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Abstract

This study proposes an ensemble deep learning approach that integrates Bagging Ridge (BR)
regression with Bi-directional Long Short-Term Memory (Bi-LSTM) neural networks used
as base regressors to become a Bi-LSTM BR approach. Bi-LSTM BR was used to predict the
exchange rates of 21 currencies against the USD during the pre-COVID-19 and COVID-19
periods. To demonstrate the effectiveness of our proposed model, we compared the prediction
performance with several more traditional machine learning algorithms, such as the regression
tree, support vector regression, and random forest regression, and deep learning-based algo-
rithms such as LSTM and Bi-LSTM. Our proposed ensemble deep learning approach outper-
formed the compared models in forecasting exchange rates in terms of prediction error. How-
ever, the performance of the model significantly varied during non-COVID-19 and COVID-19
periods across currencies, indicating the essential role of prediction models in periods of
highly volatile foreign currency markets. By providing an improved prediction performance
and identifying the most seriously affected currencies, this study is beneficial for foreign
exchange traders and other stakeholders in that it offers opportunities for potential trading
profitability and for reducing the impact of increased currency risk during the pandemic.
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1 Introduction

The COVID-19 pandemic has thrown the world into economic chaos. It is the worst turmoil
experienced since 1930 (IMF, 2021). On the one hand, the International Monetary Fung
(IMF) estimated a decline in global growth of — 3.2% in 2020, with advanced (emerging
market) economies experiencing a negative growth of 4.6% (2.1%) (IMF, 2021). On the other
hand, the global economy is projected to grow 6.0% in 2021 and 4.9% in 2022 (IMF, 2021).
Global financial markets experienced steep declines during the pandemic. For example, the
Dow Jones Industrial Average (DJIA) had dropped by 33% on March 20, 2020, from its
value on December 31, 2019, when the World Health Organisation (WHO) reported the first
confirmed case of the coronavirus in Wuhan, China (World Economic Forum, 2020). Also,
the DJIA experienced its third and sixth largest daily drops on March 16 and March 12, 2020,
respectively (World Economic Forum, 2020). Other leading indices, such as the Financial
Times Stock Exchange 100 (FTSE 100) in the United Kingdom and the Nikkei 225 in Japan,
also experienced large declines (Bloomberg, 2020; The Guardian, 2020).

Financial crises such as the Global Financial Crisis of 2007-2008, and crisis induced
by the COVID-19 pandemic have effects on both commodity and financial markets, which
spill over into returns and volatility (Cheng, 2020; Corbet et al., 2020), portfolio allocations
(Yoshino et al., 2021), efficiency in foreign exchange markets (Aslam et al., 2020; Narayan,
2020), and oil prices (Salisu et al. 2020a, b). Since the beginning of the COVID-19 crisis, the
foreign exchange market has experienced unprecedented volatility (Aslam et al., 2020). The
foreign exchange market is the largest financial market in average trading volume (Bank for
International Settlements, 2019). Hence, it is critical for portfolio investors, regulators, and
policymakers to understand the volatility in foreign exchange rates. Central banks across the
world have attempted to manage the stability of their foreign exchange markets in a bid to
withstand the COVID-19 pandemic (The Reserve Bank of Australia, 2020).

Several studies have examined the impact of COVID-19 on the foreign exchange market
(e.g., Aslam et al., 2020; Hofmann et al., 2020; Umar & Gubareva, 2020). These studies
applied traditional regression techniques to investigate the volatility of foreign exchange
markets. However, these studies failed to consider the predictability of exchange rates during
COVID-19 and non-COVID-19 periods. Our study attempts to apply the best machine learn-
ing and deep learning algorithms to predict the foreign currency exchange rates during the
COVID-19 pandemic and compare them with the rates during the normal non-COVID-19
period. It is important to predict the exchange rate accurately because it helps policymakers
and businesspeople to improve the quality and quantity of appropriate management decisions
and plan their finances more precisely. Different methods are used to predict the foreign cur-
rency exchange rate (Mahmoud & Hosseini, 1994; Maya & Goémez, 2008; Rambaldi et al.,
2015; Windsor & Thyagaraja, 2001); most of them have been based on statistical analysis.
This study applies deep learning approaches to predict the exchange rates of 21 currencies
against USD. We use the Long Short-Term Memory (LSTM) approach, a recurrent neural
network algorithm that is one of the most promising current approaches in the field of deep
learning. LSTM performs particularly well in analysing time-series data. One of the limita-
tions of neural networks other than LSTM is that there is no memory associated with them,
and this causes a major problem for time-series data. LSTM overcomes this issue by creat-
ing both a short-term and a long-term memory component. However, a traditional recurrent
neural network (RNN) such as LSTM cannot handle the data when the input and output are
of different sizes. Bi-directional LSTM (Bi-LSTM) overcomes this problem by considering
both previous and future data patterns. This in turn leads to effective learning of long-term

@ Springer



Annals of Operations Research

dependencies in the time-series data. For comparative purposes, this study also uses support
vector regression (SVR) and random forest (RF) regression. The main advantages of SVR
are that the computation does not depend on dimensionality and that it has an excellent
generalisation capability with a high prediction accuracy. As a result, SVR works well for
large datasets and can handle a large number of input variables without deletion. The most
significant advantage of RF is its versatility. In fact, ensemble methods have been neglected
in the existing literature on foreign currency market predictions even though ensemble meth-
ods are very powerful in reducing the variance inherently present in complex and volatile
financial markets (Carta et al., 2021). Therefore, we propose to use an ensemble deep learn-
ing approach, Bi-LSTM BR, by combining Bi-LSTM, a state-of-the-art deep learning-based
model, with Bagging Ridge (BR) regression.

This study shows that the proposed ensemble deep learning approach provides a robust
prediction performance, performing well for different clusters of time-series data in our
study. Our study analyses the prediction performance by clustering data based on the waves
of confirmed COVID-19 cases and on the timing of fiscal and monetary policies meant to
combat the economic consequences of the COVID-19 pandemic. Four clusters are categorized
based on the waves of confirmed COVID-19 cases in the United States, and three clusters
are based on the U.S. government’s monetary and fiscal policy given that the United States
was the country most affected by the pandemic and that the USD has been used for each
pair of currency. All algorithms are applied for each dataset, the prediction performances
are taken separately, and the accuracy curve is generated. In predicting the foreign currency
exchange rate, we measured the performance of the algorithms using the root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
Results demonstrate that our proposed ensemble deep learning approach performed well in
predicting the exchange rate during the non—-COVID-19 and COVID-19 periods.

