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Abstract
The robust minimum cost flow problem under consistent flow constraints (RobMCF≡) is
a new extension of the minimum cost flow (MCF) problem. In the RobMCF≡ problem,
we consider demand and supply that are subject to uncertainty. For all demand realizations,
however, we require that the flow value on an arc needs to be equal if it is included in the
predetermined arc set given. The objective is to find feasible flows that satisfy the equal flow
requirements while minimizing the maximum occurring cost among all demand realizations.
In the case of a finite discrete set of scenarios, we derive structural results which point out
the differences with the polynomial time solvable MCF problem in networks with integral
demands, supplies, and capacities. In particular, the Integral Flow Theorem of Dantzig and
Fulkerson does not hold. For this reason, we require integral flows in the entire paper. We
show that the RobMCF≡ problem is strongly NP-hard on acyclic digraphs by a reduction
from the (3, B2)-Sat problem. Further, we demonstrate that the RobMCF≡ problem is
weakly NP-hard on series-parallel digraphs by providing a reduction from Partition. If
in addition the number of scenarios is constant, we propose a pseudo-polynomial algorithm
based on dynamic programming. Finally, we present a special case on series-parallel digraphs
for which we can solve the RobMCF≡ problem in polynomial time.

Keywords Minimum cost flow problem · Equal flow problem · Robust flows ·
Series-parallel digraphs · Dynamic programming

1 Introduction

In this paper, we present a new extension of the minimum cost flow (MCF) problem (Ahuja
et al. 1988), which we call the robust minimum cost flow problem under consistent flow
constraints (RobMCF≡). This problem is motivated by, for example, long-term decisions
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in logistic applications. A major problem in logistics is the cost-efficient transport of com-
modities. Typically, this problem is represented by an MCF model, where a commodity can
be identified by a flow sent through a network from a supply source to a sink with demand.
In this way, a company can easily assess whether the available means of transport are suffi-
cient for a given demand. If this is not the case, additional transport by subcontractors can
be arranged. Such arrangements are generally agreed by long-term contracts, however, the
demand is naturally subject to uncertainty. For this reason, valid and cost-efficient decisions
have to be made without the knowledge of the actual demand.

The problem described can be represented by an adjusted integral MCF model subject to
demand uncertainty. We represent the demand uncertainty by a discrete number of possible
occurring demand scenarios. In addition to the network requirements of the MCF problem,
we are given a predetermined set of arcs referred to as fixed arcs. The flow value on the fixed
arcs is supposed to represent the transport by subcontractors. Thus, we require the flow value
on a fixed arc to be equal among all demand scenarios. For finding a robust solution to this
problem, we minimize the maximum cost that may occur among all demand scenarios. In
summary, for the RobMCF≡ problem, we consider different demand scenarios for which
we require integral flows whose flow values are equal on the respective fixed arcs with the
objective of minimizing the maximum cost.

The main contribution of this paper can be summarized as follows. We show that most of
the knowledge of the MCF problem is not readily transferable to the RobMCF≡ problem. In
particular, the integrality requirement of the RobMCF≡ problem is necessary, even though
the demands and supplies of all demand scenarios and the network’s capacities are integral,
as Dantzig and Fulkerson’s Integral Flow Theorem (Korte et al. 2012) does not hold. We
further prove that finding a feasible solution to the RobMCF≡ problem is strongly NP-
complete on acyclic digraphs, even if only two demand scenarios and unit arc capacities are
considered. On series-parallel digraphs, we show that the decision version of the RobMCF≡
problem is weakly NP-complete and in the special case of a constant number of scenarios
it is solvable in pseudo-polynomial time by dynamic programming. If all demand scenarios
have the same single source and sink, we propose an algorithm running in polynomial time
on series-parallel digraphs.

The outline of this paper is as follows. We start with an overview about related work in
Sect. 2. Subsequently, in Sect. 3, we give an explicit mathematical problem description, and
introduce the notations of this paper. Furthermore, we present first structural results of the
problem. In Sect. 4, the problem’s complexity is analyzed on acyclic digraphs. Afterwards,
we consider the RobMCF≡ problem on series-parallel digraphs in Sect. 5. We conclude this
paper by Sect. 6.

2 Related work

In the context of logistic applications, several extensions to the MCF problem are analyzed
in the literature. We refer to the minimum cost flows with minimum quantities problem intro-
duced by Seedig (2011) and generalized by Krumke and Thielen (2011). In addition to the
requirements of the MCF problem, on each arc the flow must either take the value zero or a
minimum quantity given. This can be altered and transfered to the case where the flow on the
fixed arcs, which represents the transport by subcontractors, takes a minimum value (among
all demand scenarios). Another extension is obtained, for example, by theMCF version of the
maximum flow problem with disjunctive constraints studied by Pferschy and Schauer (2013).
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A maximum flow is sought whose flow value is positive for at least one arc of every arc pair
included in a predetermined arc set. Thus, at least one transport performed by subcontractors
can be modeled. We point out that the problems above are only considered for one demand
scenario, whereas we consider several demand scenarios in the RobMCF≡ problem. Due to
the equal flow requirements for the fixed arcs, we focus in the following on extensions in the
literature with equal flow requirements. Afterwards, we give a short overview of robust net-
work approaches with demand uncertainty. To the best of our knowledge, no study combines
equal flow requirements with robust network approaches.

Sahni (1974) introduces a variant of the maximum flow (MF) problem (Ahuja et al. 1988),
the so-called integral flow with homologous arcs problem (homIF). In addition to the set-
up of the MF problem, predetermined sets of arcs are given in this problem. A maximum
integral flow is sought whose flow value is equal on all arcs that are contained in the same
predetermined arc set. Sahni proves the NP-hardness of the problem by a reduction from
the Non- Tautology problem. Johnson and Garey (1979) point out that by modifying a
construction of Even et al. (1975), the problem’sNP-hardness holds even if all arc capacities
are equal to one. Furthermore, unlessP = NP , the non-existence of a 2n(1−ε)-approximation
algorithm for any fixed ε > 0 (on a digraph with n vertices) is proven by Meyers and Schulz
(2009) even if a nonzero solution is guaranteed to exist.

The MCF version of the homIF problem can be found in the literature as (integer) equal
flowproblem (EF).Using standard techniques, the complexity results can be transformed from
theMF to theMCFversion (Ahuja et al. 1988). There are several special cases and applications
for both the MF and MCF version of the problem considered in the literature (Calvete 2003;
Meyers and Schulz 2009;Morrison et al. 2013; Srinathan et al. 2002). For instance, the special
case of the EF problem where all sets have cardinality two, i.e., an integral MCF is sought
whose flow value is equal on a predetermined set of arc pairs, is investigated by Ali et al.
(1988). The problem finds application in, for example, crew scheduling (Carraresi and Gallo
1984). Therefore, Ali et al. present a heuristic algorithm based on Lagrangian relaxation.
Meyers and Schulz (2009) refer to this problem as paired integer equal flow problem (pEF)
and prove that there exists no 2n(1−ε)-approximation algorithm for any fixed ε > 0 (on a
digraph with n vertices), unless P = NP . The statement holds true even if a nontrivial
solution is guaranteed to exist. A simpler and in polynomial time solvable special case of the
EF problem is the so-called simple equal flow problem (sEF), which is introduced by Ahuja
et al. (1999). The sEF problem requires the same but not necessarily integral flow value on
only a single predetermined set of arcs. The problem is motivated by the management of
water resource systems (Manca et al. 2010). For this purpose, Ahuja et al. (1999) develop
several efficient algorithms to solve large-scale instances—a network simplex, a parametric
simplex, a combinatorial parametric, a binary search, and a capacity scaling algorithm. These
algorithms can easily be modified to obtain integral solutions.

Unlike the previous research on MF and MCF problems with equal flow requirements,
we consider in the RobMCF≡ problem not one demand scenario only, but several demand
scenarios. For each of these scenarios, a feasible flow is sought. Furthermore, among all
of these scenarios, we require the same flow value on an arc if it is included in the single
predetermined set of fixed arcs. Althoughwe consider several demand scenarios, the problem
of finding a feasible solution to the RobMCF≡ problem can be modeled as a special case
of the EF and pEF problem by means of graph copies. We point out that the equal flow
requirements in the RobMCF≡ problem are only of importance while considering different
demand scenarios, i.e., the flow value of a fixed arc has to be equal among all scenarios.
In turn, the flow value of two fixed arcs may differ in one scenario. For this reason, the
problem of finding a feasible solution to the RobMCF≡ problem cannot be modeled as the
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sEF problem, except for the special case where the predetermined arc set contains only one
arc. Moreover, due to different objectives, the correspondence from the RobMCF≡ problem
to the EF, sEF, and pEF problem only holds for finding a feasible solution.

Demand uncertainty is studied more frequently in the context of network design and
network engineering in telecommunication or road networks for example. In robust network
design, we have to decide on the capacities such that in all considered scenarios, the entire
demand can simultaneously be routed. The cost of installing the capacities is supposed to be
minimized.

In the single commodity case which was first studied by Minoux (1989) and by Sanità
(2009), the flow between supply and demand vertices may differ among the scenarios as
long as the capacities are satisfied. For discrete scenarios, a cut-based integer linear program
formulation with a separation algorithm is proposed by Álvarez-Miranda et al. (2012). Cac-
chiani et al. (2016) present a branch-and-cut algorithm for two types of uncertainty sets, a
discrete set of scenarios, and a polytope. Atamtürk and Zhang (2007) present a two-stage
robust optimization approach where some capacity decisions have to be made before, and
other after the demand realization. The decisions have to guarantee that in any case the
demand can be routed through the network.

In the multi-commodity case, several studies propose different models and uncertainty
sets. For instance, Altin et al. (2007, 2011) propose the so-called Hose uncertainty model,
Belotti et al. (2008) in the context of statistical multiplexing, and Koster et al. (2013) the
budget uncertainty set introduced by Bertsimas and Sim (2003, 2004). In these studies, the
flow is sent proportionally with the demand. In case the flow can be adapted to the demand,
a two-stage robust approach is followed. While Mattia (2013) studies dynamic routing, Poss
and Raack (2013) suggest to use affine recourse options.

3 Robustminimum cost flowproblemunder consistent flow constraints

3.1 Definition and notation

The RobMCF≡ problem is an extension of the MCF problem where supply and demand are
subject to uncertainty. The uncertainty is represented by a finite set of discrete scenarios �

wherewe do not have any knowledgewhich scenario is realized. Considering these scenarios,
we are given a digraph G = (V , A) with vertex set V and arc set A. The set of arcs A is
defined by two disjoint sets, i.e., A = Afix ∪ Afree, where we refer to arcs of set Afix as
fixed arcs and arcs of set Afree as free arcs. We use the notation V (G), A(G), Afix(G),
and Afree(G) to indicate the sets of vertices, arcs, fixed arcs, and free arcs of digraph G,
respectively. Independent of the scenarios arc capacities u : A(G) → Z≥0 and arc cost c :
A(G) → Z≥0 are given. In contrast, vertex balances bλ : V (G) → Zwith

∑
v∈V bλ(v) = 0

that define the supply and demand realizations are given for every scenario λ ∈ �, denoted by
b = (b1, . . . , b|�|). A positive balance indicates a source while a negative balance indicates
a sink. Note that, in general, the source (sink) vertices do not necessarily have to be the same
in every scenario. In case that each scenario has only one vertex with a positive (negative)
balance, we refer to these sources as single sources (sinks). If the single sources (sinks) are
defined by the same vertex for every scenario, we say that the problem has a unique source
(sink). Combined, we obtain the network (G, u, c, b).
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Considering only a single scenario λ ∈ �, analogues to the MCF problem a bλ-flow is
defined by a function f λ : A(G) → Z≥0 that satisfies the capacity constraints

0 ≤ f λ(a) ≤ u(a)

on all arcs a ∈ A and the flow balance constraints
∑

a=(v,w)∈A

f λ(a) −
∑

a=(w,v)∈A

f λ(a) = bλ(v)

at every vertex v ∈ V . The cost of a bλ-flow f λ is defined by

c( f λ) =
∑

a∈A

c(a) · f λ(a).

