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Abstract

In the pallet building problem, we aim at loading a given set of items into one or more pallets,
by satisfying specific constraints and minimizing the number of pallets used. In this paper, we
address a practical case of this problem that originates from a real-world robotized application,
subject to some non-trivial operational constraints. In practice, items are grouped into families
and must be packed into horizontal layers. To facilitate loading/unloading operations, items of
the same type packed into the same layer should be contiguous and at least one of them should
be visible from the outside. We present a formal mathematical description for layer and pallet
creation subproblems and then we propose heuristic, metaheuristic, matheuristic algorithms
to solve the overall problem. The performance of the algorithms is assessed through extensive
computational tests on real-world instances.
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1 Introduction

Cutting and Packing (C&P) is one of the most widely studied fields of Operations Research
and involves several interesting practical problems (Bortfeldt and Wascher (2013); Crainic
et al. (2012); Tori et al. (2021); Scheithauer (2018)). In cutting problems, a set of stock units
has to be cut to produce smaller items, while in packing problems, a set of items has to be
packed into one or more containers. These problems have attracted the attention of researchers
both for their practical and for their theoretical interest. Some practical applications involve
the production of materials that come in panels (such as wood or glass), the optimization of
layouts (as in industry or newspaper paging), and the loading and subsequent transportation
of items in containers, to mention a few.

Several interesting surveys and books have been published in recent years to try to review
the fast-growing C&P literature, see, e.g., Crainic et al. (2012), Iori et al. (2021), Lodi et al.
(2014), Scheithauer (2018) and Silva et al. (2016). A typology of C&P problems has been
proposed by Wischer et al. (2007) and, later, extended by Bortfeldt and Wéscher (2013)
by considering the area of container loading and its main constraints. Specifically, Bortfeldt
and Wischer formalized the main concepts of the container loading problems and the related
constraints, such as container-related, cargo-related, positioning, and load constraints.

Most C&P problems are associated with mass-production operations in a company.
Therefore, improvements in the time performance of the process and the reduction in the
material/space wasted are directly related to the use of efficient methods. Previously, C&P
tasks were usually performed by skilled experts, but this has been changing over the years by
automated-packing (robotized) systems, as is the case for the problem we face in this work.

The problem that we study is named Pallet Building Problem (PBP). Basically, through
the solution of this problem, we aim at loading a given set of items into one or more pallets
by meeting general and specific constraints to minimize the number of pallets used. The
PBP originates from a real-world robotized application and is thus subject to some non-
trivial operational constraints. Typical items include, e.g., food packaging, soft drink bottles,
and cans. Items should be packed into layers, that must then be piled one over the other
while respecting given stackability rules. Moreover, items are grouped into families, and, to
facilitate loading/unloading operations, items of the same type packed into the same layer
should be contiguous (as detailed in Sect. 3). That said, the loading of items and, therefore,
the creation of pallets for this problem is a fundamental area for logistics, as it impacts not
only the company’s costs but also the customer’s final price.

The PBP is NP-hard because it is a generalization of the Bin Packing Problem, which is
known to be NP-hard ( Delorme et al. (2016)). To solve it, we propose new efficient algorithms
based on the most successful and recent C&P studies by embedding in them in a tailored way
the additional operational constraints of the problem at hand. In our preliminary works (see
Tori et al. (2020a,b, 2021)), we developed some heuristics and proposed a reactive GRASP
metaheuristic, besides performing some preliminary computational tests. In this paper, we
extend and conclude our work by presenting new algorithms and a mathematical formulation
for the PBP. In summary, the main contributions of this paper can be sketched as follows:

(i) areal-world industrial application that addresses the concept of family, contiguity, and
visibility is presented;
(ii) aformal mathematical formulation of the PBP with contiguity and visibility constraints
is presented, to the best of our knowledge, for the first time in the literature;
(iii) new algorithms, made up by combining heuristics, metaheuristic, and mathematical
models, are proposed to solve the problem;
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(iv) extensive computational tests on instances derived from a real-world case study are
presented.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 provides a formal description of the problem. Section 4 provides mathematical
models for the layer creation and for the pallet creation. Section 5 presents the different
solution algorithms that have been developed. Section 6 gives the outcome of extensive
computational tests. Conclusions and some future research directions are given in Sect. 7.

2 Literature review

Approaches to handle cutting and packing problems started around 1960, with the adoption
of simple mathematical models for 2D versions of the problem (see Gilmore and Gomory
(1965)). In contrast, approaches to handle practical cases of packing problems addressing 3D
models started only years later with Tsai (1987), who proposed a robotic 3D pallet loading
with boxes of several sizes.

The PBP emerges as a variant of the Container Loading Problem (CLP), which has
received large attention in the last years. Bortfeldt and Wéscher (2013) presented a com-
prehensive survey of the main constraints used in the literature. The authors verified that
heuristic approaches are more frequently used than exact and approximation-guarantee algo-
rithms. Instead, Silva et al. (2016) considered the Pallet Loading Problem (PLP). In this
problem, a set of two-dimensional rectangular items needs to be packed without overlapping
and allowing a 90° rotation into a two-dimensional bin. The authors proposed a broad anal-
ysis of the solution methods and some aspects concerning computational complexity, upper
bounds, and data sets. In Crainic et al. (2012), a survey is presented about 2D and 3D Orthog-
onal Packing Problems, focusing on data structures for the packing representation and the
item-positioning rules. Concerning heuristic criteria to place items, we highlight the extreme
points in Crainic et al. (2008), that increase the amount of feasible regions for the partial
packing. Recently, lori et al. (2021) proposed a survey of 2D packing problems, considering
techniques to represent and handle items, relaxation methods, as well as exact and heuristic
approaches. We also refer to Wischer et al. (2007) for a categorized typology of 2D packing
problems, besides Delorme et al. (2017) for a state-of-the-art computational analysis.

The PBP can be separated into two subsequent decisions: the first one consists of creating
2D layers, while the second one involves stacking layers to form pallets and thus considers
the 3D characteristics. In the following, we discuss some relevant approaches for 2D and 3D,
respectively.

For what concerns heuristics for 2D problems, Chazelle (1983) described an efficient way
to implement the famous bottom-left heuristic, which packs the items, one at a time in a given
order, in the lowest and left-most position. In Burke et al. (2004), a new placement heuristic,
called best-fit, is presented for a 2D cutting problem, allowing non-guillotine packings and
rotations of 90 degrees. This technique uses a dynamic search based on the “niches”, which are
the available bottom-most gaps for an item in the partial packing. In terms of metaheuristics,
Alvarez-Valdes et al. (2008) developed a GRASP approach for the 2D strip packing problem,
which is the problem of packing items into a strip of a given width by minimizing the used
height. In the constructive phase, the items are placed into rectangles following specific
criteria. A new rule attempts to foresee the tallest object’s future effect in the final solution
to avoid spikes. The local search iteratively destroys and rebuilds portions of the current
solution. Imahori and Yagiura (2010) improved the technique proposed by Burke et al.
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(2004) by presenting a quicker implementation based on a balanced binary search tree and a
priority heap with a doubly-linked list. In Leung et al. (2011), a complete set of techniques to
deal with the 2D strip packing problem is presented. The authors use the so-called “skyline”
approach in conjunction with greedy local search, a simulated annealing metaheuristic, and
a multi-start diversification strategy. In terms of exact algorithms, the use of Combinatorial
Benders decompositions has recently lead to good computational results for a number of 2D
packing problems, as in, e.g., Coté et al. (2014, 2021) and Delorme et al. (2017).

