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Abstract
Robot advisory services are rapidly expanding, responding to a growing interest people
have in directly managing their savings. Robot-advisors may reduce costs and improve the
quality of asset allocation services, making user’s involvement more transparent. Against
this background, there exists the possibility that robot advisors underestimate market risks,
especially during crisis times, when high order interconnections arise. This may lead to a
mismatch between investors’ expected and actual risk. The aim of this paper is to overcome
this issue, taking into account not only investors’ risk preference but also their attitude
towards interconnectdness. To achieve this aim, we combine random matrix theory with
correlation networks and extend the Markowitz’ optimisation problem to a third dimension.
To demonstrate the practical advantage of our proposed approach we employ daily returns
of a large set of Exchange Traded Funds, which are representative of the financial products
employed by robot-advisors.

Keywords Correlation networks · Portfolio optimization · Random matrix theory

1 Introduction and literature review

Financial Technologies (FinTech) can be broadly defined as technologically enabled financial
innovations that could result in new business models, applications, processes or products,
with an associated material effect on financial markets, financial institutions, and on the
provision of financial services (Carney 2017). In the last few years, FinTech innovations have
increased exponentially, delivering new payments and lending methods, and penetrating the
insurance and asset management sectors. The Financial Stability Board (FSB) in its two
recent reports (FSB 2017a, b) has identified three common drivers for FinTech innovation;

B Paolo Giudici
paolo.giudici@unipv.it

Gloria Polinesi
g.polinesi@pm.univpm.it

1 University of Pavia, Pavia, Italy

2 Universitá Politecnica delle Marche, Piazzale Martelli 8, 60121 Ancona, AN, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04312-9&domain=pdf
http://orcid.org/0000-0002-4198-0127


966 Annals of Operations Research (2022) 313:965–989

namely, the shifting of consumer preferences on the demand side, the evolution of data driven
technologies and the changes in the financial regulation on the supply side.

Against this background, robot advisory services for automated investments are growing
fast to address the need of directlymanaging savings. They are accessible via online platforms
and, therefore, allow to act quickly and in the first person. According to Statista, the masses
managed by automatic consultancy are estimated to be over 2552 billion in 2023.1

The rapid growth of robot-advisors has determined the emergence of new financial risks.
Robot-advisors that build personalised portfolios on the basis of automated algorithms have
been suspected of underestimating investors’ risk preferences. This may be the effect of
the asset allocation models employed by robot advisors which, for the sake of transparency
and user’s engagement, are often over simplified, and do not take asset returns correlations
properly into account.

To improve robot-advisory asset allocation,we propose to embed correlation networks into
Markowitz’ asset allocation, following thework ofClemente et al. (2019). The authorsmodify
the objective function of the Markowitz minimum variance portfolio taking into account not
only the volatility of individual assets but also their interconnectedness, expressed in terms
of a clustering coefficient calculated on the correlation network. Their empirical results show
that the resulting portfolios are more diversified and show better performances with respect
to the classical Markowitz’ portfolios.

Similarly to Clemente et al. (2019), our proposal is based on the insertion of correlation
networkmodels intoMarkowitz’ objective function. Our additional contribution is a parsimo-
nious correlation network, based on randommatrix theory filtering, and an interconnectdness
measure that exploits the notion of network centrality. These methodological advancements
are particularly useful in the context of robot advisory asset allocation, characterised bymany
assets, highly correlated with each other.

A related research work is Boginski et al. (2014) who, building on the work of Pattillo
et al. (2013) and Boginski et al. (2006) exploit the concept of clique relaxations in weighted
graphs to find profitable well-diversified portfolios. In their proposal, the weight of each asset
corresponds to its return over the considered time period and each pair of assets is connected
if the corresponding correlation exceeds a certain threshold value. This mechanism is able
to ensure high returns of portfolios that are not guaranteed by the cliques themselves.

Another related paper isHe andZhou (2011), whomodifyMarkowitz’ problemby exploit-
ing a different utility function, introducing a new measure of loss aversion for large payoffs,
called the large-loss aversion degree (LLAD). The measure is applied to portfolio choice
under the cumulative prospect theory in Tversky and Kahneman (1992).

Adifferent streamof extensions of theMarkowitz portfoliomodel considersmultiobjective
evolutionary algorithms (MOEAs), as in Metaxiotis and Liagkouras (2012). Within this
framework, Cesarone et al. (2013) propose a heuristic solution based on a reformulation in
terms of a Standard Quadratic Program to solve mean-variance portfolio issues related to the
introduction of constraints based on cardinality (which limits the number of assets to be held in
an efficient portfolios) and allocation shares (which determines the fraction of capital invested
in each asset). Whereas Ehrgott et al. (2004) presents a method based on the application
of four different heuristic solution techniques to test problems involving up to 1416 assets.
Woodside-Oriakhi et al. (2011) consider the application of genetic algorithm, tabu search and
simulated annealing meta heuristic approaches to find the cardinality constrained efficient
frontier that arises in portfolio optimization. In addition, Doerner et al. (2004) introduces
Pareto Ant Colony Optimization as an effective meta-heuristic solution, proposing a two-

1 For more information please see: https://www.statista.com/outlook/337/100/robo-advisors/worldwide.

123

https://www.statista.com/outlook/337/100/robo-advisors/worldwide


Annals of Operations Research (2022) 313:965–989 967

stage procedure that first identifies the solution space of all efficient portfolios and then
locates the best solution within that space.

Further works in the area of employing multdimensional operations research to improve
Markowitz’ model are Schaerf (2002), Crama and Schyns (2003), Shoaf and Foster (1996),
Branke et al. (2009), Bai et al. (2009), El Karoui (2010) and El Karoui (2013).

We contribute to the above literature by proposing a different objective function of
Markowitz’ portfolio allocation, that extends the classic formulation with an asset centrality
term, function of the assets’ similarity network.

Similarity networks among asset returns were introduced by Mantegna and Stanley
(1999)), who expressed the distance between any pair of asset returns as a function of the
pairwise correlations among the corresponding time series. They can reveal how assets are
related in terms of the topology of a network (Newman 2018), and can allow to calculate
centrality measures, which express their “importance” of each asset in the network (see e.g.
Avdjiev et al. 2019). Among them, the eigenvector centrality (Bonacich 2007) assigns a rel-
ative score to all nodes in the network, based on the principle that connections to few high
scoring nodes contribute more to the score of the node in question than equal connections to
low scoring nodes.

To reduce the computational burden involved with the calculation of the eigenvector
centrality on a fully connected matrix, Mantegna (1999) suggested to hierarchically cluster
the assets, or groups of assets that are the “closest”, leading to a parsimonious “Minimal
Spanning Tree” (MST) representation. Tumminello et al. (2005) has extended Mantegna
(1999) with a generalisation of the MST, the Planar Maximally Filtered Graph (PMFG),
which retains the same hierarchical properties of the MST but adds more complex graph
structures, such as loops and cliques.

