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Abstract
A linear description of the stable set polytope ST AB(G) of a quasi-line graph G is given
in Eisenbrand et al. (Combinatorica 28(1):45–67, 2008), where the so called Ben Rebea
Theorem (Oriolo in Discrete Appl Math 132(3):185–201, 2003) is proved. Such a theorem
establishes that, for quasi-line graphs, ST AB(G) is completely described by non-negativity
constraints, clique inequalities, and clique family inequalities (CFIs). As quasi-line graphs
are a superclass of line graphs, Ben Rebea Theorem can be seen as a generalization of
Edmonds’ characterization of the matching polytope (Edmonds in J Res Natl Bureau Stand
B 69:125–130, 1965), showing that thematching polytope can be described by non-negativity
constraints, degree constraints and odd-set inequalities. Unfortunately, the description given
by the Ben Rebea Theorem is not minimal, i.e., it is not known which are the (non-rank)
clique family inequalities that are facet defining for ST AB(G). To the contrary, it would
be highly desirable to have a minimal description of ST AB(G), pairing that of Edmonds
and Pulleyblank (in: Berge, Chuadhuri (eds) Hypergraph seminar, pp 214–242, 1974) for the
matching polytope. In this paper, we start the investigation of a minimal linear description for
the stable set polytope of quasi-line graphs. We focus on circular interval graphs, a subclass
of quasi-line graphs that is central in the proof of the Ben Rebea Theorem. For this class of
graphs, we move an important step forward, showing some strong sufficient conditions for a
CFI to induce a facet of ST AB(G). In particular, such conditions come out to be related to
the existence of certain proper circulant graphs as subgraphs of G. These results allows us to
settle two conjectures on the structure of facet defining inequalities of the stable set polytope
of circulant graphs (Pêcher and Wagler in Math Program 105:311–328, 2006) and of (fuzzy)
circular graphs (Oriolo and Stauffer in Math Program 115:291–317, 2008), and to slightly
refine the Ben Rebea Theorem itself.
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1 Introduction

A stable set is a set of pairwise non-adjacent vertices of a graph. While finding a maximum
size (or weight) stable set is hard in general graphs, the special case of line graphs can be
handle in polynomial time through a simple reduction to matching (Edmonds 1965; Lovász
and Plummer 1986) (a graph G is line if it is the intersection graph of the edges of a graph
H—two edges intersect if they share an end—and thus stable sets in G correspond to match-
ings in H and vice-versa). The matching problem is a standard problem in combinatorial
optimization and it has been studied extensively. In particular, there is a good understanding
of the polyhedral nature of the problem: the matching polytope of a graph G, i.e., the convex
hull of the characteristic vectors of the matchings of G, can be described by non-negativity
constraints, degree constraints and odd-set inequalities. Not all degree constraints and odd-set
inequalities are needed to describe the matching polytope. In fact the facets of this polytope
were described by Edmonds and Pulleyblank (1974) : for a connected graph G, a degree
constraint x(δ(v)) ≤ 1 defines a facet of the matching polytope of G if and only if the degree
of v is at least three or it is two and v is not contained in a triangle; while an odd set inequality
x(E(S)) ≤ � |S|−1

2 � defines a facet of the matching polytope if and only if |S| ≥ 3 and G[S]
is factor-critical and 2-vertex-connected (factor-critical graphs are graphs H for which H \v

has a perfect matching for all v ∈ V (H)).
A graph is claw-free if there is no stable set of size three in the neighborhood of any vertex.

Claw-free graphs are a superclass of line graphs, and therefore some properties of matching
extend naturally to stable sets in claw-free graphs. In particular Berge (1973) proved that a
stable set is maximum in a claw-free graph if and only if there does not exist an “augmenting
path” (see Berge 1973 for the proper extension of this definition from matching to stable
set) and this property was exploited by several authors to devise polynomial time algorithms
for the stable set problem (Minty 1980; Sbihi 1980; Nakamura and Tamura 2001) (other
types of algorithms also exist, see Lovász and Plummer 1986; Faenza et al. 2014; Nobili
and Sassano 2015). Unfortunately, despite considerable efforts and progress (Galluccio et al.
2014a, b), the polyhedral nature of the problem is still not fully understood yet, see Faenza
et al. (2011); Oriolo et al. (2011) for detailed discussions and remaining open questions.
A subclass of claw-free graphs, namely quasi-line graphs, behaves better polyhedrally. A
graph is quasi-line if the neighborhood of any vertex can be partitioned into two cliques and
these graphs are (strictly) sandwiched between line and claw-free graphs. The Ben Rebea
Theorem (Eisenbrand et al. 2008) provides a complete description of their stable set polytope,
i.e., the convex hull of the characteristic vectors of the stable sets of a graph: non-negativity
constraints, clique inequalities and the so-called clique family inequalities are all one needs
to describe this polytope.

Theorem 1 (Ben Rebea Theorem) (Eisenbrand et al. 2008) The stable set polytope of quasi-
line graphs can be described by:

(i) xv ≥ 0, for all v ∈ V ,
(ii) x(K ) ≤ 1, for all maximal cliques K ⊆ V and

(iii) clique family inequalities with parameter F and p: |F | > 2p, p ≥ 2 and gcd(|F |, p) �=
p.

Clique family inequalities are defined as follows: given a graph G, a set of cliques K, and
an integer 1 ≤ p < n = |K|, the clique family inequality (C F I (K, p)) is the valid inequality
(Oriolo 2003)
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(p − r)
∑

v∈S≥p

xv + (p − r − 1)
∑

v∈Sp−1

xv ≤ (p − r)� n

p
�

where r = n mod p, S≥p is the set of vertices contained in at least p cliques ofK and Sp−1

is the set of vertices contained in exactly p − 1 cliques of K. Clique family inequalities are a
natural but non-trivial extensions of odd-set inequalities to the stable set setting: on the one
hand, they capture odd-set inequalities, as odd set of vertices in a graph H correspond to
odd families of cliques in the line graph of H ; on the other hand, they capture sophisticated
non-rank facet-inducing inequalities that are necessary to describe ST AB(G), as shown by
examples in Giles and Trotter (1981) and Liebling et al. (2004). (We recall that an inequality
of the form ax ≤ b is said to be rank if a is a 0/1 vector: trivially odd set inequalities are
rank).

Not all clique family inequalities define facets and it would be interesting to have an equiv-
alent of Pulleyblank and Edmonds’ minimal description of the matching polytope (Edmonds
and Pulleyblank 1974) for the stable set polytope of quasi-line graphs. This is a challenging
task in particular for non-rank facets, as already interpreting those in Giles and Trotter (1981)
and Liebling et al. (2004) is not straightforward. As for rank facets, a positive result is due
to Galluccio and Sassano (1997). Their result is for claw-free graphs, but we state it for
quasi-line graphs as in this case it simplifies a little bit. Galluccio and Sassano show that,
when G is quasi line, each rank facet of ST AB(G) can be obtained by sequential lifting of
a few rank-minimal facets, associated with some relevant subgraphs G ′ of G (the definitions
of circulants will be given shortly, other definitions that are needed in the rest of this section,
will be given in § 1.1):

Theorem 2 (Galluccio and Sassano 1997) Any rank facet of a quasi-line graph G can be
obtained by sequential lifting of a facet of the form

∑
v∈V (G ′) xv ≤ α(G ′) with G ′ an induced

subgraph of G and either

(j) G ′ a singleton;
(jj) G ′ a (αω + 1, ω)-circulant, for some ω ≥ 3 integer (with ω = ω(G ′) and α = α(G ′))

or
(jjj) G ′ the line graph of a minimal 2-vertex-connected factor-critical graph H (minimal

means here that H is such that H \ e is no longer factor-critical for any e ∈ E(H)).

Moving to non-rank facets, such a description is not at hand, even if Stauffer (2011) was
able to somehow extend Theorem 2 using the notion of simultaneous lifting:

Theorem 3 (Stauffer 2011) Besides non-negativity constraints, any facet of a quasi-line
graph G can be obtained by simultaneous lifting of a facet of the form

∑
v∈V (G ′) xv ≤ α(G ′)

with G ′ an induced subgraph of G of the form (j) (jj) or (jjj).

Unfortunately, while Theorem 2 provides a reasonable description of rank facets, Theo-
rem 3 is not fully satisfactory, as simultaneous lifting is not as easy to interpret as sequential
lifting.

In the paper, we therefore focus on the study of non-rank facets and we concentrate on a
particular class of quasi-line graphs with circular structure, named circular interval graphs,
that were already central in the proof of the Ben Rebea Theorem. Circular interval graphs
generalize circulant graphs, whose definition we now recall:

Definition 4 A graph G(V , E) is an (n, p)-circulant or antiweb (Trotter 1975), for n, p ∈ N

with n ≥ 2 and 1 ≤ p ≤ � n
2 �, if the vertices in V can be labeled 0, . . . , n − 1 so that

E = {(i, j) : i, j ∈ V with |i − j | ≤ p −1 mod n} (i.e., i is adjacent to {i − p +1, . . . , i −
1, i + 1, . . . , i + p − 1} where sums are taken modulo n).
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Observe that
∑

i∈V xi ≤ α(C(n, p)) = � n
p � is a valid inequality for ST AB(C(n, p)) and

it induces a facet if and only if p does not divide n (see for instance Wagler 2004).