The rest of the paper is organized as follows. Section 2 briefly reviews existing research
work on predicting the foreign exchange market and the impact of COVID-19 on this market.
Section 3 presents our experimental design and the data used for experiments. Section 4 out-
lines the proposed Bi-LSTM BR hybrid model and the used research methodology. Section 5
presents the experimental analysis, and Sect. 6 checks the robustness of the proposed model.
The results are discussed in Sect. 7 and the conclusions about them in Sect. 8.

2 Related literature

This section reviews previous studies on predicting the forex exchange market and provides
the theoretical justification for investigating the impact of COVID-19 on the predictability
of foreign exchange markets.

Nonlinear time series models used for predicting the forex exchange market include two
categories of models, namely (1) traditional statistical parametric models (Mahmoud & Hos-
seini, 1994; Windsor & Thyagaraja, 2001; Rambaldi et al., 2005) and (2) advanced machine
learning methods. Model specification is required for the former category of models, and
it limits their accuracy because many nonlinear time-series patterns cannot be captured.
Because advanced machine learning methods, such as support vector machine (SVM) and
neural networks (NNs) outperformed the traditional parametric models in recent studies, we
present these approaches in Table 1.

Among the advanced machine learning methods, SVM and extreme learning machines
were particularly effective when handling multidimensional time-series data obtained by
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Table 1 Summary of previous studies using advanced machine learning methods for predicting foreign

exchange market rates

Study Method Contribution Limitation
Yao and Tan (2000) Shallow NN Market efficiency tested Only simple NN
architectures tested
with the maximum
of six input and four
hidden neurons
Bagheri et al. (2014) ANFIS Trading rules extracted Difficult to identify
using adaptive relevant input
network-based fuzzy patterns
inference system
(ANFIS)
Galeshchuk (2016) Shallow NN Different exchange rates Not effective for

Lahmiri (2017)

Dash (2018)

Carapugo et al.
(2018)

Rundo (2019)

Ozorhan et al. (2019)

Das et al. (2019)

NN using technical
indicators

Higher order NN

Reinforcement learning

LSTM + reinforcement
learning

SVM

Extreme learning
machines

for different periods
considered

A simple and effective
approach for predicting
currency volatility

An improved shuffled frog
leaping algorithm
proposed to train higher
order NNs

Reward function introduce
for Forex trading

A grid trading engine
introduced to perform
high frequency trading
maximizing profit

Technical indicators
proposed to segment the
time series data

Population-based
optimization scheme
introduced for effective
training

longer forecasting
horizons as a single
hidden layer is not
capable of learning
higher level
temporal features

Temporal component
in the data not
considered

An architecture with a
single hidden layer
not capable of
learning higher
level features

Dense NN topology
not suitable for
sequential data

LSTM uses only a
forward layer, hence
not preserving time
series information
from future and not
that effective for
learning long-term
dependencies

Limited to short-term
trend identification

Not suitable for large
and noisy foreign
exchange datasets
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Table 1 (continued)

Study Method Contribution Limitation
Munkhdalai et al. Deep learning model Adaptive activation Not capable of
(2019) with seven NNs function selection capturing high-level
mechanism proposed for temporal features
deep learning from time-series
data
Ahmed et al. (2020) LSTM + forex loss Forex loss function used to  Only standard single
function incorporate domain LSTM model

knowledge

Yildirim et al. (2021)  Two LSTMs A combination of LSTM A simple voting
for macroeconomic data scheme applied to
and LSTM for technical obtain the final
indicators prediction

using technical indicators for preprocessing. However, these machine learning methods were
proven ineffective when handling large and noisy data (Munkhdalai et al., 2019). In contrast,
LSTM-based models were highly effective due to their capacity to capture high-level temporal
features from the foreign exchange time-series data (Ahmed et al., 2020; Rundo, 2019;
Yildirim et al., 2021). The main limitation of existing approaches is that only single LSTMs
were used without considering both previous and future data patterns, something that is
needed to effectively learn long-term dependencies in the data. Moreover, ensemble methods
have been overlooked even though the variance was substantially reduced and a more robust
performance was achieved by combining multiple base LSTM models in a related stock
market prediction problem (Borovkova & Tsiamas, 2019).

Several studies revealed a significant impact of COVID-19 on the volatility of foreign
exchange markets. Hofmann et al. (2020) showed that borrowing through local currency
bonds did not protect emerging market economies from the financial shock triggered by
COVID-19, because the local currency bond spreads rose sharply. As a result, portfolio
investors faced amplified losses. A high coherence was also found between the Coronavirus
Panic Index and foreign exchange markets, indicating that new cross-currency hedges should
be introduced to withstand the adverse effects of global economic turmoil (Umar & Gubareva,
2020). A decline in forex market efficiency during the COVID-19 outbreak was observed
by Aslam et al. (2020). These findings inspired us to explore the prediction capacity of deep
learning-based models during COVID-19 and non-COVID-19 periods, and that is the main
contribution of this study.

3 Experimental data

The dataset came from Kaggle and Oanda.! We used 21 currency exchange rates against USD.
The data during COVID-19 came from Oanda and were divided into several clusters. The
dataset description is provided in Table 2. Data clusters were divided based on the number
of confirmed cases in the United States and the timeline of events related to the COVID-
19 pandemic. The experimental datasets were divided into training and testing sets. The
training-to-testing ratio was 80:20. The amount of data for the pre-COVID-19 time period

I See https://www.kaggle.com/ and https://www.oanda.com/au-en/.
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Table 2 Description of datasets and data clusters of datasets

Category

Datasets

Duration

No. of
Instances

Source

Pre-COVID-19

During
COVID-19

based on
confirmed
cases

Based on
government
policies

First cluster

Cl1

Cc2

C3

C4

El

E2

E3

2000-2019

January 31 to
March 11, 2020

March 12 to July
25,2020

July 26 to
September 8,
2020

September 9 to
December
14,2020

December 31 to
March 11, 2020

March 12 to June
8, 2020

June 9 to
December 14,
2020

5216

41

41

45

96

71

89

188

https://www.
kaggle.com/
brunotly/
foreign-
exchange-
rates-per-
dollar-
20002019

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rates

https://www.
oanda.com/
fx-for-
business/
historical-
rate
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(2000-2019) was 5216 daily observations for all the used currencies, and for the COVID-19
period 571 observations. The training set of the pre-COVID-19 dataset was cross validated
tenfold to minimise the training error and enhance the generalizability of the forecasting
outcome (Abedin et al., 2019).

