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Abstract
Investment in Green energy is becoming a popular alternative asset class for investors, pri-
marily due to its environment-friendly attributes. However, there is a dire need for subjective
evaluation of this emerging asset class based on the risk-return dynamics to which investors
are exposed. To respond to this call, in this study, we conduct this evaluation utilizing a unique
and rich data set consisting of daily prices of exchange-traded funds (ETFs) established on
different asset classes. We use Vector autoregression and Baba-Engle-Kraft-Kroner param-
eterization of multivariate GARCH models and assess the relative strength of return and
volatility spillovers from the Green and Grey energy markets. Our results reveal the return
shocks originated in the Green energy market and transmitted to other markets are more pro-
nounced. It is also observed that the potential to earn high returns and the weak correlation of
Green energy ETFs with the traditional asset classes are the crucial factors helpful in inviting
attention and investment of investors after 2015. Although our results further suggest that
the role of Grey energy is diminishing, as shown by the Impulse response functions and the
coefficients of multivariate ARCH and GARCH. Nonetheless, for some asset classes, e.g.,
Bonds, the volatility spillovers that originated in the Grey energy market are still prominent
and robust.

Keywords Green energy · Grey energy · Energy derivatives · Exchange-traded funds
(ETFs) · Return spillover · Volatility spillover · VAR · BEKK

JEL Classification Q40 · C58 · G11 · G15 · G23

1 Introduction

Energy has always been a strategic commodity due to its role in economic development.
However, since the early 2000s, energy has gained the reputation of an asset class, and
energy-based financial products have become an integral part of the overall financial system.
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Many studies reason that the financialization of the commodities market and institutional
investors’ participation has played a vital role in this development (Gagnon et al., 2020). In
the financial markets, investors, typically, gain exposure to energy by pursuing investment
in energy stocks, energy indices, and energy futures markets through exchange-traded funds
(ETFs), exchange-traded notes (ETNs), and swaps, whose returns are tied to an index of
energy futures prices (Yan & Garcia, 2017).

However, the increased participation of investors in commodities markets and the high
use of the energy market as an asset class have altered its return and volatility dynamics
(Kyritsis & Serletis, 2018). There has also been an unprecedented increase in the speculative
activity in the energy market since 2003 [(Creti & Nguyen, 2015), (Ahmad, 2017)] coupled
with the fact that recent years have witnessed significant volatility in the price of fossil fuel,
oil and gas. The volatility in energy prices has also led to the emergence of green energy as
a substitute for grey energy.1 At the same time, the potential of green energy in combating
climate change has also earned international recognition [(Miralles-Quirós et al., 2018), (Su
et al., 2020)]. Given these developments, recent years have witnessed a strong interest among
practitioners and academics in understanding the dynamics of energymarkets. Therefore, this
study complements the existing literature and investigates the interdependence and spillovers
between grey and green energy markets and traditional financial markets. We argue that an
unexpected shift in energy risk and return dynamics could lead to economic instability.
Moreover, a financialized energy market may also spread contagion to traditional financial
markets like equities and bonds, which are the heart of any financial system.

Spillovers occur when extreme and unexpected shocks in return and volatility in one
market trigger volatility in other markets (Engle et al., 1990); and are harsh in markets with
greater interdependence, liberalization, and integration [(Rizvi et al., 2013), (Mensi et al.,
2013)]. A return spillover captures the return transmission among the financial markets, while
volatility spillover is the transmission of volatility (Nguyen & Le, 2021). High return and
volatility spillovers, however, not only indicate the markets’ interconnectedness, but those
could alter portfolio diversification and hedging strategies [(Mirza et al., 2020); (Li et al.,
2021)]. On the one hand, return spillover that originated in one market reflects increased
investor confidence in the particular market (Umar et al., 2020); on the other hand, volatility
spillovers have implications for the financial system’s stability. Nonetheless, they may cause
financial contagion, exponentially increases the degree of market systemic risk [(French
et al., 1987); (Allen &Gale, 2000); (Batra, 2002); (Scott, 2011)], and alter investor’s decision
making by effecting the required rate of returns (Umar et al., 2020) and the cost of capital
(Bekaert & Wu, 2000).

Three strands of literature dominate the literature on return and volatility spillover in the
energy market. The first group of studies examines the connection between oil prices and
international equity markets [e.g., (Sadorsky, 1999), (Guesmi & Fattoum, 2014), (Diaz et al.,
2016), (Maghyereh et al., 2016), (Zhang, 2017), (Kyritsis & Serletis, 2018), (Tiwari et al.,
2020)]. The second group of studies focus on exploring the relationship between oil price and
the stock prices of conventional and green energy [e.g., (Broadstock et al., 2012), (Managi &
Okimoto, 2013), (Wen et al., 2014), (Reboredo et al., 2017), (Reboredo &Ugolini, 2018)]. In
comparison, the third group of studies investigates the association between oil price and the
stock prices of conventional, clean energy and the technology companies [e.g., (Henriques
& Sadorsky, 2008), (Sadorsky, 2012a), (Kumar et al., 2012), (Bondia et al., 2016), (Ahmad,
2017), (Ferrer et al., 2018), (Maghyereh et al., 2019), (Elsayed et al., 2020)].

1 In this study, we use the term Grey energy to refer to fossil fuels and conventional energy while green energy
also means renewable energy.
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However, to the best of our knowledge, no study treats grey and green energy as indepen-
dent asset classes; and examines the connectedness between green and grey energy markets
and the interdependence between the pair of the energy market with traditional financial
assets markets. The literature has been surprisingly non-focused on the relationship between
green energy and equities or bonds despite acknowledging green energy as a rising finan-
cial asset with a promising future potential and an asset class alternative to grey energy
(Miralles-Quirós & Miralles-Quirós, 2019). It is also surprising, mainly when there is a par-
allel literature stream that studies the hedging and diversification benefits of green energy
for a stock–bond portfolio [(Bessler & Wolff, 2015), (Rezec & Scholtens, 2017), (Miralles-
Quirós et al., 2018), (Schmidt, 2019), (Henriksen et al., 2019), (Rehman &Vo, 2020), (Saeed
et al., 2020)].We strongly believe that the evidence onmarkets’ connectedness and spillovers
in the green energy market may have important implications for hedging and portfolio diver-
sification, yet the studies explicitly exploring the return and volatility spillover among green
energy and traditional asset classes remained missing. This study, therefore, fills this gap in
the literature. It enhances the evidence on the linkages among grey, green energy markets,
and traditional asset classes. It also examines the presence, nature, and magnitude of the
volatility spillovers originated in and transmitted to the energy market or vice versa, which
has important implications for the stability of the overall financial system.