Definition 5 A graph G = (V , E) is a circular interval graph (CIG) if there is an injective
mapping Φ from V to the unit circle C and a set of intervals I of C, none including another,
such that (u, v) ∈ E ⇐⇒ ∃I ∈ I : φ(u), φ(v) ∈ I . We call (φ, I) a representation of G.
Fuzzy circular interval graphs (FCIG) are a slight generalization of circular interval graphs
and will be formally defined in § 1.1

We now motivate our interest in circular interval graphs. It is known that the facets of
ST AB(G) are rank when G is a quasi-line graph that is not a fuzzy circular interval graph
(see Eisenbrand et al. 2008). Now, for FCIG, Eisenbrand and al. have observed (cf. Lemma
5 in Eisenbrand et al. (2008) and Lemma 25 in the following) that a facet inducing inequality
of the stable set polytope of a FCIG is also a facet inducing inequality of the stable set
polytope of a suitable CIG: this lemma can be used to extend most polyhedral results from
circular interval graphs to fuzzy circular interval graphs. Therefore, providing a minimal
linear description of the stable set polytope for CIGs is a crucial step to providing a minimal
linear description of the stable set polytope of FCIGs and quasi-line graphs.

Even though we will not be able to provide a minimal description of ST AB(G) for CIGs,
we will however provide strong necessary conditions for clique family inequalities to be
facet-defining. Our main result is Theorem 6 below, showing that circulant subgraphs are
“responsible” for the non-trivial facets of ST AB(G), when G is a CIG. Consider a CIG C
whose vertices are numbered clockwise. Then, for each i ∈ V (C), N (i) = {nl(i), nl(i) +
1, . . . , i − 1, i + 1, . . . , nr (i) − 1, nr (i)} (sums are taken again modulo n), for some values
nl(i), nr (i). Let Qi = {nl(i), . . . , i−1, i} and for a set I ⊆ V (C) letQ(I ) = {Qi , for all i ∈
I }. Now suppose that the set I ⊆ V (C) induces an (n′, p′)-circulant on C , then the clique
family inequality associated with I is that with parameters Q(I ) and p′.

Theorem 6 Let C be a circular interval graph and (φ, I) a representation for it. The stable
set polytope of C can be characterized by: non-negativity inequalities, clique inequalities,
the inequality

∑
v∈V (C) xv ≤ α(C) and clique family inequalities associated with sets I ⊂

V (W ) that induce (n, p)-circulants on W , with n and p are relatively prime and such that
α(I ) < α(W ).

Theorem 6 is indeed a generalization (and a sharpening) to the stable set polytope of CIGs
of a conjecture of Pêcher and Wagler for circulant graphs (Pêcher and Wagler 2006), that we
therefore settle.

While Theorem 6 gives a description of the stable set polytope of CIGs that is finer
than those given by Theorem 1 and Theorem 3, it does not provide necessary and sufficient
conditions for clique family inequalities to be facet-defining.Wewill however provide strong
necessary conditions for clique family inequalities to be facet-defining forCIGs, and the proof
of Theorem 6 builds upon these conditions. Remarkably, these conditions and Theorem 6
itself will also allow us to sharpen and settle another conjecture from the literature, due to
Oriolo and Stauffer (2008), on the stable set polytope of FCIGs. Finally, we will also be able
to sharpen Theorem 1, by showing that we can restrict to pairs (F, p) such that |F | and p
are relatively prime.

The paper is organized as follows. In Sect. 2, we recall important elements from the proof
in Eisenbrand et al. (2008) and we restate and sharpen some of the results. In Sect .3 and 4,
we exploit our refinements to prove different properties of non-rank facets that will already
lead us to sharpen Ben Rebea Theorem. Then in Sect. 5, we use those necessary conditions
to prove Theorem 6 and the above conjectures.
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1.1 Definitions and properties

A stable set (resp. clique) is a set of pairwise non-adjacent (resp. adjacent) vertices of a graph.
The stability number (resp. clique number) of a graph G is the size of a maximum stable
set (resp. clique) in G and is denoted α(G) (resp. ω(G)). Given a graph G = (V , E) and
W ⊆ V , G[W ] represents the subgraph of G induced by the vertices of W . G[W ] is said to
be α-maximal if α(G[W ∪ {v}]) > α(G[W ]) for every v /∈ W .

The stable set polytope ST AB(G) of a graph G is the convex hull of the characteristic
vectors of the stable sets of G. Facets of ST AB(G) are inequalities of the form ax ≤ b
which are satisfied by the characteristic vectors of any stable set of G and that are necessary
to describe the polytope, i.e., there are |V (G)| affinely independent stable sets, or roots,
satisfying ax = b: stable sets whose characteristic vectors satisfy a valid inequality ax ≤ b
at equality are called roots of the inequality. ST AB(G) is down-monotone and, apart from
non-negativity constraints (sometimes call trivial facets), all facets of ST AB(G) are of the
form ax ≤ b with a, b ≥ 0. A (non-trivial) facet is said to be rank if a is a 0/1 vector and
non-rank otherwise.

LetG(V , E)be agraph and let F ′ : ∑
v∈V ′ avxv ≤ b be a facet of ST AB(G[V ′]), for some

V ′ ⊂ V : the facets of ST AB(G) of the form F : ∑
v∈V ′ avxv +∑

v∈V \V ′ a′
vxv ≤ b (with a′

v

not necessarily integer) are called simultaneous liftings of F ′, see Zemel (1978). Moreover, if
there exists an ordering v1, . . . , vK of the vertices in V \ V ′ such that, for each k = 1..K , the
inequality

∑
v∈V ′ avxv + ∑

v∈{v1,...,vk } a′
vxv ≤ b is a facet of ST AB(G[V ′ ∪ {v1, . . . , vk}]),

then F is a sequential liftings of F ′ (i.e., it can be obtained from F ′ by “lifting” one coefficient
at a time), see Padberg (1973).

Fuzzy circular interval graphs are a slight generalization of circular interval graphs where
Φ is not necessarily injective, no two interval of I shares an endpoint and the vertices mapped
at the two extremities of an interval might be adjacent or not. More formally:

Definition 7 A graph G(V , E) is a fuzzy circular interval (FCIG) if the following conditions
hold.

(i) There is a map Φ from V to a circle C.
(ii) There is a set of intervals I of C, none including another, such that no point of C is an

endpoint of more than one interval so that:

(a) If two vertices u and v are adjacent, thenΦ(u) andΦ(v) belong to a common interval.
(b) If two vertices u and v belong to a same interval, which is not an interval with distinct

endpoints Φ(u) and Φ(v), then they are adjacent.

In this case, we also say that the pair (Φ, I) gives a fuzzy representation of G.

In other words, in a FCIG, adjacencies are completely described by the pair (Φ, I), except
for vertices u and v such that I contains an interval with endpointsΦ(u) andΦ(v). For these
vertices adjacency is fuzzy. If [p, q] is an interval of I such thatΦ−1(p) andΦ−1(q) are both
non-empty, then we call the cliques (Φ−1(p),Φ−1(q)) a fuzzy pair. Here Φ−1(p) denotes
the clique {v ∈ V | Φ(v) = p}.

We close this section by defining clique-circulants.

Definition 8 A quasi-line graph G(V , E) is a (n, p)-clique-circulant if (i) there exist a par-
tition of V into n non-empty cliques Q1, . . . , Qn and an integer p, with n ≥ 2p ≥ 4, such
that Λ(Qi ) ⊇ Qi−p+1 ∪ · · · ∪ Qi−1 ∪ Qi+1 ∪ · · · ∪ Qi+p−1, for i = 1, . . . , n and (ii) there
exists an induced (n, p)-circulant on vertex set W = {v1, . . . , vn} ⊆ V with vi ∈ Qi for
i = 1, . . . , n. (for W ⊆ V ,Λ(W ) := {v ∈ V : (u, v) ∈ E,∀ u ∈ W }, Λ(W ) represent the
strong neighborhood of W ).
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2 Warm up

Let D = (V ,A) (resp. G(V , E)) be a directed (resp. undirected) graph, a cyclic order on V
is a linear ordering v1, . . . , vn of the vertices of V with the additional relation that v1 follows
vn . Given a circular interval graph C and a representation (φ, I), we can define a cyclic
order by listing the vertices clockwise. In the following, we will suppose that the vertices are
labeled 1, . . . , n with respect to this ordering. Moreover given a vertex i we will often refer
to i −1 as the predecessor, or left neighbor, of i and i +1 as the successor, or right neighbor,
of i . The closest predecessor of i having a given property will be the vertex i − k having the
required property with k > 0 as small as possible and analogously for the closest successor.
Also we can suppose that for all v ∈ V (C), φ(v) is the angular polar coordinate of v. We
will sometimes denote [a, b] the set of points of the unit circle with polar coordinate θ such
that b ≤ θ ≤ a. (NB: indices are taken modulo n and inequalities on θ are taken modulo
2π).

In the following, when we consider a CIG C we always assume that we are given a
representation (φ, I). So letC be a CIG. Following Eisenbrand et al. (2008), we can associate
an auxiliary graph to C . Indeed, any interval of I corresponds to a clique in C and we denote
the family of cliques stemming from intervals by KI . Now let A ∈ {0, 1}m.n be the clique
vertex incidence matrix of KI and V (C) (m = |KI |); note that A has the circular one
property. The characteristic vectors of stable sets of G are integer solutions in {x ∈ R

n :
Ax ≤ 1, x ≥ 0}. Introducing the totally unimodular (and invertible) transformation

T =

⎛

⎜⎜⎜⎝

1−1 1
−1 1

−1
. . .