Another important extension ofMantegna (1999) is Tola et al. (2008)who have shown how
a MST calculated on a correlation matrix “filtered” from random noise through the Random
Matrix Theory (RMT) approach can improve the performance of the optimal portfolios.
Siimilar papers, based on the applications of RMT to asset management, are León et al.
(2017), Raffinot (2017), Ren et al. (2017), Zhan et al. (2015), Bun et al. (2017) and Fraham
and Jaekel (2005).

Our contribution to the above literature is twofold. From an applied viewpoint, we extend
the application of the RMT approach in Tola et al. (2008) to Exchange Traded Fund returns
(ETFs), investment funds that aim to replicate the index to which they refer (benchmark)
through a totally passive management. From a methodological viewpoint, we propose a
portfolio optimisation approach different from what proposed by Tola et al. (2008), as we
include network centrality explicitly into the Markowitz objective function. Doing so, we do
not rely only on the pairwise covariance between assets returns, but we also consider higher
order information on assets’ behavior.

In the paper we show that the inclusion of centrality measures into Markowitz model can
improve portfolio returns. This because not only bivariate but also multivariate dependencies
are taken into account. A further advantage is that investors’ risk preferences receive a higher
importance and, therefore, the matching between the expected and the actual risk profile
improves.

The empirical findings obtained from the application of our proposed method confirm the
validity of the proposed approach, which can thus become a new toolbox for robot-advisors.
The results demonstrate that centrality measures can generate portfolio allocation strategies
able to outperform the benchmark portfolios.

The structure of the paper is as follows: Sect. 2 presents our proposal, in an order that
follows the data analysis flow: first we describe the Random Matrix Theory, to filter data
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from noise components; then the minimal spanning tree approach, to build a parsimonious
correlation network among assets; and, finally, the proposed objective function that adds
to Markowitz’ the centrality measures calculated from the obtained correlation network.
Section 3 presents the results of the application of the methodology to a database kindly
provided by an anonymous robot advisor. Section 4 ends with some concluding remarks.

2 Methodology

2.1 RandomMatrix Theory

Since themid-nineties, RandomMatrix Theory (RMT) has been used in various applications,
ranging from quantum mechanics (Beenakker 1997), condensed matter physics (Guhr et al.
1998), wireless communications (Tulino et al. 2004), economics and finance (Potters et al.
2005).

The intuition behind RMT is to extract the “systematic” part of a signal embedded in a
correlation matrix, separating it from the “noise” component. To achieve this goal, RMT
tests the eigenvalues of a correlation matrix: λk < λk+1; k = 1, . . . , N , against the null
hypothesis that they are equal to the eigenvalues of a random Wishart matrix R = 1

T AA
T

of the same size, with A being a N × T matrix containing N time series of length T whose
elements are independent and identically distributed standard Gaussian random variables.

Note that RMT does not require any assumption on the distribution of the asset returns.
Rather, it compares the eigenvalues of the empirical covariance matrix with those that would
be obtained if the returns were drawn from independent Gaussian distributions, leading to a
Wishart matrix.

Let (xk = λ̂k) < (xk+1 = λ̂k+1); k = 1, . . . , N be the observed sample eigenvalues. It
can be shown (Marchenko and Pastur 1967) that, as N → ∞ and T → ∞, with a fixed ratio
Q = T

N ≥ 1, the density of each sample eigenvalue converges to:

f (xk) = T

2π

√
(λ+ − xk)(xk − λ−)

xk
, (1)

where xk ∈ (λ−, λ+) and λ± = 1 + 1
Q ± 2

√
1
Q .

When xk > λ+ the null hypothesis is rejected, for all the eigenvalues greater or equal than
k. This implies that the relevant part of the signal contained in the correlation matrix of the
returns can be obtained applying a singular value decomposition based only on the eigenvec-
tors that correspond to eigenvalues that are greater than λ+. Doing so, RMT simplifies the
correlation matrix into a filtered correlation matrix (Plerou et al. 2002; Eom et al. 2009).

More formally, let ri , for i = 1, . . . , N , be a time series of asset returns, computed, for
any given time point t , as the difference between the logarithms of daily asset prices:

ri (t) = logPi (t) − logPi (t − 1). (2)

Given a set of N asset return series, a correlation coefficient between any two pairs can be
defined as:

ci j = E(ri r j ) − E(ri )E(r j )

σiσ j
, (3)

where E(◦) and σ(◦) indicate, respectively, the mean and the standard deviation operators.
Let C be the the correlation matrix.
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According to the RMT the filtered correlation matrix is then given by:

C′ = V3VT, (4)

where

� =
{
0 λi < λ+
λi λi ≥ λ+

and V represents the matrix of the eigenvectors associated to the eigenvalues greater than
λ+.

We remark that the fact that the eigenvalues leaking out the “bulk” of the spectral density,
the so called “spikes”, contain the important information can also be obtained following
Couillet (2015), who assume that the correlation matrix of the stock returns follows a spiked
covariance matrix, in which all eigenvalues are equal to one except “r” spikes. In the random
matrix theory approach the number of spikes is chosen comparing the sample eigenvalues
with the theoretical ones obtained from a Wishart matrix.

2.2 Minimal spanning tree

When a large set of asset returns is considered, as in the case of Robot-Advisory, the (filtered)
correlation matrix may be difficult to summarise. Its representation in terms of a correlation
network (see e.g. Mantegna 1999) can help the task.

A correlation network can be obtained converting pairwise correlations in pairwise dis-
tances with the following function:

di j =
√
2 − 2c′

i j , (5)

where c′
i j are the elements of the filtered correlation matrix C′ and di j is the Euclidean

distance between return i and j . The set of all obtained pairwise distances can be organised
into a distance matrix D = {di j }.

Then, a more parsimonious representation of the correlation matrix can be obtaned by
means of the Minimal Spanning Tree method (MST, see e.g. (see Mantegna and Stanley
1999; Bonanno et al. 2003; Spelta and Araújo 2012)). The MST is obtained applying to the
distance matrix D a single linkage clustering algorithm which associates each asset return
to its closest neighbour, and avoiding loops. The term “minimal” refers to the fact that MST
allows to reduce the number of links between asset returns from N (N−1)

2 to N − 1, the
minimum number of links assuring connectivity of all nodes.