Regarding 3D problems, Haessler and Talbot (1990) addressed a real CLP involving
some practical constraints. They proposed an integer programming formulation and a heuris-
tic algorithm. Bischoff and Ratcliff (1995) presented two heuristics for the CLP: the first one
produces loading patterns with a high degree of stability; the second one considers a multi-
drop situation in which a Last-In-First-Out constraint is imposed on the cargo. Terno et al.
(2000) proposed the parallel generalized layer-wise loading approach (PGL-approach) for
the CLP. Using a complex branch-and-bound algorithm, the authors obtained a certain degree
of competitiveness with respect to classical solutions reported in the literature. Bortfeldt and
Gehring (2001) proposed a hybrid genetic algorithm to solve the CLP with a single container
and a strongly heterogeneous set of boxes, considering orientation, stability, stacking, weight,
and balance. Egeblad et al. (2010) addressed the CLP for a single container (in the knapsack
version), using irregular shaped items, and taking a stability constraint into account. They
performed tests on randomly generated and real-world instances derived from a prominent
European furniture producer. J6zefowska et al. (2018) studied the CLP considering rotation,
stackability, and stability constraints. They considered a case study arising from a household
equipment factory, proposing a best-fit heuristic based on the idea of wall-building over avail-
able space. Kurpel et al. (2020) presented techniques to obtain bounds and exact approaches
to solving input minimization and output maximization versions of the multiple CLP with
rectangular boxes. They adapted and evaluated four discretization techniques from the lit-
erature and considered mathematical formulations to practical constraints such as rotation,
vertical stability, and separation of the boxes. We also refer to a GRASP-based algorithm for
the 3D bin packing problem proposed by Parrefio et al. (2010). The related algorithm was
developed by using a maximal-space heuristic for the CLP during the constructive phase,
and several moves were combined in a Variable Neighborhood Descent approach in the
improvement phase. For what concerns the use of 3D packing problems arising in freight
transportation, we refer to the surveys by Iori and Martello (2010), Schmid et al. (2013) and
Vidal et al. (2013).

The works that, in our opinion, most resemble ours are Alonso et al. (2016) and Ranck
Janior et al. (2019), which, however, do not consider families nor visibility and contiguity
constraints. Ranck Junior et al. (2019) addressed a real problem of a beverage company for
packing boxes into a multi-compartment container and delivering over a predefined route,
meeting the practical constraints of orientation, stability, load-bearing strength, and load
balancing. The proposed heuristic is a hybrid method to create a solution based on layers.
These are created via the First Fit and Best Fit heuristics; next, to generate a final solution, a
mathematical model is solved, meeting the delivery constraints over the boxes. An iterated
local search is carried out over individual layers as an improvement phase, in an attempt to
generate new box dispositions.

Alonso et al. (2016) considered practical constraints through a real example originating
from a logistics company required to load products into pallets (pallet building) and then load
the created pallets into trucks (truck loading), by considering several practical constraints.
For the pallet building, they incorporated orientation, support, priority, and stackability con-
straints. Regarding the truck loading, they adopted restrictions due to priority among pallets,
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stability, and stackability. They proposed a GRASP algorithm using a constructive phase, a
randomized strategy to diversify the solutions, and an improvement phase. The efficiency of
their GRASP was analyzed by comparing it with lower bounding procedures. The study was
later extended in Alonso et al. (2019, 2017), who developed mathematical models for the
case of multiple container loading, addressing several additional practical constraints such
as vertical and horizontal stability, multi-drop, and load balance. A further extension was
proposed by Alonso et al. (2020), which studied the advantages of using a metaheuristic
algorithm when comparing to an integer programming formulation.

3 Problem description

We are given a set R of identical pallets. Each pallet has a two-dimensional loading surface
of width W e Z% and length L e Z*, which can be used to load items up to a maximum
height H € Z% . We are also given a set I = {1,2, ..., n} of 3D rectangular item types,
where each item type i € I contains b' identical items, each having width w; € Z7% , length
l; € Z%, and height h; € Z* , such that w; < W, [; < L, and h; < H. When loading the
items, 90-degree rotations are allowed.

In addition to item type, the concept of family is also essential to describe the PBP. Type
only refers to a specific characteristic, while family is a more general concept, covering at
least one characteristic, e.g., geometric dimensions, material type, purpose of use, and so
on. More in detail, item types are partitioned into a set F' of families as follows. Each item
type i belongs to a given family f € F, which, in the real instances we have addressed, is
defined as a set of item types having similar height and weight. Note, however, that in other
applications, families could also be defined differently, e.g., each family could be made up
of products of the same customer.

Items can be used to form layers. Each layer is a 2D packing of items whose total width
does not exceed W, and whose total length does not exceed L. When building a 2D packing,
we suppose a layer occupies the positive quadrant of the Cartesian system, with width parallel
to the x-axis, length parallel to the y-axis, and bottom-left corner located in the origin of
the axes, i.e., we refer to the point (0,0) as the reference point of a layer. When packing an
item j in a layer, we refer to the reference point of j as its bottom-left vertex (x1;, y1;).
The three other item vertices can be directly determined as (x2;, y1;), (X1}, ¥2;), (X2}, ¥2;),
where x2; = x1; +w; and yp; = y1; +/;. If item j is rotated, then width and length of the
item must be switched. Regarding the composition of the layers, we consider three types of
layers:

— single-item layers are formed by a unique type of items;

— single-family layers are formed by different item types, but all belonging to the same
family;

— residual layers are formed by a combination of items of different families or by items
belonging to the same family in case these do not cover a minimum predefined area of
the loading surface (see the fill factor constraint described below). A pallet can contain
at most one residual layer, which has to be placed on top of all other layers.

About this classification, we remark that both single-item and single-family layers are
required to meet a so called fill factor constraint, i.e., items on these layers should cover
a minimum occupation area (see below for a formal description). Moreover, as previously
mentioned, items belonging to the same family are required to have similar heights. Both
requirements aim at guaranteeing that single-item and single-family layers can be used ina 3D
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packing to support other layers that are packed on top of them. Note that these requirements
are not imposed for residual layers.

Similar to all packing problems, items cannot overlap. To this aim, we apply the Separating
Axis theorem (see, e.g., Gottschalk (1996)) to find a feasible position for each item inside
a layer. This theorem is applied to general shapes and states that two convex polytopes are
disjoint if and only if there is an orthogonal axis, the separating axis, which separates either
faces or edges of the two polytopes. Applying this theorem to our purpose, two rectangles
do not overlap if and only if we can draw a straight horizontal line or straight vertical line or
both between them.

Let us call a group a set of items having the same item type and being loaded in the same
layer. Besides the overlap constraint, packings of items in a layer should fulfill two opera-
tional constraints that concern groups and are aimed at easing loading/unloading operations
when the pallet is composed/delivered. These constraints are named contiguity and visibility
constraints, and are defined as follows:

— contiguity: given two items of the same group, we introduce a maximum distance that
can separate the two items in order to consider them as contiguous. Let G C [ be a
generic subset of item types packed into a layer, we define parameter £ as

0 <& < minjeg(w;, [;),

i.e., £ lies in the interval between O and the smallest edge length among all items in
G. This way, two items j, g selected from this layer are considered as contiguous if
the smallest distance between the edges of j and the edges of g is strictly lower than
&. Roughly speaking, we guarantee that no other item can fit between j and g. The
contiguity relation can be modeled by the overlapping relation. Indeed, we can view
contiguity between two items as an overlap between the two items if their sizes are
augmented by % in each direction. Figure 1 illustrates this fact, considering the items j
and ¢ when the parameter & is fixed to the value min;cg (w;, /;). The notion of contiguity
between items is employed to define the contiguity constraint for items of a given type i
over a generic layer. Such constraint is met if, for each type i € G, any item of type i is
contiguous to at least another item of the same type (of course, provided that the number
of items of that type is larger than one) and, moreover, there are no separated sub-groups
of items of type i (i.e., subgroups whose distance is £ or more). Stated in another way, the
graph whose nodes are the items of type i and whose edges are defined by the contiguity
relation, must be connected. Addressing a practical scenario, this constraint is very useful
when a high number of different products (items) have to be placed in a container (layer).
Indeed, contiguous item groups require less effort and time for load/unload operations.

— visibility: similarly to what we stated for the contiguity, we say that a group is visible
from outside if, for at least one item in that group, the distance between its edges and
one of the borders of the layer is strictly lower than &. In the same line, this constraint
is very useful in a practical scenario to reduce the unload time because it allows to see
from the outside which items compose the layer in a pallet. In general, this constraint
is more commonly applied in small and medium companies due to their greater level of
non robotized work in packaging logistics.

In Fig. 2a, we show an example where the contiguity constraint is not met. The fact that items
of the same type are spread around within the layer slows down both the loading and the
unloading operations. In Fig. 2b, we show an example where the visibility constraint is not
met. In this case, we notice that the set of items lying completely in the interior of the layer
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Fig.1 Contiguity between items based on the overlapping between the same items with sizes enlarged by & /2
in each direction: given the enlarged items j and ¢, they will not be contiguous if their enlarged regions are
either separated (1b) or, at most, share a portion of an edge (1c). Instead, they are contiguous if the enlarged
regions overlap (1d), as it is impossible to insert another item between j and ¢

(a) (b)

Fig.2 Anexample where the contiguity constraint is not met (a) and an example where the visibility constraint
is not met (b)

can only be loaded before and unloaded after the other items, thus forcing a precedence in
the order with which the items are loaded and unloaded.