To consider a set of scenarios �, we need to introduce a new definition of a flow, a so called
robust b-flow.

Definition 1 (Robust Flow) Given a network (G = (V , A = Afix ∪ Afree), u, c, b), a robust
b-flow f = ( f 1, . . . , f |�|) is defined by a |�|-tuple of bλ-flows f λ : A(G) → Z≥0 that
satisfy the consistent flow constraints f λ(a) = f λ′

(a) on all fixed arcs a ∈ Afix for all
scenarios λ, λ′ ∈ �. The cost of a robust b-flow f is defined by the maximum flow cost
among all scenarios, i.e., c( f ) = maxλ∈� c( f λ).

We refer to the flow value on an arc of set Afix as its load. Accordingly, the consistent flow
constraints are satisfied if the load of a fixed arc is equal in every scenario. The RobMCF≡
problem can finally be formulated as follows.

Definition 2 (RobMCF≡) Given a network (G = (V , A = Afix ∪ Afree), u, c, b), the robust
minimum cost flow problem under consistent flow constraints (RobMCF≡) aims a robust
b-flow f = ( f 1, . . . , f |�|) of minimum cost.

Note that in case of a single scenario, i.e., |�| = 1, the RobMCF≡ problem corresponds to
the MCF problem. Otherwise, however, there are major differences as the following section
shows.

3.2 Structural results

In this section, we present structural results of the RobMCF≡ problem. In particular, differ-
ences to the MCF problem are pointed out where the main difference is the following. Given
a network with integral capacities and balances, by Dantzig and Fulkerson (Korte et al. 2012)
there always exists an optimal integral flow for the MCF problem. This useful integral flow
property is assumed to be given in most studies. However, the integral flow property does
not hold for the RobMCF≡ problem as the following example shows.

Example 1 For a set of two scenarios � = {1, 2}, let a network (G, u, c, b) with capacity
u ≡ 1 be given, where digraph G, its cost c, and the non-zero balances b are visualized in
Fig. 1a. An optimal integral robust b-flow f = ( f 1, f 2) is defined by a first scenario flow
f 1 that sends one unit along path v1v3v5v8, and a second scenario flow f 2 that sends one
unit each along path v1v3v5v6 and v1v4v5v7v6. This results in cost of c( f ) = 4 as c( f 1) = 4
and c( f 2) = 2 + 0 = 2 hold true.

However, by neglecting the integral flow requirement, there exists a robust b-flow f̃ =
( f̃ 1, f̃ 2) with cost of c( f̃ ) = 3. Flow f̃ 1 sends a half unit each along paths v1v3v5v8
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Fig. 1 a A non-integral robust b-flow is the only optimal solution b A scenario flow that does not send the
maximum demand among all scenarios causes the maximum cost in a unique source, unique sink network

and v1v4v5v8 ending up in total cost of c( f̃ 1) = 3. Flow f̃ 2 sends a half unit each along
paths v1v2v5v6 and v1v3v5v6, and one unit along path v1v4v5v7v6, also ending up in cost of
c( f̃ 2) = 3.

Corollary 1 Considering the continuous relaxation of the RobMCF≡ problem, there does not
always exist an integral robust flow with minimum cost, even if all capacities and balances
are integral.

Wenote that if no integer requirements for a robust flow are given, the RobMCF≡ problem
canbe solved by a simple linear program (LP) in polynomial time in |V |,|A| and |�|.However,
as applications of the RobMCF≡ problem often require integral flow values, hereafter this
paper only concentrates on integral solutions. Further motivated by applications, in the next
step, we investigate the RobMCF≡ problem where either the load of the fixed arcs is given,
or the number of fixed arcs is constant. In logistics for example, this complies with finding
a solution of minimum cost if the transport is already contractually agreed or limited. The
following results show that we can solve these special cases in polynomial time.

Lemma 1 Let I = (G = (V , A = Afix ∪ Afree), u, c, b) be a RobMCF≡ instance. For a
given load � : Afix(G) → Z≥0, an optimal robust b-flow f that satisfies f λ(a) = �(a) for
all fixed arcs a ∈ Afix(G) in every scenario λ ∈ � can be computed in polynomial time if
one exists.

Proof We transform instance I to |�| simple minimum cost b̃λ-flow instances Ĩλ =
(G̃, u, c, b̃λ) that can be considered for every scenario λ ∈ � separately. Instances Ĩλ,
λ ∈ � are obtained by deleting the fixed arcs from digraph G resulting in digraph G̃, i.e.,
G̃ = G − Afix, while at the same time the new balances b̃λ : V (G̃) → Z are defined as
follows

b̃λ(v) = bλ(v) +
∑

a=(w,v)∈Afix(G)

�(a) −
∑

a=(v,w)∈Afix(G)

�(a).

After computing minimum cost b̃λ-flows f̃ λ for all instances Ĩλ, λ ∈ �, a corresponding
robust b-flow f = ( f 1, . . . , f |�|) for instance I is defined as

f λ(a) =
{

�(a) for all fixed arcs a ∈ Afix(G),

f̃ λ(a) for all free arcs a ∈ Afree(G),
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and causes cost of
c( f ) = max

λ∈�
c( f̃ λ) +

∑

a∈Afix(G)

c(a) · �(a).

Assume the constructed robust b-flow f is not optimal, i.e., a robust b-flow f̂ =
( f̂ 1, . . . , f̂ |�|) exists with cost

c( f̂ λ1) = max
λ∈�

c( f̂ λ) = c( f̂ ) < c( f ) = max
λ∈�

c( f λ) = c( f λ2)

for scenarios λ1, λ2 ∈ �. Let f
λ
denote the flow which results from restricting the scenario

flow f̂ λ of instance I to instance Ĩλ, λ ∈ �. As the load on the fixed arcs is given, the values
of flows f̂ and f on the fixed arcs are equal for every scenario, i.e., f̂ λ(a) = f λ(a) = �(a)

for a ∈ Afix and λ ∈ �. Using this insight, we obtain

c( f̂ λ1) < c( f λ2)

⇔
∑

a∈A(G)

c(a) f̂ λ1(a) <
∑

a∈A(G)

c(a) f λ2(a)

⇔
∑

a∈Afree(G)

c(a) f̂ λ1(a) <
∑

a∈Afree(G)

c(a) f λ2(a)

⇔ c( f
λ1

) < c( f̃ λ2).

Furthermore, as by definition flow f̂ satisfies the consistent flow constraints, c( f
λ1

) =
maxλ∈� c( f

λ
) is implied by c( f̂ λ1) = maxλ∈� c( f̂ λ). Overall, we obtain

c( f̃ λ2) > c( f
λ1

) = max
λ∈�

c( f
λ
) ≥ c( f

λ2
),

which is a contradiction to the fact that flow f̃ λ2 is an optimal b̃λ2 -flow for instance Ĩλ2 .
Considering the runtime, the transformation of instance I to instances Ĩ, λ ∈ � is

done in O(|�| · |A|) time. Subsequently, a minimum cost b̃λ-flow f̃ λ can be computed
for every scenario λ ∈ � by, for example, the Minimum Mean Cycle-Canceling Algorithm
inO(|A|3|V |2 log |V |) time (Korte et al. 2012). Hence, an optimal robust b-flow can be com-
puted in O(|�| · |A|3 · |V |2 log |V |) total time. Note that if for a scenario λ ∈ � no feasible
b̃λ-flow exists, there also does not exist a robust b-flow.

Corollary 2 The RobMCF≡ problem is solvable in polynomial time for a constant number
of fixed arcs.

Proof We formulate the RobMCF≡ problem as LP where we only require the constant
number of variables that indicate the load on the fixed arcs to be integral. The resulting
mixed integer linear program (MIP) can be solved in polynomial time by Lenstra’s algorithm
(1983). In the case that the resulting robust flow is not integral, we define a load by the value
of theMIP’s integer variables. Analogous to the proof of Lemma 1, we transform the instance
and compute an optimal integral robust flow in polynomial time.

At the end of this section, we focus on the objective function of the RobMCF≡ problem.
From the MCF problem, or the multi-commodity flow problem (Korte et al. 2012), we know
that due to different sources and sinks a flow that sends one unit may cause higher cost
than a flow sending two units. Obviously, the same property remains true for instances of
the RobMCF≡ problem. If we consider the RobMCF≡ problem on networks with a unique
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source and a unique sink, we might assume, analogous to theMCF problem, that the cost of a
robust flow is determined by the scenario flow which sends the maximum demand. However,
the following example shows that this is not true.

Example 2 For a set of two scenarios � = {1, 2}, let a network (G, u, c, b) with capacity
u ≡ 1 be given, where digraph G, its cost c, and the non-zero balances b are visualized in
Fig. 1b. The only feasible and therefore also optimal solution f = ( f 1, f 2) to the RobMCF≡
problem is easy to determine. Considering the second scenario flow f 2 first, the only option
to send two flow units from source s to sink t is along paths sv1t and sv2t due to the
capacity constraints. As the second scenario flow f 2 uses both fixed arcs, the first scenario
flow f 1 must also send flow along these arcs. For this reason, the only option to send one
flow unit from source s to sink t is along path sv2v1t . The cost of the robust b-flow f is
c( f ) = c( f 1) = 100.

Corollary 3 In a network with a unique source and a unique sink, the cost of a robust b-flow
is not necessarily determined by the bλ-flow which sends the maximum demand among all
scenarios λ ∈ �.

As a result, independent of the number of sources and sinks given, for solving the
RobMCF≡ problem, we cannot only concentrate on a single scenario. However, by reason
of the following lemma, in a network with a unique source and a unique sink it is sufficient
to concentrate on two scenarios only, namely those in which the minimum and maximum
demand is sent.

Lemma 2 Let I = (G = (V , A = Afree ∪ Afix), u, c, b) be a RobMCF≡ instance with a
unique source s and a unique sink t. Without loss of generality, let the scenarios λ ∈ �

be strictly ordered in ascending order of their supply balances bλ, i.e., b1(s) < b2(s) <

. . . < b|�|(s). Further, let feasible integral bλ-flows f λ for scenarios λ = 1 and λ = |�| be
given that satisfy the consistent flow constraints, i.e., f 1(a) = f |�|(a) for a ∈ Afix. A robust
b-flow f = ( f 1, . . . , f |�|) with cost of c( f ) = max{c( f 1), c( f |�|)} can be computed in
polynomial time.

Proof As we consider a network with a unique source and a unique sink, a feasible robust
b-flow f for instance I is given by the convex combination of the flows f 1 and f |�| as
follows. For every scenario λ ∈ � \ {1, |�|} let γ λ ∈ [0, 1] be a parameter such that

bλ(s) = γ λ · b1(s) + (1 − γ λ) · b|�|(s)

holds. We define the corresponding scenario flows f λ, λ ∈ � \ {1, |�|} by
f λ(a) := γ λ · f 1(a) + (1 − γ λ) · f |�|(a)

for all arcs a ∈ A. Flows f λ, λ ∈ � \ {1, |�|} satisfy the capacity and flow balance
constraints, but may be non-integral on some free arcs. Therefore, we restrict every bλ-flow
f λ, λ ∈ � \ {1, |�|} to the respective MCF instance Ĩλ obtained analogous to the Proof of
Lemma 1, and this results in feasible b̃λ-flows denoted by f̃ λ. Let f̃ λ

OPT be an optimal integral
b̃λ-flow for instance Ĩλ, λ ∈ �\ {1, |�|}, then c( f̃ λ

OPT) ≤ c( f̃ λ) holds true. For all scenarios
λ ∈ � \ {1, |�|}, flows f̃ λ

OPT and f̃ λ can be retransformed to flows f λ
OPT, and respectively,

f λ of instance I, ending up in cost of
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c( f λ
OPT) = c( f̃ λ

OPT) +
∑

a∈Afix

c(a) f 1(a)

≤ c( f̃ λ) +
∑

a∈Afix

c(a) f 1(a)

= c( f λ)

= γ λ · c( f 1) + (1 − γ λ) · c( f |�|)
≤ max{c( f 1), c( f |�|)}.