1−1 1

⎞

⎟⎟⎟⎠ ,

we can rewrite the set {x ∈ Z
n : Ax ≤ 1, x ≥ 0} as {x = T y : y ∈ Z

n,
(

A−I

)
T y ≤ (

1
0

)}. The
matrix

(
A−I

)
T is obtained from

(
A−I

)
by substituting each column (but the last one) by the

current columnminus the next and it can thus be easily seen to be “almost” a network matrix,
i.e., it is of the form (N |v)where N t is a network matrix minus one row (see Eisenbrand et al.
2008 for more details).We then define the auxiliary graph Aux(C) = (U ,A) associated with

C by considering the arc-node incidence matrix M =
(

N w

−N −w

)
where w is the negative

sum of the columns of N .
The set of arcs A partitions in two classes AL and AR : AL are the arcs with arc-node

incidence matrix (N |w) and AR are the arcs with arc-node incidence matrix (−N | − w).
The arcs AR are simply the reverse of the arcs AL . In turn, AL consists of two sets of arcs
SL and TL , where SL is the set of arcs stemming from clique inequalities and TL are the arcs
stemming from the lower bounds x ≥ 0. Likewise AR can be partitioned into SR and TR .
In other words, if we look at the arc-node incidence matrix M , we can assume that the rows
of M appear in the order SL ,TL , SR,TR . A clique {i, i + 1, . . . , i + p} of C generates the
arcs (i − 1, i + p) ∈ SL and (i + p, i − 1) ∈ SR and a lower bound −xi ≤ 0 generates the
two arcs (i, i − 1) ∈ TL and (i − 1, i) ∈ TR . We call clique arcs the arcs of SL ∪ SR and
non-negativity arcs the arcs of TL ∪ TR .

It is easy to build Aux(C) from a representation of C and conversely, it is easy to give
a representation of C associated with the auxiliary graph Aux(C). In particular, there is a
one to one correspondence between the vertices U and V (C). Therefore, we will often abuse
notations and denote by V (C) the vertices of the auxiliary graph (Fig. 1).
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Fig. 1 Acircular interval graphC and its corresponding auxiliary graph Aux(C). For instance : arc (4, 3) ∈ TL ,
arc (3, 4) ∈ TR , arc (6, 3) ∈ SR and arc (3, 6) ∈ SL

Eisenbrand et al. (2008) have proved that each facet-inducing inequality cx ≤ δ of
ST AB(C), which is not induced by an inequality of the system Ax ≤ 1, x ≥ 0, “is associ-
ated with” at least one simple (directed) cycle Γ of the auxiliary graph Aux(C). Indeed this
is the essence of the following Theorem which is basically Theorem 7 in Eisenbrand et al.
(2008) restated in our notations (where we exhibit the values of certain parameters that can
be read directly from the proof).

We stick to the notation in Eisenbrand et al. (2008) and we denote cycles in Aux(C) by
Γ = ( fL , fR) where fL (resp. fR) is the characteristic vector of Γ overAL (resp. overAR).
Abusing notation, we will often write fL(xv ≥ 0) (resp. fR(xv ≥ 0), fL(K ), fR(K )) instead
of fL(e) for e being the non-negativity arc corresponding to xv ≥ 0 or x(K ) ≤ 1.

Theorem 9 (Eisenbrand et al. 2008) For each facet-inducing inequality cx ≤ δ of ST AB(C),
which is not induced by an inequality of the system Ax ≤ 1, x ≥ 0, there exist an integer
1 ≤ β ≤ α(C) and a vector ( fL , fR), which is the incidence vector of a simple cycle Γ of
the directed graph Aux(C), a negative integer fR,0 = c(n) − fRv and a positive integer
fL,0 = c(n)− fLv (with c(n) = fL dL − fRdR, dL = d −βv, dR = d −(β+1)v, d = (1 0)t )
and such that c x ≤ δ is derived from the systems

1x ≤ β

Ax ≤ 1
−x ≤ 0.

and
−1x ≤ −(β + 1)

Ax ≤ 1
−x ≤ 0,

(1)

with the weights fL,0, fL and | fR,0|, fR respectively. Moreover, we can find |V (C)| affinely
independent stable sets of size β and β + 1 satisfying cx = δ.

(The last statement of the theorem follows from simple convexity arguments.) Eisenbrand
et al. have also proved that we can in fact restrict our attention to simple directed cycles with
at least one arc from SR and without arcs from SL (Lemma 9 and 10 in Eisenbrand et al.
2008).

Remark 10 From now on we indeed assume that there is no arc from SL in Aux(C), i.e.,
Aux(C) = (U ,TL ∪ SR ∪ TR). Moreover, in our drawings, we will usually represent non-
negativity arcs by undirected edges, while we will only specify the orientation when one of
the two arcs is used in a simple cycle.
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Fig. 2 A cycle and the different
types of vertices. The winding
number of the cycle is 2

3 Exploiting the auxiliary graph Aux(0)

We start with a concept introduce by Sebò (2004). Given a cyclic order 1, . . . , n of the vertices
of a directed graph D(U ,A), one can define the winding of a directed cycle Γ as follows. We
define the length of an arc (i, i + k), for some n ≥ i ≥ 1, n − 1 ≥ k ≥ 1, as l((i, i + k)) = k

(sums of indices are taken modulo n). The winding of Γ is the integer ind(Γ ) =
∑

e∈Γ l(e)
|V (G)| .

We would like to generalize this notion of winding allowing some “backward steps”. We
therefore let AF ∪ AB be a partition of A into two classes: AF the forward arcs and AB

the backward arcs. Now we can define the length of an arc (i, i + k), for some n ≥ i ≥ 1,
n − 1 ≥ k ≥ 1, to be l((i, i + k)) = k if it is forward and l((i, i + k)) = k − n if it is
backward. Hence, the length of an arc (i, i − 1) will be n − 1 if (i, i − 1) ∈ AF and −1 if

(i, i −1) ∈ AB . We now define the (net) winding to be the integer indAF ,AB (Γ ) =
∑

e∈Γ l(e)
n .

As we already pointed out, we can restrict our attention to simple, directed cycles of
Aux(C) with at least one arc from SR . For such cycles, we will consider the (net) winding
with respect to a counter-clockwise cyclic ordering of the vertices and with respect to the
sets of forward arcs AF = SR ∪ TL and backward arcs AB = TR , and we define p(Γ ) =
indAF ,AB (Γ ). It is convenient to introduce the following definition:

Definition 11 Let Γ = ( fL , fR) be a simple, directed cycle in Aux(C) with at least one arc
from SR . We denote by F(Γ ) be the family of cliques corresponding to the clique arcs of Γ

and p(Γ ) = indSR∪TL ,TR , its winding number (again w.r.t. a counter-clockwise ordering of
the vertices). We also let β(Γ ) = � |F(Γ )|

p(Γ )
� and r(Γ ) = |F(Γ )| − p(Γ ) · β(Γ ). We finally

partition the vertices of V (C) into three classes with respect to Γ :

– Circles ≡ S◦(Γ ) := {v : fL(xv ≥ 0) = 1},
– Bullets ≡ S•(Γ ) := {v : fL(xv ≥ 0) = fR(xv ≥ 0) = 0} and
– Crosses ≡ S⊗(Γ ) := {v : fR(xv ≥ 0) = 1}.
Figure 2 illustrates the previous definitions. Note that, if v is a vertex of circle or cross

type, then v belongs to the cycle because fL(xv ≥ 0) = 1 or fR(xv ≥ 0) = 1. Also, because
the cycle is simple and contains at least one clique arc, a sequence of circle vertices on the
cycle must start and end with a bullet. For the same reason, a sequence of cross vertices must
start and end with a bullet. Regarding the vertices of type bullet, some are in the cycle, some
are not.

The next theorem is a refinement of Theorem 9. For the sake of completeness we give a
complete proof.

Theorem 12 Let C be a CIG. Then any facet of ST AB(C), which is not x ≥ 0 or a clique
inequality, is the clique family inequality C F I (Γ ) for some cycle Γ = ( fL , fR) of Aux(C)
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such that |F(Γ )| > 2p(Γ ) ≥ 4 and |F(Γ )| mod p(Γ ) �= 0. Moreover, there exist |V (C)|
affinely independent roots for C F I (Γ ) of size β(Γ ) and β(Γ ) + 1.

Proof Theorem 9 implies that any facet cx ≤ δ which is not induced by Ax ≤ 1, x ≥ 0 is
a nonnegative integer combination of the system on the left in (1) with nonnegative weights
fL,0, fL . As already mentioned, Lemma 9 in Eisenbrand et al. (2008) implies that fL can
be chosen such that the only nonzero (+1) entries of fL are corresponding to lower bounds
−x(v) ≤ 0. Therefore cx ≤ δ is of the form

a
∑

v∈T

x(v) + (a − 1)
∑

v /∈T

x(v) ≤ a β, (2)

with a = fL,0 and T set to those variables, whose lower bound inequality does not appear
in the derivation: in other words, if v /∈ T , then fL(x(v) ≥ 0) = 1.

From the same Theorem 9 , we know also that cx ≤ δ can be derived from the system

−1x ≤ −(β + 1)
Ax ≤ 1
−x ≤ 0,

(3)

withweights | fR,0|, fR , where fR,0 is a negative integerwhile fR is a 0-1 vector. Observe that
eachvertexv has to belong to a root of sizeβ or sizeβ+1, otherwise the facetwouldbe induced
by x(v) ≥ 0 (since we know there exist |V (C)| affinely independent roots of size β or β +1,
see Theorem 9). Moreover, the multiplier of fR associated with a lower bound −x(v) ≤ 0
must be 0 if v belongs to a root of size β + 1 (indeed a root of size β + 1 being tight for
−1x ≤ −(β+1), it must be tight for all inequalities used with positive multipliers in the right
of (1)): in other words, if v ∈ T and v belongs to a root of size β +1, then fR(x(v) ≥ 0) = 0;
and if v ∈ T and v does not belong to a root of size β + 1, then fR(x(v) ≥ 0) is either 0 or
1. Finally, observe that by definition F(Γ ) = {K ∈ KI | fR(K ) �= 0}. We have therefore:

−| fR,0| + |{K ∈ F(Γ ) | v ∈ K }| = a − 1 ∀v /∈ T
−| fR,0| + |{K ∈ F(Γ ) | v ∈ K }| = a ∀v ∈ T , v is in a root of size β + 1
−| fR,0| + |{K ∈ F(Γ ) | v ∈ K }| ≥ a ∀v ∈ T , v is not in a root of size β + 1

−| fR,0|(β + 1) + |F(Γ )| = aβ

If we let p := a + | fR,0|, then any vertex not in T belongs to exactly p − 1 cliques from
F(Γ ), while each vertex in T belongs to at least p cliques from F(Γ ). Moreover, since
|F(Γ )| = (a + | fR,0|)β + | fR,0|, we have that |F(Γ )| mod p = | fR,0| �= 0. Therefore,
the inequality cx ≤ δ ≡ a

∑
v∈T x(v) + (a − 1)

∑
v /∈T x(v) ≤ a β, is the clique family

inequality associated with F(Γ ) and p.
We now show that p = p(Γ ), i.e., cx ≤ δ is indeed equivalent to C F I (Γ ). From

Theorem 9, we have a = fL,0, fL,0 = c(n) − fL · v and fR,0 = c(n) − fR · v for some
c(n), and fR,0 is a negative integer so | fR,0| = − fR,0. It follows that p = ( fR − fL) · v.
We indeed have that p = p(Γ ), as ( fR − fL) · v = p(Γ ): see Claim 1 in Lemma 14. It
also follows that β = β(Γ ) and therefore there exist |V (C)| affinely independent roots for
C F I (Γ ) of size β(Γ ) and β(Γ ) + 1.

