. Sections 5 and 6 present the steps of the calculation and its results. Section 7 shows
the threats to validity. Finally, Sect. 8 concludes the paper, and Sect. 9 states the limitations.

1 For simplicity, in this paper, pairwise synergies between employees are applied to model their interdepen-
dencies.
2 Project networks, resources and skills are generated by Myszkowski et al. (2019) iMOPSE multiskill
resource-constrained project scheduling problem generator.

123

Annals of Operations Research (2022) 312:883–908 885

2 Related works

In this section,we briefly review themain features of the software project scheduling problem.
Then, we present several studies of how employee interactions can affect teams’ performance
and consequently the allocation process itself.

2.1 Combination of task scheduling and personnel allocation

Many approaches to task scheduling (see, e.g., Hartmann and Briskorn 2010; Weglarz et
al. 2011) and resource allocation (see, e.g., Pentico 2007) have been proposed in the litera-
ture; however, the integration between these fields has not been as comprehensively studied
(Fernandez-Viagas and Framinan 2014). Generally, there is still no consensus on the name of
this joint problem (see, e.g., Fernandez-Viagas and Framinan 2014); however, in the software
development literature, it is referred to as the software project scheduling problem and has
been extensively studied (see, e.g., Hapke et al. 1994; Xiao et al. 2013; Luna et al. 2014;
Rezende et al. 2019).

The two major goals that arise when scheduling a software project are reducing both its
cost and duration; however, these goals are in conflict with each other (see, e.g., Alba and
Chicano 2007; Myszkowski et al. 2019). Similar to other problems with multiple objectives,
a general SPSP has no single solution and instead has a Pareto-optimal set (Deb 2001). In
this set, every point is optimal in the sense that neither the duration nor the cost objectives
can be improved without worsening the other objective.

To solve a multiobjective problem, Coello et al. (2006) and Myszkowski et al. (2019)
propose several metaheuristics, while Chicano et al. (2011) and Luna et al. (2014) compare
the accuracy and scalability of several of these algorithms specifically for the case of SPSP.
Chicano et al. (2011) and Luna et al. (2014) observe that the algorithm called Pareto archived
evolution strategy (PAES) (Knowles and Corne 2000) has the best scalability and obtains the
best approximate Pareto sets, while the most widely used nondominated sorting genetic algo-
rithm II (NSGA-II) (Deb et al. 2002) and strength Pareto evolutionary algorithm 2 (SPEA2)
(Zitzler et al. 2001) are examples of the least accurate solvers in general.3

While cross-validation of solvers and other technical aspects of SPSP have been exten-
sively explored in the literature, significantly fewer studies consider the definition of the
problem itself. In this paper, we focus on two possible approaches to extending the tra-
ditional SPSP. First, a general form of SPSP assumes fixed logic plans; however, applying
flexible dependencies and using task priorities instead of fixed occurrences will result in more
flexible project plans consistent with the agile approach. Despite the existence of agile project
scheduling algorithms (see, e.g., Kosztyán 2015), to date, SPSP has not yet been extended
to incorporate this feature. Second, while software development projects and particularly
those that are software development projects using the agile approach (Wysocki 2011) place
a greater emphasis on teamwork than the traditional methods (Nerur et al. 2005), in SPSP,
employees are regarded as independent resources. This by definition assumes that the best
(i.e., the most skilled) workers will perform tasks within the shortest timespan and with the
highest quality; however, none of the extensions address the interdependence of resources.

3 Nevertheless, PAES is outperformed by NSGA-II, SPEA2 and several recent algorithms, such as the
multiobjective cellular genetic algorithm (MOCell) (Nebro et al. 2007), in high-cost short-duration project
scheduling (Luna et al. 2014).

123

886 Annals of Operations Research (2022) 312:883–908

2.2 Project team as a complex system

Although it is simpler to predict a team’s outcomebasedon the aggregate skills of itsmembers,
employees’ interdependencies may have a comparable or greater effect on team performance
(Hsu et al. 2016).More specifically, interdependencies are sources of synergies between team
members (see, e.g., Larson 2010; Hackman 1983); consequently, they have a significant—
favorable or unfavorable—effect on team performance (see, e.g., Hackman 1983). In the
relevant literature, there are numerous studies that help identify the sources of synergies.

During recent decades, researchers have investigated the personalities of team members
as an important factor in cooperation (see, e.g., Hogan et al. 1988; Smith-Jentsch et al.
1996; Barry and Stewart 1997). According to Larson (2007), in diverse groups, joint work
is more effective than in homogeneous groups, and diverse groups should perform better
than even their best individual members. Moreover, cooperative interaction among members
should benefit the performance of diverse groups but impair the performance of homogeneous
groups.Whereas considering personalities is useful in general, purely personality-based allo-
cation strategies provideweaker predictions thando strategies basedon individual knowledge,
abilities or skills (see, e.g., Schmitt et al. 1984; Hunter et al. 1990).

Formal and informal relationships between employees are also important sources of syn-
ergy. To investigate the social structure or, more generally, interdependence among group
members, researchers use sociometry (Moreno 1960; Sorenson 1971). Althoughwe have lim-
ited information on how the structural properties of a network affect collective performance,
several studies reported in the literature have focused on this issue (see, e.g., Sparrowe et al.
2001; Ahuja et al. 2003; Cummings and Cross 2003). Based on Ahuja et al. (2003), centrality
indicators of the social network are stronger direct predictors of performance than are indi-
vidual characteristics, e.g., functional role, status or communication role.4 Sparrowe et al.
(2001) observed that groups with decentralized structures performed better at complex tasks
than the groups with centralized structures, and as stated in Cummings and Cross (2003),
structural deficiencies of the leaders, more hierarchical structure and greater core-periphery
discrepancies were negatively related to performance.

2.3 Summary and research questions

Based on the reviewed studies related to the practice and theories of human resource allo-
cation, we can state that most approaches regard a project team as a complex system;
nevertheless, none of the applied methods can handle the synergy among employees. Work-
ing together can result in either favorable or unfavorable synergy that affects the performance
or outcome of a project. We know little about synergy, particularly in project environments
where poorly balanced teams can cause a project to fail. According to the reviewed studies,
integrated structures perform better than do other structures; however, we also know that
in the case of complex tasks, decentralized structures can outperform other structures. In
this study, a novel synergy-based method is presented, and the following research questions
(RQs) are subsequently answered:

RQ1 : Which indicators influence the effect of synergy on the project cost?
RQ2 : Which structures of synergy networks increase/decrease the projects’ costs the
most?

4 Typically, four measures of centrality are used in the literature: degree, betweenness, closeness and eigen-
vector centrality (Mote 2005).

123

Annals of Operations Research (2022) 312:883–908 887

To answer the research questions, SPSP must be extended to handle flexible project plans
to model agile projects and consider interdependencies between human resources to handle
pairwise synergies between employees.

3 Formal description of the synergy-based SPSP

This section contains a formal description of SPSP, as well as that of its extension, i.e.,
SSPSP. Unlike other reported studies of this topic, for clarity and flexible planning, we use
a matrix-based method to define the problem.

The proposed matrix-based method is an extension of the multidomain mapping (MDM)
method (see Danilovic and Browning 2007). The original MDM version allows several
domains that can interact with one another; however, the original MDM only handles fixed
dependencies and task occurrences (see, e.g.,Danilovic andBrowning2007;Browning2014).
Contrary to the originalmethod, the proposed synergymappingmodel (SMM) considers flex-
ible dependencies and supplementary task completions to support the synergy-based software
project scheduling problem (SSPSP).

Since SSPSP is an extension of SPSP, it is based on a combination of the agile approach and
sociometric graphs. Formulating the problem, we extend the notation of Alba and Chicano
(2007) and Luna et al. (2014). Since the problem is solved via the proposed multidomain
matrix-based method, the necessary domains (submatrices) are also specified.

3.1 Notation

First, we give the mathematical definitions necessary for stating our problem as well as the
solution algorithm. Here, we extend the formulation proposed by Alba and Chicano (2007)
and Luna et al. (2014); however, our model considers the different skills and efficiencies of
employees, as well as the synergy between them.

