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Abstract
We investigate gold’s role as a hedge or safe haven against oil price and currency movements
across calm and extrememarket conditions. For the empirical analysis, we extend the intraday
multifractal correlation measure developed by Madani et al. (Bankers, Markets & Investors,
163:2–13, 2020) to consider the dependence for calm and extreme movement periods across
different time scales. Interestingly, we employ the rolling window method to examine the
time-varying dependence between gold-oil and gold-currency in terms of calm and turmoil
market conditions. Based on high frequency (5-min intervals) across the period 2017–2019,
our analysis shows three interesting findings. First, gold acts as a weak (strong) hedge for
oil (currency) market movements, across all agent types. Second, gold has strong safe-haven
capability against extreme currencymovements, and against only short time scales of oil price
movements. Third, hedging strategies confirm the scale-dependent gold’s role in reducing
portfolio risk as a hedge or safe haven. Implications for investors, financial institutions, and
policymakers are discussed.

Keywords Hedge ratio · Intraday · Multifractal · Non-linearity · Optimal portfolio · Time
scale

1 Introduction

To understand economic complexity, it is necessary to consider the comprehensive dynamics
of different markets, and particularly, the nature of their interactions. Underlying market
interactions remain a great challenge for successful portfolio management, especially with
the occurrence of several turmoil periods in a short timeframe.

1
Thus, lessons from market

1Since 2000, several periods of turmoil have occurred, including the dot-com bubble, financialization of
commodity markets, the US housing boom, the subprime crisis, the sovereign debt crisis, and an environment
of increased uncertainty, COVID-19 crisis.
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interactions would be useful for asset allocation optimization, portfolio diversification, and
hedging strategies (Markowitz, 1952; Plerou et al., 2002).

Galton (1886) pioneered the development of the theoretical concept of connections
between time series. Pearson (1895) defined the Galton correlation coefficient with the aim
of measuring the similarity of price changes between pairs of assets, which came to be known
as the Pearson correlation coefficient.2 Several measures have been developed to measure
the cross-correlation between time series and especially since the 1980s, there has been a
revolution in econometric theory. Most of this research deals with linear models and station-
ary time-series (e.g., Engle & Granger, 1987, 1991). Some studies deal with time-varying
connection and extended correlation matrix in different ways in order to extract useful infor-
mation for understanding time-varying financial market dependence (Bollerslev et al., 1988;
Campbell et al., 2008; Forbes & Rigobon, 2002; Huang et al., 2013; Krishan et al., 2009).
In the last decade, a new strand of literature has emerged to highlight the complexity of
the behavior of financial series, especially after the occurrence of various turmoil periods
in a short timeframe (since 2000). Interestingly, these studies point out the high degree of
the non-stationary behavior of financial series, indicating self-affinity behavior, which may
characterize cross-correlation by power laws (Wa̧torek et al., 2019).

This study is related to this last strand of literature, specifically, the multifractal approach
used for portfoliomanagement. As diversification benefits occurmore during times of greater
volatility in financial markets (Ang & Bekaert, 2002), we propose a new measure of cross-
correlation for different order of moments (second and fourth, in particular). In other words,
we propose a new cross-correlation that is useful for measuring classical dependence (sec-
ond moment) and cross-correlation for extreme movement (fourth moment). Interestingly,
to the best of our knowledge, no research has used this kind of approach to provide further
information about the role of gold as hedge and safe-haven asset against oil and US currency
movements. From an econometric theory point of view, several techniques have been devel-
oped to investigate the fractal and the multifractal properties in time series. Some approaches
are employed for the univariate case, analyzing the auto-correlation of a time series, such as
the detrended fluctuation analysis of Peng et al. (1995) and the detrending moving average
(DMA) analysis of Vandewalle andAusloos (1998).Multifractal versions have also been pro-
posed, namely,multifractal detrendedfluctuation analysis andmultifractal detrendingmoving
average (MFDMA) by Gu and Zhou (2010). Recently, some studies have shown interest
in power-law cross-correlation. Podobnik and Stanley (2008) proposed detrended cross-
correlation analysis (DCCA) to investigate power-law cross correlations between different,
but simultaneously recorded time series in the presence of non-stationarity. Zebende (2011)
and Kristoufek (2014b) proposed scale-specific correlation coefficients based on DCCA and
DMCA, respectively, analogous to the Pearson coefficient.3 The DMCA method is consid-
ered an improvement over the DCCA approach, as it avoids a box-splitting procedure and
assumes a power-law scaling of covariances with increasing moving average window size.
However, the abovementioned methods measure the cross-correlations only for the second
moment. In this work, we introduce a variant of the q-DCCA coefficient (Kwapień et al.,
2015) and an extension of the DMCA coefficient, termed the q-detrending moving average
cross-correlation (q-DMCA) coefficient, which is used to quantify the strength of cross-
correlations on different temporal scales and amplitudes between two non-stationary time