We finally observe that, since a ≥ 1 and | fR,0| ≥ 1, it follows that p(Γ ) ≥ 2. Moreover,
if |F(Γ )| = 3, then the clique family inequality is a clique inequality (as the right hand side
is 1). Thus for a non-clique inequality, we have |F(Γ )| > 2p(Γ ) ≥ 4 and thus we have at
least five clique arcs. ��

Theorem 12 motivates the following:
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Definition 13 A directed cycle of Aux(C) that is simple, such that |F(Γ )| > 2p(Γ ) ≥ 4
and |F(Γ )| mod p(Γ ) �= 0 is called good.

We will now show a “counterpart” to Theorem 12. Namely we show that we can associate
with every simple directed cycle of Aux(C) with at least one arc from SR a clique family
inequality.

Lemma 14 Let Γ = ( fL , fR) a simple, directed cycle in Aux(C) with at least one arc from
SR.

(i) the vertices of S⊗(Γ ) (resp. S•(Γ ), S◦(Γ )) are covered by exactly p(Γ )+1 (resp. p(Γ ),
p(Γ ) − 1) cliques of F(Γ );

(ii) the clique family inequality C F I (F(Γ ), p(Γ )), which we simply denote by C F I (Γ ),
is then valid: (p(Γ ) − r(Γ ))

∑
v∈S•(Γ )∪S⊗(Γ ) xv + (p(Γ ) − r(Γ ) − 1)

∑
v∈S◦(Γ ) xv ≤

(p(Γ ) − r(Γ ))β(Γ );
(iii) C F I (Γ ) can be also derived from the systems:

1x ≤ β(Γ )

Ax ≤ 1
−x ≤ 0.

and
−1x ≤ −(β(Γ ) + 1)

Ax ≤ 1
−x ≤ 0,

(4)

with the weights p(Γ ) − r(Γ ), fL and r(Γ ), fR respectively.

Proof We start with the following:

Claim For each u ∈ C ,
∑

K :u∈K fR(K ) + fL(xu ≥ 0) − fR(xu ≥ 0) = p(Γ ) and, in its
turn, p(Γ ) = ( fR − fL) · v.

Observe that ( fR − fL)N = [ fR | fL ] ( N−N

) = [0 . . . 0], sinceΓ is a a simple cycle of Aux(C)

and

(
N w

−N −w

)
is the arc-node incidence matrix of Aux(C). Also observe that T −1 =

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0
1 1

. . .
...

...
. . . 0

1 1 · · · 1

⎤

⎥⎥⎥⎥⎦
. Then we have: ( fR − fL)

(
A−I

) = ( fR − fL)[N |v]T −1 = [0 . . . 0|q]T −1 =

[q . . . q], where we let q := ( fR − fL) · v. Thus for all u ∈ V (C), we have q = |{K :
u ∈ K and fR(K ) > 0}| + fL(xu ≥ 0) − fR(xu ≥ 0) = ∑

K :u∈K fR(K ) + fL(xu ≥
0) − fR(xu ≥ 0). We are left with showing that q is indeed equal to p(Γ ). By definition,

p(Γ ) =
∑

e∈Γ l(e)
|V (C)| but

∑
e∈Γ l(e) = ∑

K : fR(K )>0 |K | + ∑
u fL(xu ≥ 0) − ∑

u fR(xu ≥
0) = ∑

u(|K : u ∈ K and fR(K ) > 0| + fL(xu ≥ 0) − fR(xu ≥ 0)) = |V (C)| · q and thus
p(Γ ) = q . �

(i) Since Γ is simple, it follows that, for each u ∈ V , it has at most one of fL(xu ≥ 0)
or fR(xu ≥ 0) equal to one. The statement then follows from the claim and Definition 11;
(i i) it follows from the definition of clique family inequalities (Oriolo 2003); (i i i) this can
be easily checked by the reader. ��

Now one may wonder if there is a one-to-one correspondence between the good cycles
of Aux(C) and the facet-defining inequalities of ST AB(C). Unfortunately, that is not true.
First of all, there might in general be several good cycles “producing” the same clique family
inequality. Consider the CIG of Fig. 1 together with the corresponding auxiliary graph. The
two cycles of Fig. 3 gives exactly the same clique family (facet-defining) inequality, i.e.,
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Fig. 3 Two cycles giving the same facet

Fig. 4 A good cycle “producing”
a valid inequality

∑
v xv ≤ 2 that

is not a facet: in fact the arc (1, 6)
and the arc (6, 1) correspond to
the cliques K1 = {7, 8, 9, 10, 1}
and K2 = {2, 3, 4, 5, 6}
respectively: therefore the
inequality

∑
v xv ≤ 2 is the sum

of the inequalities
∑

v∈K1
xv ≤ 1

and
∑

v∈K2
xv ≤ 1

10
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6

4

2

9

7

5

3

1

∑
i �=7 xi ≤ 3. Note that since each cycle Γ univocally determines the family of cliques

F(Γ ) that example shows that indeed two different families of cliques may generate the
same clique family inequality.

Even worse, it is not true in general that the clique family inequality associated with a
good cycle of Aux(C) is facet-defining for ST AB(C). We give an example in Fig. 4.

4 The circulant structure of good cycles in Aux(C)

In this section, we will refine Theorem 12 by showing that we may restrict our attention
to some good cycles of Aux(C) exhibiting a nice circulant structure. We start with a few
definitions.

Definition 15 Given a circular interval graph C = (V , E) with representation (φ, I) and a
good cycle Γ in Aux(C), we let C[F(Γ )] = (V , E ′) be the circular interval graph with
representation (φ, IF ) where IF ⊆ I is the subset of intervals corresponding to the cliques
in F(Γ ), i.e., we keep only adjacencies defined by IF .

Let Aux(C[F(Γ )]) be the auxiliary graph associated with C[F(Γ )]. Note that
Aux(C[F(Γ )]) is a spanning subgraph of Aux(C), namely the subgraph with vertex set
V (C) and arc set TL ∪ TR ∪ (SR ∩ Γ ). Let us call essential a bullet vertex that belongs to
Γ . We will now prove that the essential vertices induce a circulant graph in C[F(Γ )].
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Lemma 16 Let C be a circular interval graph and let Γ be a good cycle of Aux(C). The
essential vertices of Γ induce an (n, p)-circulant in C[F(Γ )], with n = |F(Γ )| and p =
p(Γ ). Moreover n and p are relatively prime.

Proof Let C ′ be the subgraph of C[F(Γ )] induced by the essential vertices. By construction,
C ′ is a CIG andwe can then associate the auxiliary graph Aux(C ′)with it. It is straightforward
to check that the vertices and the clique arcs of Aux(C ′) form a good cycle Γ ′ of Aux(C ′).
In fact, each clique arc of Γ corresponds to a clique arc of Aux(C ′) and viceversa: a clique
arc of Γ ending in a circle vertex v will correspond to a clique arc of Aux(C ′) ending in
the closest essential predecessor of v; a clique arc of Γ starting from a cross vertex v will
correspond to a clique arc of Aux(C ′) starting from the closest essential predecessor of v;
the other clique arcs of Γ will stay unchanged. It follows that, for each vertex in Aux(C ′),
there is exactly one clique arc of Aux(C ′) leaving from that vertex and exactly one (other)
clique arc entering that vertex. Therefore, the vertices and the clique arcs of Aux(C ′) form
a cycle Γ ′ with |V (C ′)| = |V (Aux(C ′))| = |F(Γ ′)| = |F(Γ )| = n.

Let us number, clockwise, 1, . . . , n the vertices of C ′ and let K1, . . . , Kn be the n cliques
of F(Γ ′), with Ki being the clique corresponding to the clique arc of Aux(C ′) leaving
from vertex i , with 1 ≤ i ≤ n. Note that Ki takes consecutive elements of V (C ′), say
i, i −1, . . . , i − l(i)+1 with 1 ≤ l(i) ≤ n. We claim that, for each i , l(i) = p(Γ ), i.e., each
clique takes p(Γ ) vertices. From Lemma 14, each vertex of C ′ belongs to exactly p cliques
of F(Γ ) and, by construction, to exactly p cliques of F(Γ ′). Moreover, there is no inclusion
among cliques in F(Γ ) and, again by construction, there is no inclusion among cliques in
F(Γ ′). The vertex i − l(i) + 1 is then covered by the cliques Ki , Ki−1,…, Ki−l(i)+1 and
only by these. But because it is covered exactly p times, it follows that l(i) = p and thus
Ki takes the p consecutive elements i, i − 1, . . . , i − p + 1 (for each i). As a consequence,
C ′ is an (n, p)-circulant. Note that because we are dealing with simple cycles, we can also
conclude that n and p are relatively prime. Indeed if we follow Γ ′ starting from n, we will
visit the vertices n, n − p, n − 2p,…,n in this sequence. But in order to visit vertex 1, there
should exist μ ∈ Z, μ < 0 such that n + μp = 1(mod n), i.e., there should exist λ,μ ∈ Z

such that λn + μp = 1. By Bézout’s theorem, this is equivalent to n and p being relatively
prime. ��

Remark 17 Ben Rebea Theorem, i.e. Theorem 1, can be sharpened by restricting to pairs
(F, p) such that |F | and p are relatively prime. Therefore, the stable set polytope of quasi-
line graphs can be described by: (i) xv ≥ 0, for all v ∈ V ; (i i) x(K ) ≤ 1, for all maximal
cliques K ⊆ V ; (i i i) clique family inequalities with parameter F and p: |F | > 2p, p ≥ 2 ,
|F | and p relatively prime.