Briefly: We are given a set of employees with ± synergies among them and possessing
certain (individual) levels of some skills or (skill) efficiencies to solve certain tasks that
require certain levels of these skills. We must decide which tasks should be done (possibly
not all of them) and their order, and we must distribute (allocate) the employees (possibly
as part time) to solve the chosen tasks, fulfilling several other requirements and achieving
some optimum [see Eqs. (31)–(34) for details]. The set of all of these decisions made by the
algorithm is called a project scenario.

All the data are stored in a large matrix called the SMM matrix, containing several blocks
that we call domains, as shown in Fig. 1.

In detail:

– E = {e1, . . . , em} is the set of employees (m ∈ N
+).

– Y is called the synergy domain in the proposed SMM. It is a symmetricm bym matrix of
nonnegative real numbers (Y ∈ (

R
+)m×m), denoting the synergies among the employees

as (for i, j = 1, 2, . . . ,m):

– [Y]i, j > 1 represents positive (or favorable) synergy,
– [Y]i, j = 1 represents neutral synergy,

123

888 Annals of Operations Research (2022) 312:883–908

Fig. 1 Synergy mapping model (SMM)

– 0 < [Y]i, j < 1 represents negative (or unfavorable) synergy between employees ei
and e j , and [Y]i,i = 1 and [Y]i, j = [Y] j,i are assumed.5

– For any subset ε ⊆ E , we let:

Y ε :=
⎧
⎨

⎩

1 if |ε| ≤ 1

η

√ ∏

ei ,e j∈ε, i< j
[Y]i, j where η = |ε|·(|ε|−1)

2 if |ε| > 1 (1)

the (geometric) mean of synergies among the employees in ε.

5 Observe that both the positive and negative synergies are represented by positive real numbers in Y: 0 <

[Y]i, j < 1 stand for negative and 1 < [Y]i, j for positive synergies. By default, [Y]i, j = 1, which is assumed
in Alba and Chicano (2007) and Luna et al. (2014).

123

Annals of Operations Research (2022) 312:883–908 889

– The synergy domain (Y) of the SMMcan be represented by a social network where nodes
are employees and weighted edges are negative or positive synergies between them (see
Fig. 1). The notations of the structural parameters of this social network are summarized
in Table 1.

– S = {σ1, . . . , σs} is the set of skills, the names of certain working abilities 6 (s ∈ N).
– Each employee may have a set of skills, i.e., person ei has skills S (ei) :={

σ
(i)
1 , . . . , σ

(i)
ρi

}
⊆ S.

– The proposed model also handles skill efficiencies: � (ei , σk) ≥ 0 is the (skill) efficiency
of ei in σk (1 ≤ i ≤ m, 1 ≤ k ≤ s); clearly, σk ∈ S (ei) ⇐⇒ 0 < � (ei , σk). 7 These
efficiencies can be added, e.g., ei1 and ei2 working together achieve efficiency in σk skill:

[Y]i1,i2 · (
�
(
ei1 , σk

) + �
(
ei2 , σk

))
. (2)

For a larger set ε ⊆ E , we can only use the approximate formula:

� (ε, σk) := Y ε ·
∑

ei∈ε

� (ei , σk) . (3)

(Note that this formula will be modified by the matrix O later.)
– S is the m by s matrix [S]i,k := � (ei , σk) that we call the skill domain in the SMM

matrix.
– A = {a1, . . . , an} is the set of tasks (or activities) to be performed (n ∈ N).

Ac ⊆ A is the subset ofmandatory (or compulsory) tasks, and A− := A� Ac is the set of
supplementary tasks. Supplementary tasks can be removed from the project or postponed
to a later project if they cannot be implemented due to constraints.

– The algorithm will choose which supplementary tasks will be carried out, but it must
perform each compulsory task. The final set of tasks to be carried out is denoted by
Ac(O); clearly, Ac ⊆ Ac(O) ⊆ A must hold.

– Among all of the tasks, we have dependencies≺, ∼, �� with the following meanings. For
any i, j ≤ n, i 	= j :

– ai ≺ a j means a strict (or required) dependency: a j must not be started unless ai
has been completed,

– ai ∼ a j means no dependency: the starting time of a j is not affected by ai ,
– ai��a j means an uncertain (or flexible) dependency: the algorithm must turn each

ai��a j into either (i) ai ≺ a j or a j ≺ ai or (ii) ai ∼ a j . In case (i), we say that the
dependency ai��a j is included in the project; in case (ii), it is excluded.

– Clearly, ≺ is a partial order that excludes cycles 8 such as a1 ≺ a2 ≺ . . . ≺ a1, while ��

and ∼ are symmetric relations.
– A is called the logic domain in the SMM. It is the n by n matrix storing the above

information as9:

– [A]i,i = 1 ⇐⇒ ai is mandatory,

6 Note that the set of skills (S) is defined in light of the activities, i.e., first, we are given the set of tasks, and
the set of skills S is the set of all skills that are necessary to fulfill all tasks. The important properties of the
skills are their efficiencies (� (ei , σk)) and their additive properties—see Eqs. (2) and (3). For example, novice
and expert programming abilities cannot be simply summed, so these must be two different skills.
7 We assume that � (ei , σk) = 0 or � (ei , σk) = 1 in Alba and Chicano (2007) and Luna et al. (2014), without
a summing possibility.
8 By a standard topological ordering algorithm, we may assume that a j1 ≺ a j2
⇒ j1 < j2.
9 i < j and A is an upper triangular matrix by footnote 8.

123

890 Annals of Operations Research (2022) 312:883–908

– 0 < [A]i,i < 1 ⇐⇒ ai is supplementary (score value or relative priority of ai),
– [A]i, j = 1 ⇐⇒ ai ≺ a j ,
– [A]i, j = 0 ⇐⇒ ai ∼ a j ,
– 0 < [A]i, j < 1 ⇐⇒ ai��a j (score value or relative priority of ai��a j). (The values

[A]i, j will also be called probabilities in constraint C5.)

– The algorithmmust modify the elements ofA such that 0 < [A]i,i < 1 and 0 < [A]i, j <

1 (and leave the others unchanged), where the final matrix is denoted by A(O), which
contains only the 0 and 1 entries.

– The set of skills that are required to perform activity a j is denoted by S
(
a j

) :={
σ

(j)
1 , . . . , σ

(j)
ρ j

}
⊆ S (j = 1, 2, . . . , n).

– More specifically, if the minimum amount of skill of σk required for a j is a nonnegative
real number L

(
a j , σk

) ∈ R, then we must have10 σk ∈ S
(
a j

) ⇐⇒ 0 < L
(
a j , σk

)
.

– W is the n by s matrix storing L , i.e., [W] j,k := L
(
a j , σk

)
, where W is called the

skilled work domain (in SMM), and its elements w j,k = [W] j,k are called skilled work
elements.

– M is anm by n matrix, called thematching domain, where [M]i, j ∈ [0, 1] is themaximal
(allowed) ratio of the working time of employee ei allocated to (working on) task a j .11

– The solution of the SSPSP, which must be determined by the algorithm, is an n by m
matrix (of nonnegative real numbers), denoted by O, where the element [O] j,i > 0
represents the (final) allocation of employee ei to activity a j .

– The value [O] j,i is the proposed ratio of the working time of ei allocated to a j ; clearly,
[O] j,i = 0 means no allocation. [O] j,i ≤ [M]i, j and ∑n

j=1[O] j,i ≤ 1 must hold for
each j = 1, 2, . . . , n and i = 1, . . . ,m, while

∑n
j=1[M]i, j ≤ 1 are not required for any

i = 1, . . . ,m.
– [O] j,i will sometimes be denoted by aeij .

– The duration of activity a j is denoted by adurj (O). This depends on resources modified
by the synergy factor, as calculated in Eqs. (10) and (11). The starting time of a j is
astartj (O), and the finishing time is12 aendj (O) = astartj (O) + adurj (O) [see Eq. (12)].

– The duration of the project is denoted by pdur or TPT (the total project time), and its
cost is pcost or TPC (the total project cost).

– Each employee ei can be allocated partially or entirely to the project, where the total of
ew
i := ∑n

j=1[O] j,i , not exceeding its maximum value emaxw
i := ∑n

j=1[M]i, j . Clearly,
0 ≤ ew

i ≤ 1 by
∑n

j=1[O] j,i ≤ 1. (See the matching domain (M) in Fig. 1.)