Consequently, an optimal robust b-flow fOPT = ( f 1, f 2OPT, . . . , f |�|−1
OPT , f |�|) with cost

c( fOPT) = max{c( f 1), c( f |�|)} is obtained in polynomial time analogous to the Proof of
Lemma 1. 
�

As a result of Lemma 2, if a network with a unique source and a unique sink is given, we
only need to concentrate on the first and last scenario to solve the RobMCF≡ problem. We
obtain the following conclusion about the problem’s complexity which is detailed in the next
section.

Corollary 4 For a set of scenarios � with |�| ≥ 2, let a RobMCF≡ instance with a unique
source and unique sink be given. The complexity is not influenced by the number of scenarios.

4 Complexity for acyclic digraphs

In this section, we investigate the complexity of the RobMCF≡ problem for networks based
on acyclic digraphs. For convenience, we discuss the problem’s complexity for networks
with a unique source and multiple sinks first. The construction is extended to show the strong
NP-completeness for networks with a unique source and a unique sink. Both reductions are
performed from the (3, B2)-Sat problem (Berman et al. 2004)—a strongly NP-complete
special case of the 3-Sat problem. We start with a formal definition for the decision version
of the (3, B2)-Sat problem.

Definition 3 ((3, B2)-Sat) Let {x1, . . . , xn} be a set of variables. Further, let C1, . . . ,Cm be
a collection of clauses of size three where every positive and negative literal xi and xi occur
exactly twice. The decision problem of (3, B2)-Sat asks if there exists a variable assignment
that satisfies the collection of clauses.

Using the (3, B2)-Sat problem, we obtain the following complexity result.

Theorem 1 Deciding whether a feasible solution to the RobMCF≡ problem exists for
networks based on acyclic digraphs with a unique source but multiple sinks is strongly
NP-complete, even if only two scenarios and unit arc capacities are considered.

For the sake of clarity, we use the notation [n] := {1, . . . , n} in the following.

Proof The RobMCF≡ problem is contained in NP as we can check in polynomial time
whether the flow balance, capacity, and consistent flow constraints are satisfied for every sce-
nario. Further, we show that deciding whether a feasible solution of the RobMCF≡ problem
exists is strongly NP-complete by a reduction from the (3, B2)-Sat problem.

Let I be a (3, B2)-Sat instance with the set of variables {x1, . . . , xn} and clauses
C1, . . . ,Cm for which we construct a corresponding RobMCF≡ instance Ĩ = (G, u, c, b)
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Fig. 2 Construction of the RobMCF≡ instance Ĩ

considering a set of two scenarios, i.e., � = {1, 2}. An example of a RobMCF≡ instance
corresponding to a (3, B2)-Sat instance with four clauses and three variables is visualized
in Fig. 2. In general, the instance is based on a digraph G = (V , A) defined as follows. The
vertex set V consists of one vertex vi per variable xi , i ∈ [n], an additional dummy vertex
vn+1, and one vertex u j per clause C j , j ∈ [m]. In addition, for every literal xi (xi ), i ∈ [n]
four auxiliary vertices w�

i (w�
i ), � ∈ [4] are included as well as a further auxiliary vertex t .

Arc set A includes arcs that connect two successive variable vertices vi , vi+1, i ∈ [n] by two
parallel paths pi and pi defined along the auxiliary vertices, i.e., pi = viw

1
i w

2
i w

3
i w

4
i vi+1

and pi = viw
1
i w

2
i w

3
i w

4
i vi+1 for i ∈ [n]. Path pi represents the positive literal xi , and path

pi the negative literal xi of instance I. As each literal occurs exactly twice in instance I,
we identify two arcs of paths pi and pi each with the literals. More precisely, let xki (xki )
denote literal xi (xi ) which occurs the k-th time, k ∈ [2] in the formula. Arc (w2k−1

i , w2k
i )

((w2k−1
i , w2k

i )), which we refer to as literal arc, is supposed to correspond to literal xki (xki ).
Using this correspondence, we add arc (w2k

i , u j ) ((w2k
i , u j )) for every literal xki (x

k
i ), i ∈ [n],

k ∈ [2] included in clause C j , j ∈ [m]. Finally, arcs (v1, w
�
i ) and (v1, w

�
i ) for � ∈ {1, 3} as

well as arcs (w�
i , t) and (w�

i , t) for � ∈ {2, 4} are added for every i ∈ [n].
The fixed arcs of set A are defined by all literal arcs, i.e., Afix = {

(w�
i , w

�+1
i ), (w�

i , w
�+1
i ) |

� ∈ {1, 3}, i ∈ [n]}, while all remaining arcs are contained in set Afree. We set the capacity
and cost to u ≡ 1 and c ≡ 0, respectively. To conclude, we define balances b = (b1, b2)
such that the unique source is given by vertex v1. In contrast, depending on the scenario
considered, vertex vn+1, or vertices u1, . . . , um and t function as sinks. More precisely, we
obtain

b1(v) =
⎧
⎨

⎩

1 if v = v1,

−1 if v = vn+1,

0 otherwise,
b2(v) =

⎧
⎪⎪⎨

⎪⎪⎩

2n if v = v1,

−1 if v = u j , j ∈ [m],
m − 2n if v = t,
0 otherwise.

In summary,weobtain a feasibleRobMCF≡ instance Ĩ = (G, u, c, b) that can be constructed
in polynomial time. Hence, it remains to show that I is a Yes-instance if and only if for
instance Ĩ a feasible robust b-flow exists.
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For this purpose, let x1, . . . , xn be a satisfying truth assignment for instance I. We define
the first scenario flow f 1 of instance Ĩ as follows

f 1(a) =
⎧
⎨

⎩

1 for all a ∈ A(pi ) if xi = True,
1 for all a ∈ A(pi ) if xi = False,
0 otherwise,

i.e., flow f 1 sends exactly one unit from source v1 to sink vn+1 using 2n literal arcs by sending
flow along either path pi or pi , i ∈ [n]. As x1, . . . , xn is a satisfying truth assignment, there
exists one verifying literal xki or xki , k ∈ [2], i ∈ [n] for each clause C j , j ∈ [m]. We define
the second scenario flow f 2 from the source to the clause vertices along the literal arcs which
correspond to these verifying literals:

f 2(a) =

⎧
⎪⎨

⎪⎩

1 for all a ∈ A(q) with q = v1w
2k−1
i w2k

i u j if xki ∈ C j is verifying,

1 for all a ∈ A(q) with q = v1w
2k−1
i w2k

i u j if xki ∈ C j is verifying,

0 otherwise.

To satisfy the remaining 2n − m demand, flow f 2 is defined along the remaining, and also
from flow f 1 used, literal arcs to sink t , i.e., f 2(a) = 1 for all

{
a ∈ A(p) with p = v1w

2k−1
i w2k

i t if xi = True and f 2((w2k−1
i , w2k)) = 0,

a ∈ A(p) with p = v1w
2k−1
i w2k

i t if xi = False and f 2((w2k−1
i , w2k)) = 0.

Overall, flow f 2 sends 2n−m units to sink t and one unit to each of the sinks u1, . . . , um using
exactly 2n literal arcs. Consequently, we have constructed bλ-flows f λ for both scenarios
λ ∈ � such that the consistent flow constraints are satisfied, and this results in a feasible
robust b-flow f = ( f 1, f 2).

Conversely, let f = ( f 1, f 2) be a feasible robust b-flow. Flow f 2 sends in total 2n
units from vertex v1 to vertices u1, . . . , um and t . By construction of the network, the only
option to reach each of these sinks requires the usage of at least one of the fixed literal
arcs. Due to the integral flow f 1 sending only one unit within the acyclic digraph, it holds
f 1(a) = f 2(a) ∈ {0, 1} for all fixed arcs a ∈ Afix. Consequently, flows f 1 and f 2 use at
least 2n fixed arcs in order to meet the demand of flow f 2. As further consequence of the
acyclic digraph, flow f 1 uses either path pi or pi , i ∈ [n] but never both simultaneously to
reach sink vn+1. Accordingly, if flow f 1 sends flow along path pi , i ∈ [n], we set xi = True.
If flow f 1 sends flow along path pi for i ∈ [n], our choice is xi = False. Further, to meet
the demand at sinks u j , j ∈ [m], flow f 2 sends flow along either subpath w�

i w
�+1
i u j or

w�
i w

�+1
i u j for � ∈ {1, 3}, i ∈ [n], j ∈ [m] but never both simultaneously. In the former case,

clause C j is verified due to the previous assignment xi = True induced by flow f 1 and the
fact that xi ∈ C j holds. In the latter case, clause C j is verified due to the included variable
xi set to False. As a result, x1, . . . , xn is a satisfying truth assignment for instance I.

The statement of Theorem 1 can be formulated even stronger as the following theorem
shows.

Theorem 2 Deciding whether a feasible solution to the RobMCF≡ problem exists for net-
works based on acyclic digraphs is strongly NP-complete, even if only two scenarios on a
network with a unique source, a unique sink, and unit arc capacities are considered.

Proof We extend the construction of Proof of Theorem 1 by free arcs (u j , vn+1) for j ∈ [m]
as well as the two free arcs (v1, w

4
n) and (v1, w

4
n). Like all other arcs in the network, their
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capacities and costs are set to one and zero, respectively. The balances are updated such
that v1 serves as unique source and vn+1 as unique sink. However, in the second scenario
we require 2n + 2 instead of 2n demand sent from the source to the sink. This adjustment
is necessary as we need to ensure that sufficient demand is sent along the clause vertices
which are no sinks anymore. Otherwise, there might exist a feasible robust b-flow that sends
a unit along path v1w

3
nw

4
nvn+1 or v1w

3
nw

4
nvn+1 which in turn allows one unsatisfied clause.

Analogous to the Proof of Theorem 1, a (3, B2)-Sat instance is a Yes-instance if and only
if for the corresponding RobMCF≡ instance a feasible robust flow exists.

5 RobMCF≡ problem on series-parallel digraphs

In this section, we consider the RobMCF≡ problem on series-parallel (SP) digraphs. We
firstly present a definition of SPdigraphs and their representation in the formof a rooted binary
decomposition tree. Exploiting the decomposition tree, i.e., the instruction of the composition
of an SP digraph, we reduce the complexity for two special cases of the RobMCF≡ problem,
unless P = NP . In Sect. 5.1, we show the weak NP-completeness for networks with
multiple sources and multiple sinks. For the special case of a constant number of scenarios,
we exclude the strongNP-completeness by proposing a pseudo-polynomial time algorithm.
For the special case of networks with a unique source and a unique sink, we provide an
algorithm which runs in polynomial time as shown in Sect. 5.2.

We start with a formal definition for SP digraphs based on the edge SP multi-graphs
definition of Valdes et al. (1982).

Definition 4 Series-parallel (SP) digraphs can be recursively defined as follows.

1. An arc (o, q) is an SP digraph with origin o and target q .
2. Let G1 with origin o1 and target q1 and G2 with origin o2 and target q2 be SP digraphs.

The digraph that is constructed by one of the following two compositions of SP digraphs
G1 and G2 is itself an SP digraph.

(a) The series composition G of two SP digraphs G1 and G2 is the digraph obtained by
contracting target q1 and origin o2. The origin of digraph G is then o1 (becoming o),
and the target is q2 (becoming q).

(b) The parallel composition G of two SP digraphs G1 and G2 is the digraph obtained
by contracting origins o1 and o2 (becoming o) and contracting targets q1 and q2
(becoming q). The new origin of digraph G is o, and the target is q .