It is important to notice that the essential vertices of a good cycle Γ do not necessarily
induce an (n, p)-circulant in the original graph C , even if |F(Γ )| and p(Γ ) are relatively
prime. One can study the examples of Fig. 3 to see this. Indeed the essential vertices of the
first cycle induce a (7, 2)-circulant in C whereas this is not the case for the essential vertices
of the second cycle. The example of Fig. 5 illustrates another, more complicated, situation
where the essential vertices of the cycle Γ on the left induce a (8, 3)-circulant in C[F(Γ )],
but there is no subgraph of C that is an (8, 3)-circulant. However, we can find another good
cycle Γ ′ (on the right) whose essential vertices induce a (5, 2)-circulant in C and that yields
the same clique family inequality as Γ (

∑
v �=◦ xv ≤ 2).

This is the essence of the following lemma. We prove that if a good cycle does not induce
an (n, p)-circulant in the original graph, we can find another (n′, p′)-cycle with � n′

p′ � = � n
p �
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Fig. 5 Left: a good cycle Γ whose essential vertices induce a (8, 3)-circulant in C[F(Γ )], even though there
is no (8, 3)-circulant in C . Right: another cycle Γ ′ that induce a (5, 2) both in C[F(Γ ′)] and C and is such
that C F I (Γ ) = C F I (Γ ′)

representing the same facet and having an induced (n′, p′)-circulant structure. We postpone
the technical proof of this lemma to the “Appendix”.

Lemma 18 Let C = (V , E) be a circular interval graph. Let F be a facet of ST AB(C)

different from a non-negativity constraint, a clique inequality and
∑

v∈V xv ≤ α(C). There
always exists a good cycle Γ of Aux(C) such that F coincides with C F I (Γ ) and the essential
vertices of Γ induce an (n, p)-circulant graph in C, with n = |F(Γ )| and p = p(Γ )

relatively prime.

5 Circulant graphs for the stable set polytope of CIGs

We are now ready to prove the main result of the paper showing that circulant subgraphs are
“responsible” for the non-trivial facets of the stable set polytope of CIGs. We will exploit
this result to prove two conjectures from the literature due to Pêcher and Wagler (2006)
and Oriolo and Stauffer (2008) respectively. It is indeed convenient to start with the former
conjecture, on the stable set polytope of circulant graphs.

Let W be an (n, p)-circulant graph with V (W ) = {1, 2, . . . , n}. For each i ∈ V (W ), let
Qi be the clique {i − p + 1, i − p + 2, . . . , i} (modulo n as usual) and for a set I ⊆ V (W )

let Q(I ) = {Qi , for all i ∈ I }. Now suppose that the set I ⊆ V (W ) induces an (n′, p′)-
circulant on W . The clique family inequality associated with I is that with parameters Q(I )
and p′. Pêcher and Wagler (2006) conjectured the following:

Conjecture 19 (Pêcher and Wagler 2006) The stable set polytope of an (n, p)-circulant
W can be characterized by non-negativity inequalities, clique inequalities, the inequality∑

v∈V (W ) xv ≤ α(W ) and clique family inequalities associated with sets I ⊂ V (W ) that
induce (n′, p′)-circulants on W , with n′ mod p′ �= 0 and α(I ) < α(W ).

We will prove the above conjecture on the superclass of CIGs. We only need to suitably
redefine the cliques Qi , the rest will be unchanged. So let C be a CIG and (φ, I) a represen-
tation with V (G) = {1, . . . , n}, where the vertices are numbered clockwise. For any vertex
i ∈ V (C), N (i) = {nl(i), nl(i) + 1, . . . , i − 1, i + 1, . . . , nr (i) − 1, nr (i)}, for some values
nl(i), nr (i). So we now let Qi = {nl(i), . . . , i − 1, i} .
Theorem 20 Let C be a circular interval graph and (φ, I) a representation for it. The stable
set polytope of C can be characterized by: non-negativity inequalities, clique inequalities, the
inequality

∑
v∈V (C) xv ≤ α(C) and clique family inequalities associated with sets I ⊂ V (W )

that induce (n, p)-circulants on W , with n and p relatively prime and α(I ) < α(W ).
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Proof Lemma 18 implies that, if a facet-inducing inequality of C does not belong to one of
the three first classes of inequalities, then it is the clique family inequality associated with
some good cycle Γ such that the essential vertices of Γ induce an (n, p)-circulant W of C ,
with n = |F(Γ )|, p = p(Γ ) and n and p are relatively prime. Now if Γ does not contain
any cross vertex, then C F I (Γ ) coincides with the clique family inequalities associated with
V (W ). Otherwise let j be a cross vertex such that Γ contains a clique arc leaving from j ;
note that the clique corresponding to that arc is exactly the clique Q j and Q j ∈ F(Γ ). We
replace the clique Q j by the clique Qi , where i is the closest (bullet) predecessor of v in
W : let F ′ := (F(Γ ) \ Q j ) ∪ Qi . The clique family inequality associated with F ′ and p
dominates C F I (Γ ): indeed, all the predecessors of j before i are crosses and, by Lemma 14,
they were covered by p + 1 cliques of F(Γ ) and thus they are still covered by p clique of
F ′; moreover, all the other vertices are either unaffected by this change or covered one more
time. If we now iterate this procedure on each cross vertex of Γ that is the head of a clique
arc, we end upwith a clique family inequality, that is exactly the the clique family inequalities
associated with V (W ), that dominates C F I (Γ ).

We are left with showing that α(W ) < α(G). Suppose the contrary: then, since W is an
(n, p)-circulant and n mod p �= 0, the inequality

∑
v∈V (W ) xv ≤ α(W ) is facet-inducing for

ST AB(G[W ]). Now recall the following fact (a proof can be found in Oriolo 2003): If G =
(V , E) is a quasi-line graph and Q a subset of vertices, the inequality

∑
j∈Q x j ≤ α(G[Q])

is facet-inducing for ST AB(G) if and only if
∑

j∈Q x j ≤ α(G[Q]) is facet-inducing for
ST AB(G[Q]) and G[Q] is α-maximal. In this case, since α(W ) = α(G), it follows that the
inequality

∑
v∈V (G) xv ≤ α(G) is facet-inducing for ST AB(G). But then the latter inequality

would dominateC F I (Γ ). Now becauseC F I (Γ ) is facet-inducing,C F I (Γ ) coincides with∑
v∈V (G) xv ≤ α(G), this is a contradiction. ��
The conjecture by Pêcher and Wagler follows from Theorem 6.

Corollary 21 Conjecture 19 holds true. Moreover, it can be strengthened by claiming that n′
and p′ are relatively prime and such that n′ > 2p′ ≥ 4.

5.1 The conjecture by Oriolo and Stauffer for the ssp of FCIG

We devote this section to the solution of another conjecture, on the stable set polytope of
fuzzy circular interval graphs (FCIGs), due to Oriolo and Stauffer (2008). FCIGs are a slight
generalization of CIGs (see § 1.1 for a formal definition). As we already discussed, FCIGs are
a quite relevant subclass of quasi-line graphs because all facets are rank when the quasi-line
graph is not fuzzy circular interval (see Eisenbrand et al. 2008).

Oriolo and Stauffer (2008) gave a description of the rank facets of FCIGs, that is more
detailed than the one provided by Theorem 2. They showed that all rank facets are inequalities
associated with clique-circulant (see § 1.1 for the definition).

Theorem 22 (Oriolo and Stauffer 2008) Let G = (V , E) be a fuzzy circular interval graph.
An inequality

∑
v∈V (G ′) xv ≤ α(G ′) is a facet of ST AB(G) if and only if G ′ is either a

maximal clique or an α-maximal (n, p)-clique-circulant with n mod p �= 0.

They also conjectured that clique-circulants are at the heart of non-rank facets too. In
order to present their conjecture, we need a couple of definitions. First, an induced (n, p)-
clique-circulant C of a FCIG G is maximal if for each vertex v ∈ N (C), C ∪ v is no more
an (n, p)-clique-circulant. Oriolo and Stauffer proved that, if G is a FCIG and C an induced
(n, p)-clique-circulant of G, then a simple clique family inequality can be associated with
C :
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Theorem 23 (Oriolo and Stauffer 2008) Let G = (V , E) be a a fuzzy circular interval graph
and C a maximal (n, p)-clique-circulant graph. The following inequality, called the clique
family inequality associated with C, is valid for ST AB(G):

(p − r) ·
∑

v∈V (C)

xv + (p − r − 1) ·
∑

v∈N (C)

xv ≤ (p − r) ·
⌊

n

p

⌋
. (5)

Conjecture 24 (Oriolo and Stauffer 2008) Each facet of the stable set polytope of a FCIG
G is: either a non-negativity constraint; or a maximal clique inequality; or a clique family
inequality (5) associated with a maximal (n, p)-clique-circulant C such that n mod p �= 0.