– The monthly salary of employee ei is denoted by esalaryi .

3.2 Formalism related to project duration

Assume that the algorithm has already fixed all of the supplementary tasks and flexible
dependencies (stored in A and in A (O)), as well as the allocations of ei to a j (stored in O).

10 However, we do not require L
(
a j , σk

) ≤ �
(
ε j , σk

)
(ε j ⊆ E is to be chosen by the algorithm), since we

provide enough time to the workers for completing L
(
a j , σk

)
, see Eqs. (8) and (9).

11 At this point, the literature assumes the equivalent effectiveness of human resources who have the skills to
perform the task. However, ourmodel also addresses both the efficiencies of skills and synergy asmultiplicative
factors that can increase or reduce the effectiveness.
12 Recall that ai ≺ a j implies aendi (O) ≤ astartj (O).

123

Annals of Operations Research (2022) 312:883–908 891

Table 1 Analyzed centrality and
proximity metrics

Notation Metrics (node level, average)

CB Betweenness centrality

CC Closeness centrality

CD Degree of centrality

PP Proximity prestige

In the following, the algorithm has already decided that all of the a j mentioned below are
compulsory.

We note that Alba and Chicano (2007) assumed that there was no change in the allocation
of a certain employee to a certain activity while it was being performed.

The total effort that is allocated to a j (j = 1, 2, . . . , n) is:

A j :=
m∑

i=1

aeij =
m∑

i=1

[O] j,i . (4)

For any task a j (j = 1, . . . , n), let:

ε j := {
ei ∈ E : 0 < [O] j,i

}
(5)

be the set of employees who are effectively working on13 (allocated to) a j .
Since we measure the (skill) efficiencies, which must be summed separately, we have to

consider all the skills separately. For any skill σk , the amount of work on σk that team ε j

completes in a j is (without synergies)14:

Aw
j (k) :=

m∑

i=1

([S]i,k · [O] j,i
) =

∑

ei∈ε j

� (ei , σk) · [O] j,i . (6)

Considering the synergies, the adjusted amount of work done in skill σk is:

Aw,ad j
j (k) := Y ε j · Aw

j (k) . (7)

Since task a j requires L
(
a j , σk

) = [W] j,k amount of skill σk , the required time (duration)
for completing σk in a j by ε j , without synergies is:

adurj,k (O) = L
(
a j , σk

)

Aw
j (k)

= [W] j,k∑m
i=1

([S]i,k · [O] j,i
) , (8)

and the adjusted required time (with synergies) is:

adur ,ad jj,k (O) = L
(
a j , σk

)

Aw,ad j
j (k)

= [W] j,k
Y ε j · ∑m

i=1

([S]i,k · [O] j,i
) . (9)

Assuming that each ei uses all of his or her skills simultaneously:

adurj (O) = max
σk∈S(a j)

{
adurj,k (O)

}
(10)

13 The employees are assumed to work together, i.e., in parallel
14 The sum can be written for all i since [O] j ,i = 0 for ei /∈ ε j . See also footnote 10 and Eqs. (8) and (9).

123

892 Annals of Operations Research (2022) 312:883–908

and (with synergies):

ãdurj (O) := adur ,ad jj (O) = max
σk∈S(a j)

{
adur ,ad jj,k (O)

}
. (11)

Of course, completing a j requires all necessary skills to be covered.15

This value is used to calculate the ending times of the activities aendj (O) = astartj (O) +
ãdurj (O), where:

astartj (O) ≥
{
0 if � ai ∈ A, ai ≺ a j

max{aendi (O) : ai ≺ a j } otherwise
. (12)

At this point, we also note that the referenced studies have not addressed the cases in
which an activity cannot be started because there are no available resources for performing
that activity, even though all of its prerequisite activities have been finished. Moreover, we
assume that the starting time of the project is 0. (Clearly, ai and the former �� in Eq. (12) and
hereinafter are decided by the algorithm to be carried out and converted to ≺.)

The values calculated above enable calculating the duration of the project (pdur) as fol-
lows:

TPT := pdur = max{aendj (O) : j = 1, . . . , n}. (13)

Wemust emphasize that the values astartj (O) in Eq. (12) and TPT in Eq. (13) areminimal:
no algorithm can start a j and finish the project earlier than in Eqs. (12) and (13), so they can be
denoted by astartj (O)min and TPTmin. However, in practice, it is possible that some activities
cannot be started at astartj (O)min (e.g., because of the lack of human resources). Therefore,
our algorithm is allowed to schedule some (even all) tasks a j later than astartj (O)min, as
described by:

astartj (O)ALG ≥ astartj (O)min, (14)

where astartj (O)ALG is the real starting time for the task a j . Clearly, ãdurj (O)ALG =
ãdurj (O)min, aendj (O)ALG = astartj (O)ALG + ãdurj (O)ALG and:

astartj (O)ALG ≥
{
0 if � ai ∈ A, ai ≺ a j

max{aendi (O)ALG : ai ≺ a j } otherwise
(15)

must also hold.16

We also require:

TPTALG ≥ TPTmin. (16)

We call the sequence (of real numbers):

(astart1 (O)ALG , . . . , astartn (O)ALG) (17)

15 i.e. S
(
a j

)
�

⋃
ei∈ε j

S (ei) , since for σk /∈ ⋃

ei∈ε j

S (ei) the denominators of Eqs. (8) and (9) are zero. See

also Eq. (21) in Constraint 2 (C2).
16 An explicit formula can be obtained for TPT from the recursive assumptions in Eqs. (10)–(15), mainly
based on ≺, called the critical or longest min paths (see Kosztyán and Szalkai 2018, 2020 and Kosztyán et
al. 2019 for details).

123

Annals of Operations Research (2022) 312:883–908 893

scheduled start time sequence (SST). Clearly, an SST must be determined by the algorithm.
In the following, we omit the subscripts min and ALG, and we always mean ALG, unless
stated otherwise.

Figure 1 presents several networks, such as a single project (see the logic domain, A and
the project graph on the bottom right corner of Fig. 1), a synergy network (see the synergy
domain, S and the synergy graph in the top left corner of Fig. 1), possible matches between
employees and tasks (see the matching domain,M and the employee-task matching graph in
the top right corner of Fig. 1), and the output domain (O). The skill domain (S) represents
the skill efficiency, while the amount of required (skilled) work is specified in the skilled
work domain (W). A prerequisite for project success is that the required skills are available.
The proposed matrix-based model only represents the required available skills. The goal is to
assign employees to tasks to achieve a good feasible solution with respect to the composite
objective function [see Eq. (34)] and constraints (see C1-C8 in Sect. 3.4).

3.3 Formalism related to the project cost

The cost of the project (TPC, pcost) can be calculated as the sum of the salaries of employees
that are paid for their dedication to the project. Since positive synergy reduces and negative
synergy increases the duration adurj to ãdurj , the project cost can be calculated with and
without the synergy effect, obtaining TPCsyn and TPCnosyn , respectively. Formally:

TPCsyn = TPC := pcost =
m∑

i=1

n∑

j=1

(esalaryi × [O] j,i × ãdurj (O)), (18)

TPCnosyn :=
m∑

i=1

n∑

j=1

(esalaryi × [O] j,i × adurj (O)). (19)

3.4 Constraints

While a solution to the SSPSP is calculated, several constraints must be taken into account
and satisfied. First, we list these constraints, and then, we explain each of them in detail.

C1: Each activity must be performed by at least one human resource.

C2: The set of skills that an activity requires must be a subset of the union of skills of
the employees who perform this activity.

C3: There must not be any human resource who exceeds his or her maximum dedication
(allocation) to the project (roughly, ew

i := ∑n
j=1[O] j,i ≤ emaxw

i for i = 1, . . . ,m).

There are two new constraints: the first specifies the set of implemented tasks, and the
second considers both the (skill) efficiencies and the synergies among employees.

C4: The score of the project scenario (total project score, TPS; see Eq. (33)) is greater
than a specified (score) constraint Cs .
C5: The probability of the project structure is greater than a specified (probability) con-
straint Cp .