More formally, the MST algorithm proceeds in this way. Initially, it considers N clusters,
corresponding to the N available asset returns (ETFs in our context). Then, at each subsequent
step, two clusters li and l j are merged into a single cluster if:

d
(
li , l j

) = min
{
d

(
li , l j

)}

with the distance between clusters being defined as:

d̂
(
li , l j

) = min
{
dpq

}

with p ∈ li and q ∈ l j . The above steps are repeated until a single cluster emerges.2

2 We use the symbols d̂ and D̂ to denote the distances representing the MST derived from the fully connected
network D.
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We remark that Raffinot (2017) extends the MST considering some clustering variants,
such as complete linkage (CL), average linkage (AL) and Ward’s Method (WM). He shows
however that different algorithms differ in terms of grouping structures, but not in terms of
performance.

Wealso remark that, to detect howfinancial relationships evolve over timewe followSpelta
and Araújo (2012) by employing the residuality coefficient measure (R) that compares the
relative strengths of the connections above and below a threshold value, ias follows:

R =
∑

di, j>L d
−1
i, j

∑
di, j≤L d

−1
i, j

(6)

where L is the highest distance value that ensures the whole connectivity of the MST.
We expect that during crisis phases, higher correlation patterns emerge, leading to a lower

value of R, as the number of links increases, and vice-versa.

2.3 Eigenvector centrality

Having found a parsimonious representation of the return correlations, we now aim to sum-
marise it, to understand which nodes (asset returns) act as hubs in the network. This is key
for understanding how ETF returns behave in a multidimensional space, and to construct
optimal portfolios that take the curse of dimensionality into account.

The research in network theory has dedicated much effort to develop measures aimed to
detect themost important players in a network. The idea of “centrality” was initially proposed
in the context of social systems, where a relationship between the location of a subject in the
social network and its influence on the group processes was assumed.

Various measures of network centrality have been proposed, such as the count of the
neighbors a node has: the degree centrality, which is a local centrality measure, or measures
based on the spectral properties of the adjacency matrix (see Perra and Fortunato 2008),
which are global measures. Examples of global centrality measures include the eigenvector
centrality (Bonacich 2007), Katz’s centrality (Katz 1953), PageRank (Brin and Page 1998),
hub and authority centralities (Kleinberg 1999).

The eigenvector centrality measures the importance of a node by assigning relative scores
to all nodes in the network, based on the principle that connections to few high scoring nodes
contribute more to the score of the node in question than equal connections to low scoring
nodes. More formally, for the i-th node, the centrality score is proportional to the sum of the
scores of all nodes which are connected to it, as in the following:

xi = 1

λ

N∑

j=1

ˆdi, j x j (7)

where x j is the score of node j , ˆdi, j is the (i, j) element of the adjacency matrix of the
network, λ is a constant and N is the number of nodes of the network.

The previous equation can be rewritten in matrix notation:

D̂x = λx (8)

where D̂ is the adjacency matrix, λ is the eigenvalue of the matrix D̂, with an associated
eigenvector x , an N-vector of scores (one for each node).

Note that, in general, there will be many different eigenvalues λ for which a solution to
the previous equation exists. However, the additional requirement that all the elements of the
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eigenvector bepositive (a natural request in our context) implies (by thePerron–Frobenius the-
orem) that only the eigenvector corresponding to the largest eigenvalue provides the desired
centrality measures. Therefore, once an estimate of D̂ is provided, network centrality scores
can be obtained from the previous equation, as elements of the eigenvector associated to the
largest eigenvalue.

We remark that, in the context of correlation networks that we are considering, the higher
the centrality score associated to a node, the more the node is dissimilar from all other nodes
in the network.

2.4 Portfolio construction

We now explain how centrality measures can be embedded in a portfolio optimisation frame-
work, to improve portfolio performances.

Correlations between asset returns play a central role in investment theory and riskmanage-
ment, as key elements for optimisation problems as inMarkowitz (1952) portfolio theory. It is
natural that correlation networks, based on pairwise correlations, play an important role too.

Indeed, Onnela et al. (2003) have shown that the assets with the highest weights in
Markowitz portfolios (Markowitz 1952) are always located in the outer nodes of a Min-
imal Spanning Tree, so that the optimal portfolios are mainly composed by assets in the
periphery of the network, and not in its core. Pozzi et al. (2013) have shown that portfolios
which include central assets are characterized by greater risks and lower returns with respect
to portfolios which include peripheral assets. Giudici and Polinesi (2021), following Giu-
dici and Abu-Hashish (2019) found a similar behaviour in crypto exchanges. Vỳrost et al.
(2018) have suggested that network-based asset allocation strategies may improve risk/return
trade-offs. Their work is based on the study of Peralta and Zareei (2016) which have found
a negative relationships between asset return centralities and the optimal weights obtained
under the Markowitz model.

Other authors have built on the above remarks by proposing novel portfolio optimisation
strategies. For example, Plerou et al. (2002) andConlon et al. (2007) have used the correlation
matrix, filtered with the random matrix approach in the Markowitz model, and have shown
that for the obtained portfolios the realized risk is closer to the expected one. Tola et al. (2008),
combiningMST with the RMT filtering, have shown performance improvement with respect
to Markowitz portfolios. Finally, Tumminello et al. (2010) have demonstrated that the risk
of the optimized portfolio obtained using a “filtered” correlation matrix is more stable than
that associated with a “non filtered” matrix.

In line with the previous authors, we would like to to exploit centrality measures, based
on the minimal spanning tree derived from the RMT filtered correlation matrix of asset
returns to improve Markowitz portfolios. Differently from the previous authors, we extend
Markowitz’ approach using RMT and MST in the optimisation function itself, rather than
applying Markowitz to the transformed (filtered and/or simplified) correlation matrix.

More formally, we propose to minimize the constrained objective function:

min
w

wTCOV′w + γ

N∑

i=1

xiwi (9)

subject to ⎧
⎪⎨

⎪⎩

∑n
i=1 wi = 1

μP ≥
∑N

i=1 μi
N

wi ≥ 0
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where μP indicates the mean return of the portfolio, obtained by averaging the mean return
of each asset μi ; the parameter γ represents a risk aversion coefficient, to be specified by
investors, xi is the eigenvector centrality associated with the ETF return i and, finally, the
(i, j) element of COV′ is equal to σiσ j c′

i, j .
The decision criteria specified by Eq. 9 can be better understood comparing it with the

classical Markowitz approach. In the Markowitz model, efficient portfolios are found by
solving the optimization problem:

min
w

(
wTCOV′w − 1

λ
μ ∗ wT

)
(10)

where λ is a parameter representing the investor’s risk tolerance. If λ is large, 1
λ
will be close

to zero, meaning that the investor does not havemuch risk tolerance. Conversely, if λ is small,
1
λ
will be large, placing more emphasis on returns.
We extend Markowitz model without modifying its underlying quadratic utility function.