2 The Pearson correlation coefficient has been interpreted in different ways for analysis of the connection
between time series. For details, see Rodgers and Nicewander (1988).
3 Similarly, the variance is presented by the detrended fluctuation function (F2

DFA or F2
DMA) and the covari-

ance is presented by the detrended covariance function (F2
DCCA or F2

DMCA).

123



Annals of Operations Research (2022) 313:367–400 369

series. From a theoretical point of view, most previous studies have investigated gold’s role as
a safe haven for stock market movements and oil price changes (Baur & Lucey, 2010; Beck-
mann et al., 2015; Ftiti et al., 2016; Miyazaki et al., 2012; Nguyen et al., 2016, 2020; Sephton
& Mann, 2018; Tiwari et al., 2020) while others have considered gold as a hedge against
inflation (Beckmann et al., 2019; Blose, 2010; Hoang et al., 2016; Lucey et al., 2017; Tully
& Lucey, 2007;Wang et al., 2011). Few studies have focused on the role of gold as a hedge or
investment safe haven against currency depreciation (Baur &McDermott, 2016; Iqbal, 2017;
Joy, 2011; Reboredo, 2013; Reboredo & Rivera-Castro, 2014a). Our analysis fills this gap
in the literature by dealing with intraday gold’s role against movements in oil and currency
markets, which is useful for asset allocation and hedging strategies for various reasons. Inter-
estingly, recent oil price movements have not been driven by market supply–demand forces,
but rather by US exchange rate fluctuations, as the US dollar (USD) is a major invoicing
currency. When the USD depreciates, investors tend to hold gold as a hedge against currency
movements and as a safe-haven asset against extreme currency movements. Empirically, our
study contributes to the literature in several ways. First, we develop a new cross-correlation
coefficient offering the advantage of considering investors’ heterogeneity across calm and
turmoil market conditions. Second, we propose an empirical framework based on an intraday
dataset useful in today’s modern financial markets, as high frequencies offer more informa-
tion and realistic design, especially with respect to market practitioners’ perspective in term
of risk management and hedging.

Based on the intraday data, ranged from May 2017 to March 2019 (the sample includes
35,608 observations), for main currency markets forming the US DXY aggregate index,
giving the main US trend, oil prices, and gold prices, we develop a new multifractal
cross-correlation measure—the q-detrending moving average cross-correlation coefficien-
t—investigating the hedging and/or safe-haven role of the gold market. Then, we test the
performance of this newmeasure compared to the q-DCCAcoefficient developed byKwapień
et al. (2015), dealing similarly with cross-correlation for different order of moments. Based
on the numerical experiment, in line with Kristoufek (2017), we confirm the superiority of
our measure for large samples (as is the case of an intraday dataset). Finally, the estimation
results are used to test the significant role of gold as a hedge and safe haven against oil and
USD depreciation at different time scales by estimating the optimal portfolio weights and
the optimal hedge ratio. The results between gold and USD exchange rates support the role
of gold as an effective hedge and safe-haven asset. Regarding oil and gold, the results show
independence for all time scales for moment of order two, supporting the weak hedge of gold
against oil. However, for turmoil periods, the relationship is negative for a time scale of less
than 600 (less than 1 week of trade), providing evidence of gold as a safe haven against oil in
the short run. Furthermore, our time-varying measure allows us to conclude that the power
of gold’s role as hedge and safe haven against oil and US currency markets is not stable and
change over time.