Considering layers in a pallet, the height of each layer corresponds to the height of the
highest item in the layer (recall that in single-family layers the heights of the items are quite
similar). The height cannot exceed H. Moreover, we impose two additional conditions:
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Stackability 1 —_,

Stackability 3 —~s { %

)
Stackability 5 — '“ll|l|ll|l >
Stackability 7 ”
Stackability 9

Fig.3 Graphical illustration of the stackability constraint

— astackability constraint imposes that resistant items cannot be on top of fragile ones. For
a layer f with a set of items g, its stackability o is set equal to the largest stackability
value among all items in ¢. Layer f cannot be put below layer g if py < p, (see Fig. 3).

— alayer can be used to support other layers only if its total area loaded with items reaches
a minimum fraction « of the total loading surface W L. Parameter 0 < o < 1 is called
fill-factor. A layer with a loaded area lower than « W L can still be used to build a pallet
but can only be the topmost layer. We call this the fill factor constraint. The choice of
the parameter « will be commented in Sect. 6.

‘We note that the stackability constraint above introduces a simplification of the real weight
that an item has to bear in a load. The simplification is widely adopted in the literature as
it works well in practice, see, e.g., Bortfeldt and Wischer (2013). For a more elaborate
formulation of load-bearing constraints, we refer, e.g., to de Queiroz and Miyazawa (2013,
2014).

The PBP that we face aims to load all items into the minimum number of pallets by
ensuring that the following constraints are satisfied:

— all items are packed in layers by satisfying contiguity and visibility constraints;

— at most one residual layer can be used per pallet, and, in such a case, it is placed at the
top of the pallet;

— single-item layers can be used to support any type of layers on top of them, as well as
single-family layers can be used to support single-family and residual layers, as long as
stackability and fill-factor constraints are satisfied;

— the total height of the layers in any pallet does not exceed H.

Figure 4 shows a toy instance of the described problem with a single pallet. Figure 4a
represents family 1 with six item types. Figure 4b represents family 2 with one item type.
Figure 4c represents family 3 with two item types. Figure 4d represents the pallet. First, layers
are created as shown in Fig. 4e with, from top to bottom, a residual, four single-family and
two single-item layers, respectively; next, the layers are packed inside the pallet for building
the final solution as displayed in Fig. 4f.

4 A MILP formulation

While a mathematical programming model for the whole problem would be possible, its
dimension would be quite large and impossible to solve within reasonable computing times.
For this reason, we define two separate models, one for the creation of single layers from a
selected set of items, and one for the creation of pallets once the layers are given.
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Fig.4 PBP toy instance

4.1 MILP formulation to create layers

Let G be the set of items that can be inserted into a given layer. Let m be the number of
different item types in G and, for each item type i, let ' be the number of items of type i in
G. The proposed mathematical model finds a feasible disposition for items in G by meeting

the following constraints.

Non overlap. Let us define g = {(i, p, j, q)

4 ip

Zu=1 Ojqu 21

xgq —xij <wda —o'jl;l)
xéj —x]pq <w{a- olj’;z)
b, =y LA =0}

i P ip

)éj —Yig = L(1— qu4)

xéi = x{j + (- r;)wi +r;li
yéj = y’ij +r§wi + (1 —r;-)li

i i
Ofx]j§x2j§W

ti,p=1,....m,j = 1,...,bi,q =
1,...,bP,i > pv (i =pAj> q)}. The problem of determining if the items of the set G
can fit into a layer without overlapping can be modeled as follows:

(i,p.j.q) € g
(i,p.j.q) € ®g
(i,p.j.q) € Pg
(i,p.j.q) € Pg
@, p,j.q) € Pg

i=1,....m j=1,...
i=1,....m j=1,...

i=1,....m j=1,...

(1
)
3)
4)
©)
b (6)
b @)
b ®)
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0=y, <y, <L i=1...mj=1..0b ©)
ri € 0,1} i=1,....m j=1,...b (10)
ol (0. 1) G.pj.gedgu=1,...4 (1)

For item j of type i, variables xi j and y’l' ; represent the minimum x and y coordinates,
respectively, while xé ; and yé ; represent the maximum x and y coordinates. The binary
variable r; defines the orientation for item j of type i. It is equal to 1 when a 90-degree

rotation is applied to the item, O otherwise. The binary variable olj’;u is equal to 1 when there
is a separation axis between item j of type i and item g of type p, more precisely, a vertical
separation axis for u € {1, 2}, and a horizontal separation axis for u € {3, 4}. Constraints
(1) ensure that between items j and ¢ there is at least one separating axis. Constraints (2)
ensure that there is a vertical separating axis between item j and item ¢ if the binary variable

'p] is equal to 1 (in this case j lies at the right of ¢). Similarly for constraints (3) (in this
case j lies at the left of ¢). Constraints (4) ensure that there is a horizontal separating axis
between item j and item ¢ if the binary variable 0 a3 is equal to 1 (in this case j lies above
q). Similarly for constraints (5) (in this case j hes below g). Constraints (6) and (7) define
the x, and y, coordinates of the items, taking into account their orientation. Constraints (8)
and (9) ensure that the items lie inside the layer.

Grouping items. In order to meet the contiguity constraints, we first need to model the
contiguity relation between items of the same type i. As previously seen in Sect. 3, contiguity
is modeled as an overlap between enlarged items (enlarged by £ /2 in each direction). Thus,
we can model contiguity by turning the non overlapping constraints (2)-(5) into overlapping
constraints between the enlarged items. More precisely, for two items j and ¢ of the same
type, contiguity is modeled as follows:

The binary variable d iq models contiguity since it can be equal to 1 only when there is an
overlap between the enlarged items j and g. Now, let tg = {(i, j,q) : i =1,...,m,1 <
g < j < b'}. The problem of determining if item j is contiguous to item g of the same type
i can be modeled as follows:

xXhy—Xjj+E=-W(1—-d) (i,j.q9) €1g (12)
x—xl HE=-WA-d) (i,j,q) €1 (13)
yéq_y{j+gz—L (l—a_lj-q) (@, j.q) €1g (14)
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(a) (b)

Fig.5 Special case for the contiguity constraint: the contiguity constraint is always met when considering the
group of light and dark items (a and b ). For what concerns the light items, items 1 and 2 are contiguous and
so are items 2 and 3, so that the contiguity relation defines a connected graph. The same holds for the dark
items. However, in practice, when considering b, we notice that the group of dark items creates a physical
barrier between the light ones

Vi = VigtE=—L(1—di) (i.j.q) €1g (15)
‘ziq S {03 l} (lv jv ‘I) S Tg. (16)

Remark 1 The notion of contiguity that we have introduced is a mild one. It may happen that
items are contiguous according to this definition but there is no visible space between them.
A simple example is detailed in Fig. 5.

The adoption of a suitable objective function which tends to group items of the same type
makes unlikely the situation displayed in Fig. 5. However, we can also deal with this by
strengthening the conditions under which contiguity holds. To this end, in addition to the
previous constraints (12)-(16), we may also add the following ones, where ¥; = min{w;, h;},
i.e., ¥; is the length of the shortest edge for items of type i:

d;q—dqu+d§q2+d§'q3 +d§q4_2 (i, J,q) € g,
xéq_xijz 1/; —(W+ﬂ) (r— d;ql) (i,j,q) €1g
xh;—xj, = 1'/; —(W+ﬂ) (1 —df) (i,j,q) €1g
Vag =i = ﬁ (L+ﬂ) (1—diy) (i.j.q) €t
V5= Vg = ﬁ (L+ﬁ) (1 —dj,) (i,j.q) €1g
g €10, 1) (i.j.q)etgu=1,....4

According to these constraints, contiguity between items j and ¢ occurs or, equivalently, d ; q

can be equal to 1, if and only if three of the binary variables d i =1, ...,4, areequal to
1. In this case the projections along the x-axis (or along the y-axis) of the horizontal sides (if
d’ g1 = d 2= =1)or vertlcal sides (1fd 3= d 4= = 1) of items j and ¢ share a segment of

length at least equal to %L, For instance, ifd:. = 1foru = 1, 2, 3, then the upper horizontal
side of an item and the lower horizontal 51de of the other item are at distance lower than &
in view of constraints (12)- (16) and, moreover, their projections along the x-axis share a
segment of length at least 5-. Note that two out of four of these binary variables, namely,
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Fig.6 Contiguous items by item type: a graphic and b graph representation

one for the horizontal sides (1 € {1, 2}) and one for the vertical sides (u € {3, 4}), can
always be set equal to 1. We point out that we do not include the last set of constraints in our
computational experiments. Their addition is advised if the notion of contiguity needs to be
strengthened.