Specifically, we fix the second term and we minimise a modified version of the first term,
which adds to the portfolio variance (first order risk) a new component thatmeasures systemic
risk (high order risk). To balance the two risks we introduce a parameter γ that defines their
ratio, for a given level of return. When γ increases, investors prefer systemic risks over first
order risks, and viceversa when γ decreases. The next Section contains a practical illustration
of the implications of our proposal.

As a result, our optimal portfolio allocation formulation includes three dimensions: a first
order risk, represented by the variance-covariance matrix, a high order (systemic) risk which
depends on the network structure of ETF returns and, finally, the portfolio returns (fixed).
We remark that the classical Markowitz efficient frontier is based only on two dimensions:
the first order risk and the returns, and is therefore not comparable to our context. However,
if we set γ equal to zero, our formulation is two dimensional and can, therefore, be placed on
the efficient frontier and compared with Markowitz’ solutions, as will be shown in the next
Section.

3 Application

The data set we consider to illustrate the application of our proposal is composed by 92
ETFs returns’ time series traded over the period January 2006–February 2018 (3173 daily
observations). Table 1 shows the classification of the 92 ETFs in 11 asset classes, according
to the classification provided by the Exchange where they are traded. From Table 1 note that
the Emerging Market asset classes are the most frequent, followed by Corporate ETFs.

Table 2 displays summary statistics for the considered asset classes and, specifically,
the mean, variance and kurtosis of the returns’ distribution, to describe their location and
variability. FromTable 2 note that themean value of the returns is around 0 for each asset class,
consistently with the efficient market hypothesis suggested by Malkiel and Fama (1970).
Differently, the value assumed by the standard deviation depends on the considered asset
class: EmergingEquity andCommodity classes aremore volatilewith respect to theCorporate
classes. Moreover, the high values of the kurtosis confirm some known stylized facts: the
distribution of most ETFs’ returns tends to be non-Gaussian and heavy tailed.

To compare the behavior of the returns during financial crises and normal times the data
set has been divided in two chronologically successive batches, from 2006 to 2012 (crisis)
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Table 1 ETFs by Asset classes ETF class Number of ETFs

1 Aggregate bonds 4

2 Commodity 8

3 Corporate-euro 11

4 Corporate-not euro 3

5 Corporate-high yield 2

6 Corporate-world 1

7 Emerging Equity-Asia 30

8 Emerging Equity-America 10

9 Emerging Equity-East Europe 4

10 Emerging Equity-world 17

11 Equity-Europe 1

Number of exchange traded funds for each class

Table 2 ETFs’ classes summary statistics

ETF class Mean Std. Kurtosis

1 Aggregate Bond 0.00014 0.00265 6.66

2 Commodity − 0.00007 0.01052 3.64

3 Corporate-euro 0.00014 0.00155 3.35

4 Corporate-not euro 0.00021 0.00454 5.36

5 Corporate-high yield 0.00040 0.00602 24.42

6 Corporate-world 0.00017 0.00320 4.32

7 Emerging Equity-Asia 0.00036 0.01541 11.43

8 Emerging Equity-America 0.00024 0.01928 8.99

9 Emerging Equity-East Europe 0.00011 0.02380 18.19

10 Emerging Equity-world 0.00026 0.01235 9.10

11 Equity-Europe 0.00018 0.01213 6.96

The table shows summary statistics for ExchangeTradedFunds classes compositions:mean, standard deviation
and kurtosis computed for the whole dataset

and from 2013 to 2018 (post-crisis). Figure 1 provides temporal boxplots for ETFs’ returns,
grouped by their asset classes (as described in Table 1).

Figure 1 shows that the volatility of the ETFs belonging to the Emerging Equity classes,
as well as that of the Commodity asset class, is larger during the crisis period. This feature
explains why their overall standard deviation, reported in 2, is the highest.

3.1 Transforming the correlationmatrix: RMT andMST

In this subsection we show how the empirical correlation between ETF returns can be filtered
and simplified, bymeans of the application ofRMTandMST, described in themethodological
section.

We first divide the data into consecutive overlapping time windows. The width of such
windows has been set equal to T = 250 (12 trading months), with a window length of one
month (∼= 21 trading days) for a total of 140 overlapping windows. For each time window, we
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Fig. 1 Summary plots for ETFs’ classes. Two different periods are compared: crisis (2006–2012) and post
crisis (2013–2018)

use 11months (∼= 229 trading days) of daily observations to build ourmodel and the remained
month to validate it. This means, in particular, that we calculate 140 correlation matrices
between all 92 ETFs’ returns, based on 11 months of data, to obtain the filtered correlation
matrix applying theRMTapproach, to derive theMSTand the eigenvector centralitymeasure,
and, finally, to derive the optimal portfolio, which is validated in an out-of-sample fashion
using the twelfth month of each window.

Figure 2 shows the ordered eigenvalue distribution of the empirical correlation matrix,
for the last time window of the data set (March 2017–January 2018), compared with the
theoretical Wishart correlation matrix that would be observed under random noise.

Figure 2 shows that most of the eigenvalues’ distribution lies between λmin and λmax ,
which are respectively equal to 0.16 and 2.71. This “bulk” may be considered as being
generated by random fluctuations while the six deviating eigenvalues that are greater than
λmax represent the effective characteristic dimension described by the correlation matrix.

Similar considerations can be made for other time windows, without loss of generality.
As described in the methodological Section, if, for each time window, we reconstruct the

correlation matrix using only the eigenvectors that correspond to the largest eigenvalues,
we obtain a sequence of “filtered” correlation matrices which can be used to improve the
Minimum Spanning Tree representation of the ETFs’ returns. Figure 3 reports for both the
filtered and the unfiltered correlation matrices and for each time window, the most central
node, defined as the ETF return with the highest degree (the largest number of connected
nodes) in the MST representation.

From Fig. 3 note that the application of the RMT filtering approach leads to different
Minimal Spanning Tree configurations over time: the most central nodes are different and
belong to different ETF classes. On the other hand, the Minimal Spanning Trees based on
the unfiltered empirical correlation matrices do not seem to vary: the ETF labelled EIMI-IM,
belonging to the Asia Emerging Market class, is for most of the time the most central node.
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Fig. 2 Eigenvalue distribution. In the figure, the red line shows the kernel density of the eigenvalues associ-
ated to the empirical correlation matrix C , in the main box, and of the random correlation matrix R, in the
smaller subplot. The dashed vertical line indicates the threshold value λmax which separates the informative
eigenvalues from the “random noise” ones

To further evaluate how theMSTsdynamically change over time,we employ, as a summary
measure, the Max link: the maximum distance value between two pairs of nodes used in the
construction of the tree, and the residuality coefficient, which measures the ratio between
links eliminated and maintained by the MST construction. Figure 4 shows the evolution of
these two quantities over the considered period.