The subsequent part of this study is presented as follows. Section 2, briefly reviews the
literature. Sections 3 and 4 present the developed q-DMCAmeasure of cross-correlation and
its validation based on numerical experiments, respectively. Section 5 discusses the results
and Sect. 6 concludes.

2 Literature review

There are only a few studies dealing with gold as a hedge and/or a safe haven against currency
depreciation and they are quite recent. However, this literaturemay be related to earlier studies
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on the linear connection between gold and the USD and those investigating the connection
between gold and oil.

Beckers & Soenen (1984) investigated gold’s holding positions for US and non-US
investors, and showed a negative correlation between the return on gold investments (in
USD) and the strength of the USD on the foreign exchange market as well as asymmetric
risk diversification with advantage for non-US investors. Sjaastad & Scacciavillani (1996)
andSjaastad (2008) concluded that the appreciation or depreciation of theUSDhas significant
effects on the gold price by using the forecast error approach.

Moreover, another strand of research has found strong relationships between gold and
oil prices (Ye, 2007; Zhang et al., 2007). Using GARCH family models, Hammoudeh &
Yuan (2008) examined the volatility behavior of three metals, gold, silver, and copper, and
found that oil stocks do not impact all three metals in the same way. Other studies support a
long-term relationship between oil and gold prices (Bouri et al., 2017; Narayan et al., 2010).

Few studies have examined the hedging and/or safe-haven capability of gold against cur-
rencies. Joy (2011) investigated the role of gold as a safe haven and/or hedge against currency
depreciation. Based on theDCCA-GARCHmodel, he indicated that gold is aweak safe haven
and a successful hedge against the USD. Chang et al. (2013) investigated the correlation
among oil prices, gold prices, and the new Taiwan dollar versus the USD exchange rate by
employing several linear tests and models (Johansen co-integration test, Granger causality
test, vector autoregression model, impulse response analysis, and variance decomposition
method). The authors concluded that the variables are considerably independent. Previous
studies have imposed some strong assumptions that do not match the specificities of financial
and commodities markets, which have been characterized by chaotic structural change since
the stockmarket crash ofOctober 19, 1987 (Hsieh, 1991). In fact, financial globalization since
the 1980s and dynamic patterns in the global economy have been caused by developments
in information-processing technologies and the more global nature of all economic activity.
There was rapid expansion of international financial activity, continuing at least to a peak
in 2006 of “the long boom” (the Joseph effect) that preceded the global financial crisis in
December 2008 (the Noé effect), generating 6 trillion USD or approximately 20\% of world
GDP. To specify these more general mean structures in gold price, oil price, and exchange
rate relationships, many authors have employed non-linearmodels. By applying the structural
break cointegration test, Narayan et al. (2010) confirmed the existence of structural break
cointegration between these markets. Reboredo (2013) used copulas to characterize average
and extreme market dependence between gold and the USD; the empirical results suggest
that gold can act as a hedge and safe haven against USD depreciation. Kanjilal & Ghosh
(2017) employed threshold cointegration to find a non-linear relationship between gold and
oil prices. The non-linear ARDL model was also employed by Kumar (2017) to underline
the importance of asymmetric co-movement between gold and oil markets. Reboredo and
Rivera-Castro (2014b) and Baruník et al. (2016) examined gold–exchange rate and gold–oil
relationships, respectively, from a perspective of different investment horizons using the
wavelet approach. Recently, Tiwari et al. (2020) used a Markov-switching time-varying cop-
ula model and multi-resolution analysis (MRA) to examine the dependence structure and
dynamics between gold and oil prices.