The parallel and series compositions are illustrated in Fig. 3a. Note that, by definition, SP
digraphs are generally multi-graphs with one definite origin and one definite target.

A useful property of SP digraphs is their representability in the form of a rooted binary
decomposition tree, a so-called SP tree, visualized in Fig. 3b. For a given SP digraph, we
construct an SP tree that represents the order of the series and parallel compositions of
individual arcs. By means of three different vertices, namely L-vertices, S-vertices, and P-
vertices, single arcs as well as series and parallel compositions are indicated. The SP tree’s
leaves are L-vertices where there exist asmany L-vertices as the digraph represented has arcs.
The S- and P-vertices are the SP tree’s inner vertices and correspond to the digraph obtained
by a series or, respectively, parallel composition of the subgraphs associated with their two
child vertices. The order of the children of P-vertices is irrelevant while it is essential for
S-vertices as the series composition is not commutative. Following the constructions of all
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(a) (b)

Fig. 3 a Example of an SP digraph defined by a parallel or series composition b Example of the representation
of an SP digraph by its SP tree

series and parallel compositions, we obtain the entire digraph represented by the SP tree’s
root. The representation of an SP digraph by its SP tree can be beneficially used as the
construction is conducted in polynomial time (Valdes et al. 1979).

Using the SP trees, we define pearl digraphs—SP digraphs with a special structure—based
on the definition of Ohst (2016).

Definition 5 Pearl digraphs are SP digraphs whose SP trees do not have P-vertices whose
children in turn are S-vertices.

In other words, a pearl digraph is a digraph that consists of a path with multi-arcs.

5.1 Multiple sources andmultiple sinks networks

In this section, we firstly concentrate on the complexity of the RobMCF≡ problem for
networks based on SP digraphs. For the special case that the number of scenarios is constant,
we propose a pseudo-polynomial time algorithm. We start with a formal definition for the
decision version of the RobMCF≡ problem.

Definition 6 The decision version of the RobMCF≡ problem asks whether a robust flow
exists with cost at most β ∈ Z≥0.

We perform a reduction from Partition, which is known to be weakly NP-
complete (Johnson and Garey 1979).

Definition 7 (Partition) Let S = {s1, . . . , sn} be a set of n positive integers that sum up
to 2w, i.e.,

∑n
i=1 si = 2w. The decision problem of Partition asks whether there exists a

partition of set S in two disjoint subsets S1 and S2 such that the sum of the integers of subsets
S1 is equal to the sum of the integers included in subset S2, i.e., S = S1 � S2 with

∑

si∈S1
si =

∑

si∈S2
si = w.

Theorem 3 The decision version of the RobMCF≡ problem on networks based on SP
digraphs is weakly NP-complete, even if only two scenarios, unit arc capacities, a unique
source, and single sinks are considered on pearl digraphs.
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Fig. 4 Construction of the RobMCF≡ instance Ĩ

Proof LetI be a Partition instancewith positive integers s1, . . . , sn such that
∑n

i=1 si = 2w
holds. We construct a corresponding RobMCF≡ instance Ĩ = (G, u, c, b) considering a set
of two scenarios, i.e., � = {1, 2}, visualized in Fig. 4. The network is based on a pearl
digraph G = (V , A) where vertex set V consists of two auxiliary vertices v0 and t , and one
vertex vi per integer si , i ∈ [n]. Arc set A consists of multi-arcs ai for i ∈ [n] that connects
two successive vertices vi−1, vi by three parallel arcs a1i , a

2
i , a

3
i , plus a single arc an+1 from

vertex vn to vertex t . Multi-arc ai , i ∈ [n] is supposed to represent integer si , which is why
we refer to as integer multi-arcs. The fixed arcs of set A are defined by the second arc of all
integer multi-arcs each, i.e., Afix = {a2i = (vi−1, vi ) | i ∈ [n]}, while all remaining arcs are
contained in set Afree.

Further, we set the capacity on all arcs to one, i.e., u ≡ 1. The cost c is given such that the
use of the first arc a1i and second arc a2i of every integer multi-arc costs two and one times
the corresponding integer value si per flow unit, respectively. In turn, using the third arc a3i
causes zero cost. The use of arc an+1 costs 2w per flow unit. To conclude, we define balances
b = (b1, b2) on vertex set V such that in the first scenario vertex v0 supplies and vertex vn
demands two units. In the second scenario, vertex v0 supplies and vertex t demands one unit.
In both scenarios, the balances of all other vertices are equal to zero, i.e., overall we obtain

b1(v) =
⎧
⎨

⎩

2 if v = v0,

−2 if v = vn,

0 otherwise,
b2(v) =

⎧
⎨

⎩

1 if v = v0,

−1 if v = t,
0 otherwise.

Accordingly, for both scenarios the unique source is defined by vertex v0 while depending
on the scenario considered vertex vn or t serves as single sink. In order to satisfy demand
with supply, flow is sent along paths through the network. For convenience, let p� denote
the path along the �-th integer multi-arcs for � ∈ [3], i.e., p� = a�

1 . . . a�
n . Overall, we obtain

a feasible RobMCF≡ instance Ĩ = (G, u, c, b) that can be constructed in polynomial time.
Hence, it remains to show that I is a Yes-instance if and only if for instance Ĩ a robust b-flow
exists with cost of at most β := 3w.

For this purpose, let S1 and S2 be a feasible partition for instance I. We define the first
scenario flow f 1 of instance Ĩ by

f 1(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for all arcs a = a1i ∈ A if si ∈ S1,
1 for all arcs a = a2i ∈ A if si ∈ S2,
1 for all arcs a = a3i ∈ A,

0 otherwise,

i.e., flow f 1 sends one unit from source v0 to sink vn along arcs of paths p1 and p2, while one
further unit is sent using arcs of path p3 only. As the sets S1 and S2 form a feasible partition
we obtain cost of
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c( f 1) =
∑

a∈A

c(a) f 1(a) =
∑

a∈Afix

c(a) f 1(a) +
∑

a∈Afree

c(a) f 1(a) = w + 2w = 3w.

According to flow f 1 and the partition, we define the second scenario flow f 2 by

f 2(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for all arcs a = a2i ∈ A if si ∈ S2,
1 for all arcs a = a3i ∈ A if si ∈ S1,
1 for arc a = an+1 ∈ A,

0 otherwise,

i.e., flow f 2 sends exactly one unit from source v0 to sink t along arcs of paths p2 and p3,
and by using arc an+1. The following cost is caused

c( f 2) =
∑

a∈A

c(a) f 2(a)

=
∑

a∈Afix

c(a) f 2(a) +
∑

a∈Afree\{an+1}
c(a) f 2(a) + c(an+1) f

2(an+1)

= w + 0 + 2w = 3w.

Consequently, we have constructed a robust b-flow f = ( f 1, f 2) with cost of 3w.
Conversely, let f = ( f 1, f 2) be a robust b-flow with cost of at most 3w, i.e., c( f ) =

max{c( f 1), c( f 2)} ≤ 3w. The first scenario flow f 1 sends two units from source v0 to sink
vn . Due to the capacities, not only a single path is used to send these flow units. In particular,
not only path p3 causing zero cost is used. As sending one flow unit along path p1 would
cause cost of

c(p1) =
∑

a∈A(p1)

c(a) =
n∑

i=1

2si = 4w > 3w ≥ max{c( f 1), c( f 2)},

flow f 1 does not use all arcs of path p1 either. Accordingly, flow f 1 uses as many arcs of
path p2 as at least cost of w is caused in order that at most 2w cost is caused due to arcs of
path p1.

The second scenario flow f 2 sends one unit from source v0 to sink t . As flow f 2 uses arc
an with cost of 2w to reach sink t , the unit is sent along arcs of paths p1, p2, p3 such that at
most cost of w is caused. Furthermore, as flow f 1 uses as many arcs of path p2 as at least
cost of w is caused, this also holds true for flow f 2 as A(p2) = Afix holds. Consequently,
flow f 2 only uses arcs of path p2 and p3, however, due to the acyclic pearl digraph never of
the same multi-arc simultaneously such that the sets

S1 := {si | f 2(a2i ) = 1 for arc a2i ∈ Afix with i ∈ [n]},
S2 := {si | f 2(a3i ) = 1 for arc a3i ∈ A(p3) with i ∈ [n]}

form a feasible partition for instance I.

In the next step, we refute the strong NP-completeness in the special case of a con-
stant number of scenarios. Therefore, we propose a pseudo-polynomial algorithm based on
dynamic programming. The dynamic program (DP) is applicable for networks with an arbi-
trary number of sources and sinks, especially for multiple sources and multiple sinks. The
core idea of the DP is a bottom-upmethod using the SP tree.While composing the SP digraph
step by step, in each of these steps a robust flow is sought satisfying additional restrictions
explained in the following. The flow needs to send a given supply from the origin through the
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subgraph considered in the current step. Further, the flow needs to satisfy the inner vertices’
balances as their in- and outgoing arcs are already set. In contrast, the balances at the origin
and target do not have to be satisfied as in subsequent steps further subgraphs can still be
composed at these vertices. Moreover, the flowmust exactly meet a budget given. Backtrack-
ing the steps of the DP results to an optimal robust flow. Before we present the DP in more
detail, we introduce the notations and labels needed.

Let us consider a RobMCF≡ instance (G, u, c, b) where G is an SP digraph with origin
o and target q . Further, let T be the SP tree of digraph G with its root vertex r ∈ V (T ).
We denote the subgraph of digraph G that is associated to vertex v ∈ V (T ) by Gv , and its
origin and target by ov and qv , respectively. The algorithm relies on demand labels dv(s̃v, c̃v)
defined for every subgraph Gv associated with a vertex v ∈ V (T ). The parameter vector
s̃v = (s̃1v , . . . , s̃|�|

v ) ∈ Z
|�|
≥0 determines for all scenarios the supply at originov of subgraphGv .

For every scenario λ ∈ � the supply s̃λ
v is limited by the sum of the capacities of all outgoing

arcs of origin ov of subgraph Gv , i.e., s̃λ
v ∈ {0, . . . ,Uv} with Uv = ∑

a=(ov,w)∈A(Gv) u(a).

The parameter vector c̃v = (c̃1v, . . . , c̃
|�|
v ) ∈ Z

|�|
≥0 specifies for all scenarios the budget

that must be spent for sending the supply in subgraph Gv with respect to cost function c.
Consequently, an upper bound on the budget is given by the cost that may occur in subgraph
Gv , i.e., c̃λ

v ∈ {0, . . . ,Cv} for λ ∈ � with Cv = ∑
a∈A(Gv) c(a) · u(a).

Let the (s̃v , c̃v)-restricted robust minimum cost flow problem under consistent flow
constraints (rRobMCF≡ (s̃v, c̃v)) be defined as the RobMCF≡ problem on subgraph Gv ,
v ∈ V (T ) with restrictions implied by supply s̃v and budget c̃v . The demand label dv(s̃v, c̃v)
is defined as the optimal solution value of the rRobMCF≡(s̃v, c̃v) problem. For convenience
and for the sake of clarity, we indicate the rRobMCF≡ (s̃v, c̃v) problem by the following
integer program formulation.

dv(s̃v, c̃v) = min 0 (1)

s.t.
∑

a∈A(Gv)

c(a) · f λ
a = c̃λ

v ∀λ ∈ � (2)

∑

a=(w,z)∈A(Gv)

f λ
a −

∑

a=(z,w)∈A(Gv)

f λ
a

=
{
bλ(w) if w �= ov,

s̃λ
w if w = ov,

∀w ∈ V (Gv) \ {qv}, λ ∈ � (3)

f λ
a = f λ′

a ∀a ∈ Afix(Gv), λ, λ′ ∈ � (4)

0 ≤ f λ
a ≤ u(a) ∀a ∈ A(Gv), λ ∈ � (5)

f λ
a ∈ Z≥0 ∀a ∈ A(Gv), λ ∈ � (6)

The rRobMCF≡(s̃v, c̃v) problem requires a robust b-flow in subgraph Gv by means of
constraints (3)–(6). Therefore, the flow needs to satisfy the supply s̃v at origin ov , and the
balances b at all other vertices except target qv . Furthermore, the flow must exactly meet the
budget c̃v , see constraint (2). By definition of the objective function (1), finding a feasible
solution is sufficient to solve the rRobMCF≡(s̃v, c̃v) problem, i.e., dv(s̃v, c̃v) ∈ {0,∞}.