Unique connected component. We can associate an oriented graph F; = (V;, A;) to each
item type i as follows, where J; denotes the set of all items of type i (note that |J;| = b"):

— anode j is associated to each item in J;; one of these nodes (it does not matter which
one) is selected as a representative for all items of type i, and we denote it with index 1;

— two additional nodes are introduced, a source S and a destination D;

— an arc from S to each node in J; is introduced and its capacity is fixed to 1;

— asingle oriented arc from node 1 to node D with infinite capacity is introduced;

— given (i, j,q) € 1g,q # 1, an arc between node j € J; and node ¢ € J; and an arc
between node ¢ € J; and node j € J; are introduced both with capacity &' - L?; - Note,

in particular, that if items j and g are not contiguous, i.e., if d ; = 0, then the capacity
of the arcs is 0. In fact, arcs exiting from node 1 can be omitted.

Figures 6-8 illustrate the notions introduced above. In all cases the dotted and continuous
arcs represent arcs with null capacity and with strictly positive capacity, respectively. For two
distinct item types, Figure 6 illustrates the two graphs induced by the contiguity relations
between the items, while the complete graph is represented in Fig. 7. Given graph F;, whose
arcs have capacity depending on the contiguity variables cz; P the contiguity constraint for
items of type i is met if the restriction of the graph to the nodes in J;, i.e., nodes corresponding
to items of type i, is connected. This is equivalent to require that the maximum flow between
node S and node D, which cannot be larger than &', is exactly equal to b'.

Figure 7 shows the max-flow problem for the item disposition presented in Fig. 6a. In this
case the contiguity constraint is met. On the other hand, Figure 8 shows a case where the
contiguity constraint is not met.

Thus, we propose the following constraints to guarantee contiguity between items of the
same type, based on the above max-flow formulation:

fiy =0 (i,j.q) €tg (17)
=0 (i), 9) €tG.q #1 (18)
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Fig.7 Max-flow representation: light items 2 and 3 are not contiguous, but both are contiguous to light item
1, maintaining the overall connection of this group. The same holds for the dark items

(a) (b)

Fig. 8 Item group not fulfilling the contiguity constraint: for the item disposition in 8a, the max-flow in 8b
shows that only items 1 and 2 are contiguous, resulting in a flow to D equal to 2, that is different from the
number of items (3 in this case)

jq = djg V' (i,j.q) €t (19)

foj =djg - (i.j.q) €Tg.q # 1 (20)

féjfl i=1,...,mj=1,...,b @21

féjio i:l,...,m,jzl,_“’bi (22)
b . b ) . ) ' i '

Zq=1 Jl'q:Zqzz z;j+f_§‘j i=1,...,m,j=2,...,b',q # ] (23)
: b X . )

fllD:ijzf;1+f§1 i=1,...,m (24)

fliD=bi i=1,....,m (25)

Variable f ]’ 4 can be strictly positive only when j and ¢ of the same type i are contiguous,
otherwise its value is equal to 0. Constraints (17) and (18) ensure nonnegativity of the flow
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along arcs between nodes in J;; (19) and (20) are the capacity constraints for the same
arcs (note again that for arcs between nodes such that d° = 0 the capacity is equal to 0);
constraints (21) and (22) impose nonnegativity of the flow and the capacity, respectively,
for arcs between node S and nodes in J;; constraints (23) ensure flow conservation for all
nodes in J; except node 1; constraints (24) ensure flow conservation for node 1, and, thus,
also defines the overall flow received by node D; finally, constraints (25) impose that the
maximum flow between S and D is b', which ensures that items in J; form a connected
component and, thus, that the contiguity constraint for items of type i is met.

Itemvisibility. Tomeet the visibility constraint, each group of items of type i € G musthave
at least one item visible from the border. In simple terms, we apply the idea of grouping items
considering the borders as generic items (top, bottom, right, left) that must be contiguous to
a specific item of the group i (without loss of generality, we set this item equal to 1). More
precisely, visibility is modeled by imposing the contiguity between item 1 of the given type,
enlarged by % in all directions, and the borders of the layer, all moved by % towards the
interior of the layer. That leads to the following constraints to model the group visibility:

Zizlvfdzl i=1,....m (26)
xjp—&<W(d-vp i=1,...,m 27)
Xy HE= Wb i=1,....m (28)
yii—&<L1—0vh) i=1,....m (29)
Yo +& =L i=1,....,m (30)
vl € {0, 1} i=1,....mu=1,...,4 31

The binary variable v', is equal to 1 when item 1 of type i is contiguous (i..e, within distance
&) to one of the borders of the layer. In particular, taking into account constraints (27)-(30),
v’i = 1 ensures contiguity to the leftmost vertical side of the layer, vé = 1 ensures contiguity
to the rightmost vertical side, v; = 1 ensures contiguity to the lowermost horizontal side,
vy = 1 ensures contiguity to the uppermost horizontal side. Constraint (26) ensure that item
1 of type i is within distance & from at least one of the sides of the layer.

Bounding box. Inthe proposed approach, for a given set of items, we would like to establish
whether there exists a way to place them over the layer so that all constraints are met. Under
this respect the problem is a feasibility one. However, it is convenient to introduce an objective
function which should favor compact arrangements for items of the same type. Here we use
the concept of Bounding Box (rectangle convex hull) to group items of the same type.
Therefore, we propose a mathematical model to minimize the sum of the (semi)perimeters of
the bounding boxes that cover all items of each item type i € G inside the layer. The overall
model to place items over the layer is the following:

s m i i i i

Minimize ) " [(X3 = X]) + (¥; = Y]] (32)

subject to X’i§xij i=1....omj=1..0b (33)
Y{ <yl i=1....mj=1..0 (34
X} = xb; i=1....mj=1.."b (35
Yl =y i=1....mj=1.."b (36
1) = GD.
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Variables X ‘1 and Y ll represent, respectively, the minimum x and y bounding box coordinates
foritems of type i, while X/, and Y, represent the maximum x and y bounding box coordinates
when considering item group of type i. Constraints (33)-(36) define the extreme points of
a bounding box enclosing all items of type i, while the objective function is the sum of
the (semi)perimeters of the bounding boxes for all the item types inside the layer, to be
minimized.

As a final remark, we point out once again that the model is applied to a fixed set of items.
Once the model has been solved, if a solution has been detected, then a new item is added to
the set and the new model is solved. Instead, if no feasible solution is detected, the layer is
declared complete and a new one is started.

4.2 Integer formulation for building pallets

The second mathematical model deals with the insertion of the generated layers into pallets in
such a way that the number of pallets is minimized. In simple words, this mathematical model
“sorts” the layers in pallets as described in Sect. 3: a pallet is made up by single-item layers
in its base (if any), single-family layers in the middle (if any), and, possibly, by a residual
layer in its top part. This practical constraint is defined to simplify the problem avoiding the
addition of the stability constraint, since this structure generates more stable pallets when
compared to the use of shuffled layer types.

For the sake of clarity, we present the following notation for data of the mathematical
model: P stands for the set of pallets; R stands for the set of residual layers; / stands for the
set of single-item layers; F stands for the set of single-family layers; M = IUF; L =RUM;
H stands for the height of the pallet; &, stands for the height of layer ¢; and S; stands for the
stackability of layer . We make use of two families of binary variables:

X;p :itisequal to 1 if layer ¢t € L is packed in pallet p € P, 0 otherwise;
yp :itis equal to 1 if pallet p € P is used, O otherwise.