The above-mentioned literature has investigated gold’s role as a hedgeor safe haven against
oil price and/or currency movements. However, this literature does not distinguish between
the roles of gold during calm versus turmoil periods. This study aims to fill this gap by
proposing a new empirical correlation measure based on the intraday multifractal method.
This new measure has at least two advantages. First, we propose an intraday measure to
gain more insights on the co-dynamics of the studied markets and explore the existence of
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evolving short-range predictability. Second, themultifractal approach considers the investors’
heterogeneity. In addition, all the studies mentioned above used data with a daily frequency,
but the actual flow of data is defined tick by tick, at each quote and each transaction. More
specifically, as gold and oil futures are among the most traded commodities, investors can
set a sufficiently narrow window of time around each announcement of a sudden event or
monetary policy to verify whether the markets are impacted by a specific news.

3 Empirical design

3.1 The generalization of the DMCA

We can use the information provided by the detrending cross-correlation moving average
analysis to distinguish between hedge and safe-haven properties which measure dependence
between two or more variables in terms of average movements by the second order (q = 2)
and in terms of extreme market movements by the fourth order (q = 4). According to the
definitional approach described in Kaul & Sapp (2006), Baur & Lucey (2010), and Baur &
McDermott (2010), the distinctive features of an asset as a hedge or safe haven are as follows.

• An asset is a weak (or strong) hedge if it is uncorrelated (or negatively correlated) with
another asset or portfolio on average.

• An asset is a weak (or strong) safe haven if it is uncorrelated (or negatively correlated)
with another asset or portfolio in times of extreme market movements.

The DMCA coefficient can be regarded as an alternative and a complement to the DCCA
coefficient (Kristoufek, 2014b). According to the results of Kristoufek (2014a) and Sun
and Liu (2016), the DCCA coefficient proposed by Zebende (2011) dominates the Pearson
coefficient. Thereafter, Kristoufek (2014b) proposed the DMCA coefficient and found that it
can be regarded as both an alternative and a complement to the DCCA coefficient. This new
measure is based on the DMA (Alessio et al., 2002; Vandewalle & Ausloos, 1998).

For two possibly non-stationary series {xt } and {yt }, we construct the cumulative sum
Xt = ∑t

i=1xi and Yt = ∑t
i=1yi for t = 1, 2, …, N, where N is the same length for both

series.4 According to Xu et al. (2005) and Arianos and Carbone (2007), the moving average
functions X̃t and Ỹt are defined as

X̃t = 1

s

�(s−1)(1−θ)�∑

k=−�(s−1)θ�
Xt−k, (1)

Ỹt = 1

s

�(s−1)(1−θ)�∑

k=−�(s−1)θ�
Yt−k, (2)

where the position parameter (θ) varies from 0 to 1.5 The reference point (θ) of the moving
average is set in the sliding window (s). �x� denotes the largest integer less than (x), and
�x� consists of the smallest integer greater than (x). The residual series is obtained by
subtracting the trend X̃(i) from X(i), εX (i) = X(i) − X̃(i) and in the same way, we obtain

4 In Appendix Fig. 5, we present the dynamics of the cumulative sum of our returns (Fig. 5) to show the trend
behavior of these series motivating the detrending moving average method.
5 Different cases exist for setting the parameter (θ). In this study, we follow Shao et al. (2012), who used the
centered moving average (θ = 0.5), as this leads to the best solution. For other cases of setting the parameter
(θ), refer to Ftiti et al., (2019, p. 3125).
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εY (i) = Y (i) − Ỹ (i) where s − �(s − 1)θ� ≤ i ≤ N − �(s − 1)θ�. We divide the residual
series into Ns parts of equal size s, where Ns corresponds to the integer part of ( Ns − 1). For
1 ≤ i ≤ s, εv(i) = ε(l + i), where l = (v − 1)s and each part of the divided residual series
is denoted by v. We can calculate the root mean square function fv(s) with segment size s
by

f 2v (s) = 1

s

∑s

i=1
[εv(i)]

2 (3)

The overall detrended fluctuation functions of each time series are estimated as follows:

F2
X ,DMA(s) = 1

Ns

∑Ns

v=1
f 2X ,v(s) (4)

F2
Y ,DMA(s) = 1

Ns

∑Ns

v=1
f 2Y ,v(s) (5)

and the bivariate fluctuation function F2
DMCA, following Jiang and Zhou (2011), is defined

as

F2
DMCA(s) = 1

Ns

∑Ns

v=1

(
Xt − X̃t

)(
Yt − Ỹt

)
(6)