4 Methodology

Statistical models, machine learning, and deep learning models have been used in the literature
to predict financial asset prices (Abedin et al., 2020; Akyildirim et al., 2021; Cui et al., 2020;
Fischer & Krauss, 2018; Guotai et al., 2017; Hajek & Abedin, 2020; Jiang et al., 2020;
Kyriakou et al., 2021; Shajalal et al., 2021; Xia et al., 2020). We apply machine learning and
deep learning algorithms to measure different types of errors and find the best model for the
dataset to measure the prediction accuracy for each currency against USD.

4.1 Regression algorithms

Different algorithms have been used to select the best method to calculate the prediction
error of exchange rate movements of the selected currencies. We applied some regression
algorithms, namely the regression tree (RT), SVR, RF, BR, LSTM, Bi-LSTM, and Bi-LSTM

BR, to estimate the prediction accuracy.”3

4.1.1 Regression tree

Using a decision tree is a common practical approach for supervised learning (Chen, 2011;
Delen et al., 2013). It is used for both classification and regression estimations. The decision
tree is a tree-structured classifier that consists of three types of nodes, namely, the root node,
interior node, and leaf node. The root node is the initial node that represents the whole sample.
The interior nodes represent the characteristics of a data set. Lastly, the root nodes provide the
outcome. For a particular data point, the decision tree is run by answering true/false questions
until they reach the leaf node. The final prediction is calculated by finding the average value of
adependent variable in a specific leaf node. In this way, the tree can predict a proper value for
the data point through several iterations (Fig. 1). The decision tree is advantageous because
it is simple to understand and requires less data cleaning. Like ridge and lasso regression,
decision tree regression may have overfitting problems. An ensemble of decision trees (e.g.,
the RF algorithm) can overcome these problems.

4.1.2 Support vector regression

Support vector regression (SVR) is the most used and highest-performance algorithm in
today’s world (Balabin & Lomakina, 2011; Gazzola & Jeong, 2021). This is a supervised
machine learning algorithm used for classification and regression purposes (Weston et al.,
1997). This study applies three different kernels, linear, polynomial, and radial basis function
(RBF), while training the SVR classifier. SVR makes a decision boundary based on the

2 To compare the results from machine learning and deep learning algorithms with traditional regression
models (e.g., Ridge Regression, LASSO regression), we have provided the results of both approaches.

3 Our study applies default parameters of Scikit learn and Keras.
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/T

Fig. 1 A decision tree flow chart

support vector points and, accordingly, it forecasts sample points within this boundary. The
applied kernels are trained for non-linear data (Hsu & Lin, 2002).

4.1.3 Random forest

Random forest is an ensemble algorithm that builds a set of independent and non-identical
decision trees following the idea of randomisation (Provost et al., 2016). This algorithm is
used for both classification and regression purposes, and it is a combination of tree predictors.
Each decision tree employs a random vector as a parameter randomly chooses the attributes
of samples, and it then finally chooses the sample subset as the training dataset (Bradter et al.,
2013). The generalisation error of a forest of trees depends on the forest’s individual trees’
strength and correlation. However, deep decision trees might suffer from overfitting (Bramer,
2007). RF prevents overfitting by generating random subsets of attributes and constructing
trees using these subsets (Breiman, 2001).

4.1.4 LSTM

LSTM is a recurrent neural network algorithm in the deep learning model (Alhagry et al.,
2017; Hochreiter & Schmidhuber, 1997). Initially, LSTM aims to capture the long-term
dependency and determine the optimal lag order in the time-series analysis. We have applied
LSTM neural networks to predict exchange rates (Sun et al., 2020). The hidden state s; is
determined as below:

Si = fUxi + Wsi—1), ey

where f is an activation function, x; are inputs, U is the hidden layers’ weight, V is the
weights of output layers, and W is the transition weights of the hidden state.

LSTM is an effective way to overcome the problem of a vanishing gradient by using the
memory cells. The input gate, the forget gate, the output gate and the self-recurrent neuron
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are central units in a memory cell. The values of the input gate i; and the memory cell’s
candidate state C; are estimated as below:

ir =0 (Wix; +Uihy—1 + b;), )

C; = tanh(Wex; + Uchy—1 + be), 3)

where x; is the memory cells inputs; W;, Wy, W, W,,, U;, Uy, U, Uy, and V) are the matrices
of weight; b;, by, be, and b, are biases; and h; is the memory cell’s value. The cell state
vector C; and the value of the forget gate f; are estimated as follows:

fi = o (Wex; + Uchi—1 + by), 4
Ct:it*ét'f'ft*ctfl? )

where o; and h; are the values of the output gate and the memory cell, respectively. Finally,
the hidden state &, and the value of the output gate o, are estimated as below:

oy = o (Wox; + Uphy—1 + VoCy + bo), (6)

h; = oy, * tanh(C,). @)

The LSTM network consists of the delays and the hidden layers’ sizes obtained from the
time-series data by applying training data.

4.1.5 Bi-LSTM

A Bi-LSTM deep learning-based recurrent neural network (Fig. 2) works efficiently to ana-
lyze any time-series data better than traditional statistical time-series models, such as the

Forward
o 5TM LSTM iR L§TM LSlM
Layer
\ \ Backward
\'/LSTM’AY‘;STM -~ LSTM LSTM > a]i war
ayer
—e— —@ —Q— ——
Input Layer v w,

‘ ‘ Output Layer
— ;} '« Bi-LSTM Layer
Backward
Layer

Forward
Layer
Input

Layer
)

Fig. 2 Bi-directional long short-term memory (Bi-LSTM) model
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autoregressive moving average (ARIMA), seasonal ARIMA, and ARIMAX models, because
of its bidirectional nature of input patterns (Sezer et al., 2020; Sunny et al., 2020). While
LSTM works only with previous data patterns, the Bi-LSTM model considers both previous
and future data during training, and this makes the Bi-LSTM model more effective than
LSTM. This behavior of Bi-LSTM helps learn the present status of data both from past data
and future data through its forward layer and backward layer. It can capture not only local
features but also extract global features in the time-series data. In the Bi-LSTM layer, there
are no hidden-to-hidden connections between forward and backward layers. This helps one
to understand information from both the backward layer and forward layer in each Bi-LSTM
unit.