Then, we obtain the following mathematical model:

Minimize )y, (37)
peP
subject to Zh,x,p < Hy, peP (38)
telL
Y oxy=1 relL (39)
peP
Zx,,, <y peEP (40)
teR
Z Xpp < IMI(L = xpp) teR, peP 41)
r'eM:S, <S;
o xep I = xy) teF, peP (42)
I/E[ZS,/<S)‘
xip €10, 1} telL, peP (43)
yp €10,1} peP. (44)
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The objective function (37) aims at minimizing the number of used pallets. Constraints (38)
ensure that the sum of the heights of all layers in p is not higher than H if pallet p is used.
Constraints (39) ensure that each layer is placed in exactly one pallet. Constraints (40) ensure
that at most a residual layer ¢ € R can be packed in a pallet p € P (namely, at the top of the
pallet). Constraints (41) ensure that, for each layer ¢ € R, the layers ¢’ € M with stackability
lower than ¢ cannot be placed on the same pallet with # (recall that ¢ is placed on top of all
other layers and, thus, its stackability cannot be larger than that of the other layers in the
pallet). Constraints (42) are similar to the previous ones, but we have the correspondence
between single-item and single-family layers in the pallet, by requiring that all stackability
values of the single-item layers are greater than the stackability values of the single-family
layers (since the former are always placed below the latter). Note that stackability constraints
should also be imposed between each pair of single-item or single-family layers. However,
once we have established which single-item (single-family) layers are placed on the pallet,
we only need to order them according to their stackability value. Constraints (43) and (44)
are binary conditions for the variables.

As described in Sect. 3, we highlight that the height of each layer is the height of the
highest item in the layer. Similarly, the stackability of a layer is computed as the maximum
stackability value among the items in the layer.

5 Solution algorithms

In this section, we present the heuristic algorithms that we developed to solve the PBP. We first
adopted a constructive heuristic (Section 5.1), then extended it to obtain a reactive GRASP
metaheuristic (Sect. 5.2), and finally embedded the mathematical models of Sect. 4, obtaining
a so-called matheuristic (Section 5.3). All these methods are based on the decomposition of
the PBP into its two main components, first layer creation and then pallet building, already
adopted in Sect. 4.

5.1 Constructive heuristic

The constructive heuristic that we developed is named Modified Extreme Points Heuristic
(EPMH). It has been presented in detail in our preliminary work lori et al. (2020b). We report
here its main components to make the paper self-contained and because they are at the basis
of the next GRASP algorithm.

Creating layers

Layer creation and classification. The heuristic tries in a first phase to create as many
single-item and single-family layers as possible. Then, in a second phase, it takes care of
creating the residual layers. This is because at most one residual layer can be inserted in a
pallet, and so their number should be as small as possible.

In the first phase, families and their item types are sorted by a specific criterion. Using
this order, the heuristic tries to generate single-item layers by packing items one at a time
according to the concept of modified extreme points that we describe below. If the packing
obtained with a single item type meets the fill-factor constraint, but also has free space to
potentially accommodate more items, then the heuristic tries to add more items of the same
family to generate a single-family layer. Once no more item fits the residual space, the layer is
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closed. When, instead, the current packing of a layer does not fulfill the minimum fill-factor,
then the layer is destroyed and all items are inserted in a residual item list. As speed-up
technique, when the sum of the areas of the items of a specific family is not enough to meet
the fill-factor constraint, then the items are directly inserted in the residual item list.

At the end of the first phase, no more single-item and single-family layers can be built,
so the heuristic focuses on the items in the residual list. The same criterion used in the first
phase is also used in this second phase to select items one at a time and fill a layer as much
as possible. The process is repeated, layer after layer, until all items have been packed in
residual layers.

Item positioning. To pack an item in a layer, we propose an adaptation of the Extreme
Points Heuristic (EPH) presented by Crainic et al. (2008). Originally, EPH was built for 3D
packings, but we restrict here the discussion to the 2D case. EPH works with the concept of
extreme points. An extreme point e is a point in the 2D space where an item can be packed
by taking into account the partial solution built so far. For the sake of clarity, packing an item
in an extreme point e means packing its bottom-left corner (reference point) in e.

In EPH, the items are packed one at a time in the layer, by considering a set E of available
extreme points initialized with the origin point (0, 0). Then, each time a new item is packed,
E is updated by removing the point used for the packing and possibly inserting new extreme
points. These new extreme points are obtained by computing the projection of the last item
packed over the partial packing solution under construction, considering the axes x and y. For
the x-axis, EPH horizontally projects the top edge of the item to its left, until the projection
touches a previously packed item or the left border of the layer (i.e., the y-axis). This is the
first extreme point that is possibly created. For the y-axis, instead, EPH considers the right
edge of the item and vertically projects it towards the bottom until the projection reaches a
previously packed item or the bottom border of the layer (i.e., the x-axis). This is the second
extreme point possibly created. These two points are added to E if they were not already
included in it. Figure 9a depicts an example with a set E formed by white and black points.
The white point is selected for packing an item of type k and is thus removed from E. The
dark gray points are the new extreme points added to E after the packing.

Note that, besides the projections from the last item packed, it is mandatory to verify
all projections from previously packed items on the last item. This step, that we name past
projections, is needed to find new extreme points not yet available. We execute it right after
having computed the projections from the last item packed.

The original EPH solves a pure 2D packing problem, so we need to include a set of changes
to be able to solve the more complex PBP with visibility and contiguity constraints. The first
modification we apply consists in increasing the search space inside a layer. The EPH creates
only two new extreme points at a time, whereas visibility and contiguity constraints narrow
the search space. As a consequence, a layer could be closed even when its occupation is low
because E does not contain any feasible extreme point. Figure 9b shows an example where
this situation occurs because none of the current feasible extreme points fulfills the contiguity
constraints.

To overcome this limitation, we included some new extreme points, considering two cases
for contiguity and visibility. In the first case, the extreme points are included around the last
item packed to allow the contiguity with the next items of the same type. Basically, four
new points are added: the item top-left and bottom-right corners allow the top and right
connections, respectively, and the points on the left and below the item enable the left and
bottom connections, respectively. Figure 9c shows the new extreme points.
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(a) (b)

(o) @

Fig.9 Extreme points: (9a) Black and white points form the current set E; the white point is chosen to pack
k and is then removed from E; dark gray points are added to E after the packing; (9b) Case where EPH
generates only extreme points that are infeasible for the PBP with visibility and contiguity constraints; (9c)
New extreme points created for contiguity: after packing & in the white point, four extreme points (represented
by dark gray points) are included in E; (9d) New extreme points created for visibility: new dark gray points
that meet visibility constraints are added to E

Extreme points regarding the visibility case are included close to the top and right layer
borders, when the current item has a different type from the previously packed item and there
is no point in E that allows the current item to meet all constraints. In this case, two new
points are added: the first feasible point that meets the contiguity to the top layer border,
proceeding from right to the left; and the first feasible point that meets the contiguity to the
right layer border, proceeding from top to bottom. Figure 9d shows the new extreme points
for this case.

The second modification is related to performance. Current extreme points are directly
linked to visibility and contiguity constraints. These points can be either feasible or infeasible
for the current item according to its type and to the partial solution (because of contiguity
and visibility). Thus, we work with two extreme points sets: feasible extreme points, E r, and
infeasible extreme points, E;, representing, respectively, points that meet or do not meet the
visibility and contiguity constraints for the current item. Therefore, before adding an item to
the partial solution, we first update these two sets, and only after this is done we check if the
item overlaps with previously packed items. Note that these two sets are related to the current
configuration, and after the addition of a new item, infeasible points may become feasible
and vice-versa. The benefit of using these sets is that we avoid checking the overlapping
constraint for all extreme points. An example of sets £y and E; is provided in Fig. 10.
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Fig. 10 Partial solutions and their feasible (black) and infeasible (light gray) extreme points for the next item
of type k: representation of the extreme points that meet visibility (10a) and contiguity (10b) constraints

Evaluation Function.  Given the current item and its set E f, the point e € Ey that results
in the best packing has to be chosen. For this purpose, the algorithm uses a specific fitness
evaluation function that evaluates how good a packing is. The algorithm chooses the point
e € E s for which the resulting bounding box area is a minimum. When the current item is the
first one in its group (recall a group is a subset of items of the same type packed in the same
layer), its bounding box is calculated considering all items of the partial packing in the layer.
When, instead, there is at least a previously packed item of the same group, then the fitness is
calculated by considering only the items of this specific group. The use of the bounding box
as evaluation function is motivated by extensive experiments in lori et al. (2020b), where we
tested several other functions (whose list is provided in the next section).

Building pallets

Once all layers have been generated, we need to stack them in the minimum number of pallets.
To this aim, we developed a simple greedy constructive heuristic that works as follows. Recall
the height of a layer is calculated as the height of the highest item in the layer, and, similarly,
the stackability of a layer is computed as the maximum stackability among the items in the
layer. Single-item, single-family and residual groups of layers are sorted according to non
increasing stackability, breaking ties by non increasing height, and this order is maintained
throughout all the algorithm.