The DMCA coefficient6 can be easily obtained by following Zebende (2011) for the
DCCA coefficient, as follows:

ρDMCA(s) = F2
DMCA(s)

FX ,DMA(s)FY ,DMA(s)
(7)

According to the Cauchy–Schwarz inequality, we have −1 < ρDMCA(s) < 1. A value of
ρDMCA equal to zero implies independence between the two-time series. A value equal to
(−1) indicates that the two-time series have perfect long-range negative cross-correlation. A
value equal to (1) means that the time series have perfect long-range cross-correlation.

Equation (7) shows that the DMCA coefficient is the ratio between the detrended covari-
ance function F2

DMCA and the detrended variance function F2
DMA. This considers only the

level of cross-correlation in the mean andmakes the measure unsuitable for other amplitudes.
In other words, the values of ρDMCA might not be the same for all fluctuations (lower q < 0
and higher q > 0).

To surpass this limit, we propose a multifractal generalization of the detrending moving
average cross-correlation coefficient. The idea is the same as that of Kwapień et al. (2015),
and consists of making the coefficient DMCA to the power (q), so that it becomes more
attractive by making it depend on the exponent (q) and the temporal scale (s). Our new
measure is based on the so-called

(
qth

)
-order fluctuation function Fq(s) from the MFDMA

and MF-X-DMA methods (Gu & Zhou, 2010; Jiang & Zhou, 2011). Therefore, we use the
detrended covariance sign, which enables us to keep “all” information about the analyzed
time series (Oświȩcimka et al., 2014). These quantities are defined as follows:

Fq
X/Y (s) = 1

Ns

∑Ns

v=1
f qX/Y ,v(s), (8)

Fq
XY (s) = 1

Ns

∑Ns

v=1
sign[ f 2XY (s)]∣∣ f 2XY (s)

∣
∣
q
2 , (9)

6 In this study, the presentation of the DMCA coefficient is different from those of Kristoufek (2014b).
Specifically, TheDMAmethod presented inKristoufek (2014b) is based on scaling of fluctuationswithmoving
average window length whereas in our case, we use moving averages, which are based on box splitting and
scaling with box sizes, as described in Eqs. (4) and (5).
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where, f 2XY (s) = 1

s

s∑

i=1

εX ,v(i)εY ,v(i) (10)

Finally, we propose the new detrending moving average
(
qth

)
-order cross-correlation

coefficient (q-DMCA cross-correlation coefficient) as follows,

ρq−DMCA(s) = Fq
XY (s)

√
Fq
X (s)Fq

Y (s)
(11)

For q > 0, according to the Cauchy–Schwarz inequality, we have

−1 < ρq−DMCA < 1 (12)

When q < 0, the absolute value of the coefficient q-DMCA is greater than 1, and this
occurs frequently when the bivariate series are not cross-correlated or are weakly cross-
correlated. To consider this case, the q-DMCA coefficient can be redefined as follows:

ρ∗
q−DMCA(s) =

{
ρq−DMCA(s) i f

∣
∣ρq−DMCA(s)

∣
∣ ≤ 1

[
ρq−DMCA(s)

]−1
i f

∣
∣ρq−DMCA(s)

∣
∣ > 1

(13)

The cross-correlation coefficient presented in Eq. (11) is a time-scale varying measure
generalized for order q but it is time independent. To obtain a time-varying cross-correlation
measure generalized for order q , we apply the rolling windows based on the q-DMCA
coefficient. This method was first proposed by Cajueiro and Tabak (2004), who applied it for
efficient performance of the daily WTI and Brent crude oil futures prices. One relevant point
to note is that the length of rolling windows can be adjusted to suitable levels for the research
needs. The rolling window length is 3162 observations7 (approximately 2 months), since
using a short length could be associated with poor predictability of the fluctuation function
(Zhou et al., 2006).