From Fig. 4 note that, during the 2008 financial crisis, the Max link sharply decreases,
due to the decrease of most distances between ETF returns. This can be explained by the
increased correlations between all returns, which synchronise during the crisis, consistently
with the literature findings. While the Max link bounces back after the crisis, the residuality
coefficient continues its decline until 2014. This may indicate the persistence of a set of
strong connections in the market, that determine the relevance of a limited number of links.

To better understand the previous findings, Fig. 5 shows the MST topology during 2008,
as representative of crisis times, and its topology during the last time window, taken as a
reference period for a “business as usual” market phase. Figure 5 reflects how correlations
increase during the crisis phase, leading to a high number of links in the network. Further-
more, in the crisis period, the MST reveals the importance of the Asian, American andWorld
Emerging Market classes, which have the highest centralities. The importance of the Amer-
ican Emerging Market node declines post crisis, but the Asian class centrality remains high.
This may explain the persistence of low values in the residuality coefficient, after the crisis
phase.

3.2 Portfolio construction

We now present the application of our proposed portfolio strategy, in which the eigenvector
centrality computed on the MST derived from the application of RMT to the empirical
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Fig. 3 Central ETFs in the MST network representation along time. The figure reports, for each of the 140
time windows, the ETF that has the highest degree in the MST representation, using the filtered correlation
matrix (top) and the unfiltered empirical correlation matrix (bottom). Node colors represent the asset classes:
Corporate (yellow), Emerging Market Asia (black), America (grey), World (beige)

correlation matrix is inserted as an additional measure of risk in the objective function of
Markowitz optimisation problem.

The optimal portfolio weights are obtained minimizing the constrained objective function
in Eq. 9, for which the value of γ is set a priori, accordingly to the level of risk aversion of a
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Fig. 4 MST thresholds and residuality coefficient. The blue line shows the Max link distance, while the red
line shows the residuality coefficient, whose values are reported respectively on the left and right y axes

Fig. 5 Minimal Spanning Tree drawn from the RMT filtered correlation matrix for crisis and post-crisis
periods. The nodes in the figure indicate ETFs, the size of the node represents their degree centrality. Colors
indicate different asset classes, as reported in the legend
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Fig. 6 Cumulative returns for different portfolio strategies.The plot reports the cumulative Profit and Loss
obtained using our proposal based on different values of γ , the “naive” strategy portfolio (orange line), the
MSCI benchmark index (blue line) and, for robustness, our proposal based on an unfiltered correlation matrix,
rather than RMT (Cov) and our proposal based on a Glasso regularisation, rather than MST (Glasso)

hypothetical investor. A high value of γ indicates that, in the desired allocation, more central
ETFs (such as the Emerging Markets ones) will have higher weights.

Once the optimal portfolio weights are derived, we can calculate portfolio returns, and the
associated Profit and Loss, for the time windows described in the previous subsections. More
precisely, we use rolling windows in each of which the last month acts as an out-of-sample
month to predict. The remaining eleven months of observations are used as a build-up period,
to apply RMT, MST, compute asset return centralities and obtain the consequent optimal
portfolio weights. We then calculate the return which corresponds to the optimal portfolio
over the next month, weighting each ETF with the obtained weights. Finally, we cumulate
each monthly portfolio return, from December 2006 to February 2018, taking a re-balancing
cost of 10 basis points into account.

According to the described computational procedure, Fig. 6 presents the cumulative returns
obtained with different values of γ , using the model in Eq. 9. The figure also reports the
portfolio Profit and Loss of a “naive” (equally weighted) strategy as well as the performance
of a benchmark, the MSCI Index. We also compute the performances obtained by employing
a non filtered correlation matrix and those obtained with a Glasso regularisation method
of Friedman et al. (2008), rather than with the MST approach3 The results in Fig. 6 are
summarised in Table 3, which presents the annual Profit and Loss of each competing strategy.

Figure 6 highlights that our proposed model performs better than the benchmark index,
the “naive” portfolio strategy, the standard Markowitz portfolio (which correspond to γ = 0
and the portfolios obtained either without RMT or with the sparse Glasso regularisation. All
of our strategies win in terms of end of sample cumulative returns, regardless the coefficient
of the individual risk propension, ranging from γ = 0.05 to γ = 4. Note that the portfolio
based on the non filtered covariancematrix produces the worst performance and, theefore, the
RMT filter appears to be a fundamental condition for having adequate asset diversification
in investment portfolios.

3 The sparsity parameter ρ has been set to 0.01 as in the reference paper.
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Fig. 7 Portfolio weights along time. The figure reports the portfolio weights (for each asset class) associated
with a risk aversion coefficient equal to γ = 0.7

Looking in more detail, during the crisis period (2007–2009) our strategy produces higher
returns with respect to the competitor portfolios, as it correctly takes high order risks into
account. However, it is not able to capture the growing rebound at the end of 2009. More
generally, during non-crisis times, our strategy, despite producing positive returns, can not
reach the performance of the other portfolios. This because, during normal times, it probably
excessively overweights high order risks.

These results are indeed consistent with our proposed modification to the Markowitz’
algorithm. We expect that, during crisis times, when high order interconnections among
financial assets strongly increase, our strategy produces higher returns with respect to com-
petitor portfolios, and that it will do especially so for higher values of γ . This intuition is
confirmed: in the year 2008 profits increase, particularly when γ is high, and so does the
annual Sharpe Ratio, as shown in Table 4.

To provide further insights on portfolio compositions, we report in Fig. 7 the dynamic of
the portfolio weights for ETF classes, considering γ = 0.7.4

FromFig. 7 it is clear that during crisis times theweight of the ETFs belonging toEmerging
Equity classes is the highest. During non-crisis times, Emerging ETFs become less important,
and their role is taken by other ETFs; in particular with Corporate ones.

To gain further insights about how portfolio performances change as market conditions
mutate, the following tables report, as performance measures that take both risk and returns
into consideration, the Sharpe Ratio (Sharpe 1994), the α of the Capital Asset Pricing Model
(CAPM), the Value at Risk (VaR) and the Conditional VaR (CVaR).

Table 4 specifically refers to the yearly Sharpe Ratio, defined as the ratio between themean
value of the excess returns and its standard deviation. Table 4 highlights how, during market
crises (as in 2008), the Sharpe Ratio of our portfolio strategy is higher with respect to the
“naive” one with respect to the Sharpe Ratio obtained with the Glasso regularisation method.
The subsequent rebound of 2009 is not captured by our proposal and the lower Sharpe Ratio
obtained under different vaues of γ reflect this feature. Notice that the worst values of the
Sharpe Ratio are associated with the portfolio derived using a non-filtered covariance matrix:

4 Results for the other γ coefficients are qualitatively the same.

123



980 Annals of Operations Research (2022) 313:965–989

Ta
bl
e
3

A
nn
ua
lc
um

ul
at
iv
e
pr
ofi

ts
an
d
lo
ss
es

Y
ea
r

B
en
ch
.