The following three additional constraints are the constraints of the project plan:

C6: Overwork is allowed up to a certain level (roughly: Ew = ∑m
i=1 e

w
i ≤ Kw for some

constant Kw , with minor exceptions).

123

894 Annals of Operations Research (2022) 312:883–908

C7: The total project cost (TPC) must be less than the cost constraint (Cc).

C8: The duration of the project (the total project time, TPT) must be less than the time
constraint (Ct).

In our model, a complex objective (target) function is specified. The goal is to specify
the most likely project structure and a resource allocation scheme that minimizes the project
duration in the most desired project scenario.

Now, we describe C1-C8 in detail.

C1 : for each a j ∈ Ac(O),

ε j := {
ei ∈ E : 0 < [O] j,i

} 	= ∅. (20)

C2 : for each a j ∈ Ac(O),

S
(
a j

) ⊆
⋃

ei∈ε j

S (ei) . (21)

C3 : Since several tasks cannot be solved simultaneously, the rate of the allocation of ei
may vary with time. Therefore, we create a function ework

i (τ) (for 0 ≤ τ ≤ pdur) that
determines how much work by employee ei is dedicated (allocated) to the project for all
of the parallel activities at time τ :

ework
i (τ) :=

∑

{ j | astartj ≤τ≤aendj , a j∈Ac(O)}
[O] j,i . (22)

(Here, we mean astartj (O)ALG ≤ τ ≤ aendj (O)ALG , according to SST of the algorithm.)
Therefore, C3 is:

ework
i (τ) ≤ emaxw

i for i = 1, . . . ,m and τ. (23)

For C4 to C6, we need to define some additional terminology and notation.17

Let the score values of the implemented activity ai ∈ Ac(O) be Si := [A]i,i and the score
values of the omitted one (ai ∈ A\Ac(O)) be Si := 1 − [A]i,i (i = 1, 2, . . . , n).

The probability pi, j of the (input) dependency ai��a j for ai , a j ∈ Ac(O) is pi, j := [A]i, j
if that dependency will be included in the project plan (i.e., changed to ai ≺ a j),18 and
pi, j := 1 − [A]i, j if not (i.e., changed to ai ∼ a j).

The proposedmodel allows decision-makers to omit several supplementary activities from
this project and allocate them to the next project (or the next sprint), i.e., Ac ⊆ Ac(O) ⊆ A.

For C4 through C6, we are given the (suitable) constants (positive real numbers) Cs , Cp ,
Cc, Ct , Kw and εK .

C4:

TPS := n

√√√√
n∏

i=1

Si ≥ Cs . (24)

C5:
∑

ai ,a j∈Ac(O), i 	= j

pi, j ≥ Cp. (25)

17 We must be careful to distinguish the input data in Ac and in A from the output solution in Ac(O) and in
A (O).
18 i < j by footnote 8.

123

Annals of Operations Research (2022) 312:883–908 895

For C6, first, we construct the function overwork(τ) for 0 ≤ τ ≤ pdur as:

overwork(τ) :=
{∑m

i=1 e
work
i (τ) − Kw if

∑m
i=1 e

work
i (τ) > Kw

0 otherwise
, (26)

and the total overwork pover of the project:

pover :=
τ=pdur∫

τ=0

overwork(τ)dτ . (27)

Now, we set:

C6:

pover < εK . (28)

C7:

TPC := pcost ≤ Cc. (29)

C8:

TPT := pdur ≤ Ct . (30)

Next, wemust find TPTmin, TPCmin and TPSmax. TheminimumTPTmin is reached if all of
the uncertain tasks and flexible dependencies are omitted from the project (i.e., Ac(O) = Ac

and each�� is changed to∼) and if themaximumnumber of employees is dedicated (allocated)
to the activities (i.e., [O] j,i = [M]i, j).

Similarly, TPCmin is reached if all of the uncertain tasks are omitted (i.e., Ac(O) = Ac),
whereas TPC reaches its maximumTPCmax if all of the tasks are completed (i.e., Ac(O) = A)
(see Kosztyán and Szalkai 2018, 2020 and Kosztyán et al. 2019 for details).

Now, we state the objective functions that we seek to optimize simultaneously [in Eq.
(34)] using the algorithm:

TPT → min, (31)

TPC → min, (32)

and

TPS → max . (33)

These objective (target) functions can be considered a multiobjective problem or a com-
posite objective (target) function and can be specified as follows (here, Cs , Cp , Cc and Ct

are given reasonable constants):

z := 1 − 3

√(
Ct − TPT

Ct − TPTmin

)
∗

(
Cc − TPC

Cc − TPCmin

)
∗

(
TPS − Cs

TPSmax − Cs

)
→ min, (34)

assuming the constraints C1 − C8.
Finally, similar to most of the SPSP literature, we assume constant skills of the human

resources for simplicity. However, several studies address improvements in human skills, and
our model can also be extended to take this into account. For example, Chang et al. (2008)
introduce an employee experience and training model that accounts for the learning speed of
employees and the time interval of training when calculating the improvement in employee
skills. The model in Chang et al. (2008) influences how quickly employees can perform a
specific task.

123

896 Annals of Operations Research (2022) 312:883–908

3.5 Summary of notations

The notations are summarized as follows:

– E = {e1, . . . , em} = employees, ei ∈ E ,
– [Y]i, j = synergy between ei and e j ,

– Y ε = η

√∏
ei ,e j∈ε, i< j [Y]i, j geometric mean of synergies [see Eq. (1)],

– S = {σ1, . . . , σs} = skills, σk ∈ S,

– S (ei) :=
{
σ

(i)
1 , . . . , σ

(i)
ρi

}
= skills of ei , S (ei) ⊆ S,

– [S]i,k = � (ei , σk) = the efficiency of ei in σk , � (ε, σk) := Y ε · ∑
ei∈ε � (ei , σk),

– A = {a1, . . . , an} = tasks (activities), a j ∈ A,

– Ac = mandatory (compulsory), given, A− = A � Ac supplementary,
– Ac(O) = compulsory tasks decided by the algorithm, Ac ⊆ Ac(O) ⊆ A,
– ai ≺ a j strict (or required) dependency, ai ∼ a j no dependency,
– ai��a j uncertain (or flexible) dependency,

– A = input matrix:

– [A]i,i = 1 ⇐⇒ ai is mandatory,
– 0 < [A]i,i < 1 ⇐⇒ ai is supplementary,
– [A]i, j = 1 ⇐⇒ ai ≺ a j ,
– [A]i, j = 0 ⇐⇒ ai ∼ a j ,
– 0 < [A]i, j < 1 ⇐⇒ ai��a j ,

– A(O) = A as modified by the algorithm,

– S
(
a j

) :=
{
σ

(j)
1 , . . . , σ

(j)
ρ j

}
= skills required to a j , S

(
a j

) ⊆ S,

– [W] j,k = w j,k = L
(
a j , σk

) = the minimum amount of skilled work σk required to a j ,
– [M]i, j = the maximal (allowed) ratio of the working time of ei allocated to a j ,
– [O] j,i = the (proposed) working time ratio of ei allocated to a j ,
– aeij := [O] j,i ,
– A j := ∑m

i=1 a
ei
j = the total effort allocated to a j (in terms of human resources),

– ε j :=
{
ei ∈ E : 0 < aeij

}
,

– ew
i :=

n∑

j=1
[O] j,i ≤ emaxw

i := ∑n
j=1[M]i, j ,

– adurj (O) = duration of a j ; see Eq. (10),

– ãdurj (O) = adjusted duration of a j ; see Eq. (11),

– aendj (O) = astartj (O) + ãdurj (O),
– astartj (O)min = minimal starting time of a j ; see Eq. (12),
– astartj (O) = astartj (O)ALG = the scheduled starting time, SST, decided by the algorithm,

– SST =
(
astart1 (O)ALG , ... , astartn (O)ALG

)
; see Eq. (17),

– TPT = pdur = total project duration; see Eq. (13),
– TPCsyn = TPC = pcost = total project cost with synergies; see Eq. (18),
– TPCnosyn = total project cost without synergies; see Eq. (19),
– ework

i (τ) = how much ei is allocated to the project at time τ ; see Eq. (22),
– Si = score values of ai ,
– pi, j = probability of the dependency ai��a j ,
– TPS = total project score; see Eq. (24),

123

Annals of Operations Research (2022) 312:883–908 897

– overwork(τ) = general overwork at time τ ; see Eq. (26),
– pover = the total overwork of the project; see Eq. (27),
– z = the composite objective function to be minimized; see Eq. (34).