4.1.6 Bagging ridge

A bagging regressor is an ensemble procedure that can take any regression task and predict
the target values more accurately by combining multiple simple regression models while
reducing their overall variance. In this paper, we combined ridge regression with a bagging
regressor to predict exchange rates in order to improve prediction performance. The primary
purpose of bagging ridge regression is to increase the stability of the final model and reduce
the error in testing data. The important aspect of BR for this study is that it performs well
in cases where the size of the data is limited. Specifically, to understand the behaviour
of prediction models before and during the COVID-19 pandemic, we divided the dataset
into many subsets, and this ensemble regressor showed higher accuracy than the base ridge
regression model.

4.1.7 Bi-LSTM bagging ridge

Bi-LSTM BR is an ensemble algorithm that combines Bi-LSTM and BR. There are many
approaches to constructing an ensemble algorithm. We applied the averaging approach of
ensemble formation (Ribeiro et al., 2020). We generated an additional training dataset by
applying the repetitions procedure (Hennig et al., 2021). Our study combined the results of
BR and Bi-LSTM to form a novel Bi-LSTM BR regression model, as depicted in Fig. 3.

4.2 Performance measures

We measured and compared the performance of the different algorithms mentioned above
by computing the root mean squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). RMSE is a standard metric for computing a numerical
prediction error by squaring each data forecast, hence putting more weight on larger errors.
This is a desirable feature in evaluating prediction performance in foreign exchange markets
(Islam & Hossain, 2020). RMSE is calculated as:

2
Z;vzl(Ri - R,)
N

RMSE = , 8)

where R; is the actual value, I/Q\t is the forecasted value, and N is the number of forecasts. MAE
and MAPE are other standard evaluation metrics used in currency exchange rate prediction
(Dash, 2018):

@ Springer



Annals of Operations Research

" Bi-LSTM Baggmg Ridge ‘
‘ Bi-LSTM Bagging ———% Ridge ’
Bi-LSTM Bagging Ridge

Fig. 3 Bi-directional long short-term memory bagging ridge (Bi-LSTM BR)

N
1 ~
MAE:NE |Ri — Ry|, ®
N —~
1 R — R,
MAPE = — » —|* 100. (10)

t=1

5 Experimental analysis
5.1 Description of clusters

We have divided the data into two clusters: before the COVID-19 pandemic and during the
COVID-19 pandemic. The cluster during COVID-19 was divided into seven sub-clusters
based on confirmed COVID-19 cases and events. The dataset during COVID-19 was divided
into four sub-clusters based on confirmed cases in the United States and three sub-clusters
based on the timing of efforts by the U.S. government to combat the COVID-19 pandemic.
These three sub-clusters have been used to check the robustness of the accuracy of the deep
learning ensemble approaches in our study.

The pre-COVID-19 period is from January 3, 2000, to December 31, 2019. On December
31, 2019, the first confirmed case of the COVID-19 was reported in Wuhan, China, by the
WHO. The first sub-cluster (C1) of the COVID-19 period is between January 31 and March
11, 2020, when the WHO declared that a global pandemic was occurring. The 7-day moving
average of U.S. confirmed cases was approximately 40,000 for most of the second sub-cluster
(C2), between March 12 and July 25, 2020. The third sub-cluster (C3), between July 26 and
September 8, 2020, witnessed a negative trend of cases after sub-cluster 2. Finally, the fourth
sub-cluster, between September 9 and December 14, 2020, experienced a large increase in
daily confirmed cases, with the recording of 246,716 new cases on December 11, 2020.

The first sub-cluster (E1) based on the timeline of events related to the COVID-19 pan-
demic was between December 31, 2019, and March 11, 2020, when the WHO declared that
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RMSE for testing data

Fig. 4 Methodologic flowchart

a COVID-19 global pandemic was occurring. During this period, the U.S. Congress was
debating the passage of the Coronavirus Aid, Relief, and Economic Security (CARES) Act.
The second sub-cluster (E2), between March 12 and June 8, 2020, was the period in which the
U.S. Congress passed an economic relief package exceeding USD 2 trillion to boost the econ-
omy. The third sub-cluster (E3), between June 9 and December 14, 2020, is when the U.S.
government adopted several monetary and fiscal policies. For example, the Federal Reserve
launched the Primary Market Corporate Credit Facility on June 29, 2020, and on July 28,
2020, the Federal Reserve extended the operation of emergency lending programs. During
the third sub-cluster, on December 11, 2020, the Food and Drug Administration approved
the first emergency use of the COVID-19 vaccine offered by Pfizer Biontech.

We applied all the algorithms to train the clusters separately, calculate the errors, test the
significance level, and choose the best algorithm for the large datasets, as well as for the
cluster datasets. Figure 4 provides the flowchart of the experiment.

5.2 Experiment for data in the pre-COVID-19 period
The cluster for anon-COVID-19 period extends from January 3, 2000 to January 30, 2020. We

have trained the models using the dataset and created graphs. Figure 5 shows the predicted
exchange rates versus the actual exchange rates of 21 currencies against USD. Because a
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special feature of a deep learning algorithm is that it can perform feature selection by itself
and scale the data as required (Mathew et al., 2020), we have presented actual versus predicted
exchange rates with automatic scaled values generated by our proposed BR ensemble deep
learning approach over time (see Fig. 5).* Table 3 presents the RMSE of all algorithms.
Table 3 shows that the best-suited algorithm varied from one currency to another during the
non-COVID-19 period. For example, BR appeared to be the best model for predicting the
AUD/USD exchange rate but Bi-LSTM was the best model for predicting the EUR/USD rate.
Figure 6 shows the performance of algorithms based on RMSE. Table 3 shows that the Diebold
Mariano (DM) test (see Diebold & Mariano, 2002) examined the accuracy of our proposed
Bi-LSTM BR deep learning algorithm against the benchmark algorithms in our study for
major currencies (e.g., AUD, CNY, GBP, and JPY).5 The DM test results demonstrated that
our proposed Bi-LSTM BR ensemble deep learning approach was effective in terms of its
RMSE loss function against the benchmark algorithms in our study (Table 4).

5.3 Experiment for data from the period of the COVID-19 pandemic
5.3.1 Cluster 1 of the COVID-19 dataset

The first cluster of the COVID-19 period (C1) contains data from January 31 to March 11,
2020. The number of days in this sample is 41. Table 5 shows that the best-suited algorithm
varied from one currency to another in the C1 data of the COVID-19 period. For example,
Bi-LSTM BR appears to be the best model to predict the AUD/USD exchange rate, and
Bi-LSTM is the best model for CNY/USD. Figure 7 shows that the predicted exchange rates
are closely aligned with actual exchange rates, providing evidence that our proposed BR
ensemble deep learning approach performed well in predicting the exchange rate during the
COVID-19 period.® Figure 8 shows the performance results of algorithms based on RMSE.
Table 6 shows the results of the DM test in examining the accuracy of our proposed Bi-
LSTM BR deep learning algorithm against the benchmark algorithms. The DM test results
demonstrate that our proposed approach had superior forecasting effectiveness in terms of
RMSE against the compared methods.