As residual layers need to be packed in separated pallets, the heuristic starts by choosing
the first residual layer, if any, in the order, and uses it to initialize a pallet. Then, it fills the
current pallet with single-item layers, one at a time in the order above, by fulfilling stackability
and maximum height constraints. If the current pallet has still unused height, but no more
single-item layer can enter it, the heuristic attempts filling the pallet with single-family layers.
In this case too, the layers are scanned according to the above order. The process is repeated
until no more layer can enter the pallet. In such case the pallet is closed and a new pallet
is considered. The process continues until all layers are packed into pallets, thus creating a
feasible solution.

5.2 Reactive GRASP metaheuristic

The Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic originally
developed by Feo and Resende (1989, 1995). Roughly speaking, the standard GRASP is an
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iterative technique that mixes greedy and randomized processes with local search through a
two-phase approach: first, a random greedy procedure is used to explore the solution space
in a construction phase; then, local search procedures are invoked to improve solutions.
Considering alternative techniques for the GRASP construction phase (see Resende and
Ribeiro (2019)), we highlight and use the so-called reactive method, firstly proposed by
Prais and Ribeiro (2000). Basically, this is a probabilistic method that adapts the values taken
by certain elements according to the quality of the solutions previously found.

The Reactive GRASP with Extreme Points (GREP) that we developed in our preliminary
work Jori et al. (2020a) for the PBP is described in Algorithm 1. First, the required variables
are initialized (line 2) and the item type set is sorted (line 3). Then, as long as the stopping
condition is not met (i.e., a maximum execution time is not reached, line 4), the algorithm
selects a fitness evaluation function (line 5) to construct a feasible solution to the problem
(line 8). The solution is evaluated (line 9) according to a fitness function, to be maximized. We
will use the fitness function (45), discussed later on in Sect. 5.2.3. The fitness of the solution
is compared to the current reference value U (line 10): if the solution fitness is higher than
U, then the algorithm tries to improve the solution by local search (line 12); otherwise, the
local search is not performed and the reference value is decreased after a prefixed number of
iterations without an improvement (lines 17-19). Lines 20-29 refer to the reactive method:
the best (line 20), worst (line 23) and mean (lines 25-26) fitness values are possibly updated;
next, after a prefixed number of iterations (line 27), all fitness values are re-evaluated (line
28) and the probability functions of the reactive method (which are used in the constructive
phase, as discussed next) are updated (line 29).
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Algorithm 1: REACTIVE GRASP wiTH EXTREME POINTS (GREP)

Input : I:item type set; L: pallet set; D: criteria set for selecting extreme points;
order_family, order_type: criteria to sort families and item types; e:
randomness percentage; o: reactive parameter; 3: upper bound decrease
percentage; ¢: number of iterations to update probabilities; max,:
maximum number of rejected solutions.

Output: Solpess: best solution found;

1 begin

2 INITIALIZATION (numIter, Vpest, Vworst, U, sumg, meang, K, ng, Pi);
3 S <« SORTITEMS(I, order_family, order_type);
a while NOTSTOPCONDITION (time) do
5 d < CHOOSECRITERION(D, Py);
6 ng =ng + 1;
7 numlter = numliter + 1;
8 Sol + CONSTRUCTIVE(S, L, d, €);
9 V 4+ EVALUATESOLUTION(Sol);
10 if V> U then
11 k=0
12 Sol < IMPROVEMENT(S, L, d, €);
13 V < EVALUATESOLUTION(Sol);
14 | U«V;
15 else
16 K<+ K+ 1;
17 if k > max, then
18 U + BU;
19 Kk =0;
20 if V> Vit then
21 ‘/best — V;
22 | Solpest + Sol;
23 if V < Viyorst then
24 L Vworst < V;
25 sumg = sumg + V;
_ Sumg .,
26 meang = =45
27 if mod(numlIter,¢) =0 then
meang—Vworst .
28 evalg + (7‘/1)6.;t7vworst )¢, Vde D;
evalyg .
29 Py Svcplevaly) V d € D;
30 | return Solpest;

In the remaining part of this section, we give full details on the procedures invoked by
GREP and on the way parameters are used and updated.

5.2.1 Constructive phase

In this phase, we select one item at a time and pack it in an extreme point (if any), until a
layer has been created. We reiterate until all items have been packed into layers, and then
stack the layers into pallets.

Creating Layers. The choice of a new element is flexible in GRASP algorithms, since not
necessarily the current best element, with respect to a given criterion, is selected, but rather
a restricted candidate list of items is considered and the next element is randomly selected
from such list. This concept is easily adapted to the deterministic method of selecting the next
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item described for the layer creation heuristic (Sect. 5.1) and leads to a greedy randomized
heuristic that works as follows.

First, the algorithm establishes a specific order for the families and item types, assigning
them to the data structure S. Then, it defines the selectable range based on a parameter €. Let
Fs be the sorted set of families representing the order of the families in S, and Gy C S the
sorted set of item types s € S representing the order of the item types of a family f € Fg. A
family f is selected randomly among the first €| Fg| families, and then an item type s € G
is selected among the first €|G 7| item types.

Once an item of type s € S has been selected for packing, the heuristic determines in
which extreme point it should be placed. This is again obtained by performing an adaptation
in the greedy heuristic of Sect. 5.1 that takes into consideration €. Let T be the set of all
extreme points of E s for the item type s. Each extreme point in 7 is evaluated according to
a fitness function d. Then, the heuristic sorts all points in 7" by decreasing value of fitness,
and randomly selects the extreme point where to pack the current item among the first €| 7|
extreme points of 7.

In this process, a key role is played by the fitness functions used to evaluate the quality of
the assignment of an item to an extreme point. The reactive method that we adopted serves
indeed to this aim. We use an overall set D, which is composed by different fitness evaluation
functions, namely: Lower x; Lower y; Bounding Box; Bounding Square; Simple Contacts;
Complex Contacts; Distance Sum; Center of Gravity (see lori et al. (2020b) for details).

The reactive method works as follows: given the fitness evaluation function set D and the
probability set Py to choose in the current iteration the function d € D associated with the
item type s € S, the method initializes P; to 1/|D| and updates these values after a given
number ¥ of iterations has been elapsed, considering the quality of the generated solutions.
In particular, probabilities P, are updated at line 29 of Algorithm 1. Note that the better the
partial solution found by d is, the greater becomes the probability P, to select d in the next
iterations.

The rest of the heuristic works exactly as defined previously (Sect. 5.1), and the algorithm
continues until all items have been packed into layers.

Building Pallets.  After the layers have been created, GREP stacks them in the minimum
number of pallets by using the constructive heuristic for pallet building presented in Sect. 5.1.

5.2.2 Improvement phase

The improvement phase is based on a local search that tries to improve the quality of the
solution generated in the constructive phase by applying small changes to it. This is not
always an easy task, since in view of the hard PBP constraints, any change in the solution
may create infeasibility. For example, in the PBP it is difficult to change the position of
individual items without violating contiguity and visibility constraints. Therefore, we opted
to generate new solutions from scratch, by applying the small local search changes directly
to the initial order of S provided to the constructive heuristic.

In detail, we first randomly select two families f, and f; (if any) and switch the order of
their items in S. Then, for each family f € F, we randomly select two item types i, and iy
(if any) in f and switch the order of their items in S. These changes are applied according
to a first improvement strategy (FIS): considering the original data structure S, a change is
applied as soon as it improves the quality of the solution, otherwise it is disregarded and a new
one is generated, until a maximum number of iterations is reached. It is worth highlighting
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that, if a change does not improve the solution, then the next change is applied to the original
structure S, and not to the modified one.

Despite the improvement phase constitutes an essential part of the GREP, it is not always
carried out, since low-quality starting solutions tend to produce low-quality final solutions.
Thus, as shown at line 10 of Algorithm 1, we consider a threshold U to decide if it is worth
looking for an improvement. The value of U is initialized with the value of the first solution
created. Whenever a new solution has a fitness better than U, the improvement phase is
performed and U is updated.

To avoid stagnation during the process, GREP controls U in the following way (lines 16-
19 of Algorithm 1): if the fitness of a new solution does not reach U, then GREP increases an
iteration counter « that enumerates the number of consecutive solution rejections. Whenever
Kk gets larger than a maximum number of rejected solutions (max, ), U is decreased to SU
(B eR,0 < B < 1)and« is reset to 0. Thus, the algorithm forces the improvement phase
for solutions which are not necessarily the best ones but are of “good enough” quality. We
also highlight that, as soon as a new solution with fitness higher than U is reached, U is set
to this new fitness value and « is reset to O (lines 11 and 14 of Algorithm 1).