Wemake several contributions to the literature. First, this study provides the first evidence
on the green energy market in transmitting return and volatility spillovers to Equities and
the Bond market. It contributes to the strand of literature on green energy as well as return
and volatility spillovers. Debt has been a significant source of financing in the green market
over the years (IRENA, 2020); however, to the best of our knowledge, no study studies the
relationship between green energy and the bond market. Second, this study examines the
level of connectedness across markets and compares the dominance of green energy to grey
energy. Thus, it contributes to the strand of literature assessing the hedging and diversification
benefits of green energy for portfolio management. Third, this study uses ETFs to represent
all financial markets while the existing literature has been fixated on indices to study the
relationship between grey and green energy; or between the grey energy market and the
equitiesmarket. ETFs are passive investments but are traded like shares and have the potential
to track the performance of an index (Miralles-Quirós & Miralles-Quirós, 2019).

Moreover, investors favor ETFs to gain realized returns instead of non-realizable returns of
indices (Yan&Garcia, 2017). In addition, ETFs have higher liquidity and transparency, lower
fees, and tax efficiency (Huang & Lin, 2011). Fourth, we deploy the most relevant methodol-
ogy of Baba-Engle-Kraft-Kroner (BEKK) parameterization of multivariate GARCHmodel2

as suggested by (Engle et al., 1995) to capture the spillovers across the financial markets
during the time spanning from October 2015 to October 2020.

The fundamental objective of using multivariate GARCH is to extract the time-varying
conditional covariance and correlation between the energymarket andother financialmarkets.
About GARCH models, it has been widely accepted that Vector error correction (VEC)
specifications suggested by (Bollerslev et al., 1988) are arduous to handle while working
with more than two variables due to the large number of parameters required. The proposed
Diagonal VEC (DVEC) model by (Bollerslev et al., 1988) allows conditional variance but
restricts the number of parameters and requires substantial restrictions on the parameters

2 To have detailed understanding of GARCH family models, readers are requested to consult the following
literature: [(Black, 1976; Christie, 1982); Campbell and Hentschel (1992); Bekaert and Wu (2000); Kroner
and Ng (1998); Glosten, Jagannathan, and Runkle (1993); (Elyasiani et al., 2007); (Chou 1988; Song, Liu,
and Romilly 1998; Theodossjiou, Kahya, and Koutmos 1997); (Franses and Van Dijk, 1996; Gokcan, 2000);
(Brooks and Persand, 2003).
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(Bauwens et al., 2006). Given these constraints, we decided to use BEKK specification
proposed by (Engle et al., 1995) and calculate dynamic conditional correlations between the
Green and Grey energy markets and other financial markets (Bond and Equity). Moreover,
BEKK conveniently decomposes each conditional variance into its ARCH (news impact)
and GARCH (persistence) components, simplifying the analysis.

Our results provide interesting insights. We find that the return shocks originated in Green
energy and transmitted to grey energy and equities markets are more pronounced. Contrarily,
the role of Grey Energy is diminishing, as shown by the Impulse response functions and the
coefficients of multivariate ARCH and GARCH. We find a revealing relationship between
bond and energy market and show that grey energy significantly affects the BOND market,
while the reverse is not valid. However, we find that green energy does not affect bond
markets, but the bond market influences the returns of green energy.

The remainder of the paper is structured as follows: Section 2 explains our data set.
Section 3 presents the details of the econometric models used to achieve the research objec-
tives. Section 4 presents our empirical results followed by the discussion of results in Sect.
5. Section 6 concludes.

2 Data

Our major objective in this paper is to understand and evaluate the dynamics of returns and
volatility spillovers that originate in the energy market including Green and the Grey and
transmit to other financial markets. To proxy the energy and other assets market we use the
rich data set of exchange-traded funds (ETFs) that not only closely track the performance of
these markets but are also the tradable financial instruments. This tradability of ETFs make
them more realistic choice for any investor interested in taking exposure in the markets of
financial assets (Yan & Garcia, 2017) and (Miralles-Quirós & Miralles-Quirós, 2019). We
choose ETFs for four different markets, Green Energy, Grey Energy, Bond, and Equity, all
based in the United State of America (USA). Table 1 below provides the detail of ETFs
selected, their representation, coverage and scope.

The ETFs proxies have been selected based on the coverage provided by each index and
covers a period of five years of daily frequency starting from October 2015 to October 2020.
Adjusted closing prices of ETFs were obtained from Bloomberg and a proxy of monthly
returns is calculated for each ETF by taking a natural log of the ratio of current price with
the twenty days lagged price on each date available in our data set.

Ri,t � ln

[
Pi,t

Pi,t−20

]
× 100 (1)

where Ri,t is the monthly continuously compounded return calculated for i ETF on day t for
each day of sample. Pi,t is the daily closing adjusted price for i ETF on day t , and Pi,t−20

represents price for the same ETF 20 days prior. As opposed to the traditional method of
calculating monthly returns that relies on calendar-based definition of a month, this method
is far superior as it considers each 20 days period as a month on rolling basis. It does not only
conform to the real time trading norms where the investors are free to enter or exit the market
any day but it also provides higher degree of efficiency making available a larger chunk of
data where monthly returns are estimated for each day on rolling basis. This method is also
reported to be helpful in curtailing excessive intraday volatility in financial markets (Naqvi
et al., 2018).
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Table 1 Asset classes in the portfolios. Source: Bloomberg

Asset Class Proxy Index Geo-Focus Coverage

Green energy First Trust NASDAQ
Clean Edge Green
Energy Index Fund
(QCLN)

USA The fund tracks the price and yield of
an equity index called the NASDAQ
Clean Edge Green Energy Index. The
index tracks the performance of
publicly traded clean energy
companies in the United States. The
fund invests at least 90% of its net
assets in the common stocks and
depositary receipts that comprise the
index

Grey energy Energy Select Sector
SPDR Fund (XLE)

USA The fund corresponds generally to the
price and yield performance of
publicly traded equity securities of
companies in the Energy Select
Sector Index. The index holds stocks
of companies from oil, gas,
consumable fuels, energy equipment
and services’ industries. The fund
generally invests 95% of its total
assets in the stocks comprising the
index

Bond (BOND) iShares Core U.S.
Aggregate Bond ETF
(AGG)

USA The fund tracks the performance of the
Bloomberg Barclays U.S. Aggregate
Bond Index which itself measures the
performance of the total U.S.
investment-grade bond market. The
fund invests generally at least 90% of
its net assets in component securities
of the underlying index; while
remaining % is invested in the
securities with substantially identical
economic characteristics

Equity (EQUITY) SPDR S&P 500 ETF
Trust (SPY)

USA The investment corresponds to the
yield and price performance of the
S&P 500 Index. The ETF is the
portfolio of the common stocks that
are included in the index; and the
weight of each stock in the Portfolio
corresponds to the weight of such
stock in the index

Risk free rate US 3 Months Treasury
Bill Yield

USA Short Term Treasury Bills

123



500 Annals of Operations Research (2022) 313:495–524

Figure 1 shows trends in the daily ETF prices of selected asset classes during the last
five years (October 2015–October 2020). Equity ETF has been measured on secondary axis
(right side) and rest of the ETFs are measured on primary axis (left side). The Grey energy
market seems to exhibit a long-term declining trend since 2017, almost the same time when
the Green Energy market has started climbing, albeit slowly. Interestingly, both the decline
of Grey and the climb of Green energy markets seem to be exacerbated by the COVID-19
pandemic in early 2020.