5.3.2 Cluster 2 of the COVID-19 dataset

The second cluster of data during the COVID-19 pandemic (C2) extends from March 12
to July 25, 2020 (41 days in the sample). Table 7 shows that Bi-LSTM BR was a superior
model for predicting the GBP/USD exchange rate, whereas Bi-LSTM was the best model
for EUR/USD. Figure 9 provides evidence that our proposed Bi-LSTM BR approach was
effective in predicting testing data during this COVID-19 period. Figure 10 confirms this
good performance with regard to RMSE. Table 8 provides the results of the DM test in
comparing the performance of our proposed Bi-LSTM BR deep learning model in terms of

4 To conserve space, we have not provided graphs of the predicted versus actual exchange rates generated by
other algorithms.

5 To conserve space, we have provided the DM test results (see Diebold & Mariano, 2002) for the exchange
rates of major currencies such as AUD, CNY, GBP, and JPY against USD.

6 Using our proposed Bi-LSTM BR ensemble deep learning approach, we have found similar graphs of
predicted versus actual exchange rates across clusters. To conserve space, we have included only the graphs
of predicted versus actual exchange rates from our proposed BR ensemble deep learning approach.
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Fig. 6 Performance of algorithms based on RMSE for before COVID-19 data (January 3, 2000 to December
31, 2019)

Table 4 Robustness test of Bi-LSTM BR ensemble deep learning approach for pre-COVID-19 dataset (January
3, 2000 to December 31, 2019)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

Pre-COVID-19  Ridge regression — 19.99%#* — 187w 0.04* — 20.11%%*
Lasso regression — 46.32%%% — 63.84%%%* — 10.42%%%* — 14.51%%%*
RT — 13.44%%* — 6.10* — 8.75%** — 15.44%%%
SVR (Linear) — 28.16%** — 5.50%%%F  — 16.27%%* — 18.84%%*
SVR (RBF) — 28.16%** — 5.59%%%  — 16.27%%* — 18.84%%*
SVR (Polynomial) — 28.16%** — 5.50%kF  — 16.27H%* — 18.84#%*
RF — 15.48%** — 4.87#%* — 7.90%%* — 17.51%%*
LSTM — 219.8%** — 30.56%%*%  — 04 5%** — 270.0%**
Bi-LSTM — 189.4%** — 28.15%%%  — 06 4H** — 114.1%%*
BR — 19.99%#* — 1.96%** 0.028%** — 20.10%%*

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** #** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

RMSE. These results show that significant improvements were achieved using the proposed
model.

5.3.3 Cluster 3 of the COVID-19 dataset

The third cluster of COVID-19 data (C3) is for the period from July 26 to September 8, 2020,
or 45 days. Table 9 shows that the best-performing algorithms varied from one currency to
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Fig. 7 Actual versus predicted exchange rates (scaled) for Cluster C1 (January 31 to March 11, 2020)

@ Springer



Annals of Operations Research

Foreign Exchange Rate of England by Bagging Ridge Foreign Exchange Rate of Denmark by Bagging Ridge

— Actual
— Predicted

10 — Actual
— Predicted

o o o o o o o
2 = g8 g 2 2 2

3 T B 3 3 B 3 7 |
1) ¥ 3 3 ] 3 3 7 5
Foreign Exchange Rate of China by Bagging Ridge Foreign Exchange Rate of Brazil by Bagging Ridge
= 10{— At
os oo — eaces
09
05
04 08
03 07
02
06
o1
05
& ) I T 3 T 5 3 7 ]
13 1 3 H 3 3 3 7 §
Foreign Exchange Rate of Australia by Bagging Ridge Foreign Exchange Rate of Denmark by Bagging Ridge
— el
. — :::.‘;gq 06 —— Predicted
os
09
04
08
0
07
02
06 0
05 00
1) T 2 3 3 3 3 7 5
04
1) i 2 H 3 5 3 7 5
Foreign Exchange Rate of England by Bagging Ridge Foreign Exchange Rate of India by Bagging Ridge
10 — Actual 10§ — Atual
—— Predicted = Peictad
03 09
08 08
07 07
06 i
0s 0
04 -
03
3 T 7 3 2} T 3 7 T

Foreign Exchange Rate of Switzerland by Bagging Ridge

oz — Actual
— Predicted

Fig. 7 continued

@ Springer



Annals of Operations Research

3.00
2.50
m
=
2 2.00
G
o
g 1.50
<
K|
§ 1.00
(0]
(=W
0.50
0.00
> mZ QWO ZZTN®RUOUSgEZZL2eD o33
S N Z > O o =
SESEFEZC07EZ%058<5R 755 3E
Currency
® Ridge ® Lasso D.Tree SVR(Linear)
ESVR(RBF) ESVR(Poly) EWRFR ELSTM

® Bi-LSTM m Bag Ridge = Bi-LSTM BR

Fig. 8 Performance of algorithms based on RMSE for Cluster C1 (January 31 to March 11, 2020). Note Korean
‘Won (KRW) has no error since the actual exchange rate equals the predicted exchange rate

Table 6 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster C1 (January 31 to
March 11, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

Cl1 Ridge regression — 2.22%* — 1.76* 1.59* —4.32%
Lasso regression — 1.99%* — 1.39% — 7.75%* — 4.69%
RT 0.05* — 1.38* — 3.40%* —0.12%
SVR (Linear) — 2.13%* — 1.34* 0.29* 4.78%
SVR (RBF) —2.17%* — 1.34* 0.29% 4.77*
SVR (Polynomial) —2.17%* — 1.34* 0.28* 4.77*
RF 0.68** — 1.57* — 3.79%** — 2. 44%%%
LST™M — 10.35%** — 3.04%%* — 5.16%** — 4.52%%%
Bi-LSTM — 10.55%*%* — 3.20%%* — 4.10%%* — 5.34%%%
BR — 1.06%* — 3.04p8% — 2.2k — 320