4 Numerical experiments for the proposedmeasure q-DMCA

Previous studies dealing with either DMCA or DCCA measures as power-law of correlation
have confirmed the superiority of these measures compared to the traditional correlation
coefficient (Kristoufek, 2014a, 2014b). Actually, Kristoufek (2014a) proposed the DCCA
coefficient to measure correlation between non-stationary series, as an alternative to classical
measures, such as the Pearson coefficient. Based onMonte Carlo simulation of the ARFIMA
model, Kristoufek (2014a) showed the superiority of the DCCA coefficient compared to the
Pearson coefficient. Moreover, Kristoufek (2014b) introduced another measure to compute
the correlation between non-stationary series, based on the DMCA, as an alternative to
the Pearson coefficient. Similarly, through a Monte Carlo simulation exercise based on an
ARFIMAmodel, he showed the superiority of theDMCAcoefficient compared to the Pearson
coefficient. Overall, these studies concern the power-law correlation for moment of order
two, which is analogous to the Pearson correlation measure, and there is consensus on the
superiority of the DCCA andDMCA compared to the Pearson correlation coefficient in terms
of (i) quantifying scale-dependent correlations and (ii) no sensitivity to noise (Piao & Fu,
2016).

7 We have also estimated the q-DMCA coefficient with different rolling window lengths (1 and 4 weeks).
Since the results remain robust across all window lengths, we have chosen the most parsimonious length.
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In our study, we extend these studies for highmoments to measure the correlation between
time series in extreme events, particularly for moment of order four, which is not the case for
the Pearson correlation. Therefore, to highlight the superiority of ourmeasure and particularly
its interest in relation to our research question on the hedging and safe haven capabilities of
gold, we should compare our proposed correlation measure with another one dealing with
cross-correlation for high moments, such as q-DCCA developed by Kwapień et al. (2015).
Therefore, we aim to compare the q-DMCA with the q-DCCA.

Our q-DMCA coefficient is compared to the q-DCCA coefficient by using a numerical
experiment based on MC-ARFIMA processes, which allow for various specifications of uni-
variate and bivariate long-term memory (Kristoufek, 2013). The two methods are focused
on estimating the generalized power-law coherency parameter Hρ(q) by controlling the
generalized univariate Hurst exponents Hx (q), Hy(q) and the generalized bivariate Hurst
exponentHxy(q). Kristoufek (2013) showed that the processes (xt ) and (yt ) are separately
and jointly widely stationary (Kristoufek, 2013, pp. 6491–6492). Then, Kristoufek (2017)
simulated the MC-ARFIMA model by considering d1 = d4 = 0.4 andd2 = d3 = 0.3,
supporting the wide stationarity of the data. However, Kristoufek (2014a, 2014b) sim-
ulated a DMCA coefficient based on the ARFIMA model allowing different cases of
d1 = d2 ≡ d=0.1,0.4,0.6,0.9,1.1, 1.4 to consider both stationary and non-stationary cases for
the variables. We consider the model of MC-ARFIMA, as it has a variety of advantages. It
allows us to control for the separate and bivariate Hurst exponents if the bivariate exponent is
not higher than the average of the separate ones; in addition, it allows for short-range depen-
dence. Specifically, the proposed MC-ARFIMA model allows for even more specifications
that encompass fractional cointegration and a short-range cross-correlated AR process.

The parameter Hρ is defined as Hρ(q) = Hxy(q) − 1
2 (Hx (q) + Hy(q)).

The MC-ARFIMA processes are defined as

xt =
+∞∑

n=0

an(d1)ε1,t−n +
∑+∞

n=0
an(d2)ε2,t−n (14)

yt =
+∞∑

n=0

an(d3)ε3,t−n +
∑+∞

n=0
an(d4)ε4,t−n (15)

for specific di = Hi − 0.5, we define an(di ) as

an(di ) = �(n + di )

�(n + 1)�(di )
(16)

and innovations are characterized by

〈εi,t 〉 = 0for i = 1,2,3,4

〈ε2i,t 〉 = σ 2
εi
for i = 1,2,3,4

〈εi,tε j,t−n〉 = 0for n �= 0and i,j = 1,2,3,4

〈εi,tε j,t 〉 = σi j for i �= jand i,j = 1,2,3,4 (17)

We have Hx = d1 + 0.5, Hy = d4 + 0.5 and Hxy = 0.5+ 1
2 (d2 + d3). In the simulations,

we initialize the following parameters: d1 = d4 = 0.4, d2 = d3 = 0.2. Thus, the theoretical
values of Hurst exponents and the power coherency parameter equal Hx = Hy = 0.9,
Hxy = 0.7 and Hρ = −0.2. Following Kristoufek (2017), we set three different simulated
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time-series lengths (T = 500, 1000, and5000). Power-law coherency is obtained when ε2
and ε3 are correlated, and thus, we study three correlation levels: 0 .1, 0.5, and0.9. For each
correlation level, we simulate 1000 bivariate series.8 To obtain the estimated values of Hρ(q),
we use the variance and covariance scale relations:

Fx (q, s) ∼ sHx (q) (18)

Fy(q, s) ∼ sHy(q) (19)

Fxy(q, s) ∼ sHxy(q) (20)

and then, we obtain the generalized scaling squared correlation as follows:

ρ2
q−DMCA(s) ∼ s2qHxy(q)

sqHx (q)sqHy(q)
= s2qHxy(q)−qHx (q)−qHy(q) = s2qHρ(q) (21)

The estimated values of Hρ(q) are easily obtained by using log–log regression. Simulation
results are performed according to three criteria: bias, variance, andmean squared error (MSE,
the sum of squared bias and variance) of the estimators.

We are interested only in the order q = 2 and q = 4, as explained in Sect. 3.
The simulation results for q = 2 of the q-DMCA and q-DCCA methods are presented

in Tables 1 and 2, respectively. First, we deduce that the detrended covariance sign in our
results significantly improves the results of Kristoufek (2017), especially for the q-DMCA
analysis.

Second, for low correlation between error terms ε2 and ε3, the bias is roughly 0.5 and 0.4
for theDCCA- andDMCA-basedmethods, respectively. The situation improves substantially
when the correlation between ε2 and ε3 increases, due to very low variance of the estimators.

The best case occurs when the correlation between innovations equals 0.9 and the window
size is the shortest nmin = 10 and smax = 20 for the estimators q-DCCA and q-DMCA,
respectively.We can generally say that the bias and variance decrease with time-series length.
For a sample of 5000 observations, we have approximately 0.03 (bias) and 0.03 (SD) for the
DCCA method and 0.02 (bias) and 0.02 (SD) for the DMCA method.

The simple change made to the detrended covariance by introducing the sign is evidence
of the main advantage in term of bias and variance. This fact can be explained by the ability
of the estimators to capture almost all information.

We conclude from Tables 1 and 2 that for both methods, when the correlation between
error terms ε2 and ε3 increases, the results improve significantly.

Similarly, the simulation results for q = 4 of the q-DMCA and q-DCCA coefficients are
presented in Tables 3 and 4, respectively. First, we note that the two methods yield a good
estimation of parameter Hρ when we focus on the analyses of high fluctuations. Second, the
findings are independent of the level of correlation and the sample length. In other words,
when we change the setting, the results remain relevant. Similarly, the best situation for high
fluctuations is when the correlation between ε2 and ε3 is lower (ρ = 0, 1).

To improve our numerical study, we extend the length of samples to 100,000 observations
(we set window sizes nmin = 10 and smax = 20, which are the best cases in the previous
simulations with correlation between innovations equal to 0.9 and 0.1 for q = 2 and q = 4,
respectively). The purpose of doing so is to verify whether themethods are stable with respect
to the length of the sample and for further comparison between them (to check whether the
alignment between the two methods remains valid).

8 We follow the setting of Kristoufek (2017) to assess the introduction of the sign function in the detrended
covariance function.
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Fig. 1 Comparative analyses of DCCA and DMCA methods

Figure 1 shows the estimation values of the parameter Hρ against time-series length. The
main deduction from the results is that the two methods show a stable estimation (in mean)
regardless of the length of the sample. For q = 2, the estimation values are approximately
equal to -0.15 and -0.16 for the q-DCCA and q-DMCAmethods, respectively. There is almost
the same result for q = 4, as shown by the dashed lines in Fig. 1. Based on a comparison
with the theoretical value, which equals -0.2, we deduce that the q-DMCA method is more
efficient than the q-DCCA method.