For solving the RobMCF≡ problem on SP digraphs, the DP exploits the structure of the
SP tree to compute demand labels recursively.More precisely, considering a specific vertex in
the SP tree, we update the corresponding demand label based on the labels corresponding to
the children’s vertices in a bottom-up procedure. Depending on whether the SP tree’s vertex
considered is an L-, S-, or P-vertex, one of the following three procedures is applied. An
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example of the procedures of the DP is given in Appendix A. We start with the initialization
at the leaves.

Lemma 3 Let v ∈ V (T ) be a leaf of SP tree T , i.e., v is an L-vertex. The demand label
dv(s̃v, c̃v) is initialized by

dv(s̃v, c̃v) =
⎧
⎨

⎩

0 if (ov, qv) ∈ Afree(Gv), c̃λ
v = c((ov, qv)) · s̃λ

v , ∀λ ∈ �,

0 if (ov, qv) ∈ Afix(Gv), s̃λ
v = s̃λ′

v , c̃λ
v = c((ov, qv)) · s̃λ

v , ∀λ, λ′ ∈ �,

∞ otherwise.

Proof As v ∈ V (T ) is an L-vertex, subgraphGv only consists of the single arcav := (ov, qv).
If av is a free arc, i.e., av ∈ Afree(Gv), c̃λ

v = c((ov, qv)) · s̃λ
v must hold true. Otherwise, there

exists no feasible flow that satisfies constraints (2) due to constraints (3). Consequently, the
rRobMCF≡(s̃v, c̃v) problem is not solvable, i.e., dv(s̃v, c̃v) = ∞. If av is a fixed arc, i.e.,
av ∈ Afix(Gv), the constraints of the previous case need to be satisfied due to the same
argumentation. In addition, s̃λ

v = s̃λ′
v must hold true for all scenarios λ, λ′ ∈ � by reason of

constraints (4). To conclude, if the presented constraints are satisfied, an optimal solution to
the rRobMCF≡(s̃v, c̃v) problem is given by f (av) := s̃v such that dv(s̃v, c̃v) = 0 holds true.

In the next step, we consider the case in which the demand label is derived recursively
from the demand labels of the child vertices that are parallelly composed.

Lemma 4 Let v ∈ V (T ) be a P-vertex in SP tree T with child vertices x, y ∈ V (T ). The
demand label dv(s̃v, c̃v) at vertex v can be computed by a composition of the demand labels
dx (s̃x, c̃x) and dy(s̃y, c̃y) of its child vertices x and y as follows

dv(s̃v, c̃v) = min
s̃v=s̃x+s̃y
c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
.

Proof For vertex v ∈ V (T ), let dv(s̃v, c̃v) be the demand label with the related solution
f ∗. As v is a P-vertex, flow f ∗ with associated supply s̃v = ∑

a=(ov,w)∈A(Gv) f ∗(a) can
be divided into two flows fx and f y with associated supplies s̃x and s̃y, respectively. Flow
fx is defined on subgraph Gx , and flow f y is defined on subgraph Gy only. The budget
c̃v = ∑

a∈A(Gv) c(a) · f ∗(a) of flow f ∗ is also divided such that c̃x describes the budget
of flow fx and c̃y the budget of flow f y. Flows fx and f y are feasible solutions to the
rRobMCF≡(s̃x, c̃x) and rRobMCF≡(s̃y, c̃y) problem, respectively. Consequently, we obtain

dv(s̃v, c̃v) = dv(s̃x + s̃y, c̃x + c̃y) ≥ dx (s̃x, c̃x) + dy(s̃y, c̃y),

where dx (s̃x, c̃x) and dy(s̃y, c̃y) are the demand labels corresponding to the child vertices
x, y ∈ V (T ). In particular, this implies

dv(s̃v, c̃v) ≥ min
s̃v=s̃x+s̃y
c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
.

Conversely, for child vertices x, y ∈ V (T ), let dx (s̃x, c̃x) and dy(s̃y, c̃y) be the demand
labels with related solutions f ∗

x and f ∗
y . Combining flows f ∗

x and f ∗
y results in a feasible

solution fv := f ∗
x + f ∗

y to the rRobMCF≡(s̃v, c̃v) problem with supply s̃v := s̃x + s̃y and
budget c̃v := c̃x + c̃y. Consequently, for all supplies s̃x , s̃y and budgets c̃x , c̃y given the
following holds true

dx (s̃x, c̃x) + dy(s̃y, c̃y) ≥ dv(s̃x + s̃y, c̃x + c̃y) = dv(s̃v, c̃v),
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where dv(s̃v, c̃v) is the demand label corresponding to vertex v ∈ V (T ). This implies

dv(s̃v, c̃v) ≤ min
s̃v=s̃x+s̃y
c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
.

To conclude the computation of demand labels, we consider the case in which a demand label
is derived recursively from the demand labels of the child vertices that are serially composed.

Lemma 5 Let v ∈ V (T ) be an S-vertex in SP tree T with child vertices x, y ∈ V (T ). The
demand label dv(s̃v, c̃v) at vertex v can be computed by a composition of the demand labels
dx (s̃x, c̃x) and dy(s̃y, c̃y) of its child vertices x and y by

dv(s̃v, c̃v) = min
s̃x=s̃v

s̃y=s̃x+β

c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
,

where β = (β1, . . . , β |�|) with βλ := ∑
v∈V (Gx )\{ox } b

λ(v) holds for every scenario λ ∈ �.

Proof For vertex v ∈ V (T ), let dv(s̃v, c̃v) be the demand label with the related solution
f ∗. We assume that digraph Gv is constructed by contracting the target qx of subgraph Gx

with the origin oy of subgraph Gy . Consequently, the flow that is sent through subgraph Gy

requires on the one hand the access via origin oy . On the other hand, at least the same amount
of flow is originated in subgraphGx in the first place. Using this insight, we partition flow f ∗
and the associated supply s̃v = ∑

a=(ov,w)∈A(Gv) f ∗(a) in two flows fx and f y where flow
fx is defined on subgraphGx and flow f y is defined on subgraphGy only.More precisely, we
obtain fx(a) := f ∗(a) for all arcs a ∈ A(Gx )with associated supply s̃x = s̃v , and f y(a) :=
f ∗(a) for all arcs a ∈ A(Gy)with associated supply s̃y := ∑

a=(oy ,w)∈A(Gy)
f ∗(a) = s̃x+β

where β = (β1, . . . , β |�|) with βλ := ∑
v∈V (Gx )\{ox } b

λ(v), λ ∈ �. The associated supply
s̃y results from the supply s̃x plus the flow that originates from sources (that are different
from the origin) in subgraph Gx minus the flow that is absorbed at sinks in subgraph Gx . The
budget c̃v = ∑

a∈A(Gv) c(a) · f ∗(a) of flow f ∗ can also be divided such that c̃x describes
the budget of flow fx and c̃y the one of flow f y. Flows fx and f y are feasible solutions to
the rRobMCF≡(s̃x, c̃x) and rRobMCF≡(s̃y, c̃y) problem, respectively. Consequently, we
obtain

dv(s̃v, c̃v) = dv(s̃x, c̃x + c̃y) ≥ dx (s̃x, c̃x) + dy(s̃y, c̃y),

where dx (s̃x, c̃x) and dy(s̃y, c̃y) are the demand labels corresponding to child vertices x, y ∈
V (T ). In particular, this implies

dv(s̃v, c̃v) ≥ min
s̃x=s̃v

s̃y=s̃x+β

c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
.

Conversely, for child vertices x, y ∈ V (T ), let dx (s̃x, c̃x) and dy(s̃y, c̃y)with s̃y = s̃x +β

be the demand labels with related solutions f ∗
x and f ∗

y . Combining flows f ∗
x and f ∗

y results in
a feasible solution fv := f ∗

x + f ∗
y to the rRobMCF≡(s̃v, c̃v) problem with supply s̃v := s̃x

and budget c̃v := c̃x + c̃y. Consequently, for all supplies s̃x , s̃y and budgets c̃x , c̃y the
following holds true

dx (s̃x, c̃x) + dy(s̃y, c̃y) ≥ dv(s̃x, c̃x + c̃y) = dv(s̃v, c̃v),
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where dv(s̃v, c̃v) is the demand label corresponding to vertex v ∈ V (T ). This implies

dv(s̃v, c̃v) ≤ min
s̃x=s̃v

s̃y=s̃x+β

c̃v=c̃x+c̃y

{
dx (s̃x, c̃x) + dy(s̃y, c̃y)

}
.

Finally, a robust flow in SP digraph G is obtained by backtracking the steps of the DP,
and considering the demand label associated to the SP tree’s root r .

Lemma 6 Let f be an optimal robust b-flow in SP digraph Gr . For the cost it holds that

c( f ) = min
{
ĉ

∣
∣ ∃ c̃r ∈ {0, . . . ,Cr }|�| : max

λ∈�
c̃λ
r = ĉ ∧ dr (b(or ), c̃r ) = 0

}
(7)

with Cr = ∑
a∈A(Gr )

c(a) · u(a).

Proof For all vertices v ∈ V (G)\{q}, the flow balance constraints of the RobMCF≡ problem
are ensured by constraints (3) of the rRobMCF≡ (s̃r , c̃r ) problem with s̃r = b(or ). The
consistent flow and capacity constraints as well as the integer conditions of the RobMCF≡
problem are one to one included in the rRobMCF≡(s̃r , c̃r ) problem by constraints (4), (5)
and (6), respectively. Accordingly, every feasible solution to the rRobMCF≡(s̃r , c̃r ) problem
is also a feasible solution to the RobMCF≡ problem.

However, the rRobMCF≡ (s̃r , c̃r ) problem contains one additional set of constraints,
namely constraints (2). Constraints (2) control whether the cost of a flow is equal to the
budget. For this reason, we look for a budget c̃r ∈ {0, . . . ,Cr }|�| for which a feasible solution
to the rRobMCF≡(s̃r , c̃r ) problem exists, i.e., for which dr (b(or ), c̃r ) = 0 holds true. This
solution corresponds to a robust b-flow f with cost c( f ) = maxλ∈� c( f λ) = maxλ∈� c̃λ

r .
Therefore, we are interested in the minimum maximum budget needed among all scenarios
λ ∈ � which we obtain by expression (7).

After all, we analyze the runtime of the DP.

Theorem 4 Let (G, u, c, b) be a RobMCF≡ instance where G is an SP digraph with origin o.
Using the DP described, the RobMCF≡ problem can be solved inO(|A(G)|(U +1)2|�|(C+
1)2|�|) time where U := ∑

a=(o,v)∈A(G) u(a) and C := ∑
a∈A(G) c(a) · u(a) holds.

Proof The correctness of the algorithm follows from Lemmas 3–6. Considering the runtime,
first of all, wemention that the representation of an SP digraphG by its SP tree T can be com-
puted inO(|A(G)|) (Valdes et al. 1979).At every SP tree’s vertex v ∈ V (T ) demand labels for
all supplies s̃v and budgets c̃v need to be calculated where the number of combinations is lim-
ited by (U+1)|�| ·(C+1)|�|. As SP tree T of SP digraphG has exactly |V (T )| = 2|A(G)|−1
vertices, we have to computeO(2|A(G)| · (U + 1)|�| · (C + 1)|�|) demand labels. It remains
to bound the complexity for computing the demand labels. If v ∈ V (T ) is an L-vertex,
computing the corresponding demand labels is clearly in O(1). If v ∈ V (T ) is an S- or
P-vertex, we need to compute the minimum of (U + 1)|�|(C + 1)|�| sums which is in
O((U+1)|�|(C+1)|�|). In total, we obtain a runtime ofO(2|A(G)|·(U+1)2|�| ·(C+1)2|�|).