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** ** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

another in the C3 data for the COVID-19 period. For instance, Bi-LSTM BR outperformed
other models in predicting GBP/USD, whereas Bi-LSTM was the best model for EUR/USD.
Figures 11 and 12 provide additional evidence for the good predictive capacity of our proposed
Bi-LSTM BR approach during this COVID-19 period. The results of the DM test in Table
10 confirm the superiority of the proposed prediction model.
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Fig. 10 Performance of algorithms based on RMSE for Cluster C2 (March 12 to July 25, 2020). Note: Korean
Won (KRW) has no error since the actual exchange rate equals the predicted exchange rate

Table 8 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster C2 (March 12 to July
25, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

Cc2 Ridge regression — 2.22%% 0.59* — 0.53* — 4.72%%*
Lasso regression 1.94%#%* —0.52% — 8.03*%* — 4.65%%*
RT — 0.302% — 0.60* — 3.50%* — 1.17*%
SVR (Linear) — 2.16%* 0.87* 0.20* 1.37*
SVR (RBF) — 2.16%* 0.86* 0.20* 1.37*
SVR (Polynomial) — 2.16%* 0.87* 0.20* 1.37*
RF 0.62* — 0.95% — 3.997%k% — 4 4Gk
LSTM — 10.39%%* — 3.26%%* — 49. 7%k — 128k
Bi-LSTM — 10.68%** — 327wk — 4.7k — 10.4%%*
BR — 177k — 0.87%%% — 1.69%%%* — 4.60%%*

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** % and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

5.3.4 Cluster 4 of the COVID-19 dataset

The fourth cluster of COVID-19 data (C4) is for the period from September 9 to December
14, 2020, or 45 days. Table 11 shows that Bi-LSTM BR performed best in predicting the
EUR/USD exchange rate, whereas Bi-LSTM performed best for AUD/USD. Figures 13 and
14 provide evidence that our proposed BR ensemble deep learning approach performed well
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Fig. 11 Actual versus predicted exchange rates (scaled) for Cluster C3 (July 26 to September 8, 2020)
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Fig. 12 Performance of algorithms based on RMSE for Cluster C3 (July 26 to September 8, 2020). Note:

Korean Won (KRW) has no error since the actual exchange rate equals the predicted exchange rate

Table 10 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster C3 (July 26 to Septem-
ber 8, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

C3 Ridge regression 9.56%** — 4.74%%% 6.94 %% — 4.09%%*
Lasso regression 1.009%* — 10.52%%* 2.50%* — 14.53%%*
RT 0.099%* — 7.23%%% 1.97%* — 7.98%*
SVR (Linear) 7.89%** 2.33%* 6.18%* — 11.61%*
SVR (RBF) 7.89%% 2.34%% 6.18%* — 11.61%*
SVR (Polynomial) 7.89%% 2.34%% 6.18%* — 11.61%*
RF 0.03* — 7.33%* 1.97%* — 8.06%#*
LSTM — 18.03%#* — 31315 — 16.3%#* — 22.6%%*
Bi-LSTM — 25.897%# — 19.19%#* — 321 — 23 5ok
BR 9.98k 4.85%* 6.90%* — 12.54%%:%

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** *%* and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

in predicting the exchange rate during this COVID-19 period. Table 12 shows that the DM
test examined the accuracy of our proposed Bi-LSTM BR deep learning algorithm against the
benchmark algorithms. The DM test results demonstrate that our approach had forecasting
effectiveness in terms of a RMSE loss function against the benchmark algorithms in our
study.
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Fig. 13 Actual versus predicted exchange rates (scaled) for Cluster C4 (September 9 to December 14, 2020)
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5.4 Comparison of prediction performance before and during the COVID-19

pandemic

To compare the performance of the proposed Bi-LSTM BR deep learning model for the two
periods, before and during the COVID-19 pandemic, we evaluated the results in terms of the
RMSE, MAE and MAPE. For the COVID-19 period, we reported the average performance
of clusters C1 to C4 and E1 to E3 for the period from January 31 to December 31, 2020. In
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Fig. 14 Performance of algorithms based on RMSE for Cluster C4 (September 9 to December 14, 2020). Note:
Korean Won (KRW) has no error since the actual exchange rate equals the predicted exchange rate

Table 12 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster C4 (September 9 to
December 14, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

C4 Ridge regression — 9.71%%* — 1.76* 1.59% — 4.32%%*
Lasso regression — 10.00%%*%* — 1.39% — 7.75% — 4.69%*
RT — 6.53%%%* — 1.38% — 3.40%* — 0.12%%*
SVR (Linear) — 6.92%%%* — 1.34* 0.29% 4.78%*
SVR (RBF) — 6.92%%% — 1.34* 0.29% 4.777%*
SVR (Polynomial) — 6.92%%%* — 1.34%* 0.28%* 4.77**
RF — 6.59%** — 1.57* — 3.79%%* — 2.44%%%
LSTM — 22.92%%% — 3.04%%* — 55.2%%% — 4.52%%*
Bi-LSTM — 24470k — 3.297%#% — 41.0%%* — 25.22%%%
BR — 8340k — 3.04%%% 2.21%* 3.33%%k

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** ** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

other words, we investigated the differences in the prediction capacity of the deep learning-
based model between the two periods. Table 13 shows that there were not only substantial
differences between the two periods but also among the used currencies. Generally, we can
find two patterns in the results; one pattern showing the currencies for which the predictive
capacity significantly deteriorated and one pattern showing those for which no significant
effect was observed. The currencies that were least affected include AUD, GBP, CNY, HKD,
NOK, and THB. In contrast, the largest decline in model performance occurred for EUR and
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Table 13 Comparison of Bi-LSTM BR performances for pre-COVID-19 and COVID-19 periods