G
la
ss
o

N
ai
ve

C
ov

γ
=

0
γ

=
0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

2.
82

6.
07

6.
08

−
0.
18

6.
46

10
.5
3

8.
74

8.
67

8.
54

7.
57

7.
62

5.
67

7.
13

20
07

7.
14

26
.1
1

26
.1
7

3.
81

16
.2
1

18
.2
4

19
.9
9

19
.9
5

20
.3
9

20
.0
5

19
.8
6

19
.4
1

17
.4
4

20
08

−
52

.9
7

−
53

.8
4

−
54

.2
6

−
22

.8
7

−
1.
27

2.
06

2.
68

3.
51

4.
29

5.
64

5.
90

6.
41

6.
13

20
09

48
.7
1

51
.6
7

52
.9
7

9.
50

8.
04

7.
24

6.
27

5.
56

5.
87

4.
92

4.
51

5.
64

9.
42

20
10

13
.3
1

12
.5
6

12
.5
4

23
.0
1

4.
65

2.
38

4.
43

6.
87

10
.5
2

9.
45

8.
97

7.
82

5.
46

20
11

−
6.
55

−
10

.2
1

−
10

.2
0

−
14

.1
3

−
0.
50

−
2.
42

−
3.
09

−
3.
95

−
5.
81

−
6.
39

−
6.
93

−
7.
69

−
8.
43

20
12

15
. 0
4

11
.5
7

11
.5
4

11
.2
9

4.
88

5.
41

5.
38

5.
50

6.
02

6.
59

6.
77

7.
14

7.
05

20
13

21
.3
7

−
1.
53

−
1.
54

7.
60

1.
72

0.
72

0.
86

1.
11

1.
53

1.
54

1.
73

2.
09

2.
75

20
14

2.
80

0.
99

0.
98

2.
59

2.
22

3.
99

3.
99

3.
94

3.
91

4.
14

4.
22

4.
66

4.
49

20
15

−
1.
75

−
10

.4
9

−
10

.5
0

−
4.
89

0.
21

−
1.
19

−
1.
23

−
0.
87

−
1.
03

−
1.
22

−
1.
83

−
3.
11

−
3.
77

20
16

5.
09

8.
61

8.
60

−
3.
36

2.
91

1.
66

1.
45

1.
76

1.
49

1.
60

1.
47

1.
34

1.
49

20
17

14
.2
5

14
.9
1

14
.8
8

2.
55

7.
72

3.
05

4.
53

5.
04

5.
05

5.
43

5.
62

5.
90

5.
75

20
18

0.
86

1.
26

1.
27

−
0.
87

0.
86

−
0.
53

−
0.
96

−
1.
29

−
1.
55

−
1.
65

−
1.
72

−
1.
93

−
2.
25

T
he

ta
bl
e
sh
ow

s
th
e
po
rt
fo
lio

s’
cu
m
ul
at
iv
e
Pr
ofi

ts
an
d
L
os
se
s.
A
ll
th
e
va
lu
es

ar
e
ex
pr
es
se
d
in

%

123



Annals of Operations Research (2022) 313:965–989 981

Ta
bl
e
4

A
nn

ua
lS

ha
rp
e
ra
tio

Y
ea
r

G
la
ss
o

N
ai
ve

C
ov

γ
=

0
γ

=
0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

0.
37

0.
37

−
0.
08

0.
54

0.
42

0.
33

0.
33

0.
31

0.
28

0.
28

0.
22

0.
30

20
07

0.
14

0.
14

0.
02

0.
16

0.
17

0.
18

0.
18

0.
17

0.
16

0.
16

0.
15

0.
12

20
08

−
0.
10

−
0.
10

−
0.
13

−
0.
02

0.
03

0.
03

0.
04

0.
04

0.
06

0.
06

0.
06

0.
06

20
09

0.
15

0.
14

0.
11

0.
15

0.
12

0.
07

0.
05

0.
04

0.
03

0.
03

0.
03

0.
05

20
10

0.
07

0.
07

0.
09

0.
08

0.
03

0.
05

0.
08

0.
11

0.
09

0.
08

0.
07

0.
05

20
11

−
0.
05

−
0.
05

−
0.
06

−
0.
00

−
0.
04

−
0.
05

−
0.
06

−
0.
08

−
0.
08

−
0.
08

−
0.
09

−
0.
09

20
12

0.
09

0.
09

0.
04

0.
30

0.
29

0.
25

0.
19

0.
20

0.
20

0.
20

0.
20

0.
19

20
13

−
0.
01

−
0.
01

0.
04

0.
09

0.
03

0.
03

0.
04

0.
05

0.
04

0.
05

0.
06

0.
06

20
14

0.
01

0.
01

0.
05

0.
17

0.
25

0.
24

0.
22

0.
20

0.
14

0.
14

0.
13

0.
12

20
15

−
0.
07

−
0.
07

−
0.
05

0.
02

−
0.
05

−
0.
05

−
0.
03

−
0.
04

−
0.
03

−
0.
04

−
0.
06

−
0.
07

20
16

0.
05

0.
05

−
0.
04

0.
12

0.
06

0.
04

0.
04

0.
04

0.
04

0.
03

0.
03

0.
03

20
17

0.
21

0.
21

0.
08

0.
30

0.
05

0.
07

0.
08

0.
08

0.
08

0.
08

0.
07

0.
07

20
18

0.
08

0.
08

−
0.
11

0.
10

−
0.
05

−
0.
08

−
0.
10

−
0.
11

−
0.
12

−
0.
12

−
0.
13

−
0.
15

T
he

ta
bl
e
sh
ow

s
th
e
Sh

ar
pe

R
at
io

of
po
rt
fo
lio

s
ob
ta
in
ed

fr
om

di
ff
er
en
ts
tr
at
eg
ie
s.
A
ll
m
ea
su
re
s
ar
e
co
m
pu
te
d
re
la
tiv

el
y
to

th
e
be
nc
hm

ar
k
st