The equity market exhibits a trend like Grey market and indicates a strong correlation
between the two financial markets. However, a widening of gap in prices over the years could
also be observed. The bond market, contrarily, exhibits a relatively less volatile price trend
and quite resembles the trends in green energy market.

3 Models

3.1 Return spillovers

We begin our preliminary investigation about the existence of spillovers in excess returns,
across time, and between different segments of asset classes, by estimating vector autoregres-
sive model (VAR) for the excess returns of four asset classes i.e. Green Energy (GREEN),
Grey Energy (GREY), Bond (BOND) and Equity (EQUITY) in the following manner;

ERt � ∅0 + ∅1ERt−1 + · · · + ∅pERt−p + εt(εt |ψ(t − 1) ∼ N (0, Ht )) (2)

where ERt is a four variable vector demonstrating excess returns in the four ETFs (GREEN,
GREY, BOND, EQUITY) at time period t ; p is the optimal lag length identified through
AIC and BIC; ∅0 is a 4 × 1 vector representing intercepts; ∅1 through ∅p are coefficient
matrices, with their elements capturing their own, as well as the cross-market lag effects; and
εt is a 4× 1 vector of residual error terms. Our assumption is that the elements of εt are not
serially correlated, with the conditional variance–covariance matrix represented by the 4 ×
4 matrix Ht given the information set ψ(t − 1).

Equation (2) specifies that the excess return of each ETF is a linear function of lagged
excess returns of the same as well as lagged returns of the ETF of the other market segments.
For example, the excess return in the Green Energy Market (GREEN) depends on p lags of
itself, as well as p lags of the other three ETF’s excess returns:

ER1,t � ∅0 +
p∑

i�1

∅1i ER1,t−i +
p∑

i�1

∅2i

ER2,t−i +
p∑

i�1

∅3i ER3,t−i +
p∑

i�1

∅4i ER4,t−i + ε1,t

ER2,t � β0 +
p∑

i�1

β1i ER1,t−i +
p∑

i�1

β2i ER2,t−i +
p∑

i�1

β3i ER3,t−i +
p∑

i�1

β4i ER4,t−i + ε2,t

ERn,t � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ εn,t (3)

The presence of excess return spillovers from the ETF of equity market, EQUITY(4)
towards green energy market, GREEN(1) can be detected by validating the joint hypothesis
that ∅4i � 0(i � 1, . . . , p) and alternatively to detect the spillovers from GREEN towards
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other markets ETFs, equations similar to Eq. 3 can be developed for each ETF’s excess
returns having its own lagged excess returns as well as the lagged excess returns of other
ETFs.

3.2 Volatility spillovers and volatility persistence

The second type of spillovers are volatility spilloverswhere return shocks (difference between
actual and mean or expected returns) in one market on a given day, trigger the conditional
variance or volatility next day, either in the same market or in some other market (Rizvi &
Naqvi, 2008; Rizvi et al., 2014). Similarly, persistence in the volatility of one market can
be spilled over next day towards the other markets. The overall concept may be called as
temporal dependence of the conditional variance.

We propose in this paper to use Baba, Engle, Kraft and Kroner (BEKK) parameterization
of multivariate GARCHmodel3 as suggested by (Engle et al., 1995) to estimate the volatility
spillovers, volatility persistence and volatility transmissions fromGREY andGREEN energy
markets to other financial markets and vice versa.

The basic objective to use multivariate GARCH was to extract the time varying con-
ditional covariance and correlation between energy market and other financial markets.
With reference to GARCH models, it has been widely accepted that vector error correc-
tion (VEC) specifications suggested by (Bollerslev et al., 1988) are extremely difficult to
handle while working with more than two variables due to the large number of parameters

required
[

N (N+1)(N (N+1)+1)
2 � 210 f or N � 4

]
. (Bollerslev et al., 1988) proposed Diagonal

VEC (DVEC) model which allows conditional variance depending only on its own lag and
on the lagged values of cross product of errors (ε i tε j t ) thus restricting the number of param-

eters up to
[

N (N+5)
2 � 18 f or N � 4

]
. Nonetheless even in diagonal VEC representation it

is extremely difficult to ensure the positivity of conditional variance covariance matrix (Ht )
unless we impose strong restrictions on the parameters (Bauwens et al., 2006). Keeping in
view these constraints we decide to use BEKK specification proposed by (Engle et al., 1995)
to calculate dynamic conditional correlations between Green/Grey energy markets and other
financial markets: Bond and Equity. We assume that ψ(t − 1) is the information field gener-
ated by the past values of εt and that Ht is the conditional variance–covariance matrix of the
k-dimensional random vector εt . We also assume that Ht is measurable with respect to past
information set ψ(t − 1); in that case the structure of multivariate GARCH would be as

(εt |ψ(t − 1) ∼ N (0, Ht ))Ht � C +
q∑

i�1

A
′
iεt−iε

′
t−i Ai +

p∑
i�1

G
′
i Ht−i Gi (4)

where C ,Ai and Gi are k × k parameter matrices.
For bivariate GARCH (1,1) the matrix structure would be as follows.

Ht �
[

c11 c12
c12 c22

]
+

[
a11 a12
a21 a22

]′ [ ∈2
1,t−1 ∈1,t−1∈2,t−1

∈2,t−1∈1,t−1 ∈2
2,t−1

][
a11 a12
a21 a22

]

+

[
g11 g12
g21 g22

]′

Ht−1

[
g11 g12
g21 g22

]

3 To have detailed understanding of GARCH family models, readers are requested to consult the following
literature: [(Black, 1976; Christie, 1982); Campbell and Hentschel (1992); Bekaert and Wu (2000); Kroner
and Ng (1998); Glosten, Jagannathan, and Runkle (1993); (Elyasiani et al., 2007); (Chou 1988; Song, Liu,
and Romilly, 1998; Theodossjiou, Kahya, and Koutmos, 1997); (Franses and Van Dijk, 1996; Gokcan, 2000);
(Brooks and Persand, 2003).
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We maximize the following log-likelihood function for our Multivariate GARCH model,
written without a constant term;

� � −1

2

T∑
t�1

[
log|Ht | + ε

′
t H−1

t εt

]
(5)

We use the continuously compounder returns calculated through Eq. 1 and estimate excess
returns (ER) by subtracting period adjusted risk free rate, for the construction of mean equa-
tion which would be modelled as Vector Auto regression (VAR) as specified in Eq. 3;

The superiority of BEKK model is that it conveniently decomposes each conditional
variance into its ARCH (news impact) and GARCH (persistence) components. For example,
the ARCH component which is the impact of lagged squared residuals in excess returns
associated with the conditional variance of Green energy ETFs (GREEN) can be represented
as:

H(i .i),t � c11 + a211 ∈2
1,t−1 +a

2
21 ∈2

2,t−1 +a
2
31 ∈2

3,t−1 +a
2
41 ∈2

4,t−1 +2a11a21 ∈1,t−1∈2,t−1

+ 2a11a31 ∈1,t−1∈3,t−1 +2a11a41 ∈1,t−1∈4,t−1 +2a21a31 ∈2,t−1∈3,t−1

+ 2a21a41 ∈2,t−1∈4,t−1 +2a31a41 ∈3,t−1∈4,t−1 (6)

In the above structure, 1, 2, 3, and 4are respectively the representation of GREEN, GREY,
BOND and EQUITY ETFs. The structure clearly shows that ARCH volatility of GREEN
excess returns not only depends on the lagged squared residuals (shocks) in all ETF markets,
but on the cross-products of the lagged shocks in all four ETF markets. Here the ARCH
coefficients, a11, a21, a31, and a41 capture the effects of past squared residuals (shocks) in
excess returns of each market’s ETF on today’ volatility in green energy ETFs excess returns.