Currency Pre-COVID-19 period COVID-19 period

RMSE MAE MAPE RMSE MAE MAPE
AUD 0.0074 0.0054 0.4069 0.0083 0.0059 0.3786
EUR 0.0039 0.0033 0.3626 0.0139 0.0132 1.4876
NZD 0.0097 0.0080 0.5270 0.0144 0.0137 1.5467
GBP 0.0064 0.0053 0.6702 0.0037 0.0035 0.4581
BRL 0.0429 0.0348 0.8711 0.1544 0.1478 3.2026
CNY 0.0177 0.0127 0.1828 0.0276 0.0258 0.3721
HKD 0.0038 0.0025 0.0322 0.0043 0.0039 0.0503
INR 0.0072 0.0055 0.6137 0.1666 0.1547 0.2059
MXN 0.1113 0.0820 0.4255 0.1550 0.1158 0.1882
ZAR 0.0103 0.0080 0.9980 0.1651 0.1479 0.2305
SGD 0.0048 0.0042 0.3095 0.0045 0.0037 0.2688
DKK 0.0044 0.0034 0.7231 0.1054 0.0999 1.5075
JPY 0.0063 0.0047 0.8444 0.1592 0.1254 1.9437
MYR 0.0080 0.0059 0.1416 0.0218 0.0178 0.4240
NOK 0.0089 0.0069 0.8315 0.1005 0.0604 0.6379
SEK 0.0080 0.0061 0.8594 0.1260 0.1211 1.2843
LKR 0.0034 0.0022 0.2304 0.5395 0.4756 0.2636
CHF 0.0041 0.0033 0.3364 0.0166 0.0154 1.6427
TWD 0.0849 0.0604 0.1950 0.1500 0.1451 0.4848
THB 0.0841 0.0603 0.1939 0.0808 0.0639 0.2032

For the COVID-19 period, the results were averaged over clusters C1-E3 (i.e., January 31-December 31,
2020).

other European currencies. To further investigate the differences across the studied foreign
exchange markets, we compared the overall performance for the two periods in terms of
the RMSE, MAE and MAPE, as shown in Fig. 15. On average, the prediction performance
of Bi-LSTM BR deteriorated during the COVID-19 period, as confirmed by the significant
differences obtained using the DM test at a P-value less than 0.05 for all the used performance
metrics.
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Fig. 15 Prediction performance of Bi-LSTM BR in pre—COVID-19 and COVID-19 periods
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Table 15 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster E1 (December 31,
2019 to March 11, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

El Ridge regression 1.48%* — 4.74%%% 1.59%* — 0.74*
Lasso regression — 10.46%%* — 10.52%#%%* — 7.75%* — 1.59*
RT — 8.52%H% — 7.23%%k — 3.40%* — 2.96%**
SVR (Linear) — 3.897%kk 2.33%% 0.29%* — 1.63*
SVR (RBF) — 3.897%k* 2.34%% 0.29%* — 1.63%*
SVR (Polynomial) — 3.897%%* 2.34%% 0.28%* — 1.63%*
RF — 834k — 7.33%% — 3.79%%* — 2.54%%*
LSTM — 24.65%** — 311wk — 5.16%** — 13,1
Bi-LSTM — 25.70%%* — 19.19%#* — 4.10%%* — 14.4%%%
BR 1.51%%* 4.85%%* — 2.21%%* — 0.75%**

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** ** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

6 Robustness check

To check the robustness of the results, we applied algorithms for three clusters based on
the timeline of events related to the U.S. government policies to combat the COVID-19
pandemic. Results from clusters based on events are qualitatively similar to those from the
confirmed cases. Results in Tables 14, 16 and 18 show that Bi-LSTM, BR, and Bi-LSTM
BR consistently outperformed the other methods across the clusters and for most of the
currencies. Consistent with the clusters’ results based on confirmed cases, Figs. 16, 18 and
20 provide evidence that our proposed BR ensemble deep learning approach performed well
in predicting the exchange rate during the highly volatile COVID-19 period. Figures 17, 19
and 21 confirm this by depicting the RMSE achieved for clusters E1 to E3. Tables 15, 17 and
19 provides the results of the DM test in examining the accuracy of our proposed Bi-LSTM
BR deep learning algorithm against the benchmark algorithms. The results demonstrate that
our proposed approach had superior forecasting effectiveness in terms of the RMSE loss
function.

7 Discussion

The main motivation for our Bi-LSTM BR hybrid prediction model was to take full advantage
of state-of-the-art deep learning models by combining them in an ensemble learning manner.
To demonstrate the efficiency of the proposed Bi-LSTM BR model, Table 20 compares
our results with those of existing studies. It is worth noting that only level estimation models
were selected to achieve a fair comparison. Compared with existing approaches, the proposed
model achieved a superior average performance in terms of the RMSE, MAE, and MAPE.
It must be acknowledged that the best performance so far has been reported by Islam and
Hossain (2020). However, unlike in other studies, the authors did not use a daily prediction
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Table 17 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster E2 (March 12 to June
8,2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

E2 Ridge regression — 2.22%* 0.59* — 0.53* — 4.72%%*
Lasso regression 1.947%%* — 0.52% — 8.03%* — 4.65%%*
RT —0.302* — 0.60* — 3.597%* — 1.17*
SVR (Linear) —2.16%* 0.87* 0.20* 1.37*
SVR (RBF) —2.16%* 0.86* 0.20* 1.37*
SVR (Polynomial) —2.16%* 0.87* 0.20* 1.37*
RF 0.62* — 0.95% — 3.99%%* — 4.49%%*
LSTM — 10.39%%*%* — 3.26%%%* — 49.70%*%* — 12.80%%*
Bi-LSTM — 10.68%** — 3.27H%% — 41.70%** — 10.40%**
BR — L71%%% — 0.87%%* — 1.69%** — 4.60%**

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** ** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

horizon but, rather, a 30-min prediction horizon, and this substantially reduced the average
error. Overall, our model was superior to the compared neural network-based prediction
models. In addition, a wide range of 21 currencies, including emerging foreign currency
markets, provided strong experimental support for our results. Therefore, one implication of
this study is that the advantages of combining state-of-the-art deep learning-based Bi-LSTM
models with variance-reducing BR are reflected in a better prediction performance compared
with more traditional deep learning-based models.

The demonstrated robustness of the proposed model indicates high confidence in its pre-
dictions during the COVID-19 period. We have found additional empirical support for the
previous findings of Umar and Gubareva (2020) that foreign exchange markets have been
highly volatile during the pandemic. This can also be attributed to the decline in foreign
exchange market efficiency during the COVID-19 period (Aslam et al., 2020). Our results
suggest that as the number of pandemic cases in a country increased, more negative effects
were seen on the country’s exchange rate predictability. This information can be used to
develop targeted interventions aimed at stabilizing foreign exchange markets.

In this study, we examined the predictability of 21 major currency pairs, including curren-
cies of the world’s largest economies. Therefore, the results of our study can help investors
and other stakeholders to evaluate their risks and their effects on business decisions. In fact,
exchange rate volatility is essential for the valuations of assets and liabilities and the pricing
of derivative instruments. The predictions provided by the proposed model can be incorpo-
rated into existing volatility models to improve their prediction accuracy. Predicting foreign
exchange market volatility during the pandemic period is also critical for policymakers in
reducing systematic risks when planning for and implementing fiscal and monetary policies.