It is easy to see that for rank facets Conjecture 24 reduces to Theorem 22; therefore to settle
the conjecture we just need to deal with non-rank facets. We first deal with the case where
G is indeed a CIG: therefore, as usual we replace G by C . So assume that C is a CIG and let
(φ, I) be a representation for it. We know from Lemma 18 that any non-rank facet-inducing
inequality can be associated with a good cycle Γ of the auxiliary graph Aux(C) with n(Γ )

and p(Γ ) relatively prime and such that the graph induced by the essential vertices is an
(n(Γ ), p(Γ ))-circulant (in the following, for shortness, we let n = n(Γ ) and p = p(Γ )).
Now let v1, . . . , vn be the essential vertices of Γ numbered clockwise. Let us define:

Qi = {v ∈ S⊗(Γ ) : φ(v) ∈ (φ(vi ), φ(vi+1))} ∪ {v ∈ S•(Γ ) :
φ(v) ∈ (φ(vi−1), φ(vi )]} for i = 1, . . . , n.

Observe that {Q1, . . . , Qn} defines a partition of the vertices in S⊗(Γ )∪S•(Γ ).We claim that
C = C[⋃1,...,n Qi ] is a clique-circulant. First, W = {v1, . . . , vn} defines an (n, p)-circulant
such that vi ∈ Qi for all i = 1, . . . , n. Then itmay easily be checked thatΛ(Qi ) ⊇ Qi−p+1∪
. . .∪ Qi−1∪ Qi+1∪. . .∪ Qi+p−1, for i = 1, . . . , n.C is thus an (n, p)-clique-circulant. Now
observe that in order to show that the clique family inequality associated with Γ is the same
as the clique family inequality associated with C , it is enough to show that N (C) = S◦(Γ ).
That is trivial, as V (C) = ⋃

1,...,n Qi = S⊗(Γ ) ∪ S•(Γ ) and S◦(Γ ) = N (S⊗(Γ ) ∪ S•(Γ )).

In order to prove the conjecture for FCIGs, it thus remains to prove that C is maximal. If
not, then there would exist a vertex v such that S⊗(Γ ) ∪ S•(Γ ) ∪ {v} is also an (n, p)-
clique-circulant. But then, since N (S⊗(Γ ) ∪ S•(Γ ) ∪ {v}) ⊇ N (S⊗(Γ ) ∪ S•(Γ )) \ {v}, the
clique family inequality associated with this new (n, p)-clique-circulant would dominate the
inequality associated with C , which is facet-inducing, a contradiction.

Now it is not difficult to extend the result from CIGs to FCIGs. We need the following
result from Eisenbrand et al. (2008). Given a graph G(V , E) and a facet-inducing inequality
F : ax ≤ b of ST AB(G), an edge e is said to be F-critical if there is a stable set of G \ e
(i.e., the graph with vertex set V and edge set E \ {e}) that violates the inequality.
Lemma 25 (Eisenbrand et al. 2008) Let F be a facet of ST AB(G), where G is a fuzzy
circular interval graph. Then F is also a facet of ST AB(G ′), where G ′ is a circular interval
graph and is obtained from G by removing non-F-critical edges between fuzzy pairs of
cliques (see Def. in § 1.1).

So let G be a FCIG and consider a non-rank facet F of ST AB(G). Let G ′ be the CUG
obtained from G by removing non-F-critical edges between fuzzy pairs. From the discussion
above, we know that F is a clique family inequality associated with a maximal (n, p)-clique-
circulant C of G ′. We therefore let {Qi , i = 1, . . . , n} be the partition of the vertices of C
and W = {v1, . . . , vn} the vertices of the (n, p)-circulant, with vi ∈ Qi , defined as above,
that obey Definition 8.
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We need to show that C is a maximal (n, p)-clique-circulant also in G. However, it will be
enough to show thatC is (n, p)-clique-circulant in G, as maximality follows then by the same
arguments as above for the case of CIGs. Because C is a maximal (n, p)-clique-circulant in
G ′ and when moving from G ′ to G we only add edges, in order to show that C is an (n, p)-
clique-circulant also in G it is enough to prove that W is still an (n, p)-circulant in G (or that
we can anyhow choose vertices w′

i ∈ Qi , i=1,…,n, so that G[{w′
i , i = 1, . . . , n}] is (n, p)-

circulant of G). If there are no F-critical edges between vertices of C , we are clearly fine.
So assume that there is a fuzzy pair of cliques (P1, P2) and two vertices u ∈ P1 ∩ V (W ) and
v ∈ P2 ∩ V (W ) for which we removed the non F-critical edge uv ∈ E(G). Now observe
that u and v have maximum coefficient in the inequality F and therefore all other edges
between vertices of P1 and vertices of P2 are non F-critical too and so in G ′ there are no
edges between vertices of P1 and vertices P2. It follows that the vertices in P1 (resp. P2) are
thus copies in G ′ and that they are all in C (they should get the same coefficient in the facet)
and, in particular, we may assume without loss of generality that P1 belong to some set Qi ,
with i ∈ {1, . . . , n} and P2 belong to some set Q j , with j ∈ {1, . . . , n}. Now recall that we
can also assume (see e.g. Lemma 1 in Eisenbrand et al. 2008) that, without loss of generality,
that there exist u′ ∈ P1 and v′ ∈ P2 that are not adjacent in G. Substituting u′ for u and v′ for
v in W , we create in G ′ another (n, p)-circulant graph W ′ (fuzzy pairs are homogeneous pairs
of cliques i.e., two vertices in P1—resp. P2—have the same neighborhood outside P2—resp.
P1) that together with the sets Qi obey Definition 8. If we repeat this argument for each
fuzzy pair of cliques (we can treat each fuzzy pair independently), we end up with another
(n, p)-circulant graph W ′′ that is an (n, p)-circulant in G and is such that W ′′ together with
the sets Qi obey Definition 8. The result follows.

Theorem 26 Conjecture 24 holds true. Moreover, it can be strengthened by claiming that n
and p are relatively prime and such that n > 2p ≥ 4.

6 A concluding remark

Wewould like to add a final remark. Even though not every clique family inequality associated
with a good cycleΓ induces a facet (the nature of S◦(Γ ) and its interplaywith S•(Γ )∪S⊗(Γ )

is crucial), it is quite easy to use our findings to define sufficient conditions for a cycle to be
facet-defining when restricting to C[F(Γ )] (in fact we can also easily remove cross vertices
if we are only interested in sufficient conditions). When the circle vertices are organized in a
“regular” manner, linear independence of the roots of size β(Γ ) + 1 can easily be ensured.
The following Fig. 6 gives examples.

Observe also that because we can focus on affinely independent roots of size β(Γ ) and
β(Γ ) + 1, and because the graph induced by the vertices with maximum coefficient must
induce a rank facet, “facetness” of the clique family inequality associated with a good cycle
only depends on the existence of |S◦(Γ )| roots of size β(Γ ) + 1 whose restriction to S◦(Γ )

are affinely independent. Observe that each root of size β(Γ )+1 picks exactly p(Γ )−r(Γ )

vertices in S◦ and thus there should be some nice structure involved there too. We believe
that, for non-rank inequalities associated with good cycles whose essential vertices induce
a circulant, it is possible to build an auxiliary graph G ′ on the circle vertices with a nice
“circular” structure and with the property that (1) α(G ′) = p(Γ )−r(Γ ) and (2) x(V (G ′)) ≤
α(G ′) is a facet if and only ifC F I (Γ ) is facet-defining. Because understanding rank facets is
easier, such a relation, together with our result, would certainly give a pretty good description
of the non-rank facets. Unfortunately, although we have preliminary results in this direction
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Fig. 6 Two facet-defining cycles : a
∑

v∈◦ xv + 2
∑

v∈• xv ≤ 4, b
∑

v∈◦ xv + 2
∑

v∈• xv ≤ 6

(e.g. such graphs are easy to build for the two examples above, and in this case they are
even circular interval graphs), we do not have a clear picture of the right construction yet.
However, we believe that this might be useful for further investigations and this is why we
bring it to the attention of the reader.

N.B. Our techniques and theorems could be extended naturally to the set covering problem
in circulant matrices (see Bianchi et al. 2017 ): in fact, row family inequalities are the
counterpart of clique family inequalities in this setting and the stable set polytope of circulant
graphs and the set covering polytope of circulant matrices bear strong resemblance.

Funding Open access funding provided by Tor Vergata University of Rome within the CRUI-CARE Agree-
ment

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 Proof of Lemma 18

Before going to the proof of Lemma 18, we discuss some properties of facet inducing clique
family inequality associated with good cycles Γ . We first recall Lemma 3.2 in Stauffer
(2011). (Note that we subtly changed the statement in the original lemma by substituting
“Let F : ∑

avxv ≤ b be a non-clique facet of ST AB(G)” for “Let F : ∑
avxv ≤ b be a

facet of ST AB(G), that is not a clique in KI”. However the proof does not change.)

Lemma 27 (Stauffer 2011) Let G = (V , E)be a circular interval graph. Let F : ∑
avxv ≤ b

be a facet of ST AB(G), that is not a clique in KI , and β the smallest cardinality of a root
of F. Then for all Q ∈ KI , there exists a root S of F with |S| = β such that Q ∩ S = ∅.

Lemma 28 Let C be a circular interval graph and Γ = ( fL , fR) a good cycle of Aux(C)

such that the clique family inequality C F I (Γ ) is a facet of ST AB(C). There exists has a set
of |V (C)| affinely independent roots for C F I (Γ ) of size β(Γ ) and β(Γ ) + 1. Moreover:

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Fig. 7 Situation where we do not
have an (n, p)-circulant

v

vu
z

– For any clique Q in KI , there is a root of size β(Γ ) that does not intersect Q.
– Each root of S of size β(Γ ) + 1 intersect each clique in F(Γ ).
– No root of S of size β(Γ ) + 1 contains a vertex of S⊗(Γ ).