4 Proposed hybrid genetic algorithm

Since SPSP is NP-hard (Xiao et al. 2013), which is a special case of synergy-based SPSP, the
SSPSP is also NP-hard. There are exact methods that can solve small instances of SPSP to
optimality (Vega-Velázquez et al. 2018); however, these methods are not practical for larger
instances, and their resolution requires other kinds of techniques such as metaheuristics
(Yang 2010). Thus, a metaheuristic method of solving it is proposed. This section provides
an overview of this algorithm.

Although most variables of the objective (target) function (i.e., dedications to activities
and the scheduled start time of activities, referred to as SST) are continuous (with real
variables), the model also contains several binary variables, namely, decisions regarding
task/dependency exclusion/inclusion. Therefore, a mixed-integer genetic algorithm is used
to seek a good feasible solution. All of the default operators (i.e., crossover, mutation, and
selection) of the genetic algorithm must be modified because an excluded task has no depen-
dency, duration, or cost demands.

The results of the genetic algorithm are refined using aNelder-Meadminimization (NMM)
method. The NMM optimization function continues the optimization after the termination of
the GA. The NMM function can refine only the real values, such as the values of the output
matrix (O) and the scheduled start time (SST) of activities. The MATLAB Global Opti-
mization toolbox is used to implement the hybrid genetic algorithm; however, the standard
mutation, crossover and selection function as well as the hyperparameters must be modified.

Generally, the sets of excluded/included flexible task occurrences and flexible task depen-
dencies (see the logic domain (A)), the values of allocations (see the output domain (O)) and
the scheduled start time (SST) for all tasks must be specified. After the final specification,
the resulting matrix A′ contains only values {0, 1}, where [A]i i = 1 ([A]i i = 0) means that
task ai will be included in (excluded from) the project. Nevertheless, if a task is excluded
from the project, the dependencies of the (excluded) tasks and all the (time/cost/resource)
requirements are also excluded from the project.

4.1 Genetic algorithm parameters

Fitness function In our case, the fitness function is a composite function [see Eq. (34)]. We
seek the elements of the output matrix (O ∈ R

n×m+), the decision results of the flexible
dependencies and supplementary task occurrences that are represented in the final logic
domainA′ ∈ {0, 1}n×n , and the scheduled start time for all activities such that we can satisfy
the resource constraint. It is assumed that a potential solution to a problemmay be represented
as a set of parameters/values. These values (known as genes) are joined together to form a
vector (referred to as a chromosome, shown in Fig. 2). In genetic terminology, the set of
values represented by a particular chromosome is referred to as an individual.

If u is the number of uncertain tasks + dependencies, m is the number of employees, and
n is the number of activities, then a chromosome vector with u + (m + 1)n elements can
be constructed. For ease of use, the first part of the chromosome is the decision part, and
the numbers are binary values. The second part is the output, which codes the output matrix

123

898 Annals of Operations Research (2022) 312:883–908

Fig. 2 Structure of a chromosome

row by row. In this part, the values are real and positive within the interval of [0,emaxw].
The last part is the scheduling part, where the values are also real and positive. The fitness
of an individual depends on its chromosome and is evaluated by the fitness function. During
the reproductive phase, individuals are selected from the population and are recombined,
producing offspring that compose the next generation. Parents are then randomly selected
from the population using a scheme that favors fitter individuals. After two parents have been
selected, their chromosomes are recombined, typically using themechanismsof crossover and
mutation. The latter is usually applied to some individuals to guarantee population diversity.

Population In the first step, a number of possible solutions must be generated. First, the
elements of the logic domainA′ will be generated because if [A′]i i = 0, then [O]i j :=1,2...,m :=
0, i.e., activity ai ∈ A will be excluded from the project; therefore, the excluded task has no
time, cost or resource requirements. Since an excluded task has no dependencies, [A′] j i =
[A′]i j := 0 if [A′]i i = 0. We denote the initial population by P0 and the population of the
Gth generation by PG .

Selection mechanism One of the main operators in a genetic algorithm is the selection
operator. First, feasible solutions must be selected by a tournament. Because we usually have
many feasible solutions, we use a tournament selection mechanism. In this case, each parent
is determined by choosing a random number of tournament players and then choosing the
best individual from that set to be a parent. The tournament size must be at least 2. In our
case, we set the tournament size to 10. We denote the set of selected chromosomes in the
Gth generation by SG .

Elite count This is a positive integer specifying how many individuals in the current
generation are guaranteed to survive to the next generation. It was set to 5% in our work,
which means there were 5% so-called elite children in every generation.

Crossover fraction The crossover fraction specifies the fraction of each population (other
than elite children) that consists of crossover children. A crossover fraction of 1means that all
of the children other than elite individuals are crossover children, while a crossover fraction
of 0 means that all of the children are mutation children. The best results were obtained when
we set this parameter to 0.8. This means that 80% of the selected children (excluding elite
children) were children used in the crossover function (so-called crossover children), and
20% of the selected children (excluding elite children) were used in the mutation function
(so-called mutation children).

Crossover operatorWe used the (fractioned) selected chromosomes. Since a chromosome
has a binary or decision part and two continuous parts, two kinds of crossover functions must
be combined. For the continuous parts, the arithmetic crossover function is used. Such a
function creates children that are the weighted arithmetic mean of the two parents (i.e.,
depending on the fitness function). For the continuous part (called recombined), this crossover
function can be very effective. At the same time, this crossover mechanism cannot be used for

123

Annals of Operations Research (2022) 312:883–908 899

the binary or decision parts of the chromosome. In this case, a uniform crossover function is
used. However, the parents may be infeasible; thus, here, we assume that the feasible parents’
genes are 10 times as dominant. In other words, a gene is ten times more likely to originate
from feasible parents than from infeasible parents.19 After the set of children chromosomes
has been determined, the requirements of the excluded tasks and their task dependencies
must be eliminated (set to 0). We denote the set of recombined children chromosomes in the
Gth generation by CG(SG).

Mutation operator Themutation is a two-step process, in which the first step is general and
is carried out for all parts of the chromosome. In thefirst step, the algorithmselects a fraction of
the vector entries of an individual formutation,where each entry has a probability rate of being
mutated. According to the results of the settings, this rate is specified as 0.01. In the second
step, although the same mechanism is used when the mutation operator is implemented,
the two parts of the chromosomes must be distinguished. In this case, the adaptive feasible
mutation function is used. The mutation operator chooses a direction and step length that
satisfy the bounds and linear constraints. In the presence of constraints, directions that are
adaptive with respect to the preceding successful or unsuccessful generation are randomly
generated.After themutation operator is used, the requirements of the excluded tasks and their
task dependencies must be eliminated (set to 0). We denote the set of mutated chromosomes
in the Gth generation by MG(SG).

Next generation The mutated and crossover individuals are considered together with the
old population, and the best N = 100 individuals are selected for the next generation.

Stopping criteria A genetic algorithm terminates if we reach the maximum number of
generations (set at 100 in this case) or if the average relative change in the best fitness
function value over generations is less than or equal to the function tolerance (1E-8).

5 Calculation steps

The purpose of the simulation is to determine the parameter(s) that influence(s) the (changes
in) project duration and the cost demands of the project while considering the synergies
between the employees. The simulation process is separated into two stages.

Stage 1: Specifying problem sets.
Stage 2: Solving problems.

5.1 Specify problem sets

A problem set contains the following:

(1) SMM matrices that numerically represent the synergy-based software scheduling prob-
lem,

(2) Minimum (δmin) and maximum (δmax) values of the possible synergies between two
members,20 and

(3) Constant ratios (see Sect. 5.1.2).

19 If all the parents are feasible or all the parents are infeasible, the standard uniform crossover function is
used.
20 In the simulation, the average (pairwise) synergy between two employees is AvgSyn := (δmin + δmax)/2.