The findings of this study have a number of important implications for stakeholders. In
accordance with work by Umar and Gubareva (2020), cross-currency hedges are suggested to
address the higher currency risk posed by the pandemic. Indeed, during the COVID-19 period,
it became crucial for stakeholders, including banks and private companies, to anticipate the
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Table 19 Robustness test of Bi-LSTM BR ensemble deep learning approach for Cluster E3 (June 9 to December
14, 2020)

State Algorithm AUD/USD GBP/USD JPY/USD CNY/USD

E3 Ridge regression 9.56%** — 4.774%%% 6.94 %% — 4.09%%*
Lasso regression 1.009* — 10.52%%%* 2.50%* — 14.53%%%*
RT 0.099* — 7.23%%% 1.97%* — 7.98%%*
SVR (Linear) 7.89%** 2.33%* 6.18%* — 11.61%*
SVR (RBF) 7.89%** 2.34%* 6.18%* — 11.61%*
SVR (Polynomial) 7.89%** 2.34%%* 6.18%%* — 11.61%*
RF 0.03* — 7.33%* 1.97%%* — 8.06%**
LSTM — 18.03%%* — 313.1%%* — 16.3%%%* — 22.6%%*
Bi-LSTM — 25.89%%%* — 19.19%%** — 321k — 23.5%%%
BR 9.98*** 4.85%%* 6.90%** — 12.54%%%*

This table shows the test statistics of DM test in examining the accuracy of our proposed Bi-LSTM BR deep
learning algorithm against the benchmark algorithms in our study for major currencies (AUD, CNY, GBP, and
JPY). *** ** and * represent the rejection of a null hypothesis that an existing algorithm’s forecast accuracy
is better than our proposed Bi-LSTM BR ensemble deep learning approach at P < 0.001, P < 0.05 and P <
0.1, respectively

effects of the pandemic on their business and financial risks associated with increased foreign
currency market volatility. These stakeholders are now increasingly checking the reliability
of the foreign market data used as inputs for the valuation of their assets, liabilities, and
contracts. The proposed prediction model might not only provide some support for this
checking process but it can also be used to identify the most seriously affected exposures.
This in turn can result in the reconsidering of current hedging strategies. Therefore, our
research suggests that stakeholders should take more advantage of derivative markets by
using hedging with options and cross-currency basis swaps.

Another challenging issue is the post-pandemic scenario in the foreign exchange market.
Our results indicate that the predictability of the foreign exchange market of countries less
affected by COVID-19 is close to that from before the pandemic. Hence, post-pandemic
foreign exchange markets are expected to be more predictable, allowing investors to find
more opportunities in foreign exchange markets.

8 Conclusion

In this study, we proposed an ensemble deep learning approach combining Bi-LSTM and
BR. We have applied other machine learning algorithms, such as RT, SVR, and RF, and deep
learning algorithms, such as LSTM and Bi-LSTM. Results from the DM test show that our
proposed Bi-LSTM BR ensemble deep learning approach has superior forecasting effective-
ness in terms of a RMSE loss function against these benchmark algorithms. These findings
suggest that in general, the prediction performance of the used model worsened during the
COVID-19 period. The performance deteriorated especially for exchange rates of the most
adversely affected countries, and this can be attributed to a higher currency volatility induced
by the pandemic. However, it should be noted that although this increased volatility translates
into more challenging foreign exchange market predictions, our model still performed well
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Fig. 16 Actual versus predicted exchange rates (scaled) for Cluster E1 (December 31,2019 to March 11, 2020)
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Fig. 16 continued

compared with existing prediction models in terms of the RMSE, MAE, and MAPE. The
highly competitive prediction capacity of the proposed model in both periods, pre-COVID-
19 and COVID-19, is beneficial for policymakers, entrepreneurs, foreign exchange brokers,
and dealers when addressing currency risks, particularly during the highly volatile COVID-
19 period. This study’s findings can support market participants as they try to find the best
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Fig. 17 Actual versus predicted exchange rates (scaled) for Cluster E2 (March 12 to June 8, 2020)

investment strategy that can generate profits during the crisis period while also managing the
increased currency risk.

This study has revealed several questions in need of further investigation. Our proposed
Bi-LSTM BR ensemble deep learning approach was shown to be highly effective for foreign
exchange markets. It would be interesting to investigate its effectiveness in other financial
and commodity markets, such as in forecasting stock prices, crude oil prices, and prices of
gold and other precious metals. Our primary focus was on exchange rate forecasting, and we
have not included other factors such as interest rate differentials and inflation differentials.
Additional determinants should therefore be incorporated into the proposed prediction model.
The forecasting power may be enhanced if these factors are integrated into our proposed Bi-
LSTM BR ensemble deep learning approach. This provides an opportunity for future research.
The financial implications for investors of trading strategies based on the predictions of the
proposed model should also be considered in further work.
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Fig. 18 Actual versus predicted exchange rates (scaled) for Cluster E3 (June 9 to December 14, 2020)
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Table 20 Comparison of Bi-LSTM BR with existing prediction models

Study Method Currencies Average performance
Panda and Narasimhan NN INR/USD RMSE = 0.1087, MAE =
(2007) 0.0676

Bagheri et al. (2014) ANFIS EUR/USD, GBP/USD, RMSE = 0.1164, MAE =
USD/IPY, USD/CHF 0.088, MAPE = 0.2546

Shen et al. (2015) DBN GBP/USD, INR/USD, RMSE = 0.0094, MAE =
BRL/USD 0.0070, MAPE = 1.6422

Dash (2018) PSN USD/CAD, USD/CHF, RMSE = 0.0457, MAE =
USD/JPY 0.037, MAPE = 1.0016

Islam and Hossain (2020) ~ GRU-LSTM EUR/USD, GBP/USD, RMSE = 0.0187, MAE =
USD/CAD, USD/CHF 0.0117

Panda et al. (2021) CNN AUD/USD, EUR/USD, RMSE = 0.3207, MAE =
EUR/CAD, GBP/USD, 0.4207
USD/CAD, USD/IPY

This study Bi-LSTM BR 21 currencies Pre-COVID-19: RMSE =

0.0219, MAE = 0.0162,
MAPE = 0.4878
COVID-19: RMSE =
0.1009, MAE = 0.0880,
MAPE = 0.8391

CNN is convolutional neural network, DBN is deep belief network, GRU is gated recurrent unit, and PSN is

pi-sigma network
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