By reason of Theorem 4, the pseudo-polynomial runtime of the DP follows if the number
of scenarios is constant. Together with the result of Theorem 3 we obtain the following
corollary.

Corollary 5 The decision version of the RobMCF≡ problem on networks based on SP
digraphs with multiple sources and multiple sinks is weakly NP-complete, even if only
two scenarios and unit arc capacities are considered on pearl digraphs. If the number of
scenarios is not part of the input, the RobMCF≡ problem can be solved by the presented DP
in pseudo-polynomial time.
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5.2 Special case of unique source and unique sink networks

In this section, we provide a polynomial time algorithm for the special case of networks based
on SP digraphs with a unique source and a unique sink. The core idea of the algorithm is
based on the algorithm of Bein et al. (1985) which iteratively sends flow along shortest paths
to solve the MCF problem. Before we propose a generalized algorithm for the RobMCF≡
problem, we investigate properties of an optimal robust flow in the networks considered. In
particular, we study the cost and show that we can restrict the statement of Lemma 2.

We start with introducing the notations and definitions needed. Let us consider a
RobMCF≡ instance (G, u, c, b) where G is an SP digraph with origin o and target q . As SP
digraphs are acyclic, we assume without loss of generality that the unique source complies
with origin o and the unique sink complies with target q . Due to Lemma 2, we limit our efforts
to a set of two scenarios, i.e., � = {1, 2}. For convenience, we introduce a demand vector
d = (d1, d2), consisting of the number of flow units that, according to the balances b, are sup-
plied from the unique source and demanded by the unique sink, i.e., d1 := b1(o) = −b1(q)

and d2 := b2(o) = −b2(q). Without loss of generality, let d1 and d2 be given such that
d1 ≤ d2 holds true. Further, let H ⊆ G be an SP subgraph with origin oH . We denote the
flow value of a given flow f λ, λ ∈ � entering subgraph H by δ( f λ|H ) such that the following
holds

δ( f λ|H ) :=
∑

a=(oH ,w)∈A(H)

f λ(a).

Using these notations and definitions we aim at investigating the cost of an optimal robust
flow. In contrast to networks based on acyclic digraphswith a unique source and a unique sink,
see Example 2, for the special case considered in this section it is sufficient to concentrate
on the cost of the last scenario flow. Before we prove this statement, we need the following
two auxiliary lemmas.

Lemma 7 Let G be an SP digraph which is composed by subgraphs G1 and G2, and let
(G, u, c, b) be a corresponding RobMCF≡ instance. There exists an optimal robust b-flow
f = ( f 1, f 2) for which δ( f 2|G1

) ≥ δ( f 1|G1
) and δ( f 2|G2

) ≥ δ( f 1|G2
) hold true.

By reason of the consistent flow constraints, the statement is not apparent. Due to the
length, the proof is moved to Appendix B.

Lemma 8 Let (G, u, c, b) be a RobMCF≡ instance where G is an SP digraph. There exists
an optimal robust b-flow f = ( f 1, f 2) such that f 2(a) ≥ f 1(a) holds true for all arcs
a ∈ A(G).

Proof Let T be the SP tree of SP digraph G. As we consider a digraph with a unique source
and a unique sink, the statement of Lemma 7 can be recursively transferred to subgraphs
Gv ⊆ G associated to the SP tree’s vertices v ∈ V (T ), i.e., δ( f 2|Gv

) ≥ δ( f 1|Gv
) for all

v ∈ V (T ). Consequently, f 2(a) ≥ f 1(a) holds true for all arcs a ∈ A(G).

Note that, in general, the statement ofLemma8 is not true for acyclic digraphs asExample 2
shows. We are now able to prove the following crucial lemma regarding the cost of a robust
flow.

Lemma 9 Let (G, u, c, b) be a RobMCF≡ instance where G is an SP digraph. There exists
an optimal robust b-flow f = ( f 1, f 2) whose cost is determined by the cost of the last
scenario flow, i.e., c( f ) = max{c( f 1), c( f 2)} = c( f 2).
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Proof By Lemma 8, there exists an optimal robust b-flow f = ( f 1, f 2) such that f 2(a) ≥
f 1(a) holds for all arcs a ∈ A(G). The scenario flows cause the following cost

c( f 1) =
∑

a∈A

c(a) · f 1(a) ≤
∑

a∈A

c(a) · f 2(a) = c( f 2),

from which the statement immediately follows.

By reason of Lemma 9, we concentrate on the last scenario in the following. Firstly, we
note that a last scenario flow needs to send demand d2 − d1 in subgraph G − Afix, and we
refer to this demand as excess demand. Before we present a further useful property of the
last scenario flow regarding its excess demand and a shortest path in subgraph G − Afix, we
need the following auxiliary lemma.

Lemma 10 Let G be a series composition of SP digraphs G1 and G2, and let I be a cor-
responding RobMCF≡ instance. Then, let I1 and I2 be the RobMCF≡ instances which are
obtained by restricting instance I to subgraphs G1 and G2, respectively. A solution f to
instance I is optimal if and only if the solutions f |G1

and f |G2
, which can be obtained by

restricting f to subgraphs G1 and G2, are optimal to instances I1 and I2, respectively.
Aproof can be found in Appendix B. Example 4 in Appendix B shows that the SP property

of the digraph is necessary for the truthfulness of Lemma 10. Using Lemma 10, we formulate
a useful property for an existing optimal robust flow.

Lemma 11 Let G = (V , A = Afix ∪ Afree) be an SP digraph with origin o and target q.
Further, let I = (G, u, c, b) be a corresponding RobMCF≡ instance with demand d =
(d1, d2), d2 ≥ d1. With respect to cost c, let p be a shortest (o, q)-path in subgraph G− Afix

with its bottleneck value u p = mina∈A(p) u(a). There exists an optimal robust b-flow f =
( f 1, f 2) for which the following holds true

f 2(a) ≥ min{u p, d
2 − d1} for all a ∈ A(p). (8)

Proof We prove the correctness of the statement by induction on the number of the digraph’s
arcs m := |A|. For the beginning, if we consider a digraph consisting of one arc only, the
statement is readily apparent. In the next step, we prove the statement for a digraph with
m + 1 arcs, providing that the statement holds true for all digraphs consisting of at most m
arcs. For this purpose, we distinguish between two cases.

Firstly, we assume thatG is a series composition of SP digraphsG1 andG2. Therefore, the
origin of digraph G1 and the target of digraph G2 are contracted to one vertex that we denote
by w. Due to the composition of digraph G, a shortest (o, q)-path p in subgraph G − Afix

is composed of a shortest (o, w)-path p1 in subgraph G1 − Afix, and a shortest (w, q)-path
p2 in subgraph G2 − Afix, see Fig. 5a. Considering subgraphs G1 and G2 separately, we
obtain the RobMCF≡ instances I1 and I2, respectively. By induction hypothesis there exist
an optimal robust flow f |G1

= ( f 1|G1
, f 2|G1

) in subgraph G1 and an optimal robust flow

f |G2
= ( f 1|G2

, f 2|G2
) in subgraph G2 satisfying

f 2|G1
(a) ≥ min{u p1 , d

2 − d1} for all arcs a ∈ A(p1),

f 2|G2
(a) ≥ min{u p2 , d

2 − d1} for all arcs a ∈ A(p2).

By Lemma 10, the composed flow f = ( f 1, f 2) with f 1 := f 1|G1
+ f 1|G2

and f 2 :=
f 2|G1

+ f 2|G2
is an optimal robust b-flow in digraph G where the desired property is still

satisfied.
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(a) (b)

Fig. 5 Shortest path p in subgraph G − Afix where digraph G is a series a or parallel b composition

Secondly, we assume that G is a parallel composition of SP digraphs G1 and G2. Without
loss of generality, let the shortest (o, q)-path p be contained in subgraph G1 − Afix, see Fig.
5b. Further, let f = ( f 1, f 2) be an optimal robust b-flow which sends demand d = (d1, d2)
through digraph G that satisfies without loss of generality the property of Lemma 7, i.e.,
δ( f 2|Gi

)−δ( f 1|Gi
) ≥ 0 forGi , i ∈ {1, 2}. If the optimal flow f does not satisfy the property (8),

applying the following procedure leads to the desired result. We consider the subgraphs G1

and G2 separately, resulting in RobMCF≡ instances I1 and I2, respectively. To define how
much demand d|Gi is supposed to be sent through subgraph Gi of instance Ii , we exploit the
partition of demand d of the optimal flow f , i.e., d|Gi = (d1|Gi

, d2|Gi
) := (δ( f 1|Gi

), δ( f 2|Gi
))

for i ∈ {1, 2}. Considering subgraph G1, by induction hypothesis there exists an optimal
robust flow f̃ = ( f̃ 1, f̃ 2) which sends demand d|G1 = (d1|G1

, d2|G1
) and satisfies

f̃ 2(a) ≥ min{u p, d
2|G1

− d1|G1
} for all arcs a ∈ A(p).

Further, let an optimal robust flow f̂ be given which sends demand d|G2 through subgraph

G2. By composing flows f̃ and f̂ , we obtain a robust b-flow f = ( f
1
, f

2
) with scenario

flows f
1 := f̃ 1 + f̂ 1 and f

2 := f̃ 2 + f̂ 2 for instance I. Flow f is optimal as there
exists an optimal robust flow with the same partition d|G1 and d|G2 of demand d between

subgraphs G1 and G2, and as flows f̃ and f̂ are optimal themselves. It remains to prove

that f
2
(a) ≥ min{u p, d2 − d1} holds for all arcs a ∈ A(p). We distinguish between the

following two cases.
Firstly, we consider the case where d2|G1

− d1|G1
≥ min{u p, d2 − d1} holds true. As

f
2
(a) = f̃ 2(a) holds for all arcs a ∈ A(G1) by construction, the desired property results

immediately for all arcs a ∈ A(p) ⊆ A(G1) as shown by the following

f
2
(a) = f̃ 2(a) ≥ min{u p, d

2|G1
− d1|G1

}
≥ min{u p,min{u p, d

2 − d1}}
= min{u p, d

2 − d1}.
Secondly, we consider the case where d2|G1

−d1|G1
< min{u p, d2−d1} holds true. Assume

f
2
(a) < min{u p, d2−d1} is true for one arca ∈ A(p) ⊆ A(G1).We redirect the last scenario

flow f
2
of robust flow f such that demand of min{u p, d2 − d1} is sent along the shortest

path p in subgraph G − Afix. As demand d2 − d1 needs to be sent in subgraph G − Afix
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in any case, and A(p) ⊆ Afree holds, the resulting robust flow is still feasible, satisfies the
desired property (8), and its cost is not increased.

Based on the derived knowledge by the presented lemmas, we can finally present an
algorithm that solves the RobMCF≡ problem on networks based on SP digraphs with a
unique source and a unique sink.

Algorithm 5.1

Input: SP digraph G = (V , A = Afix ∪ Afree), instance I = (G, u, c, b), demand d
Output: Robust minimum cost b-flow f
Method:

1: Compute a minimum cost flow f ′ that sends demand d2 −d1 in subgraph G − Afix with respect
to capacity u and cost c

2: Let u′ be the capacity which results from reducing the capacity u of all arcs of digraph G that are
used by flow f ′. By means of the Greedy Algorithm of Bein et al. (1985) compute a minimum
cost flow f ′′ that sends demand d1 in digraph G with respect to capacity u′ and cost c, i.e., flow
is sent along shortest paths that still have positive bottleneck values

3: Set f 1 := f ′′ and f 2 := f ′ + f ′′
4: return b-flow f = ( f 1, f 2)

Basically, Algorithm 5.1 computes a flow by sending the excess demand in subgraph
G − Afix first, and subsequently, by sending the demand through digraph G which is sent in
both scenarios. Composing the computed flows to a robust flow leads to an optimal solution
obtained in polynomial time as the following theorem shows.

Theorem 5 Let G be an SP digraph, and let I = (G, u, c, b) be a corresponding RobMCF≡
instance with demand d = (d1, d2), d2 ≥ d1. Algorithm 5.1 computes an optimal robust
b-flow for demand d in polynomial time.

Proof We prove the statement by induction on the excess demand, i.e., k := d2 − d1 ≥ 0.
For the beginning, we consider the case where k = 0 holds. As the excess demand is
zero, the same amount of flow needs to be sent in both scenarios. Thus, sending the excess
demand in subgraph G − Afix in step 1 is omitted. In step 2, a minimum cost flow that sends
demand d1 through digraph G is computed by the Greedy Algorithm of Bein et al. (1985).
A feasible robust flow results whose scenario flows are equal. The robust flow is optimal by
the correctness of the Greedy Algorithm of Bein et al.

For the induction step, let f̃ = ( f̃ 1, f̃ 2) be an optimal robust b-flow for instance I which
satisfies without loss of generality the properties of Lemmas 7–11, i.e., in particular, f̃ 2(a) ≥
u := min{u p, k + 1} for a ∈ A(p). We consider the RobMCF≡ instance Î := (G, û, c, b̂)
with the adjusted capacity û and balances b̂ := (b1, b̂2). Capacity û is obtained by reducing
the capacity u of all arcs of path p by u, and accordingly updating the last scenario balances
b2 of the source and sink results in the new balances b̂ := (b1, b̂2). Further, we obtain the
new demand d̂ = (d1, d̂2) with d̂2 := d2 − u. As the excess demand is less or equal to
k in instance Î, by induction hypothesis Algorithm 5.1 computes an optimal robust b̂-flow
f̂ = ( f̂ 1, f̂ 2) that sends demand d̂ = (d1, d̂2). We note that robust flow f̂ also satisfies
the properties of Lemmas 7–11. In summary, we obtain that f̂ 2 is a flow sending demand
d̂2 = d2 − u for instance Î, and by assumption, f̃ 2 is an optimal last scenario flow sending
demand d2 for instance I. Furthermore, by assumption flow f̃ 2 sends u demand along the
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shortest path p in subgraph G− Afix. Overall, we obtain for the cost of flow f̂ 2 the following
upper bound

c( f̂ 2) ≤ c( f̃ 2) − u · c(p).
By reformulating, we obtain

c( f̂ 2) + u · c(p) ≤ c( f̃ 2),

and together with the condition that the cost of both flows are determined by the last scenario
flows, the following holds true

c( f̂ ) + u · c(p) ≤ c( f̃ ).

Consequently, flow f = ( f 1, f 2) with scenario flows f 1 := f̂ 1 and f 2 := f̂ 2 + f is
an optimal robust b-flow sending demand d where flow f is defined by f (a) := u for all
arcs a ∈ A(p). Moreover, flow f = ( f 1, f 2) complies with the flow computed by the
Algorithm 5.1 for instance I.

Finally, considering the algorithm’s runtime, we compute a minimum cost flow that sends
demand d2 − d1 by the Minimum Mean Cycle-Cancel Algorithm in O(|A|3|V |2 log |V |)
time (Korte et al. 2012). Subsequently, we compute a flow that sends demand d1 by the
Greedy Algorithm of Bein et al. (1985) inO(|A| · |V |+ |A| log |A|) time. In total, computing
a robust minimum cost b-flow takes O(|A|3|V |2 log |V | + |A| · |V | + |A| log |A|) time.

Note that we cannot use the Greedy Algorithm of Bein et al. (1985) in the first step of
Algorithm 5.1 as G − Afix might not be an SP digraph.

6 Conclusion

In this paper, we introduced the RobMCF≡ problem which is an extension of the MCF prob-
lem considering equal flow requirements and demand uncertainty. We presented structural
results which differentiate from well known results of the MCF problem. In particular, we
showed that Dantzig and Fulkerson’s Integral Flow Theorem (Korte et al. 2012) does not hold
anymore. Furthermore, we proved that finding a feasible solution to the RobMCF≡ problem
is strongly NP-complete on acyclic digraphs, even if a network with a unique source, a
unique sink, and unit arc capacities are considered for two scenarios only. On SP digraphs,
we proved that the decision version of the RobMCF≡ problem is weaklyNP-complete. For
the special case in which the number of scenarios is not part of the input, we proposed a
pseudo-polynomial DP. For the special case of networks based on SP digraphs with a unique
source and a unique sink, we provided an algorithm running in polynomial time.

For future work, we will study the complexity of the RobMCF≡ problem on SP digraphs
if the number of scenarios is part of the input. Furthermore, we will study the RobMCF≡
problem for further graph classes as digraphs with bounded treewidth.
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Fig. 6 SP digraph G with corresponding SP tree T for an exemplary application of the DP
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A Appendix-application of the dynamic program

Example 3 For a set of two scenarios � = {1, 2}, let a network (G, u, c, b) with capacity
u ≡ 1 and cost c ≡ 0 be given where SP digraph G, the non-zero balances b, and the
corresponding SP tree T are visualized in Fig. 6. For the DP, we start with initializing the
leaves v ∈ V (T ). Therefore, let vi denote the leaf which corresponds to arc ai ∈ A(G) for
i ∈ {1, 2, 3}. The supply and budget are given by s̃λ

vi
∈ {0, 1} and c̃λ

vi
∈ {0} for i ∈ {1, 2, 3},

respectively. For vertices v1 and v3, i.e., for i ∈ {1, 3}, the following demand labels are equal
to zero.

dvi (s̃vi , c̃vi ) = dvi ((0, 0), (0, 0)) = dvi ((0, 1), (0, 0)) = dvi ((1, 0), (0, 0)) = dvi ((1, 1), (0, 0)) = 0.

For vertex v2, we obtain

dv2(s̃v2 , c̃v2) = dv2((0, 0), (0, 0)) = dv2((1, 1), (0, 0)) = 0.

Following the bottom-up procedure in the SP tree, we consider the P-vertex vP ∈ V (T )
next. The supply and budget are given by s̃λ

vP
∈ {0, 1, 2} and c̃λ

vP
∈ {0}, respectively. A

computation of the demand labels of the child vertices v1, v2 ∈ V (T ) results in the following
demand labels which are equal to zero.

dvP (s̃vP , c̃vP ) = dvP ((0, 0), (0, 0)) = dvP ((0, 1), (0, 0)) = dvP ((1, 0), (0, 0)) = dvP ((1, 1), (0, 0))

= dvP ((1, 2), (0, 0)) = dvP ((2, 1), (0, 0)) = dvP ((2, 2), (0, 0)) = 0.
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Fig. 7 Shifting δ( f 1|G2
) − δ( f 2|G2

) demand of the first scenario flow f 1 from G2 to G1 leads to a new flow

f̃ that satisfies the desired property

In the next step, we consider the S-vertex vr ∈ V (T )which builds the SP tree’s root r . The
supply and budget are given by s̃λ

vr
∈ {0, 1, 2} and c̃λ

vr
∈ {0}, respectively. A computation of

the demand labels of the child vertices vP , v3 ∈ V (T ) results in the following demand labels
which are equal to zero.

dvr (s̃vr , c̃vr ) = dvr ((1, 0), (0, 0)) = dvr ((1, 1), (0, 0)) = dvr ((1, 2), (0, 0)) = dvr ((2, 1), (0, 0))

= dvr ((2, 2), (0, 0)) = 0.

To determine the cost of an optimal robust b-flow in SP digraph G, we exploit Lemma 6.
Therefore, we need to consider all demand labels dvr (s̃vr , c̃vr ) with s̃vr = b(s) = (1, 1)
and choose the one with the minimum maximum budget among all scenarios λ ∈ �, i.e.,
dvr ((1, 1), (0, 0)). As a result, the cost of an optimal robust b-flow in SP digraph G is zero
and it can be recursively constructed by the demand labels.

B Appendix-omitted proofs

Lemma 7 Let G be an SP digraph which is composed by subgraphs G1 and G2, and let
(G, u, c, b) be a corresponding RobMCF≡ instance. There exists an optimal robust b-flow
f = ( f 1, f 2) for which δ( f 2|G1

) ≥ δ( f 1|G1
) and δ( f 2|G2

) ≥ δ( f 1|G2
) hold true.

Proof Let f = ( f 1, f 2) be an optimal robust b-flow which sends demand d = (d1, d2)
through digraph G. We distinguish whether digraph G is a series or parallel composition of
subgraphs G1 and G2. For the case that digraph G is serially composed the validity of the
statement is apparent as we consider a network with a unique source and a unique sink, and
d2 ≥ d1 holds. In case that digraphG is parallelly composed the following is true. If d2 = d1

holds, the statement is again apparent. Otherwise, if d2 > d1 holds, δ( f 2|Gi
) > δ( f 1|Gi

) also
holds true for at least one of the subgraphs Gi , i ∈ {1, 2}. Without loss of generality, let
G1 be the subgraph for which δ( f 2|G1

) > δ( f 1|G1
) holds true, and in return, assume that

δ( f 2|G2
) < δ( f 1|G2

) holds. In the following, we provide a procedure by which we redirect a

proportion of the scenario flows f 1 or f 2 such that the desired property holds.
In the first step, we define two new scenario flows f̃ and f̂ that send demand δ( f̃|G) = d1

and δ( f̂|G) = d2 through digraphG, respectively. Flow f̃ corresponds to a first scenario flow

which is obtained by redirecting a proportion of flow f 1 from subgraph G2 to subgraph G1
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Fig. 8 Shifting δ( f 1|G2
) − δ( f 2|G2

) demand of the last scenario flow f 2 from G1 to G2 leads to a new flow f̂
that satisfies the desired property

such that δ( f 2|G2
) ≥ δ( f̃|G2

) holds true, see Fig. 7. More precisely, flow f̃ := f̃|G1 + f̃|G2

is defined in such a way that demand d̃1 := δ( f̃|G1
) = δ( f 1|G1

) + (δ( f 1|G2
) − δ( f 2|G2

))

is sent through subgraph G1, and demand d̃2 := δ( f̃|G2
) = δ( f 2|G2

) through subgraph

G2. Considering subgraph G1, by assumption and definition it holds δ( f 1|G1
) < d̃1 <

δ( f 2|G1
). Following Lemma 2, we compute a robust flow f = ( f 1|G1

, f̃|G1 , f 2|G1
) sending

demand d = (δ( f 1|G1
), d̃1, δ( f 2|G1

)) through subgraph G1 and causing cost of c( f ) =
max{c( f 1|G1

), c( f 2|G1
)}. We further set f̃|G2 := f 2|G2

such that the overall cost of flow f̃
is estimated as follows

c( f̃|G1) ≤ max
{
c
(
f 1|G1

)
, c

(
f 2|G1

)}
,

c( f̃|G2) = c( f 2|G2
).

Flow f̂ in turn corresponds to a last scenarioflowwhich is obtained by redirecting a proportion
of flow f 2 from subgraph G1 to subgraph G2 such that δ( f̂|G2

) ≥ δ( f 1|G2
) holds true, see

Fig. 8. More precisely, we define the scenario flow f̂ := f̂|G1 + f̂|G2 such that demand
d̂1 := δ( f̂|G1

) = δ( f 2|G1
) − (δ( f 1|G2

) − δ( f 2|G2
)) is sent through subgraph G1, and demand

d̂2 := δ( f̂|G2
) = δ( f 1|G2

) through subgraph G2. Considering subgraph G1, by assumption

and definition it holds δ( f 1|G1
) < d̂1 < δ( f 2|G1

). Following Lemma 2, we compute a robust

flow f = ( f 1|G1
, f̂|G1 , f 2|G1

) sending demand d = (δ( f 1|G1
), d̂1, δ( f 2|G1

)) in subgraph G1 and

causing cost of c( f ) = max{c( f 1|G1
), c( f 2|G1

)}. We further set f̂|G2 := f 1|G2
and obtain the

following estimations of the cost

c
(
f̂|G1

)
≤ max

{
c
(
f 1|G1

)
, c

(
f 2|G1

)}
,

c
(
f̂|G2

)
= c

(
f 1|G2

)
.

In the next step, we construct two new robust b-flows fa := ( f 1, f̂ ) and fb := ( f̃ , f 2)
which are obtainedby redirecting the scenarioflowsof the optimal robust b-flow f . The robust
flows fa and fb are feasible by construction of flows f̂ and f̃ and each sends demand d
through digraphG. If we show that min{c( fa), c( fb)} ≤ c( f ) holds true, we can redirect the
optimal robust flow f analogous to either robust flow fa or fb such that the desired property is
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satisfied but the cost is not changed.Wedistinguishwhether the first or last scenario flowof the
optimal robust solution f is more expensive. Firstly, we assume that the first scenario flow f 1

is more expensive than the last scenario flow f 2, i.e., c( f ) = max{c( f 1), c( f 2)} = c( f 1).
Further, we distinguish between the following two cases.

1. Case c( f 1|G1
) ≥ c( f 2|G1

)

To prove the statement min{c( fa), c( fb)} ≤ c( f ), it is sufficient to prove the statement
c( fa) ≤ c( f ). By equivalent transformation we obtain

c( fa) ≤ c( f )

⇔ max{c( f 1), c( f̂ )} ≤ max{c( f 1), c( f 2)}
⇔ max{c( f 1), c( f̂ )} ≤ c( f 1).

Consequently, we only need to prove that c( f̂ ) ≤ c( f 1) holds. Using the definition and
cost estimation of flow f̂ , we can alternatively show the following

max{c( f 1|G1
), c( f 2|G1

)} + c( f 1|G2
) ≤ c( f 1|G1

) + c( f 1|G2
).

Equivalent transforming results in

max{c( f 1|G1
), c( f 2|G1

)} + c( f 1|G2
) ≤ c( f 1|G1

) + c( f 1|G2
)

⇔ max{c( f 1|G1
), c( f 2|G1

)} ≤ c( f 1|G1
)

⇔ c( f 1|G1
) ≤ c( f 1|G1

),

which is a true statement.
2. Case c( f 1|G1

) < c( f 2|G1
)

To prove the statement min{c( fa), c( fb)} ≤ c( f ), it is sufficient to prove the statement
c( fb) ≤ c( f ). For this case, the cost of the robust flow fb = ( f̃ , f 2) is determined by
flow f 2 as shown by the following

c( f̃ ) = c( f̃|G1) + c( f̃|G2) ≤ max{c( f 1|G1
), c( f 2|G1

)} + c( f 2|G2
)

= c( f 2|G1
) + c( f 2|G2

) = c( f 2).

Accordingly, equivalent transformation results in

c( fb) ≤ c( f )

⇔ max{c( f̃ ), c( f 2)} ≤ max{c( f 1), c( f 2)}
⇔ c( f 2) ≤ c( f 1),

which is a true statement for the present case.

Secondly, we assume that the last scenario flow f 2 ismore expensive than the first scenario
flow f 1, i.e., c( f ) = max{c( f 1), c( f 2)} = c( f 2). Further, we distinguish between the
following two cases.

1. Case c( f 2|G1
) ≥ c( f 1|G1

)

To prove the statement min{c( fa), c( fb)} ≤ c( f ), it is sufficient to prove the statement
c( fb) ≤ c( f ). By equivalent transformation we obtain

c( fb) ≤ c( f )

⇔ max{c( f̃ ), c( f 2)} ≤ max{c( f 1), c( f 2)}
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⇔ max{c( f̃ ), c( f 2)} ≤ c( f 2).

Consequently, we only need to prove that c( f̃ ) ≤ c( f 2) holds. Using the definition and
cost estimation of flow f̃ , we can alternatively show the following

max{c( f 1|G1
), c( f 2|G1

)} + c( f 2|G2
) ≤ c( f 2|G1

) + c( f 2|G2
).

Equivalent transforming results in

max{c( f 1|G1
), c( f 2|G1

)} + c( f 2|G2
) ≤ c( f 2|G1

) + c( f 2|G2
)

⇔ max{c( f 1|G1
), c( f 2|G1

)} ≤ c( f 2|G1
)

⇔ c( f 2|G1
) ≤ c( f 2|G1

),

which is a true statement.
2. Case c( f 2|G1

) < c( f 1|G1
)

To prove the statement min{c( fa), c( fb)} ≤ c( f ), it is sufficient to prove the statement
c( fa) ≤ c( f ). For this case, the cost of the robust flow fa = ( f 1, f̂ ) is determined by
flow f 1 as shown by the following

c( f̂ ) = c( f̂|G1) + c( f̂|G2) ≤ max{c( f 1|G1
), c( f 2|G1

)} + c( f 1|G2
)

= c( f 1|G1
) + c( f 1|G2

) = c( f 1).

Accordingly, equivalent transformation results in

c( fa) ≤ c( f )

⇔ max
{
c( f 1), c( f̂ )

}
≤ max

{
c( f 1), c( f 2)

}

⇔ c( f 1) ≤ c( f 2),

which is a true statement for the present case.

In summary, by redirecting the scenario flows of the optimal b-flow f we obtain the
desired property without changing the cost.

Lemma 10 Let G be a series composition of SP digraphs G1 and G2, and let I be a cor-
responding RobMCF≡ instance. Then, let I1 and I2 be the RobMCF≡ instances which are
obtained by restricting instance I to subgraphs G1 and G2, respectively. A solution f to
instance I is optimal if and only if the solutions f |G1

and f |G2
, which can be obtained by

restricting f to subgraphs G1 and G2, are optimal to instances I1 and I2, respectively.

Proof Without loss of generality, we assume that the robust flows given in this proof satisfy
the property of Lemma 9. Let f = ( f 1, f 2) be an optimal robust flow for instance I.
If we restrict flow f to subgraphs G1 and G2, feasible flows f |G1

= ( f 1|G1
, f 2|G1

) and

f |G2
= ( f 1|G2

, f 2|G2
) result for instances I1 and I2, respectively. Furthermore, they still

satisfy the property of Lemma 9. Assume that flow f |G1
is not optimal for instance I1.

Consequently, there exists an optimal robust flow f̃ = ( f̃ 1, f̃ 2) in subgraph G1 with less
cost, i.e.,

c( f̃ ) = max
{
c( f̃ 1), c( f̃ 2)

}
= c( f̃ 2) < c( f 2|G1

) = max
{
c( f 1|G1

), c( f 2|G1
)
}

= c( f |G1
).
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Fig. 9 An optimal solution in subgraph G1 composed with an optimal solution in subgraph G2 is not optimal
in digraph G composed by digraphs G1 and G2

However, this means that the composed flows f̂ 1 := f̃ 1 + f 1|G2
and f̂ 2 := f̃ 2 + f 2|G2

result

in a feasible robust flow f̂ = ( f̂ 1, f̂ 2) with cost

c( f̂ ) = max
{
c( f̂ 1), c( f̂ 2)

}

= max
{
c( f̃ 1) + c( f 1|G2

), c( f̃ 2) + c( f 2|G2
)
}

= c( f̃ 2) + c( f 2|G2
)

< c( f 2|G1
) + c( f 2|G2

) = c( f 2) = c( f ),

which contradicts to the assumption. The optimality of flow f |G2
= ( f 1|G2

, f 2|G2
) follows for

instance I2 due to the analog argumentation.
Conversely, let f |G1

and f |G2
be optimal flows for instances I1 and I2, respectively. The

composition of these flows results in a feasible robust flow f := f |G1
+ f |G2

for instance
I that causes cost of

c( f ) = max
{
c( f 1), c( f 2)

}

= max
{
c( f 1|G1

) + c( f 1|G2
), c( f 2|G1

) + c( f 2|G2
)
}

= c( f 2|G1
) + c( f 2|G2

)

= c( f 2).

Assume the robust flow f is not optimalwhich in turnmeans that there exists an optimal robust
flow f̃ with less cost, i.e. c( f̃ ) < c( f ). As flows f |G1

and f |G2
are optimal for instances I1

and I2, respectively, c( f 2|Gi
) ≤ c( f̃ 2|Gi

) holds true for both subgraphs Gi , i ∈ {1, 2}. Overall,
we obtain

c( f ) = c( f 2) = c( f 2|G1
) + c( f 2|G2

) ≤ c( f̃ 2|G1
) + c( f̃ 2|G2

) = c( f̃ 2) = c( f̃ ),

which is a contradiction to the assumption.

Example 4 For a set of two scenarios � = {1, 2}, let a network (G, u, c, b) with capacity
u ≡ 1 be given where digraph G, its cost c, and the non-zero balances b are visualized
in Fig. 9. An optimal solution f = ( f 1, f 2) to the RobMCF≡ problem can be easily
established. Considering the second scenario flow f 2 first, the only option to send two flow
units from source s to sink t is along paths sv1v3t and sv2v3t due to the capacity constraints.
As the second scenario flow f 2 uses both fixed arcs in subgraph G1, the first scenario flow
f 1 must also send flow along these arcs. For this reason, the only option to send one flow unit
from source s to sink t is along the path sv2v1v3t . Concentrating on subgraph G1, flow f 1
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causes cost of ten while flow f 2 does not cause any cost. Since the overall aim is to construct
a robust b-flow with minimum cost, flow f 1 sends the flow unit via the second parallel arc
of multi-arc (v3, t) in subgraph G2 causing zero cost. Flow f 2 also sends one flow unit via
this arc, and additionally one flow unit via the first parallel arc of multi-arc (v3, t) causing
cost of 15. In total, we obtain cost of

c( f ) = max
{
c( f 1), c( f 2)

} = max {10 + 0, 0 + 15} = 15 = c( f 2).

Due to the construction of digraph G, sending flow along paths from source s to sink t
requires the usage of vertex v3 which connects the subgraphs G1 and G2. For this reason, we
consider in the next step the RobMCF≡ problem on the subgraphs G1 and G2 separately.
Therefore, let I1 = (G1, u, c, b̃) be the RobMCF≡ instance restricted to subgraph G1 with
newly defined balances by

b̃(v) =
{
b(v) for all v ∈ V (G1) \ {v3},
b(t) for v = v3.

An optimal solution f̃ = ( f̃ 1, f̃ 2) to instance I1 is equal to solution f restricted to subgraph
G1, and causes cost of

c( f̃ ) = max{c( f̃ 1), c( f̃ 2)} = max{10, 0} = 10.

Further, let I2 = (G2, u, c, b̂) be the RobMCF≡ instance restricted to subgraph G2 with
balances b̂(v3) = b(s) and b̂(t) = b(t). An optimal solution f̂ = ( f̂ 1, f̂ 2) to instance I2
is determined as follows. Both scenario flows f̂ 1 and f̂ 2 send one flow unit along the third
parallel arc of multi-arc (v3, t)while the second scenario flow f̂ 2 additionally sends one flow
unit along the second parallel arc. This ends up in cost of

c( f̂ ) = max
{
c( f̂ 1), c( f̂ 2)

}
= max {10, 10 + 0} = 10.

Consequently, the optimal solution f̂ in subgraph G2 causes less cost than the optimal
solution f in digraph G restricted to subgraph G2 which causes cost of 15.
Conversely, the solution, which results if optimal solutions f̃ and f̂ to instances I1 and I2
are composed, is feasible but not optimal for instance I.
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