5.2.3 Evaluating the fitness function of a solution

A basic strategy to compare solutions is to evaluate them on the basis of the number of pallets
they produce. However, due to the complexity of the PBP with contiguity and visibility con-
straints, taking only this value into account may not be appropriate. Analyzing the structure
of a solution, it is possible to extract more interesting information, and these peculiarities
can help explore the search space. To this regard, let n, be the number of residual layers, n;
the total number of layers, n, the total number of pallets, and f; the average fraction of the
2D occupation of the layers in a solution. Obviously, a good solution is a solution with small
n, and n, values and with large f; value. Thus, GREP calculates the fitness function of a
solution as:

Uresidual + Upallets + fi
3 9

V= (45)

where Vyegidual and vpqijers are logarithmic functions that consider the proportion of, respec-
tively, n, and n,, over n;, being defined as

ny +1
Uresidual = _IOgnl-H m’
1
np+1
Upallets = — log,,,ﬂ ﬁ

All components of the summation in (45) are in the range between 0 and 1, and V is their
average value, which we would like to maximize. The idea behind the use of logarithmic
functions is to perform evaluations that are more sensitive to variations in the numbers 7, of
residual layers and n, of pallets when these numbers are close to 0. To clarify this point, we
can consider Fig. 11. Such figure shows the behavior of v;esi4uq1 as a function of n,, when
considering n; = 70 layers in total. We notice that the logarithmic curve decreases as 7,
increases and has larger derivative at small values of n, (value v as a function of the
number of pallets n,, behaves in a completely similar way).

@ Springer



Annals of Operations Research

Number of residual layers

Fig. 11 Behavior of the values for the logarithmic function which represents the variable v,o5iquq When
considering the increase/decrease in the number of residual layers for a total of 70 layers

5.3 Embedding the mathematical models in the heuristics

We created some variants of the aforementioned heuristics by making use of the mathematical
models of Sect. 4.

For what concerns the creation of the pallets once the layers have been built, we created a
variant of the EPMH heuristic, called EPMH with Mathematical Model (MEPMH), in which
we first attempt to create the pallets through the quick greedy heuristic of Sect. 5.1. Then, we
perform a second attempt in which we create a (hopefully better) solution by using the model
of Sect. 4.2 with a short time limit, as carried out by Iori et al. (2021). Note that this model
is relatively simple and is usually solved within a very short time. However, in some cases it
takes more time and for this reason we imposed a time limit to its solution. To increase the
execution speed of the solver, in the second attempt we set the initial model solution to the
solution found by the heuristic during the first attempt. The main idea of this combination is
to take advantage of the EPMH heuristic in order to create a solution in a very short time and
then, check the possibility of reducing the final number of pallets by using a mathematical
model, which, although more time consuming, usually leads to better solutions. The same
idea has been used in the GREP algorithm of Sect. 5.2, leading to an alternative algorithm that
we call GREP with Mathematical Model (MGREP). In this case, the GRASP metaheuristic
is exploited to find solutions better than those returned by the EPMH heuristic.

For what concerns the creation of the layers, we did not find convenient using the model of
Sect. 4.1 from scratch, as too time consuming, but we opted, instead, to use it to create denser
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layers than the ones produced by the heuristic of Sect. 5.1. In detail, after the heuristic has
created a layer, we attempt to include other items in the layer, one at a time, while preserving
feasibility. In simple terms, we insert in the set of items to be packed by the model a new
item of an item type already contained in the layer: if the model returns a feasible packing,
then we attempt inserting a new item of the same type (if any); if the model does not find a
feasible solution, then we attempt inserting an item of a different type (if any). In a family
layer, the process is executed considering the only family in the layer. For residual layers,
instead, all families and item types are attempted. At each iteration, the model is allowed to
run for a short time limit. The process is iterated until no more item can fit into the current
layer or a maximum overall time limit is reached. We obtained in this way a modified version
of MEPMH, that we call MEPMH Full (EPFULL), and a modified version of MGREDP, that
we call MGREP Full (GREPFULL). These strategies allow to create more compact layers
and to detect better solutions. However, that comes at the cost of larger execution times, since
the mathematical model is complex and its solution time consuming.

6 Computational results

All experiments have been conducted on a Virtual Machine VMware, Intel Xeon CPU
E5-2640 v2 2.00GHz, 16GB RAM, Linux Ubuntu Server 18.04 Operating System. The
algorithms have been implemented in Java and executed using Oracle JDK 11. We used the
solver Gurobi Optimizer 9.1.0 to solve the mathematical models.

6.1 Test instances

For the tests, we adopted the 24 strongly heterogeneous instances originally presented by lori
et al. (2020b). These instances are separated into four groups, each containing six instances,
being characterized by a different number of distinct items. Table 1 summarizes the details of
the instances. Its columns are: ID number of the instance, number of item types (n), number
of families, and total number of items (}_ b'). The instances are of different difficulty. The
larger the numbers of item types, families and items are, the more complex becomes the
instance to be solved. In particular, the most challenging instances are those with more than
50 item types, 15 families, and 700 items. We report the database with the whole set of
instances in https://github.com/silveira-tt/PBP_instances.

For all instances, the minimum required fill factor was set to 55%, and the container
dimensions were set to 1500, 1250, and 1050 for height, width, and length, respectively. We
allowed rotation of 90 degrees of the items. Note that the minimum fill factor value has been
setequal to arelatively small value (55%) since we experimentally observed that larger values
impose stronger constraints on the creation of layers and lead to poorer solutions (for more
details, see Iori et al. (2021)). We also remark that this is just a minimum fill factor value,
but, as we will see in the reported results, the average fill factor of the layers is considerably
larger than such minimum. Of course, a layer with a small fill factor may cause instability if
another layer is posed on the top of it. In this case the occupation of the layer can be increased
by so called filler boxes, which allow to increase the occupation area and, thus, the stability.

We solved the instances by using all the algorithmic variants described in Sect. 5. For each
variant, we carried out a simple test for parametric configuration. When GRASP is applied,
we set € = 0.15, o = 10, max,, = 5, B = 0.98, maximum number of repetitions for FIS
equal to 25 and iy = 500, as described by lori et al. (2020a). For the variant GREPFULL,
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Table 1 Instances settings (from

Tori et al. (2020a)) ID n N. of families b
1 20 4 877
2 12 269
3 23 4 388
4 13 115
5 29 6 438
6 15 2103
7 34 7 698
8 17 1322
9 37 6 300
10 17 449
11 48 9 395
12 18 748
13 59 10 455
14 19 633
15 64 1 658
16 19 683
17 61 10 300
18 19 797
19 75 16 790
20 20 829
21 79 17 855
22 21 944
23 66 13 738
24 19 767

instead, we set the maximum number of repetitions for FIS to 1 and » = 10, due to the
reduced number of iterations when using the mathematical models.

All variants involving GRASP have been run 15 times each, so as to obtain a robust evalu-
ation of the performance. These algorithms use an initial structure S sorted by random order
for families, and a non increasing order of width for item types. The deterministic algorithms
(EPMH, MEPMH and EPFULL) use instead the Bounding Box function to evaluate the cre-
ation of item groups in a layer, as suggested by Iori et al. (2020b), and are run only once.
After preliminary experiments, when considering the variants that use only the model for
pallet creation (MEPMH and MGREP), we set the time limit for the solver to 30 seconds.
When considering the variants that use both models (EPFULL and GREPFULL), we set
the time limit to 1 second for the layer creation model and 3 seconds for the pallet creation
model. Actually, we also tried larger time limits, but the increased computing times were
not compensated by higher quality solutions. When considering GRASP variants, the whole
time for the algorithms was set to 5 minutes, except for GREPFULL, where it was set to 15
minutes.