Proof Since Γ is facet-producing and good, it follows that C F I (Γ ) is not an inequality
of the system Ax ≤ 1, x ≥ 0, and therefore, from Theorem 12, there exist a good cycle
Γ ′ of Aux(C) and |V (C)| affinely independent roots of size β(Γ ′) and β(Γ ′) + 1 for the
corresponding clique family inequality C F I (Γ ′) such that C F I (Γ ′) = C F I (Γ ). Note that,
in general, Γ ′ needs not to be equal to Γ ; however, since β(Γ ′) = β(Γ ), the above roots
trivially form a set |V (C)| affinely independent roots of size β(Γ ) and β(Γ )+1 forC F I (Γ )

too.
Observe now that trivially theminimum size of a root ofC F I (Γ ) is equal toβ(Γ ); the first

statement of the lemma follows then from Lemma 27. We now show that the second and the
third statements follow from Lemma 14. The inequality C F I (Γ ) can be indeed derived from
the system −1x ≤ −(β(Γ ) + 1), Ax ≤ 1,−x ≤ 0 with multipliers r(Γ ) and fR . Consider
now a root of C F I (Γ ) of size β(Γ ) + 1; since the root is tight for −1x ≤ −(β(Γ ) + 1),
it follows that it is also tight for all other inequalities with a non-zero multiplier fR . In
particular, each clique in F(Γ ) must be tight for all roots of size β(Γ ) + 1. This proves the
second statement. Finally observe that the multiplier fR(xv ≥ 0) must be 0 if v belongs to a
root of size β(Γ ) + 1. Since, by definition, fR(xv ≥ 0) = 1 for the vertices in S⊗(Γ ), the
third statement follows. ��

We can now prove Lemma 18. From Theorem 12 and Lemma 16, there exists a cycle Γ

of Aux(C) such that F is of the form (p − r)x(T ) + (p − r − 1)x(T̄ ) ≤ (p − r)β, with
T = S•(Γ ) ∪ S⊗(Γ ) and T̄ = S◦(Γ ), where r = n mod p, n = |F(Γ )|, p = p(Γ ) and
β = β(Γ ). Moreover, the essential vertices of Γ induce an (n, p)-circulant W in C[F(Γ )]
and n and p are relatively prime.We are in a configuration as depicted in Fig. 2. Let us choose
Γ among all cycles representing the facet with the property that r = r(Γ ) is minimal.

Suppose that W does not induce an (n, p)-circulant in C . Let v1, . . . , vn be the vertices
of W in clockwise order. Then without loss of generality there exist two vertices u, v of W
such that v = vi , u = vi−p and u and v are adjacent in the original graph C . Therefore,
there exists an arc (v′, z) in Aux(C) corresponding to a clique containing both u and v: we
will call this clique and its corresponding arc the red clique and the red arc. Note that u must
differ from z (otherwise u is not covered by the red clique) but v′ and v can coincide. We are
in the situation represented in Fig. 7.

Since v = vi is adjacent to vi−p+1 in C[F(Γ )], there must exist another arc a′ in Aux(C)

that induces that adjacency.We are indeed in one of the situations depicted in Fig. 8: a′ leaves
from a successor w of v′ and the red clique starts at a node in [φ(v), φ(w)): that is because
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Fig. 8 Situation in the original graph

Fig. 9 Situation where z is on the
cycle

w
v

vu

z

t

x

otherwise the red clique would dominate a′. In particular, w has to be a cross vertex, as
otherwise W is not an (n, p)-circulant in C[F(Γ )]; therefore v has no direct circle successor
on the circle and so there is another arc of Γ entering into v. Note that Fig. 8 is for illustration
purposes: there might be more cross vertices between v and w; again v and v′ may coincide.
As it will be clear in the following, we do not need to distinguish between the two different
situations of Fig. 8.

We will show that the situations depicted in Fig. 8 are not possible.
We first show that z cannot belong to Γ .
Suppose z belongs to the cycle Γ . We claim that z cannot be of type bullet or circle. In

fact, if so and since z belongs to the cycle Γ , there must exist another arc a′′ of Γ that that
ends either in z or in a direct circle successor of z. Note that a′′ has to start at a predecessor
of v, otherwise the clique corresponding to a′′ would contain both u and v. But in this case,
then this clique would be dominated by the red clique. For the same reason, there cannot be
any other essential or circle vertex between u and z. We are thus in the situation of Fig. 9,
where t = vi−p−1 (note again that Fig. 9 is for illustration purposes and there might be more
cross vertices between t and z and between z and u; moreover the arc leaving from w might
end up in some circle successor of u, see Fig. 8).

We claim that in this case r ≥ 2. We know that r > 0 so assume that r is indeed equal to
1. We know form Lemma 28 that there is a root of size β that misses the red clique. As no
root of size β can include a circle vertex, there should exist a root of size β whose vertices
are cross and bullet vertices in (φ(v′), φ(z)]. Now recall that there are exactly p vertices of
W in the interval (φ(t), φ(v)). Therefore, if r = 1 and we move along the cycle Γ from z,
after β -1 clique arcs we must arrive at v. But then this set of β − 1 cliques covers every
non-circle vertex in (φ(v′), φ(z)]. Hence it is not possible to have a stable set of size β in
(φ(v′), φ(z)], which is a contradiction.

Therefore, from now on, we assume that r ≥ 2. The red arc defines a “shortcut” in the
cycle Γ so that it is possible to define a new cycle Γ ′ using this shortcut. More formally,
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consider the path P ′ on Γ from v′ to z: we define the cycle Γ ′ by replacing P ′ with the arc
(v′, z). We will compare the clique family inequalities associated with Γ and Γ ′, but first we
take a detour to analyze more in detail Γ ′.

We start dealing with |F(Γ ′)| and p(Γ ′). The path P ′ takes some number n0 + 1 of
cliques of Γ , with n > n0 ≥ 1. Now “project” the path P ′ on the circulant W . Since there
are exactly p vertices of W in the interval (φ(t), φ(v)), and n and p are relatively prime, it
follows that (n0 + 1)p mod n = (p + 1), i.e., n0 p mod n = 1. Since n0 p mod n = 1, there
exists p0 such that n0 p = p0n + 1, with 1 ≤ p0 < p, and p0 can be indeed interpreted as
the “winding number” of the path P ′; therefore the winding number of the cycle Γ ′ is equal
to p − p0. It follows that Γ ′ is a cycle with |F(Γ ′)| = n −n0 > 0 and p(Γ ′) = p − p0 > 0,
with n > n0 ≥ 1, p > p0 ≥ 1 and n0 p = p0n + 1. In the following we let n′ = n − n0 and
p′ = p − p0.

We now show that β(Γ ′) = � n′
p′ � = β(Γ ) (we denote β(Γ ) simply by β from now

on). In order to prove that, we define r̄ = n′ − β p′ and show that r̄ is positive and smaller
than p′. The key is showing that r p′ − pr̄ = 1: in fact, by definition, r̄ = n′ − n−r

p p′,
therefore r p′ − pr̄ = np′ − n′ p = (n − n′)p − (p − p′)n = n0 p − p0n = 1. Now since
r p′ − pr̄ = 1, r ≥ 2 and p′ ≥ 1, it follows that r̄ is positive. Moreover r̄ < p′, since
otherwise 1 = r p′ − pr̄ ≤ r p′ − pp′ = p′(r − p) < 0.

We are now ready to compare the clique family inequalities associated with Γ and Γ ′.
Let T ′ = S•(Γ ′) ∪ S⊗(Γ ′) and T̄ ′ = S◦(Γ ′). The inequality associated with Γ ′ is then
F ′ : (p′ − r ′)x(T ′) + (p′ − r ′ − 1)x(T̄ ′) ≤ (p′ − r ′)β. Recall that the clique family
inequality associated with Γ is F : (p − r)x(T ) + (p − r − 1)x(T̄ ) ≤ (p − r)β, with
T = S•(Γ ) ∪ S⊗(Γ ) and T̄ = S◦(Γ ). We will show that indeed F ≡ F ′ by showing that
there exists a family Q of |V (C)| affinely independent roots for F that are also roots of F ′.

First recall that we can assume that each stable set in Q has size either β or β + 1 by
Lemma 28. Then observe that, by construction, T ⊆ T ′ since by shortcutting Γ , we can only
move some vertices of T̄ = S◦(Γ ) to T ′ = S•(Γ ′) ∪ S⊗(Γ ′). Therefore each stable set in
Q of size β is also tight for F ′. We are left with showing that also each stable set of Q of
size β + 1 is tight for F ′: we letQβ+1 be the sub-family of stable sets ofQ of size β + 1. In
order to prove that, it will be enough to show that each stable set in Qβ+1 meets each clique
that is used in the right disjunction of F ′ (recall that F ′ is associated with the disjunction
(
∑

v∈V xv ≤ β) ∨ (
∑

v∈V xv ≥ β + 1), cfr. Lemma 14), i.e., the cliques corresponding to
arcs in Γ ′. Note that the only arc that belongs to Γ ′ and not to Γ is the red arc. Therefore, as
from Lemma 28 each stable set in Qβ+1 intersects each clique in F(Γ ), it follows that each
stable set in Qβ+1 also intersects each clique in F(Γ ′), but possibly for the red clique. But
we now show that it holds for the red clique too. Observe that the clique K corresponding
to the arc (x, t) (cfr. Fig. 9) is in F(Γ ) and thus each stable set in Qβ+1 intersects K . Note
also that, again from Lemma 28, no cross vertex belong to a stable set in Qβ+1. Therefore,
since the only vertices that belong to K but not to the red clique are crosses, it follows that
also the red clique intersects each stable set in Qβ+1.

Hence F ′ ≡ F and so Γ ′ is another cycle representing F . We have r(Γ ′) = n′ − β p′ =
n − n0 − β p + β p0 = r − r0 with r0 = n0 − β p0. We now show that r0 p − r p0 = 1. In
fact, r0 p − r p0 = (n0 −β p0)p − (n −β p)p0 = n0 p − np0 = 1. It follows, from r ≥ 2 and
p0 ≥ 1, that r0 > 0, which is a contradiction since we chose Γ among all cycles representing
F so that r(Γ ) is minimal. So from now on we assume that z does not belong to Γ .

We will now prove that z cannot be outside Γ as well.
In this case, trivially z is a bullet vertex. Recall from Fig. 8 that we are now in one of the

two possible situations depicted in Fig. 10. Also observe that, by the same arguments used
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Fig. 10 z does not belong to Γ

Fig. 11 The cycle Γ and the
current red arc
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above, there is no essential vertex between z and u, and in fact each vertex between z and u
has to be a bullet non-essential vertex.

In both cases we can modify Γ slightly to produce a non weaker valid inequality. Indeed,
in the former case, we can replace the path (v′, . . . , w, u, . . . , t)—there might be more
cross vertices between v and w, as well more cross vertices between u and t—by the path
(v′, z, . . . , u, . . . , t)—there might be more bullet vertices between z and u. In the latter case,
we can replace the path (v′, . . . , w, t, . . . , u)—there might be more cross vertices between
v and w, as well more circle vertices between t and u—by the path (v′, z, . . . , u)—there
might be more bullet vertices between z and u. Let us call Γ ′ this new cycle. It is easy to
see that we get a (strictly) stronger clique family inequality in the latter case (as all circle
vertices between t and u become bullet vertices) proving in addition that this configuration
is impossible, and that we get the same inequality in the former case. Note that even if we
change Γ , we keep r(Γ ′) = r(Γ )minimal. Observe also that, with respect to Γ ′, all vertices
on the circle after v′ up to w become bullet non-essential vertices, all vertices after z up to u
on the circle become cross vertices and z becomes essential.

We are now wondering if Γ ′ satisfies the condition of the lemma. If not, this means that
there is another clique that plays for Γ ′ the same role that the red clique played for Γ and
therefore “kills” the circulant structure. But since Γ ′ has r(Γ ′)minimal, we can use the same
arguments as above and conclude that the head of the arc corresponding to this clique does
not belong to Γ ′. We can therefore define another cycle Γ ′′ by applying the transformation
just discussed to Γ ′, and in case iterate. If this process does not end, this is because we cycle
(indeed there are a finite number of cycles we can visit).

So let us suppose that using this procedure, we cycle. Let Γ be a cycle we have visited
twice and let us choose a red clique associated with Γ . We are in the situation of Fig. 11.

Observe thatwhen going fromΓ toΓ ′ the number of direct cross successors of v decreased
and that this number can only increases again if, for some (current) cycle Γ̃ , v plays the role
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Fig. 12 The cycle Γ and the
successor of y in Γ̃ (in blue) v

z

y
v∗

Fig. 13 (10, 3)-circulant and a cycle with (7, 2)-structure

that z played for Γ . Therefore, the clique that corresponds to the arc leaving from y (cfr.
Fig. 11) will play for Γ̃ the same role that the red clique played for Γ . Note that y is either
a cross or an essential vertex for Γ . However, we now show that, if y is an essential vertex
for Γ , we can rule that it is preceded by a circle vertex in Γ . First, note that y plays for Γ̃

the same role that v′ played for Γ and therefore y will have a cross successor. Then observe
that our procedure does not ever modify the set of circle vertices, therefore the successor of
y cannot be a circle for Γ . Therefore we are in the situation depicted in Fig. 12, where v∗
represents the closest essential predecessor of y (if y is a bullet, v∗ = y).

But again, since (y, v) plays the role of the red clique for Γ̃ , it follows that y, with respect
to Γ̃ , has a cross successor. Now we can apply the same argumentation as above, replacing
the red arc by (y, v), v by v∗ etc. We will again show that, with respect to Γ , the tail of the
clique arc ending in v∗ is either a bullet vertex not preceded by a circle vertex or a cross
vertex. Iterating this argumentation, we will visit all the bullet vertices of Γ , since n and p
are relatively prime (see Lemma 16), and we will thus prove that no bullet vertex is preceded
by a circle vertex in Γ . Hence it implies that there are no circle vertices for Γ . But this means
that T̄ = ∅ and this is a contradiction with F not being of the form

∑
v∈V xv ≤ β. h f ill��

The example of Fig. 13 illustrates the fact that the last part of the proof does not hold
for cycles associated with facets of type

∑
v∈V xv ≤ β. In fact, we have a (10, 3)-circulant

but the cycle at hand (with r(Γ ) minimal) is associated with a (7, 2)-circulant. Successively
applying the procedure yields after 11 steps the initial cycle. It is clear that there is no (7, 2)-
circulant. Nevertheless, we believe that Lemma 18 could be extended with some care to rank
facets of full support. We would have to change of course the pair (n, p) in this case as
illustrated by this example.

123



Annals of Operations Research

References

Berge, C. (1973). Graphs and hypergraphs. Paris: Dunod.
Bianchi, S., Nasini, G., Tolomei, P., & Torres, L. (2017). On dominating set polyhedra of circular interval

graphs. Technical report.
Edmonds, J. (1965). Maximum matching and a polyhedron with (0,1) vertices. Journal of Research of the

National Bureau of Standards B, 69, 125–130.
Edmonds, J., & Pulleyblank, W. (1974). Facets of 1-matching polyhedra. In Berge, C., & Chuadhuri, D. (eds.),

Hypergraph seminar (pp. 214–242).
Eisenbrand, F., Oriolo, G., Stauffer, G., & Ventura, P. (2008). The stable set polytope of quasi-line graphs.

Combinatorica, 28(1), 45–67.
Faenza, Y., Oriolo, G., & Stauffer, G. (2014). Solving the weighted stable set problem in claw-free graphs via

decomposition. Journal of ACM, 61(4):20:1–20:41.
Faenza, Y., Oriolo, G., Stauffer, G., & Ventura, P. (2011). Stable sets in claw-free graphs: A journey through

algorithms and polytopes. In Majhoub, R. (ed.), Progess in combinatorial optimization.
Galluccio, A., Gentile, C., & Ventura, P. (2014a). The stable set polytope of claw-free graphs with stability

number at least four. I. Fuzzy antihat graphs are w-perfect. Journal of Combinatorial Theory, Series B,
107, 92–122.

Galluccio, A., Gentile, C., & Ventura, P. (2014b). The stable set polytope of claw-free graphs with stability
number at least four. II. Striped graphs are GG-perfect. Journal of Combinatorial Theory, Series B, 108,
1–28.

Galluccio, A., & Sassano, A. (1997). The rank facets of the stable set polytope for claw-free graphs. Journal
on Combinatorial Theory, 69, 1–38.

Giles, R., & Trotter, L. E. J. (1981). On stable set polyhedra for k(1,3)-free graphs. Journal on Combinatorial
Theory, 31, 313–326.

Liebling, T.M., Oriolo, G., Spille, B., & Stauffer, G. (2004). On the non-rank facets of the stable set polytope
of claw-free graphs and circulant graphs. Mathematical Methods of Operations Research, 59.

Lovász, L., & Plummer, M. (1986). Matching theory. Amsterdam: North Holland.
Minty, G. J. (1980). On maximal independent sets of vertices in claw-free graphs. Journal on Combinatorial

Theory, 28, 284–304.
Nakamura, D., & Tamura, A. (2001). A revision of Minty’s algorithm for finding a maximum weighted stable

set of a claw-free graph. Journal of the Operations Research Society of Japan, 44(2), 194–2004.
Nobili, P., & Sassano, A. (2015). AnO(n2)-algorithm for the weighted stable set problem in claw-free graphs.

CoRR arXiv:1501.05775.
Oriolo, G. (2003). Clique family inequalities for the stable set polytope for quasi-line graphs. Discrete Applied

Mathematics, 132(3), 185–201.
Oriolo, G., & Stauffer, G. (2008). Clique-circulants and the stable set polytope of fuzzy circular interval graphs.

Mathematical Programming, 115, 291–317.
Oriolo, G., Stauffer, G., & Ventura, P. (2011). Stable set in claw-free graphs: recent achievement and future

challenges. Optima, 86, 1–8.
Padberg,M. (1973). On the facial structure of set packing polyhedra.Mathematical Programming, 5, 199–215.
Pêcher, A., & Wagler, A. (2006). Almost all webs are not rank-perfect. Mathematical Programming, 105,

311–328.
Sbihi, N. (1980). Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile.

Discrete Mathematics, 29, 53–76.
Sebò, A. (2004). Minmax relations in cyclically ordered graphs. Laboratoire Leibniz, Grenoble: Technical

report.
Stauffer, G. (2011). On the facets of the stable set polytope of quasi-line graphs. Operations Research Letters,

39(3), 208–212.
Stauffer, G. (2011). The strongly minimal facets of the stable set polytope of quasi-line graphs. Operations

Research Letters, 39, 208–212.
Trotter, L. (1975). A class of facet producing graphs for vertex packing polyhedra. Discrete Mathematics, 12,

373–388.
Wagler, A. K. (2004). 7. Relaxing Perfectness: Which Graphs Are “Almost” Perfect?, chapter 7, pages 77–96.

SIAM.
Zemel, E. (1978). Lifting the facets of zero-one polytopes. Mathematical Programming, 15, 268–277.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1501.05775

	On the facets of stable set polytopes of circular interval graphs
	Abstract
	1 Introduction
	1.1 Definitions and properties
	2 Warm up

	3 Exploiting the auxiliary graph Aux(Γ)
	4 The circulant structure of good cycles in Aux(C)
	5 Circulant graphs for the stable set polytope of CIGs
	5.1 The conjecture by Oriolo and Stauffer for the ssp of FCIG

	6 A concluding remark
	A Appendix
	A.1 Proof of Lemma 18
	References