ra
te
gy

123



982 Annals of Operations Research (2022) 313:965–989

Ta
bl
e
5

A
nn

ua
lp

or
tf
ol
io

α

ye
ar

G
la
ss
o

N
ai
ve

C
ov

γ
=

0
γ

=
0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

0.
13

0.
13

0.
00

0.
19

0.
29

0.
23

0.
22

0.
22

0.
19

0.
19

0.
13

0.
16

20
07

0.
08

0.
08

0.
00

0.
06

0.
06

0.
07

0.
07

0.
07

0.
07

0.
07

0.
07

0.
06

20
08

−
0.
11

−
0.
11

−
0.
08

−
0.
00

0.
01

0.
01

0.
02

0.
02

0.
02

0.
03

0.
03

0.
03

20
09

0.
14

0.
14

0.
03

0.
03

0.
03

0.
02

0.
01

0.
01

0.
01

0.
00

0.
01

0.
02

20
10

0.
03

0.
03

0.
08

0.
01

0.
00

0.
01

0.
02

0.
04

0.
03

0.
03

0.
02

0.
01

20
11

−
0.
03

−
0.
03

−
0.
05

0.
00

−
0.
01

−
0.
01

−
0.
01

−
0.
02

−
0.
02

−
0.
02

−
0.
03

−
0.
03

20
12

0.
02

0.
02

−
0.
00

0.
02

0.
02

0.
02

0.
02

0.
02

0.
03

0.
03

0.
03

0.
03

20
13

−
0.
04

−
0.
04

−
0.
03

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

20
14

0.
00

0.
00

0.
01

0.
01

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

20
15

−
0.
04

−
0.
04

−
0.
02

0.
00

−
0.
00

−
0.
00

−
0.
00

−
0.
00

0.
00

−
0.
01

−
0.
01

−
0.
01

20
16

0.
02

0.
02

−
0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
00

0.
01

20
17

0.
03

0.
03

0.
01

0.
02

0.
00

0.
00

0.
00

0.
00

0.
01

0.
01

0.
01

0.
01

20
18

0.
02

0.
02

−
0.
03

0.
02

−
0.
02

−
0.
03

−
0.
04

−
0.
05

−
0.
05

−
0.
05

−
0.
06

−
0.
06

T
he

ta
bl
e
sh
ow

s
th
e

α
co
ef
fic
ie
nt

of
th
e
C
A
PM

m
od
el
fo
r
th
e
po
rt
fo
lio

s
ge
ne
ra
te
d
fr
om

th
e
al
te
rn
at
iv
e
st
ra
te
gi
es
.A

ll
th
e
m
ea
su
re
s
ar
e
co
m
pu
te
d
ar
e
re
la
tiv

e
to

th
e
be
nc
hm

ar
k

st
ra
te
gy

an
d
al
lt
he

re
po
rt
ed

va
lu
es

ar
e
m
ul
tip

lie
d
by

a
sc
al
e
fa
ct
or

of
10
0

123



Annals of Operations Research (2022) 313:965–989 983

Ta
bl
e
6

V
aR

m
ea
su
re
s

Y
ea
r

B
en
ch
.

N
ai
ve

γ
=

0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

1.
12

1.
10

0.
65

0.
70

0.
72

0.
82

0.
85

0.
86

0.
87

0.
90

20
07

1.
61

1.
49

0.
67

0.
73

0.
75

0.
76

0.
78

0.
78

0.
78

0.
78

20
08

3.
45

2.
60

0.
35

0.
49

0.
59

0.
69

0.
79

0.
84

0.
92

0.
91

20
09

1.
58

1.
26

0.
49

0.
64

0.
83

1.
00

1.
19

1.
27

1.
39

1.
40

20
10

1.
45

1.
14

0.
51

0.
57

0.
60

0.
64

0.
72

0.
75

0.
78

0.
84

20
11

1.
95

1.
43

0.
50

0.
53

0.
55

0.
68

0.
72

0.
75

0.
77

0.
77

20
12

1.
65

1.
30

0.
15

0.
16

0.
17

0.
18

0.
20

0.
22

0.
23

0.
23

20
13

1.
03

0.
79

0.
17

0.
17

0.
17

0.
18

0.
19

0.
19

0.
21

0.
25

20
14

0.
96

0.
92

0.
20

0.
21

0.
22

0.
26

0.
29

0.
29

0.
30

0.
31

20
15

0.
87

0.
71

0.
11

0.
13

0.
15

0.
18

0.
23

0.
25

0.
28

0.
30

20
16

1.
32

1.
10

0.
18

0.
20

0.
20

0.
26

0.
31

0.
33

0.
38

0.
42

20
17

1.
30

1.
14

0.
16

0.
16

0.
16

0.
18

0.
21

0.
23

0.
28

0.
30

20
18

0.
61

0.
75

0.
51

0.
60

0.
62

0.
64

0.
67

0.
70

0.
75

0.
76

T
he

ta
bl
e
sh
ow

s
th
e
an
nu
al
V
al
ue

at
R
is
k
fo
r
th
e
po
rt
fo
lio

s
re
la
te
d
to

th
e
di
ff
er
en
ts
tr
at
eg
ie
s.
A
ll
th
e
va
lu
es

ar
e
ex
pr
es
se
d
in

ab
so
lu
te
te
rm

s
m
ul
tip

li
ed

by
a
sc
al
e
fa
ct
or

of
10

0

123



984 Annals of Operations Research (2022) 313:965–989

Ta
bl
e
7

C
V
aR

Y
ea
r

B
en
ch
.