Alternatively, the persistence parameter or GARCH component of the green energy ETF’s
conditional variance can be decomposed as,

H(i .i),t � g211H11,t−1 + g221H22,t−1 + g231H33,t−1 + g241H44,t−1 + 2g11g21H12,t−1

+ 2g11g31H13,t−1 + 2g11g41H14,t−1 + 2g21g31H23,t−1 + 2g21g41H24,t−1

+ 2g31g41H34,t−1 (7)

where the volatility of GREEN excess returns is a function of past conditional variances in
all four markets and the covariance structure associated with each of the four markets. Here,
g11, g21, g31, and g41 capture the effects of past volatility (own conditional variance) in each
market’s ETF on today’ volatility in GREEN excess returns.

3.3 Rationale to choose BEKKmodel

It is extremely important that we should justify our choice of using BEKK model in this
study. Since it has been explained earlier that research objective of this study is to distinguish
the spillover effect of Grey and Green energy to and from other financial markets based on
historical data and not the forecasting of returns. Therefore, the BEKK-GARCH is much
sounder, owing to its high number of parameters compared to the DCC-GARCH (Huang
et al., 2010).

It is true that full BEKKmodel has its shortcomings such as “curse of dimensionality” but
so is the case with the alternative model such as DCC. Such shortcomings of DCC-GARCH
are clearly highlighted by (Chang, McAleer, and Wang, 2018a, 2018b) who preclude the
usage of multivariate DCC-GARCH on the basis of its “lack of regularity conditions and
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hence no statistical conditions” while supporting their argument citing the working paper by
(Hafner and McAleer 2014). In fact if we look at not-so-distant past work of McAleer, not
only it has supported BEKK (Caporin and Mcaleer 2012) but also used it extensively as well
(Allen et al., 2017; Asai, Gupta, and McAleer 2020).

As a solution, the three most comprehensive works on the shortcomings of full BEKK
and DCC, strongly recommend and use the Diagonal BEKK instead of full BEKK or DCC.
All these studies confirm that the Quasi Maximum Liklihood Estimates (QMLE) of the
parameters in Diagonal BEKK only, have both the asymptotic properties of consistency as
well as asymptotic normality (Chang et al., 2018a, 2018b, 2019b).

However, as we have explained earlier that our objective is to estimate the spillovers
running between Green/Grey Energy market and the other financial markets (Bond and
Equity) which can only be captured through off-diagonal terms in ARCH and GARCH
matrices and can only be estimated through full BEKKmodel. Therefore, estimating diagonal
BEKK or DCC, both of which can only produce diagonal terms of ARCH and GARCH
matrices or the partial covolatility spillovers, will add no value at all in our study (Chang
et al., 2018a).

This is exactly the reason why (Chang et al., 2019a) despite their heavy criticism on full
BEKK specifications, failed to estimate these parameters which we present in this paper and
which they termed as full volatility and full covolatility spillovers. They also admitted full
BEKK model as the “HOLY GRAIL” for the estimation of spillovers in totality. Moreover,
This is precisely why two of the recent and comprehensive papers by (Li, 2015; Sarwar et al.,
2020) have used the full BEKK specifications that also support our initial stance of relying
on the same.

Even the (Sadorsky, 2012b) despite choosing DCC as first choice, admitted candidly that
BEKK is not only the closest second choice but it also produces more evidences of volatility
spillovers than does the DCC model. Similarly (Sadorsky, 2014) highlighted in foot notes
the possibility of using several other specifications than DCC, including BEKK.

To summarize above, given the most important consideration of this paper is to evaluate
cross market spillovers running two and from energy markets (Green and Grey) which can
only be estimated through off-diagonal coefficients of ARCH and GARCH matrices, we do
not have any other choice but to follow the lead of leading researchers by employing full
BEKK. (Allen et al., 2017; Chang et al., 2019a; Gulzar et al., 2019; Huang et al., 2010; Li,
2015; Rizvi & Itani, 2021; Sadorsky, 2012a; Sarwar et al., 2019, 2020; Wang et al., 2019;
Yousaf et al., 2021).

4 Results

4.1 Descriptive statistics

In this section we first present the descriptive statistics and correlations of the excess returns
calculated for the ETFs representing four markets in Tables 2 and 3 respectively.

The descriptive statistics provided in Table 2 strongly reinforce our quest of examining
the volatility dynamics in Green and Grey Energy markets and their spillovers towards other
financial markets. In terms of returns, both Green and Grey energy markets are prominent
as GREEN offers the most lucrative monthly average returns of 1.6% and GREY offers the
worst returns equals to the negative 0.96% as monthly average. Both GREY and GREEN
energy markets are highest in terms of risks with a standard deviation of 9.8% and 8.1% per
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Table 2 Descriptive Statistics of
Monthly Excess Returns (%) Green Grey Bond Equity

Mean 1.6037 0.9673 0.2320 0.8731

Median 1.9687 0.1591 0.2239 1.5387

Maximum 26.979 31.8971 9.8768 20.7545

Minimum 58.9087 82.7384 6.8930 37.0844

Std. Dev 8.1341 9.8618 1.0506 4.9473

Skewness 1.7633 2.9950 0.8309 2.5054

Kurtosis 14.0692 22.0826 15.2020 18.6606

Jarque–Bera 6978.79 20,684.83 7841.67 13,980.07

Probability 0.0000 0.0000 0.0000 0.0000

Sum 1990.25 1200.50 287.95 1083.55

Sum Sq. Dev 82,042.93 120,596.60 1368.73 30,350.57

Observations 1241 1241 1241 1241

The table shows the descriptive statistics of the monthly returns of ETFs
in four selected markets. The values are the percentages (%) wherever
applicable

Table 3 Correlation (Kendall Tau)
among Monthly Excess Returns
(%) in Different ETFs

Green Grey Bond Equity

Green 1.0000

–

Grey 0.2960 1.0000

0.0000 –

Bond 0.0466 0.1105 1.0000

0.0137 0.0000 –

Equity 0.5906 0.4966 0.0348 1.0000

0.0000 0.0000 0.0662 –

The table shows the pairwise Kendall rank correlation coefficients (tau-a)
between the monthly returns of four markets. The correlation coefficient
ranges between -1 to 1. The correlation values are followed by the p-values

month respectively. In terms of returns skewness, other than BOND which has a positive
skewness owing to its principal protection feature, the GREEN market has the lowest value
of negative skewness offering better returns prospects. In terms of fat tail risk all markets
have excess kurtosis indicating higher probability of extreme shocks. Besides, we find that
the correlation coefficients of both Green and Grey energy markets with Bond and Equity
are reasonably low and even negative sometimes (see Table 3) which is consistent with the
literature arguing for the diversification potential of energymarkets. Graphical representation
of correlations structure is provided in Scatterplot matrix in Fig. 2.

4.2 Preliminary evaluation of unit root and stationarity

To ensure that the chosen series is appropriate for the implementation of full BEKK model,
it is important that the series should be stationary and free from unit root. Foreseeing the
potential issue of cointegration or non-stationarity, not only we base our entire analysis on
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continuously compounder returns (log returns) but to further isolate the individual series from
the global and common trends and to focus on the true and intrinsic relationship only between
chosen series, we further synthesize our variables and convert them into Excess Returns by
subtracting the US Tbills rate of return as a proxy of global risk free rate as all our original
series were denominated in USD. This subtraction of US T bills rate minimizes the impact
of systematic events that are reflected in the movement of US Tbills rate and are capable to
affect different financial markets simultaneously. We therefore have already laid down the
foundations to ensure that the series included in our data set are eligible for the application
of chosen econometric analysis as it is highly unlikely to find unit root in such synthesized
series. However, to ensure the stationarity of data we test all series for the potential Unit root,
Unit root with Break and for possible Cointegration between GREEN, GREY, BOND and
EQUITY returns. The results are reported in Fig. 3 and Tables 6, 7 and 8. For all return series
ADF and PP test is rejected thus refuting the presence of unit root. Results also fail to reject
the null of KPSS thus confirming that the series are stationary. Similarly, ADF Unit root with
Break test also reject the presence of unit root confirming the stationarity of data. Finally no
evidence of cointegration is found based on Trace and Max Eigen Statistics of Johansen’s
cointegration test.

4.3 Return spillover

Table 4 presents the results of Vector auto regression model where excess return in each ETF
segment (each column) is explained by the two periods lagged excess returns in the same as
well as in the other three markets. The lag length selection criteria is applied and based on the
optimal AIC and BIC two period lag has been chosen for the VAR specification. The results
of lag length selection criteria are reported in Table 9. Moreover, the graphical description
of impulse responses of different markets and variance decomposition tables have also been
provided in Fig. 4 and Table 10 respectively.

In Table 4 above if we focus on GREEN(-1) and GREEN(-2) which are the lagged coef-
ficients of excess returns in Green energy market we would observe clearly that the past
excess return shocks in Green market have a potential to impact current excess returns in
GREY and EQUITY markets besides impacting its own excess returns today. This finding
is also corroborated by the variance decomposition reported in Table 10 and can be visual-
ized in the Impulse reponse functions provided in Fig. 4. Table 10 shows that the shocks in
GREEN energy market are responsible for around 42% to 49% of the variations in GREY
market, 66% to 70% of the variation in EQUITY market and 97% to 100% of the variation
in the GREEN market itself. Interestingly the bond market (BOND) is completely immune
to the return shocks originated in green energy market, however the reverse is not true as
the Green energy market is getting affected by the return shocks in the Bond market. Again
if we look at the variance decomposition, the percentage contribution of GREEN market in
BOND market’s variance is merely 1% at most. Exactly opposite to this phenomenon and
linkages observed for the GREEN market, the return shocks in GREY market are only able
to impact the Bond market besides impacting itself but the GREY market in turn is immune
to the shocks originated in Bond market. Infact the share of GREY market in the variance
of BOND market is around 1.5% to 3.5% percent. Finally, the equity market (EQUITY) has
some impact on all markets except BOND. However the variance decomposition and the
impulse response functions reported in Fig. 4 indicate clealry its weaker influence and less
pronounced dominance within these markets. On the other hand and indeed surprisingly,
the much greater influence and dominance is shown by the Green energy market which is
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Table 4 Vector Autoregressive (VAR) Estimates

Green Grey Bond Equity

Green (−1) 1.1539 0.2006 0.0045 0.1614

(0.0495) (0.0544) (0.0082) (0.0333)

[23.2758] [3.6824] [0.5477] [4.8448]

Green (−2) − 0.2440 − 0.2708 − 0.0013 − 0.1773

(0.0495) (0.0544) (0.0082) (0.0333)

[− 4.9229] [− 4.9721] [− 0.1670] [− 5.3217]

Grey (−1) − 0.0280 0.9646 0.0208 0.0139

(0.0419) (0.0460) (0.0070) (0.0281)

[− 0.6680] [20.9447] [ 2.9679] [0.4936]

Grey (−2) 0.0355 0.0007 − 0.0180 0.0136

(0.0419) (0.0460) (0.0070) (0.0281)

[0.8482] [0.0170] [− 2.5736] [0.4843]

Bond (−1) 0.6946 0.2700 1.0041 0.1738

(0.1701) (0.1869) (0.0284) (0.1143)

[ 4.0832] [1.4448] [35.2855] [1.5203]

Bond (−2) − 0.5843 − 0.2036 - 0.0957 − 0.0649

(0.1704) (0.1873) (0.0285) (0.1145)

[− 3.4279] [− 1.0873] [− 3.3583] [− 0.5672]

Equity (−1) − 0.3911 − 0.4838 − 0.0131 0.5059

(0.0823) (0.0905) (0.0137) (0.0553)

[− 4.7479] [− 5.3441] [− 0.9552] [9.1374]

Equity (−2) 0.4495 0.5682 0.0036 0.4132

(0.0822) (0.0903) (0.0137) (0.0552)

[5.4649] [6.2870] [ 0.2620] [7.4760]

R-squared 0.9094 0.9255 0.8477 0.8890

Adj. R-squared 0.9089 0.9251 0.8468 0.8884

The table shows the VAR estimates for four markets. Each market’s monthly returns in VAR are assumed to
be the function of its own lagged returns (autoregressive) as well as the lagged returns of other three markets.
The values of t-statistics are shown in brackets [] and p-values are shown in parenthesis ()

nonetheless perceived as a new and less prominent market segment compared to EQUITY.
This behavior and dominance of GREEN is also interesting when we compare it with the
GREYmarket which traditionally has been influencing major financial markets owing to the
intrinsic economic importance of Oil, Gas and other fossil fuel energy products.

4.4 Volatility spillover and volatility persistence

Finally, Table 5 presents the estimated coefficients, standard errors (squared brackets) and
t-statistics (bold) of ARCH4 andGARCH represented in Eqs. 6 and 7. The oversized diagonal
terms are own ARCH and own GARCH effect for all four markets. The full BEKK model is

4 To confirm the presence of ARCH effects, we conducted ARCH LM test for all excess returns series of
GREEN, GREY, BOND and EQUITY ETFs and found significant presence of ARCH effects in all series
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Table 5 Estimated ARCH and GARCH coefficients in BEKK Model

Parameters GREEN(., 1) GREY(., 2) BOND(., 3) EQUITY(., 4)

ARCH Coefficients

A(1, .) 1.189430 0.657219 0.021262 0.962439

[0.033410] [0.028170] [0.014363] [0.051930]

35.601285 23.330719 -1.480262 18.533473

A(2, .) 0.561067 0.410274 0.460343 0.200531

[0.354725] [0.028016] [0.086433] [0.136999]

1.581698 14.644343 5.326005 1.463745

A(3, .) 0.204550 0.080655 0.952529 0.265629

[0.043509] [0.018527] [0.055875] [0.115371]

4.701302 4.353353 17.047601 2.302378

A(4, .) 0.963223 0.813633 - 0.528070 2.073095

[0.169774] [0.053967] [0.151024] [0.098148]

5.673569 15.076608 3.496585 21.122064

Parameters GREEN(., 1) GREY(., 2) BOND(., 3) EQUITY(., 4)

GARCH Coefficients

G(1, .) 0.523681 0.011634 0.004799 0.094553

[0.084544] [0.009768] [0.005746] [0.097550]

6.194175 1.191025 0.835092 0.969280

G(2, .) 0.169109 0.742943 0.058581 0.795973

[0.165252] [0.022209] [0.008321] [0.137279]

1.023337 33.452222 7.040276 5.798222

G(3, .) 4.533144 0.204812 0.119789 4.639357

[0.949515] [0.155328] [0.029987] [1.178895]

4.774168 1.318575 3.994697 3.935342

G(4, .) 0.149024 0.762695 0.076811 1.676974

[0.248317] [0.273459] [0.015415] [0.082514]

0.600133 2.789061 4.982980 20.323544

The table shows the estimated ARCH and GARCH coefficients, standard errors (squared brackets) and t-
statistics (bold) estimated through Eqs. 6 and 7. The terms A(n, .) and G(n, .) in first column shows the ARCH
and GARCH spillovers originated in nth market and runs through the markets given in column 2 to 5

estimated using RATS 10.0. The default algorithm to optimize the log-liklihood estimation
function in RATS is BHHH (Berndt, Hall, Hall and Hausman) by (Berndt et al., 1974).
However we also used the alternative optimization algorithm of BFGS (Broyden, Fletcher,
Goldfarb and Shanno) by (Broyden, 1965, 1967; Fletcher & Powell, 1963) for robustness
purposes. Both these algorithms are Hill climbing algorithms and our results are robust and
are not subject to change by the change of algorithm. Similarly, for the choice of underlying
distribution, although the results reported below are according to student’s t distribution,

Footnote 4 continued
based on the LM test statistics (T − q)R2 which was greater than χ2

(1−a,q) thus rejecting the null hypothesis
of No ARCH effects.
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but they are robust to the usage of GED (generalized exponential distribution) the other
alternative available in RATS 10.0.

The estimated coefficients to captureARCHeffects exhibit some interesting patterns. First,
all oversized diagonal elements A(1, 1), A(2, 2), A(3, 3) and A(4, 4) are highly statistically
significant based on the t-statistic below (in bold). This suggests that the conditional variances
in each of the four market segments depend on their own lagged squared residuals. The equity
market (EQUITY) has the largest ownARCH effect with the coefficient value of 2.073, while
the grey energy (GREY) has the smallest own ARCH effect with the value of 0.410. The own
ARCH effect in green energy market (GREEN) is largest after EQUITYwith an approximate
value of 1.189. If we focus on the row A(1, .) which tells us the impact of shock in green
energy market (GREEN) on other market segments, the t-value is significantly greater than
2.0 for all three markets except BOND. This indicates the strong effect and news impact on
volatility in all markets except BOND if there is any shock in green energy market. The same
is not true for the rowA(2, .) which captures the similar impact of shocks originated in GREY
market. The shock in GREY market is only able to increase its own conditional variance and
the conditional variance in BOND market. This is the identical behavior that we explored in
case of return spillovers estimated through VAR in Table 4. The volatility transmission from
the other two markets, Bond and Equity is significant and visible indicating the dominance
of both markets in global financial system.

The persistence or GARCH parameters G(., i) in the lower half of Table 5 capture the
responses of conditional variance (volatility) in market i to past conditional variance (volatil-
ity) in each of the four markets. To understand the volatility spillovers from green energy
market (GREEN) to other markets we need to focus on estimated coefficients provided in row
G(1, .). The Conditional variance in no market seem to be responsive towards the volatility
spillover originated in GREEN market, other than the GREEN market itself. Put differently,
the transfer of volatility persistence spillovers from GREEN market to other market is weak
and insignificant. On the contrary the grey market (GREY) through parameter G(2, .) seems
to transfer significant volatility shocks towards BOND and EQUITY if the turbulence in grey
market persists. This observation is interesting as we find previously (ARCH and VAR) that
GREEN market appears to be more prominent than GREY market in spilling over return
shocks and news impact-based volatility shocks. However, the situation is reverse for the
persistence-based volatility shocks and the GREY market still acts as a dominant market
with the capability to shake the other markets if the volatility shocks persists in it. There
is a mixed pattern in the transmission of volatility persistence spillovers from BOND and
EQUITY to other markets with an interesting result that the equity market (EQUITY) despite
being dominant otherwise, is unable to spillover its GARCH based volatility towards green
energy market.

For the interested readers the estimated conditional standard deviation, conditional corre-
lation and conditional variance covariance structures for the data are also reported in Figs. 5,
6 and 7 respectively.

5 Discussion

The findings show that Green energy has emerged as the prominent player in determining
the returns of the equity market while the role of Grey is exhibiting diminishing trend. Our
findings are different from the earlier studies that claimed that grey energy in the form of
oil price changes are an important factor affecting stock market returns [(Sadorsky, 1999),
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(Park & Ratti, 2008), (El-Sharif et al., 2005), (Guesmi & Fattoum, 2014), (Diaz et al., 2016),
(Maghyereh et al., 2016)]. However, Our results are supported by recent studies which report
skepticism on the role of conventional energy in explaining stock markets returns [(Zhang,
2017), (Kyritsis & Serletis, 2018), (Elsayed et al., 2020), (Tiwari et al., 2020)]. Contrarily,
our findings on green energy are novel and non-comparable to the existing strand of literature
and show that the relationship is bi-directional where green energy affects the returns of stock
market while equities affects the returns of green energy.

Our results are interesting and also hints towards the increased financialization of energy
markets (Ferrer et al., 2018) as they show that equities explain the changes in the returns
of grey and green energy market. Earlier literature assumed energy price changes as an
exogenous factor which was a reasonable assumption but only before the financialization of
energy market. Now, energy market has deep presence in the financial market in the form
of energy future, swaps, ETN and ETFs which exhibit characteristics that are like those of
other financial assets (Zhang, 2017). Moreover, energy has itself become a financial asset
with its price reacting to and influencing other assets in financial markets (Kyritsis & Serletis,
2018); and is used increasingly by portfolio managers and institutions to hedge and diversify
their portfolios [(Bessler & Wolff, 2015), (Rehman et al., 2019), (Gagnon et al., 2020)]. In
addition, (Creti & Nguyen, 2015) and (Ahmad, 2017) argue for an unprecedented increase
in the speculative activities in the energy market after 2003; which also means that energy
market and oil prices are no longer independent from the changes in financial markets.

Our results are also revealing for the relationship of green and grey energy with the bond
market which has largely been overlooked by the literature. We show that grey energy is
having a significant effect on bond market, while the reverse is not true. Intrigued about the
reasoning of this interesting result, it was also very surprising for us to note that although
there exists a rich literature studying the relationship between oil and equities, the same is not
true for the relationship between oil and bond market. However, an extended literature does
examine the relationship between oil prices and interest rates motivated by the fact that both
variables have always increased prior to US postwar recession [(Hamilton, 1983), (Hamilton,
1996), (Bernanke et al., 1997), (Bernanke et al., 2004)]; and hence provides plausible rationale
and support to our results that grey energy affects bond market via interest rate transmission
channel. While we show that Grey energy market affects bond market, we find that green
energy does not affect bond market. Instead, it is being significantly affected by the Bond
Market. One plausible explanation of this unidirectional return spillovers is that most of the
investment in Green energy is channeled through Bond market. Green energy projects are
capital intensive and of long-term maturity; and debt represents a major source of financing
for such projects (IRENA, 2020). Our results therefore havemeanings since any turbulence in
the overall bond market or changing yield spread could impact the financing and investment
in Green energy projects and their returns subsequently.
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While comparing our results of relationship between grey and green energy, however, our
results are consistent with those of [(Henriques & Sadorsky, 2008), (Reboredo et al., 2017),
(Ferrer et al., 2018), (Elsayed et al., 2020)] who show that there is a limited or no role of oil
prices in effecting the prices of green energy. Besides, we find that green energy has taken
the leader’s position where the changes in the prices of green energy are affecting the returns
of grey energy.

However, although the return spillovers (VAR) and news-based volatility spillovers
(ARCH) from Green Energy to other markets are prominent but that’s not true for Volatil-
ity Persistence Spillovers (GARCH). This could be explained by the fact that Grey energy
market still dominates the energy market with the total share of around 84% (Ferrer et al.,
2018) and persistence in volatility of grey energy (fossil fuel) still has the potential to threaten
monetary and financial stability.

6 Conclusion

This research provides evidence on the connectedness of grey and green energy as indepen-
dent asset classes with other financial assets and markets and reports results on the presence
of return and volatility spillovers that may originate in energy market and are transmitted to
the other major financial markets.

Our study is inspired by several recent developments in the energy market. Firstly, energy
has earned the status of a financial asset class while still retaining its status of a strategic
commodity. Secondly, the financialization of energy market has led to an unprecedented
increase in the speculative and hedging activities in the energy based financial products.
Thirdly, the prices of energy have become extremely volatile in recent years which may
cause not only economic instability but also trigger the contagion in the financial markets.
Lastly, amove towards sustainable economic development that has gainedmomentum around
the world and consequently the role of green energy is strengthening as a substitute or an
alternative of conventional grey energy not only as a commodity but as a financial asset too.

The study is, however, different from the existing literature because we emphasize on
the relationship between green and grey energy and the spillover to and from pair of energy
markets to equities-bonds markets. Earlier literature has either been focused on oil, fossil fuel
or the conventional energymarket and their relationshipwith the equitiesmarket; or the return-
volatility relationships between conventional (grey) energywith green energy and technology
companies’ stocks and it does not view green energy as an alternative asset class. The fact
however is that the green energy is a rising asset class as well as an alternative investment to
grey energywith promisinggrowthpotential; and the evidenceongreenmarket connectedness
and spillovers have important implications for hedging and portfolio diversification too; but
yet the studies explicitly exploring green energy as an independent asset class remained
missing; and therefore this study makes a significant contribution to the literature on green
energy return and volatility spillover.

The results provide evidence on the diminishing role of Grey energy and the prominent
role of Green Energy in Equity market return dynamics. First, we show that Green energy is
more prominent in determining the returns of equity market while the role of Grey energy in
US equitymarket is declining. Second, we find that equities explain the changes in the returns
of both grey and green energy market and thus hints towards the increasing financialization
of Green energy too. Third, while comparing our results of relationship between grey and
green energy, we find that green energy again proves itself more important as it could guide
the prices in grey energy market whereas the reverse is not true. However, although the return
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spillovers (VAR) and news-based volatility spillovers (ARCH) from Green Energy to other
markets are prominent but that’s not true for Volatility Persistence Spillovers (GARCH). This
is explainable as Grey energy market still dominates the energy market with the total share
of around 84%.

The findings of this study have important implications for investors, portfolio managers
and the overall financial system. Green energy has emerged as an independent asset class
and a strong alternative to grey energy and hence have the potential to alter the investors’
decision making and asset selection and allocation. The green energy also seems to take
the leading role in energy segment and affect investors’ sentiments as the confidence of
investors in green energy is spilled over in the other financial markets. Our results also
provide important insights for regulators and policy makers as the energy today enjoys the
dual status. Energy has retained its status of a strategic commoditywhile it has also become an
integral part of the financial system. Green energy, which is envisioned to provide a solution
to climate change and to the volatile prices of grey energy, has become closely connectedwith
equities and bonds as suggested by our results. Therefore, a larger financial oversight of green
energy market by the regulators, just like other financial markets, is inevitable owing to its
increased connectedness with the different segments of the financial system. This increased
Financialization of green energy coupled with the strong interest of investors in it as an
asset class also expose green energy to speculative activities which may make the prices of
green energy volatile too. Moreover, any turbulence in the overall equities and bond market
or changing yield spread could impact the Green energy investments hence impeding the
world’s efforts to achieve sustainable development goals.

Appendix

See Tables 6, 7, 8, 9, 10 and Figs. 1,2, 3, 4, 5, 6, 7 3.
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Table 6 Unit Root and Stationarity Testing (Excess Returns of GREEN, GREY, BOND and ENERGYmarket
Returns)

Variables ADF PP KPSS

Null: Series has a unit root Null: Series has a unit root Null: Series is
stationary

Intercept Intercept and
Trend

Intercept Intercept and
Trend

Intercept Intercept
and Trend

GREEN −
4.3986***

− 4.6299*** −
5.5473***

− 5.6891*** 0.2934 0.0970

GREY −
4.4681***

− 4.5989*** −
5.4169***

− 5.4941*** 0.2343 0.0365

BOND −
4.7562***

− 4.8122*** −
7.5242***

− 7.6131*** 0.4298* 0.1414*

EQUITY −
5.2546***

− 5.2553*** −
5.9866***

− 5.9843*** 0.0266 0.0269

ADF PP KPSS

Test Critical
Values

Intercept Intercept and
Trend

Intercept Intercept and
Trend

Intercept Intercept
and Trend

1% level −
3.435497

− 3.965586 −
3.435411

− 3.965464 0.739000 0.216000

5% level −
2.863700

− 3.413499 −
2.863662

− 3.413440 0.463000 0.146000

10% level −
2.567970

− 3.128795 −
2.567950

− 3.128760 0.347000 0.119000

***, ** and * denote statistical significance at 0.01, 0.05 and 0.10 levels, respectively

Table 7 Augmented Dickey-Fuller “Unit Root with Break” test Results

Variables Break Date t-Statistic

GREEN 4/01/2020 − 6.417479***

GREY 3/18/2020 − 5.150519***

BOND 11/08/2018 − 5.332880***

EQUITY 3/20/2020 − 6.045231***

Test critical values: 1% level − 4.945706

5% level − 4.432140

10% level − 4.182082
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Table 8 Johansen’s System Cointegration Test

Sample (adjusted): 11/05/2015 10/02/2020

Included observations: 1236 after adjustments

Trend assumption: Linear deterministic trend

Series: GREEN GREY BOND EQUITY

Lags interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.061495 209.6665 47.85613 0.0000

At most 1 * 0.051931 131.2218 29.79707 0.0000

At most 2 * 0.033001 65.30776 15.49471 0.0000

At most 3 * 0.019095 23.82967 3.841466 0.0000

Trace test indicates 4 cointegrating eqn(s) at
the 0.05 level

* denotes rejection of the hypothesis at the
0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test
(Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.061495 78.44476 27.58434 0.0000

At most 1 * 0.051931 65.91401 21.13162 0.0000

At most 2 * 0.033001 41.47810 14.26460 0.0000

At most 3 * 0.019095 23.82967 3.841466 0.0000

Max-eigenvalue test indicates 4
cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at
the 0.05 level

**MacKinnon-Haug-Michelis (1999)
p-values

Unrestricted Cointegrating
Coefficients (normalized by
b’*S11*b � I):

Green Grey Bond Equity

− 0.005983 0.007802 − 0.858018 − 0.096607

0.247486 0.164768 − 0.186329 − 0.627852

0.059478 − 0.080105 − 0.619702 0.233127

0.125809 − 0.132376 0.136346 − 0.043107
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Table 9 Lag Length Selection Criteria

Endogenous variables: ER_GREEN ER_GREY ER_BOND ER_EQUITY

Exogenous variables: C

Sample: 10/01/2015 10/02/2020

Included observations: 1233

Lag AIC SC (BIC)

0 20.54107 20.55767

1 12.44482 12.52782

2 12.44433* 12.43374*

3 12.45855 12.44436

4 12.46566 12.44788

5 12.51421 12.46282

6 12.68250 12.49752

7 12.67011 12.53154

8 12.74824 12.49607

Table 10 Variance Decomposition

Period S.E GREEN GREY BOND EQUITY

Variance Decomposition of GREEN:

1 2.456218 100.0000 0.000000 0.000000 0.000000

2 3.396743 97.82012 0.478303 0.779389 0.922190

3 4.101321 97.53893 0.405874 1.264791 0.790409

4 4.638263 97.44410 0.345879 1.510385 0.699631

5 5.071938 97.44545 0.292693 1.657588 0.604272

6 5.430215 97.45981 0.255778 1.755243 0.529171

7 5.732162 97.45974 0.237416 1.827023 0.475824

8 5.989963 97.43358 0.238776 1.884128 0.443515

9 6.212334 97.37691 0.260411 1.932497 0.430181

10 6.405670 97.28891 0.302386 1.975398 0.433309

Variance Decomposition of GREY:

1 2.699016 49.01595 50.98405 0.000000 0.000000

2 3.597946 49.39526 49.21527 0.132070 1.257404

3 4.308043 49.20008 49.49228 0.240401 1.067241

4 4.861836 48.50200 50.30864 0.278637 0.910724

5 5.323832 47.60962 51.33298 0.291065 0.766334

6 5.717836 46.61245 52.42978 0.291949 0.665821

7 6.061402 45.56064 53.54096 0.288278 0.610122

8 6.365353 44.48406 54.63826 0.282991 0.594684

9 6.637417 43.40241 55.70681 0.277456 0.613328

10 6.883157 42.32955 56.73866 0.272286 0.659503
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Table 10 (continued)

Period S.E GREEN GREY BOND EQUITY

Variance Decomposition of BOND:

1 0.410889 0.047193 1.513040 98.43977 0.000000

2 0.588046 0.552049 2.758699 96.65440 0.034852

3 0.703589 0.682140 3.129770 96.05267 0.135420

4 0.785450 0.757373 3.306698 95.73043 0.205496

5 0.845728 0.802895 3.386530 95.53816 0.272418

6 0.891278 0.834863 3.423876 95.40679 0.334472

7 0.926253 0.858333 3.438510 95.30956 0.393601

8 0.953395 0.876223 3.440880 95.23313 0.449769

9 0.974611 0.890086 3.436406 95.17055 0.502956

10 0.991276 0.900916 3.428235 95.11785 0.552997

Variance Decomposition of EQUITY:

1 1.650696 66.01381 8.400665 0.066857 25.51866

2 2.051994 71.98577 7.172741 0.100904 20.74059

3 2.413953 73.19192 7.314578 0.252401 19.24110

4 2.690775 73.66278 7.703963 0.396401 18.23685

5 2.923541 73.55386 8.272292 0.542374 17.63147

6 3.120551 73.18652 8.927916 0.685526 17.20004

7 3.290762 72.65097 9.644044 0.825454 16.87953

8 3.439407 72.01145 10.40036 0.960803 16.62739

9 3.570478 71.30316 11.18469 1.090521 16.42163

10 3.686917 70.55006 11.98789 1.213713 16.24833
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Fig. 1 Prices of ETFs of Selected Asset Classes. Note: Green Energy, Grey Energy and Bond ETFs’ prices
are measured on primary axis and Equity ETF’s price is measured on secondary axis. The data spans from
October 2015 to October 2020
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(A) ADF “Unit Root with Break” Statistics: GREEN Energy
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(B) ADF “Unit Root with Break” Statistics: GREY Energy
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(C) ADF “Unit Root with Break” Statistics: BOND
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Fig. 3 Augmented Dickey-Fuller “Unit Root with Break” test Results. a: ADF “Unit Root with Break” Statis-
tics: GREEN Energy. b: ADF “Unit Root with Break” Statistics: GREY Energy. c: ADF “Unit Root with
Break” Statistics: BOND. d: ADF “Unit Root with Break” Statistics: EQUITY
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(D) ADF “Unit Root with Break” Statistics: EQUITY
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Fig. 3 continued
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