5 Empirical validation

5.1 Data and preliminary analysis

This study employs high frequency data (5-min intervals), which enables us to investigate
important and interesting information and capture further phenomena at short-term intervals.
The data related to the gold futures (expressed in USD per ounce), the light sweet crude oil
(expressed in USD per barrel) futures contracts. For exchange rates, we select the currencies
of the main trade partners of the United States: Euro (EUR), pound sterling (GBP), Swiss
franc (CHF), Japanese yen (JPY), Canadian dollar (CAD), and Australian dollar (AUD).
Specifically, we refer to the main currencies forming the US dollar index (DXY). This index
aims to measure the value of the USD relative to a basket of foreign currencies, considered
as a basket of US trade partners’ currencies. This is an aggerate index in 1973 after the
dissolution of the Bretton Woods agreement, and has a value of 100. The DXY index is
quoted in high-frequency data and provides information about the global trend of the USD.
Previous literature (e.g., Barnett et al., 2013) highlights that analyzing aggregated data may
be source of bias. Therefore, we choose to investigate the gold–currency relationship based
on the individual exchange currency market forming the DXY aggregate index.

Formally, the DXY index is calculated as the weighted geometric mean of the dollar’s
value relative to the following selected currencies: (EUR), (JPY), (GBP), (CAD), (SEK), and
(CHF), weighted at 57.6%, 13.6%, 11.9%, 9.1%, 4.2%, and 3.6%, respectively. Interestingly,
for data availability, we replace the SEKwith the AUD and this choice is motivated by several
reasons. First, since July 4, 1918, Australia and the US have maintained a unique bilateral
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partnership. Central to the relationship are the ANZUS Alliance and the Australia–US Free
Trade Agreement. During the period of study 2017–2019, Australia and the US traded more
than USD 66 billion yearly in a two-way investment relationship valued at more than USD
1.1 trillion, leading to approximately 25% of Australia’s inward foreign investment being
derived from theUS.The selected exchange rates aremeasured in units of foreign currency per
USD,where an exchange rate decrease denotes USDdepreciation. All data are collected from
Bloomberg database on an intraday basis and cover a period of approximately 400 trading
days beginning on May 23, 2017 and ending on March 12, 2019. Thus, the sample includes
35,608 observations for each variable. This period choice is motivated by our discretion to
analyze the role of the gold outside of the COVID-19 period, as it is considered a specific
shock similar to nature disaster (Goodell, 2020). The return series of gold, oil, and currency
are computed on a continuous compounding basis as the first difference of log prices. Figure 2
presents the dynamic of the gold–oil price (Fig. 2a) and gold price–exchange rate dynamics
for the different currencies analyzed in our study (Fig. 2b–g).

Figure 2 shows the following noteworthy aspects. First, we observe a potential negative
co-movement between oil and gold prices (Fig. 2a) in a few periods, explained by gold
investors holding under an upward trend of oil prices and vice versa. Figure 2b–g present the
dynamic of gold with different USD exchange rates. The pattern shows a potential negative
relationship between gold and currency markets.

Table 5 presents the main descriptive statistics. Skewness and kurtosis values show asym-
metry and leptokurtic dynamics of the studied series, respectively. This behavior is confirmed
by the Jarque–Bera test, which rejects the normality of all series. Figure 2 shows volatility
clustering for all data, highlighting the high volatility, extreme movements, and large fluc-
tuations of gold, oil, and exchange rates.9 Those features motivate the use of a non-linear
framework in this study.

Before investigating the dependence between time series through proposing a new mul-
tifractal correlation measure for different amplitudes, it is worthwhile to investigate the
multifractality nature of the studied series. To do this, we employ the MFDMA and MF-X-
DMAmethods to investigate the degree of multifractality for the univariate and the bivariate
series, respectively. For different values of time scale (s), the power relationship between
Fq(s) and (s) is Fq(s) ