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Abstract
Multiple and usually conflicting objectives subject to data uncertainty are main features in
many real-world problems. Consequently, in practice, decision-makers need to understand
the trade-off between the objectives, considering different levels of uncertainty in order to
choose a suitable solution. In this paper, we consider a two-stage bi-objective single source
capacitated model as a base formulation for designing a last-mile network in disaster relief
where one of the objectives is subject to demand uncertainty.We analyze scenario-based two-
stage risk-neutral stochastic programming, adaptive (two-stage) robust optimization, and a
two-stage risk-averse stochastic approach using conditional value-at-risk (CVaR). To cope
with the bi-objective nature of the problem, we embed these concepts into two criterion space
search frameworks, the ε-constraint method and the balanced box method, to determine the
Pareto frontier. Additionally, a matheuristic technique is developed to obtain high-quality
approximations of the Pareto frontier for large-size instances. In an extensive computational
experiment, we evaluate and compare the performance of the applied approaches based on
real-world data from a Thies drought case, Senegal.

Keywords Multi-objective optimization · Uncertainty · Facility location problem ·
Humanitarian relief

1 Introduction

Decision-makers (DMs) often face multiple goals, which are in conflict with each other
(Ehrgott 2005), e.g., minimization of cost versus maximization of service level, and finding

B Najmesadat Nazemi
najmesadat.nazemi@jku.at

Sophie N. Parragh
sophie.parragh@jku.at

Walter J. Gutjahr
walter.gutjahr@univie.ac.at

1 Institute of Production and Logistics Management, Johannes Kepler University Linz, Altenberger
Straße 69, 4040 Linz, Austria

2 Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1,
1090 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04422-4&domain=pdf
http://orcid.org/0000-0002-2268-4621
http://orcid.org/0000-0002-7428-9770
http://orcid.org/0000-0003-1494-2501


1690 Annals of Operations Research (2022) 319:1689–1716

a feasible solution that simultaneously optimizes all criteria is usually impossible. Conse-
quently, it is important forDMs to understand the trade-off between the considered objectives.
To copewith this issue,many real-world problems have beenmodeled asmulti-objective opti-
mization (MOO) problems, and a variety of algorithms have been developed to produce the
set of trade-off solutions.

Moreover, usually, DMs do not make their decisions in a completely certain environment.
Depending on the problem, different levels of uncertainty should be taken into account to
make reliable decisions. Todealwith this issue in optimization problems, different approaches
have been proposed in the literature. The most widely used ones are stochastic programming
(Birge and Louveaux 2011) and robust optimization (Ben-Tal et al. 2009). Stochastic opti-
mization assumes that the underlying probability distributions of the uncertain parameters
are known or can be estimated, e.g., based on historical data. It allows to model different risk
attitudes, e.g., risk-neutral decisionmaking or risk-averse decisionmaking. Unlike stochastic
optimization, robust optimization does not assume any probabilistic data but only uncertain
parameters stemming from an uncertainty set (e.g., scenarios). Well-known robust concepts
are minmax/static robustness and adaptive robust optimization (Bertsimas et al. 2011).

Although many different approaches have been developed to cope with multiple objec-
tives and uncertainty separately in optimization problems, the intersection of these two main
domains, i.e., the analysis of decision problems involving multiple objectives and parame-
ter uncertainty simultaneously, only received comparably little attention. Combinations of
MOO with stochastic programming concepts (Abdelaziz 2012; Gutjahr and Pichler 2016;
Charkhgard et al. 2020) and robustness concepts (Ehrgott et al. 2014; Ide and Schöbel 2016)
give a flavor of the diverse possible ways to cope with real-life decision making problems.

Optimization problems arising along the humanitarian relief chain (HRC) are real-world
applications that motivated us in combining bi-objective optimization and optimization
under uncertainty, as multiple objectives and inherent risk are distinguishing features of
humanitarian logistics. HRC problems concern multi-stakeholder decision making in which
a population of stakeholders seeks to balance their conflicting objectives and priorities. The
objectives can be categorized into three main groups of criteria, efficiency criteria, effective-
ness criteria, and equity criteria (Gralla et al. 2014). Besides, in a disaster situation, most of
the information received at the disaster management center, such as the number of injured
people, the amount of demand of the affected people, traveling times according to the net-
work conditions and available commodities, etc., are inherently imprecise and uncertain. To
avoid any inefficiency in the final selected solutions, such inherent uncertainty in input data
should be taken into account. Thus, it is desirable to have optimization models and solu-
tion techniques to deal with the multi-objective nature and the uncertainty features of HRC
simultaneously.

Disastermanagement operations are usually classified into four phases:mitigation and pre-
paredness (pre-disaster), response, and recovery (post-disaster). These four phases together
are known as the disaster management cycle (Altay and Green III 2006). The preparedness
and response are relief phases, whereas the mitigation and recovery are development phases.
When a disaster strikes (either a sudden-onset disaster that occurs as a single, distinct event,
such as an earthquake, or a slow-onset disaster that emerges gradually over time, such as a
drought), relief goods are transported to the points of distributions (PODs) by relief organi-
zations. Then, affected people walk or drive to these centers to collect their relief aid. Since
the numbers and the locations of the PODs and their capacity directly affect the performance
of the relief chain in terms of response time and costs (Balcik and Beamon 2008), facility
location decisions in disaster management are of vital importance. This paper deals with a
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two-stage bi-objective single source capacitated facility location (Bi-SSCFL) problemwhere
one objective is affected by data uncertainty.

We analyze traditional two-stage risk-neutral stochastic and adaptive (two-stage) robust
optimization as well as a two-stage risk-averse stochastic framework which can be seen as a
method between the other two approaches using a widely applied risk measure, namely the
conditional value-at-risk (CVaR(α)). With the help of uncertainty level α (α ∈ [0, 1)), it can
be adapted to theDM’s risk preference. Two-stage stochastic and adaptive robust optimization
are two special cases of the CVaR with α = 0 and α ≈ 1, respectively. Towards that end, we
use the classical linear representation of CVaR. Embedded into the ε-constraint framework
and the balanced box method, we solve small and medium sized instances to optimality,
and to solve larger instances, we develop a matheuristic method which finds high-quality
approximations of the set of trade-off solutions.

As mentioned earlier, multiple objectives and uncertainty are two major characteristics of
humanitarian decision support systems in practice. Uncertainty, as well as multi-objective
optimization, have been considered abundantly in the literature on humanitarian relief (see
Hoyos et al. 2015; Grass and Fischer 2016; Gutjahr and Nolz 2016). However, let us mention
that also in other application areas of Logistics and Supply Chain Management, the issues of
uncertainty and multiple objectives play an important role. According to Gutjahr and Nolz
(2016), capturing uncertainty in multi-criteria optimization is critical in practice and still a
comparably young field.

The majority of the studies in the literature that addresses MOO under uncertainty in
different phases of disaster relief (e.g., Tzeng et al. 2007; Zhan and Liu 2011; Tricoire et al.
2012; Najafi et al. 2013; Rezaei-Malek and Tavakkoli-Moghaddam 2014; Rath et al. 2016;
Haghi et al. 2017; Liu et al. 2017; Kınay et al. 2019; Parragh et al. 2021) use either scenario-
based traditional two-stage stochastic programming (e.g., Zhan and Liu 2011; Tricoire et al.
2012; Rath et al. 2016; Parragh et al. 2021) or scenario-based worst-case robust optimization
(e.g., Najafi et al. 2013; Rezaei-Malek and Tavakkoli-Moghaddam 2014; Haghi et al. 2017;
Liu et al. 2017; Kınay et al. 2019) to cope with uncertainty. Noyan (2012) propose risk averse
stochastic programming for single-objective problems in disaster management. This work
was extended inNoyan et al. (2019) to amulti-criteria optimization approachwith a two-stage
stochastic programming model. As in our present work, Noyan et al. (2019) use the CVaR
to represent risk averseness. However, the multi-criteria decision approach is different from
ours, insofar as Noyan et al. (2019) apply the CVaR in the context of multivariate stochastic
dominance constraints, whereas we use the concept of Pareto efficiency (the most prominent
concept in multi-objective optimization) to determine the trade-off between our considered
objective functions.

From a methodological point of view, some of these studies use the ε-constraint method
(Laumanns et al. 2006) to find the optimal Pareto frontier (e.g., Tricoire et al. 2012; Rath
et al. 2016), while others develop metaheuristic algorithms to approximate the Pareto fron-
tier for large-size instances (e.g., Haghi et al. 2017). Let us give details of the mentioned
works in the HRC literature, which tackle uncertain multi-objective facility location prob-
lems using the concept of Pareto efficiency. Tricoire et al. (2012) develop a bi-objective
two-stage stochastic model to deal with distribution center selection for relief commodi-
ties and delivery planning. The authors consider the demand as a random parameter and
approximate it by a sample of randomly generated scenarios. A new solution approach is
proposed based on the ε-constraint method for the computation of the Pareto frontier of the
bi-objective problem using a branch-and-cut algorithm. Finally, they test the proposed algo-
rithm using data of a real-world application in Senegal. In this paper, we address the case of
Sengeal using a different model. Rath et al. (2016) formulate several variants of a two-stage
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bi-objective stochastic programmingmodel in the response phase of disasters. They apply the
ε-constraint method to compute the Pareto frontier. They evaluate the benefit of the stochastic
bi-objective model in comparison to the deterministic bi-objective model using the value of
stochastic solution (VSS) measure. Haghi et al. (2017) develop a metaheuristic algorithm for
a multi-objective location and distribution model with pre/post-disaster budget constraints
for goods and casualties logistics. In order to handle the uncertainties, a robust optimization
approach is embedded into the ε-constraint method. To solve large-size instances, they pro-
pose a metaheuristic algorithm that is a combination of a genetic algorithm and simulated
annealing (Kirkpatrick et al. 1983). Hinojosa et al. (2014) investigate a two-stage stochastic
transportation problem with uncertain demands, considering an overall objective function
that is composed of total cost associated with the selected links in the first decision stage,
and expected distribution cost in the second decision stage.

Fernández et al. (2019) deal with a two-stage stochastic mixed-integer model for a fixed-
charge transportation problem with uncertain demand on the assumption that the decision
maker is risk-averse. Risk aversion is represented by using the CVaR in the objective func-
tion. Filippi et al. (2019) present a bi-objective facility location problem where the first
objective is the minimization of cost. The second objective aims at maximizing fairness by
considering a conditional β-mean measure. The conditional β-mean is a concept related to
the CVaR, but note that in Filippi et al. (2019), it is applied to fairness quantification rather
than to the measurement of risk. The authors develop a weighted-summethod to generate the
Pareto-frontier for small/medium-size instances. Besides, a Benders decomposition method
is employed to deal with the large-size instances. Comparison of the solution shows the effi-
ciency of their proposed methods. Parragh et al. (2021) propose an uncertain bi-objective
facility location problem considering stochastic demand in a disaster relief context. They
formulate the uncertainty using a scenario-based two-stage risk-neutral stochastic approach.
The authors integrate the L-shaped method into a bi-objective branch-and-bound framework
to deal with the problem. They test and compare different cutting-plane schemes on instances
with varying numbers of samples.
Contributions of the paper The focus of our paper is on the evaluation of different combina-
tions of two criterion space search methods, the well-known ε-constraint (Laumanns et al.
2006) and the recently proposed balanced box (Boland et al. 2015) methods and three differ-
ent uncertainty approaches, the widely used risk-neutral two-stage stochastic programming
approach, adaptive (two-stage) robust optimization and two-stage risk-averse stochastic pro-
gramming using CVaR. It aims at finding an efficient method to generate the entire Pareto
frontier by considering last-mile setting assumptions. It is assumed that the demandof affected
people is uncertain.

In addition, as it is not possible to solve large-size instances to optimality within a
reasonable time limit, we propose an iterative mixed integer programming (MIP)-based
matheuristic.

The remainder of this paper is organized as follows. In Sect. 2, we define the uncertain bi-
objective facility location problem addressed in this paper and its mathematical formulation.
After that, in Sect. 3, we summarize the developed solution approaches to solve the problem.
Section 4 presents and discusses the computational results. Finally, in Sect. 5 we present
conclusion and address potential future work.
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Fig. 1 Last mile relief network. Source Modified from Noyan et al. (2016)

2 Problem description

Due to scarcity of resources, in many disaster relief situations, including slow-onset disas-
ters or sudden-onset disasters, humanitarian organizations encounter challenging logistical
last-mile operations (Rancourt et al. 2015; Balcik and Beamon 2008). On one hand, the
humanitarian organizations’ goal in such a context is to reduce beneficiaries’ vulnerability
by maximizing coverage. On the other hand, they face limited monetary resources and want
to reduce their costs. Therefore DMs face two conflicting objectives, and a trade-off solution
needs to be identified.

We consider a Bi-SSCFL with simplified assumptions of a last-mile network, motivated
by the drought case studies presented by Tricoire et al. (2012) and Rancourt et al. (2015), as
well as the earthquake case presented by Noyan et al. (2016) in which the authors design a
last-mile aid distribution network. Unlike Tricoire et al. (2012), the two latter studies rely on
a single objective approach, albeit the authors acknowledge and analyze different objectives.
The main framework for the cases is the same (Fig. 1). Our model is an uncertain bi-objective
extension of an uncapacitated deterministic facility location problem proposed by Rancourt
et al. (2015) to design a real food aid network in Kenya, Sub-Saharan Africa, in which the
objective is to minimize the welfare cost of all the involved stakeholders. The aim is to find
the best locations to position PODs in the relief phase of a disaster where beneficiaries walk
to these PODs to pick up the aid packages. Two objective functions are considered: the first
objective is the minimization of location costs, and the second objective is to minimize the
number of uncovered demand of beneficiaries (effectiveness-related criterion).

In this paper, we consider the amount of demand as an uncertain parameter, as the demand
of the affected people depends on the crisis’s intensity which is uncertain (single source of
uncertainty). Without loss of generality, multiple sources of uncertainty (e.g., the demand of
the affected people, the capacity of PODs, the availability of transportation links, etc.) can
also be considered in the model.
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Table 1 Notation
Sets

I Set of demand nodes

J Set of potential PODs, J ⊆ I

S Set of scenarios

Certain parameters

γ j Fixed cost to open POD j ∈ J

c j Maximum capacity of POD j ∈ J

ψ(di j ) Coverage level: 1 if di j ≤ dmax, 0
otherwise

Uncertain parameters

q(s)
i Demand of demand point i ∈ I under

scenario s ∈ S

Decision variables

y j 1 if POD j ∈ J is selected to be open,
0 otherwise

x(s)
i j 1 if demand point i ∈ I is assigned

to POD j ∈ J under scenario s ∈ S,
otherwise 0

u(s)
j Quantity of supply delivered to POD

j ∈ J under scenario s ∈ S

Objective functions

f1 First stage objective: Total (location)
opening cost

f2 Second stage objective: Total amount
of uncovered demand (uncertain
objective)

The problem is formulated on a graph G = (V0, A), where V0 is the set of nodes, and A
is the set of arcs. V0 can be partitioned into {{0}, I }, where {0} is the main warehouse (MW),
supplying the selected PODs, and I is the set of affected nodes and a superset of the set of
potential PODs, J (without loss of generality we assume the set of potential PODs is a subset
of the set of affected nodes J ⊆ I : If a potential POD is not affected, it can be represented
as a virtual affected node with zero beneficiaries). We assume that the location of the MW is
determined before the optimization.

Another assumption is that beneficiaries in each affected location (i ∈ I ) will walk only
to the one opened POD ( j ∈ J ), which they are assigned to, in order to fulfill their demand
(q(s)

i ) (single-source assumption). Moreover, beneficiaries will not walk to any PODs, if their
distance (di j ) from an opened POD is more than a certain distance threshold (dmax ).

The first stage decision (represented by decision variables y j ) is the location of PODs
with limited capacity (c j ) and given fixed cost (γ j ). This decision has to be made before the
realization of the uncertain parameters. The second stage decisions determine the assignments
of demand nodes to the opened PODs (decision variables x (s)

i j ) and the amount of relief items

delivered to each POD (decision variables u(s)
j ), which are determined based on first stage

decisions and realized uncertain information. Table 1, summarizes the employed notation.
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2.1 Base formulation

In mathematical terms, a nominal formulation of the first stage is the following. Note that
the precise meaning of minimizing f2 is not yet specified, we shall return to this issue in
Sect. 2.2.

min f1 =
∑

j∈J

γ j y j (1)

min f2 = Q(y, ξ) (2)

s.t. y j ∈ {0, 1} ∀ j ∈ J (3)

The first objective (1) minimizes opening costs, and the second one (2) minimizes the
uncovered demand of the affected people. Here ξ denotes the random data and Q(y, ξ) is
the second objective function associated with the second stage of the problem for a given
decision resulting from the first stage. It represents the uncovered demand resulting from
decision y, if the uncertain data realize as ξ . The second stage is formulated as follows for
the realization of the random data under scenario s ∈ S (ξ s = (qs)):

min Q(y, ξ s) =
∑

i∈I
q(s)
i −

∑

j∈J

u(s)
j (4)

s.t.
∑

j∈J

ψ(di j )x
(s)
i j ≤ 1 ∀i ∈ I (5)

u(s)
j ≤ c j y j ∀ j ∈ J (6)

u(s)
j ≤

∑

i∈I
q(s)
i ψ(di j )x

(s)
i j ∀ j ∈ J (7)

x (s)
i j ≤ y j ∀i ∈ I ,∀ j ∈ J (8)

x (s)
i j ∈ {0, 1} ∀i ∈ I ,∀ j ∈ J (9)

u(s)
j ∈ Z

+ ∀ j ∈ J (10)

Constraint (5) indicates coverage constraints. It makes sure that any part of the demand
at i is only covered at most once. Constraints (6) ensure that the capacity of POD j is
not exceeded. Constraints (7) link the coverage variables with the assignment variables: the
covered demand with POD j cannot be higher than the actual demand assigned to this node.
Constraints (8) guarantee that a demand node can only be assigned to an opened POD, and
finally, constraints (3), (9) and (10) give the domains of the variables.

2.2 Uncertainty treatment

To deal with parameter uncertainty, as mentioned in the introduction, we use three differ-
ent approaches, two-stage risk-neutral stochastic programming (expected value), two-stage
(adaptive) robust optimization, and two-stage risk-averse stochastic programming (CVaR).
We consider a scenario-based framework to make a fair comparison among all the above-
mentioned approaches. We characterize the uncertainty in parameters via a finite discrete set
of random scenarios (s ∈ S, S = {1, . . . , N }) where each scenario has the same probability
1
N . In the following, we provide the corresponding models.
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2.2.1 Two-stage risk-neutral stochastic optimization

Asmentioned before, the nature of the decision-making process in our problem is sequential:
the decision on the location of the POD has to be taken before the realization of uncertain
data. The assignment of demand points to an opened POD is done afterwards. We capture
this setting through a two-stage stochastic programming model and in a risk-neutral context
by taking the expected value of the random variable f2 as the evaluation of second-stage
costs. Representing the probability distribution by N equiprobable scenarios as described
above, the second-stage objective function ( f2) will be replaced by the expected value of the
uncovered demand in the stochastic model. So, the obtained deterministic counterpart of the
bi-objective model (1) to (10) is as follows (M1):

min
∑

j∈J

γ j y j (11)

min E(Q(y, ξ s)) = 1

N

∑

s∈S
(
∑

i∈I
q(s)
i −

∑

j∈J

u(s)
j ) (12)

s.t. (5) − (10) ∀s ∈ S, (3)

2.2.2 Adaptive robust optimization

The above two-stage stochastic approach is based on the expected value, whereas minmax
robustness is based on the worst-case scenario (pessimistic view). Adaptive robust opti-
mization, in which the recourse function is a worst-case value over a set of scenarios (also
called “minimax two-stage stochastic programming”), might give less conservative solutions
according to Bertsimas et al. (2010), who compared it to static (minmax) robustness. By
replacing f2 with its worst value in (1)-(10), the deterministic counterpart of the bi-objective
model is as follow (M2):

min
∑

j∈J

γ j y j (13)

min max
s∈S (Q(y, ξ s) =

∑

i∈I
q(s)
i −

∑

j∈J

u(s)
j ) (14)

s.t. (5) − (10) ∀s ∈ S, (3)

2.2.3 Two-stage risk-averse stochastic optimization

So far, to cope with randomness in our problem, we have employed the expected value of
coverage, which corresponds to a risk-neutral approach, and the worst-case value of the
coverage, which is the adaptive robustness approach. These two approaches are at the two
ends of the risk averseness spectrum, in which the risk-neutral approach gives a comparably
optimistic view, whereas the adaptive robust approach represents a pessimistic view of the
random outcome. Sometimes, DMs are not risk-neutral but less risk-averse than assumed by
the adaptive robust approach. For these cases, we consider a two-stage risk-averse stochastic
optimization model where the degree of risk-aversion can be specified. We use the widely
applied conditional value-at-risk (CVaR) as the risk measure in our study which leads to a
computationally tractable model.
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In this paper we employ the classical linear representation of CVaR that is valid on the
assumption of an underlying finite discrete probability space. The general concept of CVaR
and its classical representation is briefly discussed in Appendix A.

In our problem, we calculate the CVaR value for the second-stage objective Q(y, ξ s)with
s = 1, . . . , N . The deterministic equivalent formulation of our model is as follows (M3):

min
∑

j∈J

γ j y j (15)

min CVaRα(Q(y, ξ s)) = η + 1

1 − α

1

N

∑

s∈S
ws (16)

s.t. ws ≥ Q(y, ξ s) − η ∀s ∈ S (17)

ws ≥ 0 ∀s ∈ S (18)

η ∈ R (19)

(5) − (10) ∀s ∈ S, (3)

This formulation is equivalent to the two-stage stochastic (expected value) approach in
the special case α = 0, and it is equivalent to the adaptive (two-stage) robust approach for
sufficiently large values of α, α → 1.

3 Solution approach

In this section, we first describe two exact bi-objective frameworks that are used to solve small
instances. Thereafter, we propose a matheuristic method to deal with large-size instances.
It uses the MIP as a backbone and a local search algorithm to heuristically generate better
solutions. For the definition of solution concepts in a multi-objective setting, we refer to
Appendix B.

3.1 Multi-objective exact solution techniques

Most of the papers in the literature of HRC have deployed metaheuristic techniques to solve
large-size (i.e., real-world) instances of mathematical models. Metaheuristic techniques can-
not provide performance guarantees, whereas exact methods can. Among exact methods,
criterion space search methods (i.e., methods that search in the space of objective function
values) are often computationally more efficient than decision space search methods (i.e.,
methods that search in the space of feasible solutions) (Boland et al. 2015). To find a good
approximation of the entire Pareto frontier, we employ two criterion space search frame-
works, the well-known ε-constraint method due to its simplicity (Laumanns et al. 2006) and
the recently developed balanced boxmethod (Boland et al. 2015) since it has been shown that
it performed well for large-size problems. It is worth noting that these frameworks are exact
algorithms that give an approximation of the Pareto frontier if they are terminated before
completion, e.g. if a tight time limit is employed.

The ε-constraint method generates all NDPs step by step iteratively. Let us describe
the method for the special case of two objectives. It starts by finding the endpoints of the
Pareto frontier using lexicographic optimization. Lexicographic optimization is performed
as follows: we optimize the first objective function ( f1) and gain the optimal minimum value
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f1 = f min
1 . Then, we optimize the second objective function ( f2) by adding constraint

f1 = f min
1 to the model in order to keep the optimal solution value of the first optimization

and f max
2 is obtained. The solution to this procedure gives the first extreme point (ZT ). This

procedure can be represented in the following notation (note that R(z1, z2) is the box in the
criterion space defined by the points z1 = ( f 11 , f 12 ) and z2 = ( f 21 , f 22 ) where f 11 ≤ f 21 and
f 22 ≤ f 12 ):

ZT = lexmin{ f1, f2 : f ∈ R((−∞,∞), (∞,−∞))} (20)

The second extreme point (Z B ) is found by optimizing the second objective function ( f2)
and obtaining the optimal minimum value f2 = f min

2 . Then, the first objective function ( f1)
is optimized by adding constraint f2 = f min

2 to the model and f max
1 is gained:

Z B = lexmin{ f2, f1 : f ∈ R((−∞,∞), (∞,−∞))} (21)

The ε-constraint algorithm enumerates each NDP one by one from the direction of one
endpoint to the other. In all iterations, one and the sameof the objective functions is considered
as the main objective and the other in terms of an ε-constraint. The parameter ε is set as given
in lines 5 and 7 in Algorithm 1.

We note that the choice of direction in the ε-constraint method can play an essential role
in the performance of the algorithm. In our case, we optimize f2 as the main objective and
handle f1 in the ε-constraint based on preliminary results. That is, the Pareto solutions are
enumerated from Z B to ZT . Since the first objective takes integer values in our problem,
the smallest difference value (d) is 1. Algorithm 1 shows the procedure of the ε-constraint
framework.

Algorithm 1 ε-constraint framework

1: input: ZT = ( f min
1 , f max

2 ), Z B = ( f max
1 , f min

2 )

2: L ← ∅
3: ε ← f max

1 − d
4: repeat
5: x ← lexmin{ f2, f1 : f1 ≤ ε}
6: L ← L ∪ x
7: ε ← f1(x) − d
8: until ε ≥ f min

1
9: return L

On the other hand, the balanced box method keeps a priority queue of boxes in criterion
space in non-decreasing order of their areas. In the beginning, the priority queue is empty.
So, similar to the ε-constraint method, the algorithm first finds the endpoints of the Pareto
frontier (ZT , Z B ). These two points define the initial box R(ZT , Z B). It contains all not yet
found NDPs. Subsequently, all the other boxes are generated and explored iteratively.

In each iteration, the largest box in the priority queue pops out, and the algorithm then
splits the box horizontally into two equal parts RT and RB . It first explores the bottom box
for a NDP by optimizing the first objective function. It then explores the top box for a NDP
with minimization of the second objective function. The procedure can be repeated until no
more boxes are left unexplored in the priority queue. The pseudocode of this framework is
presented in Algorithm 2.
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Algorithm 2 Balanced box framework

1: input: ZT = ( f min
1 , f max

2 ), Z B = ( f max
1 , f min

2 )

2: L ← ∅
3: P ← R(ZT , Z B )

4: while P = ∅ do

5: RB ← R(( f min
1 , (

f min
2 + f max

2
2 )), Z B )

6: Z̄ T ← lexmin( f1, f2, f ∈ RB )

7: if Z̄ T = Z B then
8: L ← L ∪ Z̄ T

9: P ← P ∪ R(Z̄ T , Z B )

10: end if
11: RT ← R(ZT , (Z̄ T − d)

12: Z̄ B ← lexmin( f2, f1, f ∈ RT )

13: if Z̄ B = ZT then
14: L ← L ∪ Z̄ B

15: P ← P ∪ R(ZT , Z̄ B )

16: end if
17: end while
18: return L

3.2 Amatheuristic solution algorithm

Although small instances can be solved to optimality by the exact solution techniques, we
develop a matheuristic method to compute high-quality approximated Pareto frontiers for
the large-size instances. It combines the feature of the ε-constraint method and bi-objective
generalizations of two single-objective variable fixing heuristic algorithms, namely local
branching (Fischetti and Lodi 2003) and relaxation induced neighborhood search (RINS)
(Danna et al. 2005)

Local branching (Fischetti and Lodi 2003) is a general MIP-based framework which
explores a neighborhood of a feasible reference solution ȳ to identify a better solution.
Assume Ā = { j ∈ J : ȳ j = 1} is the set of indices of potential POD variables where their
value is equal to one. To construct an l-OPT neighborhood N (ȳ, l) of the reference solution,
the following local branching constraint is added to the model:

∑

j∈ Ā

(1 − y j ) +
∑

j∈J\ Ā
y j ≤ l (22)

Constraint (22) states that at most l variables of the reference solution ȳ switch their values
either from 1 to 0 or from 0 to 1.

Note that the cardinality of the binary support of any feasible solution is a constant in our
model. Therefore, constraint (22) can equivalently be written in its asymmetric form:

∑

j∈ Ā

(1 − y j ) ≤ l ′ (23)

Moreover, RINS (Danna et al. 2005) is another general MIP-based mechanism to search
a neighborhood of a feasible solution. It uses the information retrieved within the branch-
and-bound tree comparing the incumbent solution and the continuous relaxation solution
concerning variableswhich take the samevalues in both solutions.Byfixing the variableswith
identical values, its focus is on the variables with different values. Similarly, comparing the
Pareto solutions corresponding to NDPs along the Pareto frontier in the Bi-SSCFL problem,
with identical opening costs, show that they have many variables with the same values. We
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observed that when moving along the frontier solution by solution from one end-point (Z B )
to the other one (ZT ), very often one of the opened facilities (i.e., y j = 1) is closed, and the
set of closed facilities is kept unchanged (i.e., y j = 0). Therefore the variables with value 0
could be fixed.

Assume A = { j ∈ J : ybj = 0} is the set of indices of potential POD variables related

to a solutions, where its POD variable values yb are equal to zero. We developed the fol-
lowing procedure in order to find a high-quality approximation of the Pareto frontier (cf.
Algorithm 3):

(i) we find the optimal Pareto efficient endpoints (ZT and Z B ) and create the initial box
R(ZT , Z B) and yb is the vector of POD variable values corresponding to Z B ; (ii) noting
that we move along the frontier in the direction from Z B to ZT in our ε-constraint method,
we add the linear constraint of y j = 0 ∀ j ∈ A, and we approximate the next efficient
solution, namely x , if the MIP problem is solved in a certain time limit (TiLim). Otherwise,
we approximate the efficient solution x by solving the linear relaxation (LR) of the model,
rounding the fractional values in order to obtain an integer solution, and we deploy local
branching to approximate a better solution. We denote the POD decision variable values of
x by ya ; (iii) we generate the entire Pareto frontier iteratively updating the set A with ya .

Leitner et al. (2016) propose a two-phase heuristic approach that uses a generalization of
RINS called BINS and local branching to solve bi-objective binary integer linear programs.
Our method differs from theirs in two ways. First, we combine an adaptation of RINS with
the ε-constraint framework to explore the criterion space, whereas Leitner et al. (2016)
apply BINS in the first phase of their method, to explore each box found in a weighted-sum
framework. Secondly, our method employs the local branching scheme where the problem
cannot be solved to optimality fast enough by only fixing the variables, they applied local
branching to refine the NDPs found in the first phase.

Algorithm 3Matheuristic framework

1: input: ZT = ( f min
1 , f max

2 ), Z B = ( f max
1 , f min

2 ), A, T i Lim
2: L ← ∅
3: ε ← f max

1 − d
4: repeat
5: (x, status) ← lexmin{ f2, f1 : f1 ≤ ε, y j = 0 ∀ j ∈ A, T i Lim},
6: if status is TiLim reached then
7: x ← LR{ f2 : f1 ≤ ε, y j = 0 ∀ j ∈ A}
8: LocalBranching( f1(x))
9: end if
10: L ← L ∪ x
11: ε ← f1(x) − d
12: A ← { j ∈ J : yaj = 0}: where ya is the POD variable values of x

13: until ε ≥ f min
1

14: return L

It is worth mentioning that based on our preliminary computational experiments, comput-
ing the endpoints ZT and Z B was not expensive in our problem. However, in cases where
the exact computation of the two endpoints is too demanding, we suggest to use the local
branching approach to approximate them.

123



Annals of Operations Research (2022) 319:1689–1716 1701

4 Computational study

In the following, we present the computational experiments conducted to evaluate the per-
formance of the proposed methods. We first describe the test instances and then, the quality
indicators employed to assess the performance of the methods. This is followed by a reca-
pitulation of the expected value of perfect information (EVPI), and the value of stochastic
solution (VSS) used to show the value of incorporating risk measurement. Thereafter, we
discuss the computational results.

All experiments have been implemented in C++ using the Concert Technology component
library of IBM�ILOG�CPLEX�12.9 as a MIP solver where multi-threading is disabled.
The algorithms are run on a cluster where each node consists of two Intel Xeon X5570 CPUs
at 2.93GHz and 8 cores, with 48GB RAM. A time limit (TL) of 7200 s has been applied. In
addition, the TiLim parameter for the matheuristic technique is set to 150 s and l ′ = N .

4.1 Test instances

To test and evaluate the integration of the above-mentioned uncertainty approaches into the
stated multi-objective frameworks, a data set inspired by a real-world study for a slow-onset
drought case presented in Tricoire et al. (2012) has been utilized. Tricoire et al. (2012)
provided us with the data set from the region of Thies in western Senegal. Senegal is a
developing country in sub-Saharan Africa where droughts occur frequently. Politically, the
region is split into 32 rural areas where each contains between 9 and 31 villages (demand
nodes). In total, the region contains 500 nodes. In order to test the performance of the proposed
solution approaches, we create new networks and artificially generate larger instances with
between 21 and 500 nodes by aggregating the demand nodes in the region. For example, the
first instance contains 21 nodes, and the second one has 44 nodes, i.e., an instance with 23
nodes is added to the first 21 nodes, and the second instance of 44 nodes is derived. Our data
set contains 23 test instances.

The distance matrix is obtained by road distances between each pair of nodes. Opening
costs for PODs are assumed to be identical for all demand locations (5000 cost units). We
also assume that the affected people in a demand node will walk to the closest POD if the
distance is less than 6km. The capacity of each POD is set equal to the population size of
the demand nodes times three. We start by considering 10 sample scenarios (|S|= 10) to
cope with demand uncertainty. Thereafter, to assess the algorithms for a larger number of
scenarios, samples with 100, 500, and 1000 scenarios are generated. The uncertain demand
of each demand node (village) i is considered as ξi qi , where ξi and qi are the uncertainty
factor and the population size of the node i , respectively. The uncertainty factor is a sum of
a random baseline term (ξbase), which is the same for all nodes, and a correction term, which
is unique for each demand point. Correction terms for different demand points are assumed
as stochastically independent. In mathematical formulas, ξi = ξbase − λ2 + 2λ2Zi , where
ξbase = ξ̄ −λ1 +2λ1Z . Therein, ξ̄ is a constant value set to 1, Z and Zi are random numbers
uniformly distributed between 0 and 1, and λ1 = λ2 ≥ 0 are constant parameters chosen to
be 0.5. We refer to Tricoire et al. (2012) for further details.
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4.2 Solution quality indicators

Different quality indicators formulti-objective approximation algorithms have been proposed
in the literature. Zitzler et al. (2003) review the existing quality measures. We employ the
hypervolume indicator to assess the performance of the proposed methods.

Given a bi-objective framework with minimization objective functions, let X be the set
of feasible solutions in decision space and Z = f (X) be the set of feasible solutions in
criterion space. We assume A ⊆ Z is an approximation set of a Pareto frontier, and R ⊆ Z
is a reference set, e.g., the true Pareto frontier.

The hypervolume indicator (IH ) (Zitzler and Thiele 1998) computes the area of the portion
of the criterion space, which is weakly dominated by approximation set A with respect to a
reference point (e.g., the Nadir point). The complete Pareto frontier generally has amaximum
value of IH . The higher the value of IH , the higher is the quality of the approximated Pareto
frontier.

4.3 Value of using a risk measure stochastic model

Due to the computational challenges of decision making under uncertainty, one of the first
questions that DMsmight come up with is whether it pays off to consider a stochastic instead
of a deterministic model. An answer can be given by using two well-known measures: the
expected value of perfect information (EVPI) and the value of stochastic solution (VSS).
These measures assess the value of using a single objective two-stage risk-neutral program-
ming model (see, Birge and Louveaux 2011).

In this section, we start by recalling these two measures. After that, similarly as in Noyan
(2012) where the measures are extended to a single-objective two-stage mean-risk model
involving the CVaR, we adapt these concepts to our bi-objective two-stage CVaR model.

The EVPI measures the expected gain of perfect information over the stochastic solution.
It is the difference between the wait-and-see solution (WS) and the solution obtained by
solving the risk-neutral stochastic model referred to as the recourse problem (RP). WS is
obtained by solving the model for each scenario as realized data with a probability of 1, and
then taking the expected objective function value:

WS = E(Q(ȳ(ξ s), ξ s)) (24)

Therein, ȳ(ξ s) denotes the optimal solution of the individual problem for each scenario.
Then, by definition: EVPI = RP−WS.

On the other hand, the VSS evaluates the stochastic model in comparison to an expected
value solution, where the latter is defined as the solution of the deterministic problemobtained
by replacing each random parameter by its expected value. The VSS is calculated as the
difference between the RP solution value and the solution value EEV of the expected value
problem. EEV is obtained by solving a deterministic expected value scenario problem in the
first step. Then, the resulting optimal first-stage variables are saved and fixed in the model,
and the second stage is solved:

EEV = E(Q(ȳ(ξ̄ ), ξ s)) (25)

where ξ̄ = E(ξ s), and ȳ(ξ̄ ) is the the expected value solution. Then, VSS is calculated as
follow: VSS = EEV−RP.

As it is mentioned, these two measures are based on expected values which are used to
assess a risk-neutral stochastic model. However, they cannot be used directly to evaluate a
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two-stage risk-averse stochastic model. Therefore, we adapt these measures and apply the
risk function (CVaR) instead of the expected value in computing the WS and EEV approach.
More precisely, we use the following measures for the two-stage CVaR model at the risk
level of α (see, Noyan 2012):

RVPI(α) = RRP(α) − RWS(α) (26)

RVSS(α) = REV(α) − RRP(α) (27)

Therein, RRP(α) is the solution obtained by solving the risk-averse CVaR model at the
risk level of α, RWS(α) = CVaRα(Q(ȳ(ξ s), ξ s)) is obtained by solving the model for each
scenario as realized data with a probability of 1 and then taking the CVaR objective function
value at the risk level of α, and REV(α) = CVaRα(Q(ȳ(ξ̄ ), ξ s)) is obtained by solving a
deterministic expected value scenario problem in the first step. Then, the resulting optimal
first-stage variables are saved and fixed in the model, and the second stage of the risk-averse
model is solved at the risk level of α.

RVPI measures the gain of perfect information based on the CVaR value of the objective
values obtained from WS solutions. The RVSS measures the gain from solving the risk-
averse model with a specific risk preference. The higher the values of RVSS, the more is the
value-added of considering a risk-averse model instead of a risk-neutral problem.

In order to employ these measures to our bi-objective model, we apply them to each
non-dominated solution where f1 is bounded as ε-constraint, and f2 is the main objective.

4.4 Results

In this section, we conduct numerical experiments to assess the proposed approaches. We
compare all combinations; ε-constraint (e), balanced box (BB) frameworks, and proposed
matheuristic (Mat) integrated into deterministic counterparts of the M1, M2, and M3 mod-
els. Additionally, we consider the generic feasibility pump based heuristic (FPBH) method
recently proposed by Pal and Charkhgard (2019). To implement it, we employed the Julia
package, namely “FPBHCPLEX.jl”, which uses CPLEX 12.7 as a MIP solver. It is available
as an open-source package on GitHub. Since it was difficult to set up this package on the
cluster, FPBH is run on a local computer with Intel� CoreTM i5-7200U CPU at 2.50GHz
with 16GB RAM. For the sake of a fair comparison, our proposed matheuristic is also run
on the same system using CPLEX 12.7 as the solver. Let {e-M1, BB-M1, e-M2, BB-M2,
e-M3, BB-M3, Mat-M3, FPBH-M3} denote the set of all methods considered in this study.
Since special cases of M3 model are identical with M1 and M2 models, we just address the
performance of Mat method integrated with the M3 model.

We first study the combinations of exact multi-objective methods with two widely used
uncertainty approaches, two-stage stochastic, and two-stage robust approach (e-M1, BB-M1,
e-M2, BB-M2). Then, we compare the performance of their deterministic counterpart with
two-stage CVaR deterministic counterpart in its two special cases where α = 0 (risk-neutral)
and α= 0.9 (where |S|=10 → the worst value of α = 1 − 1

10 = 0.9). Later, we address
the combination of exact and matheuristic multi-objective methods to two-stage CVaR for
different levels of risk (e-M3, BB-M3, Mat-M3).

Table 2 indicates the run time of e-M1, BB-M1, e-M2, BB-M2, e-M3, BB-M3 in seconds
for different instances. “TL” indicates that the run-time limit, which we fixed at 7200 s, is
reached.

As can be seen from Table 2, the combination of the ε-constraint framework with M1
model (e-M1) finds the complete Pareto frontier even for rather large instances. Furthermore,
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Table 2 Run time comparison for M1, M2 and their equivalent special cases of M3 model with α = 0 and
α = 0.9 combined with exact algorithms for test instances of size 21–500 with sample size 10

α value

0 0.9

#Node e-M1 BB-M1 e-M3 BB-M3 e-M2 BB-M2 e-M3 BB-M3

21 1 1 1 2 2 2 2 2

44 16 16 16 22 21 22 20 26

56 18 20 24 31 20 23 19 33

72 28 29 36 51 61 68 64 103

90 56 59 62 110 98 110 99 179

106 115 120 123 229 226 290 210 380

120 128 132 143 241 139 175 138 262

163 421 442 445 818 769 910 636 1365

182 522 559 577 TL 1555 1970 1326 2548

203 820 1050 956 2078 541 652 515 TL

254 5821 TL 6103 TL TL TL TL TL

264 1950 2590 3903 6800 TL TL TL TL

275 5499 TL 7133 TL TL TL TL TL

295 TL TL TL TL TL TL TL TL

326 TL TL TL TL TL TL TL TL

355 TL TL TL TL TL TL TL TL

388 TL TL TL TL TL TL TL TL

410 TL TL TL TL TL TL TL TL

436 TL TL TL TL TL TL TL TL

449 TL TL TL TL TL TL TL TL

472 TL TL TL TL TL TL TL TL

482 TL TL TL TL TL TL TL TL

500 TL TL TL TL TL TL TL TL

the deterministic counterpart of two-stage risk-neutral stochastic (M1) and adaptive robust
(M2) models outperform the deterministic counterpart of the CVaRmodel in its special cases
(α = 0 and α = 0.9).

Next, we show the computational results for the M3 model on the instances solved in
Table 2, obtained on different levels ofα integrated into two exactmulti-objective frameworks
(Table 3). These results also indicate that a combination of different α levels with the ε-
constraint method performs better than their combination with the BB technique.

After analyzing the two exact multi-objective techniques, we apply the proposed
matheuristic method to the M3 model in order to solve the test instances. As indicated in
Table 4, contrary to the exact methods, the Mat method successfully solves all the instances
within the given time-limit and finds an approximation of the entire Pareto frontier. Addi-
tionally, we solve a few instances with a larger number of scenarios. The results show that
the Mat method also works when the number of scenarios increases (see Appendix C).

Computational results of the performance measurements are summarized in Table 5.
Table 5 details the performance of the ε-constraint method, the BB method, and the Mat
method on all of the instances. We report the number of found NDPs and the IH values. For
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Table 3 Run time comparison for M3 model combined with exact algorithms and different level of α for test
instances of size 21–500 with sample size 10

α value

0 0.2 0.5 0.7 0.9

#Node e-M3 BB-M3 e-M3 BB-M3 e-M3 BB-M3 e-M3 BB-M3 e-M3 BB-M3

21 1 2 1 2 2 2 2 1 2 2

44 16 22 17 23 18 26 17 23 20 26

56 24 31 22 40 21 40 18 22 19 33

72 36 51 37 54 42 59 45 48 64 103

90 62 110 66 119 70 135 73 78 99 179

106 123 229 120 238 128 239 151 161 210 380

120 143 241 136 263 143 260 144 158 138 262

163 445 818 428 1028 461 936 417 506 636 1365

182 577 1176 579 1362 770 1673 932 1053 1326 2548

203 956 2078 762 3881 903 TL 616 699 515 TL

254 6103 TL TL TL TL TL TL TL TL TL

264 3903 6800 3422 TL 4268 TL 6453 TL TL TL

275 7133 TL 6214 TL 6535 TL TL TL TL TL

this purpose, we compute the nadir point as a reference point by calculating the worst objec-
tive values over the found optimal efficient set in the ε-constraintmethod. As can be seen from
Table 5, the ε-constraint and the BB method do not perform well on larger instances within
the time limit. However, the BB method, which bidirectionally explores the criterion space,
finds more NDPs. Furthermore, the number of found NDPs and IH values associated with
the Mat method shows that it outperforms the two exact methods on the large-size instances.

The performance of the generic FPBH method is reported in Table 6. The results show
that the proposedMat method strongly outperforms the FPBH on ourMIPmodel. The FPBH
approach usually reaches the time-limit.

As an example, the Logarithmic plot of the Pareto frontier resulting from different
approaches, for the instance size of 90 nodes is shown in Fig. 2. It shows that the Mat
method generates almost the same Pareto frontier as the reference set. The main differences
are at the right-end of the Pareto frontier, where the location cost is high, and the uncovered
demand is at the lower values.

As mentioned before, we compute the stochastic measures in order to demonstrate the
effectiveness of incorporating the risk measure of CVaR into the model. We compute the
RVPI and RVSS for different levels of α. In Table 7, we report the relative values of RVPI
and RVSS, which are the absolute values divided by the optimal objective value of the RRP
(i.e., RVPI/RRP and RVPI/RRP). The results are the average and maximum of the computed
values over all non-dominated solutions for the instance size of 21 and 44 nodes with a
scenario sample size of 10. According to the results, the value of RVSS is significantly large
relative to the RRP value, which indicates that it is worth solving the risk-averse model
with respect to different risk preferences. Moreover, RVPI values are also high, but they get
smaller with increasing levels of α.

Furthermore, we compute the RVSS values at first by fixing the value of the first-stage
decisions (y j ) based on the solutions of the deterministic average model (EA) and then,
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Table 4 Run time comparison of
a combination of ε-constraint
method (e), and the proposed
matheuristic (Mat) method with
M3 for different α/k values for
test instances of size 21–500 with
sample size of 10 scenarios

α/k value

0/10 0.7/3 0.9/1

#Node e-M3 Mat-M3 e-M3 Mat-M3 e-M3 Mat-M3

21 1 0.51 2 0.43 2 0.58

44 16 3 17 3 20 3

56 24 4 18 4 19 5

72 36 11 45 9 64 11

90 62 18 73 23 99 21

106 123 32 151 36 210 44

120 143 37 144 39 138 43

163 445 183 417 132 636 167

182 577 212 932 178 1326 172

203 956 206 616 217 515 210

254 6103 414 TL 589 TL 568

264 3903 479 6453 470 TL 478

275 7133 686 TL 781 TL 819

295 TL 726 TL 729 TL 836

326 TL 893 TL 2407 TL 1182

355 TL 1447 TL 1499 TL 1619

388 TL 1611 TL 1835 TL 1931

410 TL 2133 TL 4062 TL 2847

436 TL 2439 TL 2531 TL 3608

449 TL 2633 TL 2953 TL 2903

472 TL 2955 TL 3167 TL 3194

482 TL 5054 TL 3715 TL 3885

500 TL 6238 TL 5653 TL 4278

Table 5 Hyper volume indicator values (IH ) for the combination of ε-constraint method (e), BB method and
the proposed matheuristic (Mat) method with M3 model for α-level 0.7 and its corresponding k-value for test
instances of size 21–500 with the sample size of 10 scenarios

α/k value: 0.7/3

e-M3 BB-M3 Mat-M3

#Node #NDP IH #NDP IH #NDP IH

21 12 3.3095 12 3.3095 12 3.3095

44 29 22.8869 29 22.8869 29 22.8869

56 35 47.6391 35 47.6391 35 47.6391

72 44 72.8961 44 72.8961 44 72.8961

90 53 146.6210 53 146.6210 53 146.6200

106 71 281.2760 71 281.2760 71 281.1210

120 77 306.7360 77 306.7360 77 306.6740

163 101 710.9820 101 710.9820 101 710.9820

182 106 746.2770 106 746.2770 106 746.2550

203* 115 896.4520 115 896.4520 115 896.2820
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Table 5 continued

α/k value: 0.7/3

e-M3 BB-M3 Mat-M3

#Node #NDP IH #NDP IH #NDP IH

254 12 117.4060 120 1256.8300 135 1255.8800

275 17 212.2490 122 1722.6300 154 1723.1900

295 2 0.0000+ 89 2440.5200 155 2442.9200

326 2 0.0000 35 3185.5200 176 3222.0100

355 2 0.0000 82 4236.5000 205 4250.3400

388 2 0.0000 37 4335.4900 218 4389.7100

410 2 0.0000 80 5089.8000 241 5113.6900

436 2 0.0000 112 5017.4900 246 5025.8700

449 2 0.0000 67 4838.0800 255 4866.1300

472 2 0.0000 39 5071.0500 264 5129.3900

482 3 22.9398 40 5868.9600 271 5960.6000

500 2 0.0000 35 2591.1700 181 4322.1500

IH values are in scale of 108
∗ Marks the last instance in which the entire exact Pareto frontier is found by e and BB method
+ Indicates the value of IH where only the reference point (Nadir point) is found

Table 6 Performance comparison of the matheuristic (Mat) method and the generic FPBH method with M3
for α-level 0.7

α value: 0.7

Mat-M3 FPBH-M3

#Node T[s] #NDP IH T[s] #NDP IH

21 1 12 3.3095 386 12 3.3095

44 7 29 39.9519 7188 26 39.3993

56 7 35 84.6040 TL 35 84.3653

72 25 44 137.2344 TL 48 136.9818

90 26 53 146.5520 TL 48 133.7343

106 46 71 281.1210 TL 56 279.2208

120 45 77 306.6740 TL 52 293.1369

163 120 101 710.9820 TL 52 704.0039

182 165 106 746.2550 TL 39 735.5981

203 356 115 896.2820 TL 42 883.1023

254 2999 135 1255.8800 TL 17 1202.0203

275 2612 154 1723.1900 TL 33 1619.1607

295 1118 155 2442.9200 TL 12 2309.4689

326 1258 176 3222.0100 TL 6 2586.6292

355 1487 205 4250.3400 TL 3 3144.0494

388 2134 218 4389.7100 TL 3 1348.2725

410 2768 241 5113.6900 TL 2 136.4556

436 2665 246 5025.8700 TL 3 1087.7333
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Table 6 continued

α value: 0.7

Mat-M3 FPBH-M3

#Node T[s] #NDP IH T[s] #NDP IH

449 2992 255 4866.1300 TL 3 1075.0511

472 3384 264 5129.3900 TL 3 1019.8861

482 4351 271 5960.6000 TL 2 521.7097

500 6469 181 4322.1500 TL 9 4016.9114

T[s] indicates the run time in seconds
IH values are in scale of 108

Fig. 2 Logarithmic plot of Pareto frontier for the instance size 90

based on the risk-neutral solutions (SP). Table 8 shows the results for the instance size 21
and 44 with a scenario sample size of 10. Comparing the RVSS values indicates that once
the randomness has been taken into consideration, the solutions are more robust than the
deterministic average model.

Figure 3 compares the Pareto frontiers obtained by solving the RRP, the RRP with fixed
first-stage solutions from the average model (REA), and the RRP with fixed first-stage solu-
tions from the risk-neutral model (RSP) at α = 0.7. It shows that incorporating randomness
in the model gives a more robust solution. Note that the REA model obtains solutions at the
left-end of the Pareto frontier that are almost as good as RRP and RSP.

We also compare the efficient solutions in the solution space for the average deterministic
model and the CVaR model with different levels of α for the instance size 21 (Fig. 4). The
reported solutions are associated with one point (solution 6 out of 12 Pareto solutions) along
the Pareto frontier. A comparison of efficient solutions also highlights the previous finding.
It shows that once the randomness in different levels of α is considered, the decisions of
the opened PODs (y j ) and the allocation of demand points (xi j ) are more or less similar,
whereas, these decisions in the average deterministic case are entirely different.
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Fig. 3 Pareto frontiers for instance size 21

Fig. 4 Comparison of the value of the decision variables for one of the solutions of the efficient set for size
21: a α = 0, b α = 0.7, c α = 0.9 and d average deterministic case

5 Conclusions

In this paper, we investigate a two-stage Bi-SSCFL model extendable to design a last-mile
relief network problem. It incorporates the trade-off between a deterministic objective (min-
imization of location cost) and an uncertain one (minimization of uncovered demand) where
demand values are uncertain.

To find an efficient and reliable methodology to address the problem, we evaluate different
methods. We combined two criterion space search frameworks, the ε-constraint and the
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balanced boxmethods, and three different uncertainty approaches, the widely used two-stage
risk-neutral stochastic programming, two-stage adaptive robust optimization, and two-stage
risk-averse stochastic programming using CVaR. Two variants of linear reformulations of
CVaR are taken into consideration.

Moreover, we introduce a matheuristic method in order to find high-quality approxima-
tions of the Pareto frontier for large-size instances. It is a combination of an adaptive RINS
approach, a local branching framework, and the ε-constraint method.

We perform an in-depth computational study and compare the results. The experiment
illustrates how the proposed matheuristic method not only outperforms the exact frameworks
for large-size instances, but also outperforms the FPBH method (Pal and Charkhgard 2019).
Additionally, quantifying the VSSmeasure also shows that incorporating uncertainty into the
model gives more robust results in comparison with the deterministic model. In our future
research, we would like to extend the model by considering routing constraints where there
are multiple sources of uncertainty. There are also potentials for improvement of solution
methods by further research on the combination of MIP and metaheuristics for bi-objective
optimization. For example, a decomposition-based approach to deal with the polyhedral
subset-based representation of the CVaR might be explored.
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Appendix A: Conditional value-at-risk (CVaR)

The precise definition of CVaR at confidence level α ∈ [0, 1) of a random variable X is given
by Rockafellar and Uryasev (2000) as follows:

CVaRα(X) = min{η + 1

1 − α
E([X − η]+) : η ∈ R}, (28)

Therein, [b]+ = max{b, 0}, b ∈ R and η is the Value-at-Risk, VaRα(X), of variable X
at confidence level α. It is defined as follows, where FX (.) is the cumulative distribution
function of a random variable X .

VaRα(X) = min{η ∈ R : FX (η) ≥ α}, (29)

CVaRα(X) can be interpreted as the conditional expected value exceeding the VaR at the
confidence level α (see, Rockafellar and Uryasev 2000).

The auxiliary real variables ws for s = 1, . . . , N are introduced to reduce (28) to a linear
programming problem:
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min CVaRα(X) = η + 1

1 − α

1

N

N∑

s=1

ws (30)

s.t. ws ≥ X − η ∀s = 1, . . . , N (31)

ws ≥ 0 ∀s = 1, . . . , N (32)

η ∈ R (33)

Appendix B: Multi-objective concepts and definitions

Due to the bi-objective nature of our problem, it is not possible to find a unique optimal
solution, but rather the so-called set of efficient solutions. A MOO problem is given as
follows:

min
x∈X f (x) = ( f1(x), f2(x), . . . , fm(x)) (34)

Therein,m ≥ 2 is the number of objectives, x ∈ X , where X is the set of feasible solutions
in the decision space and functions fi : X → R are the objective functions, and Z = f (X)

the image of the set of feasible solutions in the criterion space.

Definition B.1 Pareto dominance
Solution x∗ ∈ X dominates x ∈ X if and only if x∗ is as good as x with respect to all

objectives, and better than x with respect to at least one of the objectives, i.e.,
{
fi (x∗) ≤ fi (x) for all i ∈ {1, . . . ,m}
f j (x∗) < f j (x) for at least one j ∈ {1, . . . ,m}

Definition B.2 Pareto frontier
x ∈ X is an efficient solution of MOO (34) if there is no x∗ ∈ X that dominates x . The

set of efficient solutions of MOO is denoted by Xe. The objective vector f (x) of an efficient
solution x ∈ Xe is called non-dominated solution, and Z = f (Xe) = { f (x) : x ∈ Xe} is the
set of non-dominated objective points (NDP) or Pareto frontier.

Appendix C: Results for larger number of scenarios

See the Table 9.
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Table 9 Performance comparison of a combination of ε-constraint method (e), and the proposed matheuristic
(Mat) method with M3 for α-level 0.7 and its corresponding k-value for larger number of scenarios

0.7/k

e-M3 Mat-M3

#Node #Scenario k T[s] #NDP IH T[s] #NDP IH

21 100 30 161 17 6.0735 27 17 6.0527

500 150 6476 16 5.5603 348 16 5.5600

1000 300 TL 6 2.0746 1668 17 6.0657

44 100 30 1076 30 25.3530 178 30 25.3530

500 150 TL 5 3.5413 1374 32 27.4957

1000 300 TL 3 1.2212 TL 3 1.2212

56 100 30 2267 39 55.3764 234 39 55.3543

500 150 TL 3 2.0392 2675 40 56.5806

1000 300 TL 3 1.9092 TL 2 0.0000

72 100 30 4186 50 101.2260 180 50 101.2260

500 150 TL 3 2.7965 TL 2 0.0000

1000 300 TL 2 0.0000 TL 2 0.0000

T[s] indicates the run time in seconds
IH values are in scale of 108
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