Due to the large number of tests that we performed, in the following we report only
aggregate results. For the sake of clarity, we separated the results in different tables in which
each row provides average results for a given algorithm on the 360 solutions obtained (15 for
each of the 24 attempted instances) in case of randomized algorithms and 24 solutions (one
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Table 2 Computational results for the proposed algorithms (the best results are highlighted in bold)

Algorithm N.of pallets  N. of layers  Pallet filling (3D) 2D fill factor Seconds
Min Max Avg Min Max Avg
EPMH 11.29 41.88 022 084 059 036 096 0.83 0.03
GREP 10.80 42.02 026 0.85 0.62 049 095 0.84 300.00
MEPMH 10.33 41.88 032 086 0.66 036 096 0.83 3.69
MGREP 10.33 42.71 034 0.85 0.66 0.50 095 0.83 300.00
EPFULL 10.13 41.13 031 0.86 0.67 045 095 0.86 184.91
GREPFULL 9.97 40.78 033 0.86 0.68 054 095 0.86 900.00

per instance) in case of deterministic algorithms. For a more detailed comparison among
the algorithms, we refer to https://github.com/silveira-tt/ ANOR_PBP-Appendix, where we
report full details of all the computational tests that we performed over each instance.

6.2 Evaluation

The average results are summarized in Table 2. In the first three columns the table reports,
respectively, the name of the algorithm, the total number of pallets in the solution obtained
and the total number of layers created. In the six successive columns, it reports the minimum,
maximum and average pallet utilization and fill factor (2D space of all layers). Note that
the minimum fill factor is below the imposed lower bound (55%), since layers on top of
all the others (in particular, residual layers) are allowed to violate such bound. The last
column reports the computational time (in seconds). To facilitate the analysis of the results,
we highlight in bold the best results of pallets and layers obtained.

From Table 2, we can notice that the number of layers in EPMH is slightly lower than
in GREP, but the number of pallets is larger. Thus, we can highlight that the minimization
of the number of layers is less relevant than the way in which these are created, since the
overall number of pallets depends on the disposition of items within the layers. This situation
also occurs when comparing MEPMH and MGREP, but not when considering the algorithms
with mathematical models EPFULL and GREPFULL. For what concerns 3D pallet filling and
2D fill factor, the best performance is, in general, obtained by model-based algorithms, but
with the disadvantage of a larger computational time. The choice of the algorithm obviously
depends on how much time we can dedicate to the whole operation. MEPMH represents a
good compromise between quality of the solutions and computing times but, of course, if
minutes rather than seconds are allowed to perform the computations, then EPFULL and
GREPFULL appears to be the best choices.

Secondly, we present an analysis of layers type in the solution, summarized in Table 3.
This table presents, for each algorithm, the average number of single-item, single-family and
residual layers.

Considering layer type, we observe a tendency to create more homogeneous layers when
using the GRASP metaheuristic, by increasing the number of single-item or single-family
layers, and reducing the number of residual ones. About the quality metric that analyzes
the worst case result, the reported value is significantly better when using GRASP-based
algorithms in general. Also note that in the algorithms where layer creation is based on the
solution of mathematical models, the number of single-family layers increases with respect
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Table 3 Computational results per layer type

Algorithm Single-item layers Single-family layers Residual layers
EPMH 23.08 15.08 3.71
GREP 23.79 15.00 3.24
MEPMH 23.08 15.08 371
MGREP 24.59 14.89 3.24
EPFULL 16.96 20.88 3.29
GREPFULL 16.59 21.09 3.09

Table 4 Computational results for GRASP-based algorithms

Algorithm Objective function Iterations Local searches
Min Max Avg

GREP 0.5936 0.5952 0.5946 7888.28 1096.75

MGREP 0.5794 0.6045 0.5962 5573.50 806.56

GREPFULL 0.6031 0.6125 0.6087 8.62 1.82

to the number of single-item layers, in view of the higher ability of the mathematical model
solvers in further adding items of the same family once all items of a given type have been
inserted in the layer.

For a deeper analysis of the GRASP-based algorithms, we present Table 4. In this table,
for each algorithm, we report, respectively, the minimum, maximum and average values of
the fitness function (45), adopted to guide the search, the average number of iterations, and
the average number of local searches performed.

For what concerns the fitness function values, GREP presents the most stable results,
whereas MGREP presents a large variation among average and extreme values. The best
results are obtained by GREPFULL, which also delivers the lowest number of pallets. This
confirms that the fitness function provides a good representation of the search space.

For what concerns the update of U (line 18 of Algorithm 1), it is important to highlight
the influence of the strategy to re-adapt this value. As the U value is related to the local
search process, it is interesting to adjust it according to the quality and time metrics to find a
new solution. For example, it is not interesting to spend more time on local searches than on
global ones, since it would be more challenging to improve a solution after a local minimum
was found. In particular, the rate of change of the U value is quite important: large and
frequent variations of U tend to favor a larger number of local searches, while small and
not frequent variations tend to reduce the number of local searches. Thus, we try to balance
this trade-off using a small change (2%, i.e., B = 0.98) but fast (max; = 5) decrease in U,
which contributes to both exploitation and exploration of the search space. Considering the
obtained results, we have a large reduction of the number of local searches in GREPFULL
with respect to the other ones, but this is obviously due to the reduced number of iterations
when using that algorithm.

Considering the previous results, we may highlight the most important parts of each algo-
rithm. Algorithm EPMH obtains the lowest computing time, but it does not always find a
solution of good quality. Hence, this strategy is suitable to be applied within metaheuris-
tic or matheuristic approaches. For what concerns algorithm MEPMH, it provides a better
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compromise between computational effort and quality, since it brings an improvement in the
solution quality without excessively increasing the execution time. When taking metaheuris-
tic into account, we can notice a considerable increment in the execution time. However, in
general, this extra time is used to perform a better exploration of the search space, which
is obtained by the randomized greedy construction and local search improvement phases of
Algorithm 1. For example, algorithm GREP brings that benefit, improving the solution qual-
ity while maintaining a good compromise between time and quality. However, for algorithm
MGREP that does not happen, since the average quality of the solution is similar to algorithm
MEPMH, besides increasing the execution time. Algorithms EPFULL and GREPFULL make
full use of the mathematical models introduced in Sects. 4.1-4.2. Through a good mix of
quick greedy construction of layers and pallets, better exploration of the solution space by
means of randomization and local search, and search for improved solution by means of
mathematical models invoked for short time limits, these approaches are able to return better
quality solutions. They require computing times larger than the other approaches but still
compatible with the needs of a company if the pallet creation is performed offline.

7 Conclusions

In this paper, we studied a pallet building problem with item rotations and practical constraints
involving visibility and contiguity. We proposed heuristic algorithms and a mathematical
formulation for the addressed problem, filling a gap in the existing literature. In general, our
complete algorithm is based on a two-step heuristic approach, first creating layers and then
pallets. We tailored each proposed strategy to GRASP metaheuristic with reactive method.
Regarding to heuristic algorithms, these are an Extreme Points heuristic for creating 2D
layers and a greedy heuristic for creating 3D pallets. Regarding to mathematical models,
we embedded them in the previous heuristics, creating in this way variants to the two-
step heuristic both to compact items into layers and to stack layers into pallets. Extensive
computational experiments on real-world instances proved the effectiveness of the proposed
algorithms.

Regarding the GRASP-based algorithms, it turns out that the upper bound updating
strategy is essential to control the exploration and exploitation of the search space, and,
consequently, to improve the solution quality. Besides, the robustness of the reactive method
allows a more flexible search on the solution space when using a set of fitness evaluation
functions in the Extreme Points heuristic to find a new place to pack items. The embedded
mathematical models have shown a capacity of improvement of the quality of the solutions
found, without increasing too much the computing time. In spite of the complexity of the
real-world instances and the short execution times, interesting final results are reported, thus
showing that the combination heuristics/mathematical models/metaheuristic is an efficient
one for this type of problem.

As future work, we intend to study extensions of the GRASP metaheuristic, possibly
considering the recently developed fixed set search metaheuristic (Jovanovic et al. (2019),
Jovanovic and VoB3 (2019, 2020)), besides considering the most recent improvement strate-
gies from the literature ( Resende and Ribeiro (2019)), as for example the use of a learning
mechanism. We are also interested in extending the concept of family to address charac-
teristics beyond the geometric ones, and to study more complex problems involving vehicle
routing aspects, and thus the need of sequencing items with layers and pallet so as to consider
their unloading at the customers’ sites. Finally, as an alternative to the approaches proposed in
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this paper, and, thus, a possible further topic for future research, we mention heuristics based
on building blocks (see, e.g., Liu et al. (2011), Ren et al. (2011), Wang et al. (2008), Zhang
et al. (2012)). Each block is made up by items of the same type, so that a block automatically
satisfies contiguity between these items. However, basic building block heuristics should be
adapted to meet also the visibility constraint.
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