123

900 Annals of Operations Research (2022) 312:883–908

5.1.1 Specification of SMMmatrix

To determine the SMM matrices, first, the logic and skill domains of the SMM matrices are
generated by the iMOPSE project generator (Myszkowski et al. 2019).

The aim of the selection and generation of the initial project plans is to meet the expecta-
tions for (IT) software project plans to the greatest extent possible, particularly the features
of agile projects. Therefore, the following selection criteria were defined:

CR1 Since Tavares et al. (1999) andVanhoucke (2012) showed that software projects usually
contain more parallel tasks, in the case of selected project structures, the number of
parallel tasks should be greater than the number of serial tasks.21 Nevertheless, several
agile methods, such as the KANBAN and SCRUMBAN methods, limit the number of
parallel work-in-progress (WIP) tasks and allow only 3–5 WIP tasks. Therefore, in the
simulation, the number of WIP tasks must be lower than 5.

CR2 Projects are usually separated into smaller autonomous subprojects (so-called sprints)
(see, e.g., Dingsøyr et al. 2012) that should be completed within 2-5 weeks; therefore,
the number of tasks is limited and should not be greater than 50.

Therefore, the number of tasks was 30 and 50 (Na), and the number of employers
(resources) was 10. The other parameters were selected as the default values with a min-
imal task duration = 1, maximal task duration = 8, minimal resource skill type = 1, and
maximal resource skill type = 9 (the number of skills is Nsk). Ten projects that fulfilled
criteria CR1 and CR2 were selected from the generated project networks.

Nevertheless, these project networks cannot be used directly. Neither known project
generators—such as ProGen (Kolisch and Sprecher 1997), RanGen I (Demeulemeester et al.
2003), and II (Vanhoucke et al. 2008) or iMOPSE (Myszkowski et al. 2019)—nor open project
data sources—such asPSPLIB (Kolisch andSprecher 1997) andMMLIB (PeteghemandVan-
houcke 2014)—distinguishmandatory and supplementary tasks or consider strict and flexible
dependencies. Therefore, there are no score values linked to task completion or task depen-
dencies. Thus, to simulate project flexibility, f f × 100% (where f f := 0.10, 0.15, 0.20) of
the matrix values are reduced from 1 to a lower value in the range of [0.5,1.0], causing them
to represent either uncertain tasks or flexible dependencies.

The original database does not contain synergies between the employees, which therefore
must be specified to follow a sociometric structure (see Fig. 5. The default value of synergy
between two employees is 1 and is known as neutral synergy. For given sociometric structures
(seeFig. 5 inSect. 6), the synergyvalues (weights of synergynetworks) can be either greater or
less than 1.Values δmin := {−0.3,−0.1, . . . , 0.2}, δmax := δmin+0.1 represent theminimum
and maximum differences between the generated and neutral synergies, respectively.

5.1.2 Calculate constraints

After SMM matrices are generated, the constraints are calculated. The ratio of the project
score is Cs% = Cs−TPSmin

TPSmax−TPSmin
:= {0.6, 0.8., 1.0}. In addition to the score constraints, both

cost (Cc := {1.00, 1.25, 1.50} · TPCmin) and time (Ct := {1.00, 1.25, 1.50} · TPTmin) are
calculated. As a result, a set of nCt% × nCc% × nCs% × n f f% × nsmax × nn × n proj =
35×2×144 = 69, 984SMMmatrices and constraints are generated,wherenCt%, nCc%, nCs%

21 Following the simulations of Tavares et al. (1999), i2 = (m − 1)/(n − 1) ∈ [0.2, 0.3], where m is the
number of stages in a topologically ordered network and n is the number of tasks. i2 = 1 if all of the tasks are
completed in a serial manner, and i2 = 0 if all of the tasks are completed in parallel.

123

Annals of Operations Research (2022) 312:883–908 901

Fig. 3 Research model

are the numbers of time, cost and score constraints, respectively; n f f% is the number of
flexible parameters; nsmax is the number of smax values; nn is the number of task numbers
(30, 50); and n proj is the number of selected project structures.

5.2 Solve problems

In stage 2, the problem sets are solved by the proposed hybrid genetic algorithm, where the
objective (target) function is Eq. (34). Given this complex target function, in addition to the
maximization of the project scores, the project duration, project cost, and thus the resource
demands must be reduced simultaneously. The project durations (TPT), project costs (TPC),
and total project scores (TPS) are calculated for every problem set both considering and
ignoring synergies, obtaining TPXsyn and TPXnosyn, respectively. The differences between
TPXnosyn and TPXsyn are calculated, and the cost differences observed in the results are
studied. In this study, both positive (or favorable) and negative (or unfavorable) synergistic
effects are considered. A positive
TPC = TPCnosyn-TPCsyn means that the positive synergy
effect is greater than the negative synergy effect.

6 Results

In this section, we answer the stated research questions (RQ1, RQ2) by analyzing 69, 984
optimization results. The analysis is based on the following research model (see Fig. 3).

This model is focused on three cases: the case of SPSP, in which synergies are ignored
(M1), the case of SSPSP, in which synergies are considered (M2), and the difference between

123

902 Annals of Operations Research (2022) 312:883–908

Fig. 4 Relative importance of the various predictors

these two approaches (M3). Since the cost of the project is a function of the duration and the
employees’ salary, in the main text, T PCnosyn , T PCsyn and
T PC are considered the only
dependent variables. To derive a complete picture of the operation of the proposed method,
we also perform calculations for the project durations in the Appendices (see Appendices B
and C).22

RQ1 : Which indicators influence the effect of synergy on the project cost?

To answer this question, the regression tree ensemble model of the MATLAB regression
learner app (MathWorks 2019b) is employed.23 Fig. 4 shows the relative importance of the
independent variables/predictors for all three cases.24

In the case of the SPSP (see Fig. 4—M1), the size of the project (Na) and the various
skills of employees (Nsk) are the main factors impacting project costs; however, if synergies
between two employees are considered (see Fig. 4—M2), the principal effect is due to the
average pairwise synergy (AvgSyn) itself. In this case, changes in the time, score and cost
constraints (Ct%,Cs%,Cc%) and flexibility (f f) also influence the project cost, while the
previously important size (Na) and skills (Nsk), as well as degree of centrality (CD), have
only a small impact on the cost.

Model 3 answers RQ1 by specifying the parameters that explain the cost differences of
these two approaches. According to this model, the project size has the highest explanatory
power of 47%, followedby the average synergy (AvgSyn—35%) and the structural parameter
(CD – 16%).

These results have two main implications. First, the synergy-related parameters have a
stvery strong effect on projects’ costs even though, based on the current parameterization
of our model, the interdependence of two employees can only change their performance by
up to 30% (see Sect. 5). Second, the high impact of the structural parameter (CD) appears
to be consistent with the relevant literature (see Sect. 2.2). These statements emphasize the
impact of the interdependencies between employees on (software) project scheduling; in
other words, they highlight the importance of the SSPSP approach.

RQ2 : Which structures of synergy networks increase/decrease the projects’ costs the
most?

22 Note that contrary to Table 1, only one structural parameter is considered in Fig. 3. Reducing the model is
justified by the high correlations between the degree of centrality (CD) and other structural parameters (see
Table 2 in Appendix A).
23 Note that Fig. 6 (in Appendix B) contains the results of an additional calculation where the dependent
variables are related to time. In both cases, 10-fold cross-validation was used, and the hyperparameters of
these models were tuned by Bayesian optimization. The details of the optimization processes can be found in
Appendix 2.
24 The relative importance is calculated using the predictorImportance MATLAB function (see MathWorks
2019a).

123

Annals of Operations Research (2022) 312:883–908 903

Fig. 5 Effect of sociometric structures on the project cost

To answer this question, we examine how
TPC (see Fig. 3—M3) is influenced by the
sociometric structure and how their relation changes based on the structural parameter (CD ;
the respective results are shown in shades of gray) or how project flexibility (f f—Cases
1–3) varies (see Fig. 5).