N
ai
ve

γ
=

0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

1.
36

1.
36

0.
86

0.
92

0.
95

1.
09

1.
13

1.
13

1.
12

1.
12

20
07

1.
95

1.
79

0.
82

0.
91

0.
94

0.
96

0.
97

0.
97

0.
97

0.
98

20
08

4.
21

3.
25

0.
43

0.
59

0.
70

0.
81

0.
92

1.
00

1.
11

1.
08

20
09

1.
99

1.
52

0.
62

0.
80

1.
02

1.
22

1.
46

1.
57

1.
73

1.
73

20
10

1.
88

1.
35

0.
62

0.
70

0.
75

0.
80

0.
91

0.
94

0.
97

1.
04

20
11

2.
42

1.
72

0.
58

0.
62

0.
65

0.
84

0.
89

0.
93

0.
98

0.
93

20
12

2.
02

1.
56

0.
19

0.
24

0.
37

0.
45

0.
49

0.
51

0.
52

0.
53

20
13

1.
34

1.
03

0.
20

0.
20

0.
20

0.
21

0.
22

0.
23

0.
26

0.
40

20
14

1.
27

1.
13

0.
25

0.
27

0.
28

0.
34

0.
38

0.
38

0.
40

0.
49

20
15

1.
09

0.
83

0.
17

0.
18

0.
19

0.
23

0.
28

0.
31

0.
36

0.
38

20
16

1.
67

1.
31

0.
22

0.
25

0.
25

0.
32

0.
38

0.
40

0.
47

0.
51

20
17

1.
62

1.
34

0.
20

0.
20

0.
22

0.
24

0.
31

0.
34

0.
40

0.
44

20
18

0.
82

0.
92

0.
65

0.
78

0.
81

0.
85

0.
90

0.
94

1.
00

1.
02

T
he

ta
bl
e
sh
ow

s
an
nu
al
C
on
di
tio

na
lV

aR
de
ri
ve
d
fo
rm

th
e
co
m
pe
tin

g
st
ra
te
gi
es
.A

ll
th
e
va
lu
es

ar
e
ex
pr
es
se
d
in

ab
so
lu
te
te
rm

s
m
ul
tip

lie
d
by

a
sc
al
e
fa
ct
or

of
10

0

123



Annals of Operations Research (2022) 313:965–989 985

Ta
bl
e
8

A
nn

ua
li
nf
or
m
at
io
n
ra
tio

Y
ea
r

G
la
ss
o

N
ai
ve

C
ov

γ
=

0
γ

=
0.
00

5
γ

=
0.
02

5
γ

=
0.
05

γ
=

0.
15

γ
=

0.
7

γ
=

1
γ

=
2

γ
=

4

20
06

2.
67

2.
65

−
3.
82

4.
43

6.
31

4.
47

4.
33

4.
03

3.
07

3.
09

0.
97

2.
69

20
07

2.
47

2.
48

−
0.
28

0.
80

1.
21

1.
41

1.
40

1.
42

1.
36

1.
34

1.
25

1.
05

20
08

0.
10

0.
08

0.
81

1.
44

1.
56

1.
59

1.
62

1.
65

1.
69

1.
69

1.
71

1.
70

20
09

1.
73

1.
83

−
0.
91

−
0.
84

−
0.
85

−
0.
96

−
1.
01

−
1.
00

−
1.
08

−
1.
10

−
1.
03

−
0.
81

20
10

0.
66

0.
66

0.
71

−
0.
05

−
0.
25

−
0.
06

0.
17

0.
54

0.
40

0.
34

0.
22

0.
01

20
11

−
0.
11

−
0.
11

−
0.
21

0.
45

0.
31

0.
26

0.
20

0.
06

0.
05

0.
02

−
0.
01

−
0.
06

20
12

0.
04

0.
04

−
0.
29

−
0.
42

−
0.
33

−
0.
32

−
0.
29

−
0.
21

−
0.
17

−
0.
17

−
0.
15

−
0.
16

20
13

−
2.
83

−
2.
83

−
1.
29

−
1.
96

−
2.
07

−
2.
06

−
2.
02

−
1.
95

−
1.
94

−
1.
92

−
1.
89

−
1.
79

20
14

−
0.
50

−
0.
50

−
0.
18

−
0.
20

0.
09

0 .
10

0.
11

0.
13

0.
15

0.
16

0.
21

0.
19

20
15

−
0.
80

−
0.
81

−
0.
02

0.
33

0.
16

0.
16

0.
19

0.
17

0.
14

0.
08

−
0.
05

−
0.
11

20
16

0.
28

0.
28

−
0.
72

−
0.
09

−
0.
22

−
0.
24

−
0.
20

−
0.
22

−
0.
20

−
0.
21

−
0.
22

−
0.
20

20
17

0.
39

0.
40

−
2 .
77

−
1.
18

−
2.
03

−
1.
59

−
1.
46

−
1.
42

−
1.
35

−
1.
32

−
1.
30

−
1.
34

20
18

1.
37

1.
38

−
0.
53

0.
44

−
0.
59

−
0.
87

−
1.
05

−
1.
14

−
1.
17

−
1.
19

−
1.
25

−
1.
36

T
he

ta
bl
e
sh
ow

s
th
e
In
fo
rm

at
io
n
R
at
io

of
po
rt
fo
lio

s
un
de
r
di
ff
er
en
ts
tr
at
eg
ie
s.
A
ll
m
ea
su
re
s
ar
e
co
m
pu
te
d
re
la
tiv

el
y
to

th
e
be
nc
hm

ar
k
st
ra
te
gy

123



986 Annals of Operations Research (2022) 313:965–989

this explains, once more, the importance of the preliminary processing done by the RMT
approach.

The value of the CAPM α measures the ability to choose potentially profitable assets,
reflecting the expertise of asset managers in exploiting market signals and investing accord-
ingly, thus generating positive extra-performances. Table 5 describes the α coefficient, which
reflects portfolio extra/under performances with respect to the benchmark. Table 5 shows that
our portfolios outperform the benchmark strategy, as they all report values greater than 0.
They are also generally better than the “naive” and “Glasso” portfolios. Only during the
growing rebound phase of 2009 our strategies seem to under perform.

Our portfolio allocation method can also be compared with other methods in terms of risk.
Table 6 specifically refers to the Value at Risk. Table 6 highlights that our portfolio strategies,
although becoming more risky during the crisis period (proportionally to risk aversion), has
an overall risk that is lower than that of the benchmark portfolio and that of the “naive” one.

Table 7 reports the values of the CVaR of the different portfolio strategies. This measure,
introduced by Rockafellar et al. (2000), quantifies the potential extreme losses in the tail of
the return distribution. The results are in line with those presented in Table 6: our strategies
over perform in terms of expected losses the “naive” and benchmark portfolios, except for
the last year considered in the analysis.

Finally, Table 8 reports the values of the information ratio which, differently from the
Sharpe ratio, takes into account the tracking error. The results are in line with those obtained
with the calculation of the Sharpe ratio.

4 Conclusions

In the paper we have shown how to improve robot-advisory portfolio allocation, typically
based on several asset returns, highly correlated with each other, and especially during crisis
times.

In particular, we have demonstrated how to build high performing portfolios bymeans of a
mix of data processing strategies, that include: (i) filtering the correlation matrix among asset
returns with the Random Matrix Theory approach; (ii) calculating the correlation network
centrality of each asset return, after the application of the Minimal Spanning tree approach;
(iii) selecting portfolio weights including in Markowitz’ optimisation function the network
centralities, thereby taking into account high order interconnection risks.

The application of our proposal to the observed returns of a set of Exchange Traded
Funds (ETFs), which are representative of the assets traded by robot-advisors, shows that
our proposal leads to higher returns, or to lower risks, when compared to standard portfolios,
especially during crisis times.

We therefore believe that our proposal could be relevant, for robot-advisors aimed at
improving their services, while maintaining the accessibility to a large audience of potential
investors; but also for regulators and supervisors, aimed atmeasuring and preventing the under
estimation of market risks coming from the adoption of robot-advisory financial consulting.

The research work could be extended in several directions, and we believe it would also
be extremely important to apply what proposed to other datasets and robot-advisory settings
and, in particular, to those concerning crypto assets (see e.g. Giudici and Pagnottoni 2020)
and foreign exchanges (see e.g. Giudici et al. 2021).
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