Figure 5 shows that structures with a low degree of centrality (CD) generally lead to a
greater reduction in the project cost; however, the veracity of this statement depends on the
topology of the sociometric network. Although we observe that the flexibility of the project
(f f) has a negligible effect on
TPC (see Fig. 4), we find that the chain and full graph
networks are highly sensitive, even to insignificant changes of this parameter (see Fig. 5
Cases 1-3). In some cases involving these topologies, we observe that TPCsyn is greater than
TPCnosyn, resulting in a negative
TPC. This finding is contrary to that of Sparrowe et al.
(2001) since in thismodel, decentralized networks (such as circle and full graph networks) are
unable to reduce costs by an amount greater than that of the centralized networks (such as star
and sociometric star networks). Furthermore, in the case of networks randomly containing
favorable and unfavorable synergies, the most decentralized topology (the full graph) leads
to the worst results because of its high sensitivity to negative synergies.

7 Threats to validity

Internal validity threats in our case study can be due to the randomness of the results obtained
from the simulation andGA, aswell as a lack of treatment of several variables such as synergy
structures for the optimization. To avoid such a threat, different actions were taken:

– First and foremost, we carefully calibrated the number of generations, elite count,
crossover fraction, mutation rate and population size needed by the GA. The chosen
values were determined to ensure that further changes did not significantly affect the
results. Hyperparameters were then used where the convergence was best.

– Similarly, we calibrated the number of iterations required by the entire approach. As
described in detail in Section 4, further increases over 50 iterations do not produce
improvements in our fitness function; nevertheless, the maximum iterations are specified
to 100 (see Sect. 4).

123

904 Annals of Operations Research (2022) 312:883–908

– To avoid the effect of randomness on the results, GAs were executed 40 times, and we
verified that the obtained fitness function value at the last stage does not change among
the iterations.

– Finally, Nelder-Mead optimization was used to refine the continuous part of the chromo-
some.

Regarding the external validity, our approach and the obtained results can be extended
to non-IT project structures. We applied CR1 and CR2 (see Sect. 5.1.1) to select project
structures that are specific to IT projects merely because flexible approaches are still only
widely used in IT projects. However, with the proliferation of flexible approaches, this study
may also be interesting for projects with different structures.

Construct validity threats may be due to the simplifications of the software project pro-
cess. To mitigate this threat, all small social network structures were explored, which can
be reviewed in the literature. Software projects are generated by the iMOPSE generator
(Myszkowski et al. 2019). The selection criteria (see CR1 and CR2 in Sect. 5.1.1) were then
followed. Therefore, considering the available literature regarding the structure of IT projects,
the generated project structure characterizes the features of an IT project.

To improve the conclusion validity, the optimization results are analyzed by a highly robust
method, the so-called regression tree ensemble model of the MATLAB regression learner
app (MathWorks 2019b). During the calculation, 10-fold cross-validation was used, and
hyperparameters were tuned by Bayesian optimization.25 In addition, large-scale simulation
increases the validity of the conclusion.

8 Conclusions

In this paper, the traditional software project scheduling problem is extended with differ-
ent employee skill efficiencies and pairwise synergies between them—which can influence
their performance during project implementation—as well as with flexible structure of the
project—which is used in flexible management such as agile project management. Using
simulations based on the new approach, we search for project indicators that have the largest
influence on changes in project costs. The main results of the study are as follows. Based on
the proposed simple model, (1) the costs of projects are extremely sensitive to the interde-
pendencies of resources; (2) synergy networks with a low degree of centrality significantly
reduce the project costs, and (3) synergy networks with a full graph topology are most
sensitive to unfavorable synergies (e.g., conflicts). Since the impact of positive or negative
pairwise synergies and the structure of sociometric networks can also be modeled, the pro-
posed method can be a novel element in risk analysis tools, particularly in the context of
human resource-critical projects.

9 Limitations and directions for future research

To simplify the model, the simulations we performed were based on only pairwise synergies;
nevertheless, we believe that the importance of resource interdependencies may motivate
researchers to explore this aspect in greater detail and to test our statements in practice.
The presented simple model disregards several important human factors that could affect
our results (e.g., employees may prefer working in groups with a decentralized sociometric

25 The details of the optimization processes can be found in Appendix 2.

123

Annals of Operations Research (2022) 312:883–908 905

structure). In our study, we focused on single projects; however, such software projects are
usually pursued in a multiproject environment. Therefore, the next paper will address the
impacts of synergy effects in software projects in a multiproject environment.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-021-04467-5.

Acknowledgements This work was supported by the TKP2020-NKA-10 project financed under the 2020-
4.1.1-TKP2020 Thematic Excellence Programme by the National Research, Development and Innovation
Fund of Hungary and by the Research Centre at the Faculty of Business and Economics (No. PE-GTK-GSKK
A095000000-1) of University of Pannonia (Veszprém,Hungary). The authors would like to thank Prof. György
Dósa (University of Pannonia, Veszprém) and the anonymous reviewers for their valuable comments and
advice.

Funding Open access funding provided by University of Pannonia.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendices

Appendix A Correlation of independent variables

See Appendix Table 2.

Table 2 Kendall rank correlation of independent variables

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Nsk 1.00

(2) AvgSyn 0.00 1.00

(3) Ct% 0.00 0.00 1.00

(4) Cc% 0.00 0.00 0.00 1.00

(5) Cs% 0.00 0.00 0.00 0.00 1.00

(6) f f 0.00 0.00 0.00 0.00 0.00 1.00

(7) Na 0.92 0.00 0.00 0.00 0.00 0.00 1.00

(8) CD −0.52 0.00 0.00 0.00 0.00 0.00 −0.52 1.00

(9) CC −0.37 0.00 0.00 0.00 0.00 0.00 −0.37 0.87 1.00

(10) CB −0.20 0.00 0.00 0.00 0.00 0.00 −0.20 −0.44 −0.73 1.00

(11) PP −0.37 0.00 0.00 0.00 0.00 0.00 −0.37 0.87 1.00 −0.73 1.00

123

https://doi.org/10.1007/s10479-021-04467-5
https://doi.org/10.1007/s10479-021-04467-5
http://creativecommons.org/licenses/by/4.0/

906 Annals of Operations Research (2022) 312:883–908

Appendix B Predictor importance in additional models

See Appendix Fig. 6.

Fig. 6 Relative importance of the various predictors (dependent variables are related to time)

Appendix C Supplementary information

See supplementary information files.

References

Ahuja, M. K., Galletta, D. F., & Carley, K. M. (2003). Individual centrality and performance in virtual r&d
groups: An empirical study. Management Science, 49(1), 21–38.

Alba, E., & Chicano, J. F. (2007). Software project management with GAs. Information Sciences, 177(11),
2380–2401.

Barry, B., & Stewart, G. L. (1997). Composition, process, and performance in self-managed groups: the role
of personality. Journal of Applied Psychology, 82(6), 62–78.

Browning, T. R. (2014). Managing complex project process models with a process architecture framework.
International Journal of Project Management, 32(2), 229–241.

Chang, C. K., Jiang, H.-Y., Di, Y., Zhu, D., & Ge, Y. (2008). Time-line based model for software project
scheduling with genetic algorithms. Inf. Softw. Technol., 50(11), 1142–1154.

Chicano, F., Luna, F., Nebro, A. J., & Alba, E. (2011). Using multi-objective metaheuristics to solve the
software project scheduling problem. In Proceedings of the 13th annual conference on genetic and
evolutionary computation, GECCO ’11 (pp. 1915–1922). ACM.

Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2006). Evolutionary algorithms for solving multi-
objective problems (genetic and evolutionary computation). Springer.

Cummings, J. N., & Cross, R. (2003). Structural properties of work groups and their consequences for perfor-
mance. Social Networks, 25(3), 197–210.

Danilovic, M., & Browning, T. R. (2007). Managing complex product development projects with design
structure matrices and domain mapping matrices. International Journal of Project Management, 25(3),
300–314.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley Interscience Series in
Systems and Optimization. Wiley.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). Rangen: A random network generator for
activity-on-the-node networks. Journal of Scheduling, 6(1), 17–38.

Ding,R.,& Jing,X. (2003). Five principles of projectmanagement in software companies.ProjectManagement
Technology, 1, 40–43.

123

Annals of Operations Research (2022) 312:883–908 907

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: Towards
explaining agile software development. Journal of Systems and Software, 85(6):1213 – 1221. Special
Issue: Agile Development.

Fernandez-Viagas, V., & Framinan, J. M. (2014). Integrated project scheduling and staff assignment with
controllable processing times. The Scientific World Journal, 2014, 1–16.

Hackman, J. R. (1983). A normative model of work team effectiveness (Technical report, DTIC Document).
Hapke, M., Jaszkiewicz, A., & Slowinski, R. (1994). Fuzzy project scheduling system for software develop-

ment. Fuzzy Sets and Systems, 67(1), 101–117.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project

scheduling problem. European Journal of Operational Research, 207(1), 1–14.
Hogan, R., Raza, S., & Driskell, J. E. (1988). Personality, team performance, and organizational context (pp.

93–103). Springer.
Hsu, S.-C., Weng, K.-W., Cui, Q., & Rand, W. (2016). Understanding the complexity of project team member

selection through agent-based modeling. International Journal of Project Management, 34(1), 82–93.
Hunter, J. E., Schmidt, F. L., & Judiesch,M. K. (1990). Individual differences in output variability as a function

of job complexity. Journal of Applied Psychology, 75(1), 28–42.
Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the pareto archived

evolution strategy. Evolutionary Computation, 8(2), 149–172.
Kolisch, R., & Sprecher, A. (1997). PSPLIB—A project scheduling problem library: OR software—ORSEP

operations research software exchange program. European Journal of Operational Research, 96(1),
205–216.

Kosztyán, Z. T. (2015). Exact algorithm for matrix-based project planning problems. Expert Systems with
Applications, 42(9), 4460–4473.

Kosztyán, Z. T., Pribojszki-Németh, A., & Szalkai, I. (2019). Hybrid multimode resource-constrained main-
tenance project scheduling problem. Operations Research Perspectives, 6, 100129.

Kosztyán, Z. T., & Szalkai, I. (2018). Hybrid time-quality-cost trade-off problems. Operations Research
Perspectives, 5, 306–318.

Kosztyán, Z. T., & Szalkai, I. (2020). Multimode resource-constrained project scheduling in flexible projects.
Journal of Global Optimization, 76(1), 211–241.

Larson, J. R., Jr. (2007). Deep diversity and strong synergy: Modeling the impact of variability in members’
problem-solving strategies on group problem-solving performance. Small Group Research, 38(3), 413–
436.

Larson, J. R., Jr. (2010). In search of synergy in small group performance. Psychology Press.
Luna, F., González-Álvarez, D. L., Chicano, F., & Vega-Rodríguez, M. A. (2014). The software project

scheduling problem: A scalability analysis of multi-objective metaheuristics. Applied Soft Computing,
15, 136–148.

MathWorks. (2019a). Predictor importance. Retrieved August 25, 2020, from https://www.mathworks.com/
help/stats/compactregressionensemble.predictorimportance.html

MathWorks (2019b). Regression learner app. Retrieved August 25, 2020, from https://www.mathworks.com/
help/stats/regression-learner-app.html

Minku, L. L., Sudholt, D.,&Yao,X. (2013). Improved evolutionary algorithmdesign for the project scheduling
problem based on runtime analysis. IEEE Transactions on Software Engineering, 40(1), 83–102.

Moreno, J. L. (1960). The Sociometry Reader. The Free Press.
Mote, J. E. (2005). R&Decology:Using 2-mode network analysis to explore complexity inR&Denvironments.

Journal of Engineering and Technology Management, 22(1):93–111. Research on Social Networks and
the Organization of Research and Development.

Myszkowski, P. B., Laszczyk, M., Nikulin, I., & Skowroński, M. (2019). Imopse: A library for bicriteria
optimization in multi-skill resource-constrained project scheduling problem. Soft Computing, 23(10),
3397–3410.

Nan, N., & Harter, D. E. (2009). Impact of budget and schedule pressure on software development cycle time
and effort. IEEE Transactions on Software Engineering, 35(5), 624–637.

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., & Alba, E. (2007). Design issues in a multiobjective
cellular genetic algorithm. In International conference on evolutionary multi-criterion optimization (pp.
126–140). Springer.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Commu-
nications of the ACM, 48(5), 72–78.

Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational
Research, 176(2), 774–793.

123

https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html
https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html
https://www.mathworks.com/help/stats/regression-learner-app.html
https://www.mathworks.com/help/stats/regression-learner-app.html

908 Annals of Operations Research (2022) 312:883–908

Peteghem, V. V., & Vanhoucke, M. (2014). An experimental investigation of metaheuristics for the multi-
mode resource-constrained project scheduling problem on new dataset instances. European Journal of
Operational Research, 235(1), 62–72.

Rezende, A. V., Silva, L., Britto, A., & Amaral, R. (2019). Software project scheduling problem in the context
of search-based software engineering: A systematic review. Journal of Systems and Software, 155, 43–56.

Schmitt, N., Gooding, R. Z., Noe, R. A., & Kirsch, M. (1984). Metaanalyses of validity studies published
between 1964 and 1982 and the investigation of study characteristics. Personnel Psychology, 37(3),
407–422.

Shen, X.-N., Minku, L. L., Marturi, N., Guo, Y.-N., & Han, Y. (2018). A q-learning-based memetic algorithm
for multi-objective dynamic software project scheduling. Information Sciences, 428, 1–29.

Smith-Jentsch, K. A., Salas, E., & Baker, D. P. (1996). Training team performance-related assertiveness.
Personnel Psychology, 49(4), 909–936.

Sorenson, J. R. (1971). Task demands, group interaction and group performance. Sociometry, 34(4), 483–495.
Sparrowe, R. T., Liden, R. C., Wayne, S. J., & Kraimer, M. L. (2001). Social networks and the performance

of individuals and groups. Academy of Management Journal, 44(2), 316–325.
Tavares, L. V., Ferreira, J. A., & Coelho, J. S. (1999). The risk of delay of a project in terms of the morphology

of its network. European Journal of Operational Research, 119(2), 510–537.
Tirkolaee, E. B., Goli, A., Hematian, M., Sangaiah, A. K., & Han, T. (2019). Multi-objective multi-mode

resource constrained project scheduling problem using pareto-based algorithms. Computing, 101(6),
547–570.

Vanhoucke, M. (2012). Measuring the efficiency of project control using fictitious and empirical project data.
International Journal of Project Management, 30(2), 252–263.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. V. (2008). An evaluation of the adequacy
of project network generators with systematically sampled networks. European Journal of Operational
Research, 187(2), 511–524.

Vega-Velázquez,M.Á.,García-Nájera,A.,&Cervantes,H. (2018).A survey on the software project scheduling
problem. International Journal of Production Economics, 202, 145–161.

Weglarz, J., Józefowska, J., Mika, M., &Waligóra, G. (2011). Project scheduling with finite or infinite number
of activity processing modes—A survey. European Journal of operational research, 208(3), 177–205.

Wysocki, R. K. (2011). Effective project management: Traditional, agile, extreme. Wiley.
Xiao, J., Ao, X.-T., & Tang, Y. (2013). Solving software project scheduling problems with ant colony opti-

mization. Computers & Operations Research, 40(1), 33–46.
Yang, X.-S. (2010). Engineering optimization: An introduction with metaheuristic applications. Wiley.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm.

TIK-Report, 103, 1–21.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Impacts of synergies on software project scheduling
	Abstract
	1 Introduction
	2 Related works
	2.1 Combination of task scheduling and personnel allocation
	2.2 Project team as a complex system
	2.3 Summary and research questions

	3 Formal description of the synergy-based SPSP
	3.1 Notation
	3.2 Formalism related to project duration
	3.3 Formalism related to the project cost
	3.4 Constraints
	3.5 Summary of notations

	4 Proposed hybrid genetic algorithm
	4.1 Genetic algorithm parameters

	5 Calculation steps
	5.1 Specify problem sets
	5.1.1 Specification of SMM matrix
	5.1.2 Calculate constraints

	5.2 Solve problems

	6 Results
	7 Threats to validity
	8 Conclusions
	9 Limitations and directions for future research
	Acknowledgements
	Appendices
	Appendix A Correlation of independent variables
	Appendix B Predictor importance in additional models

	Appendix C Supplementary information
	References

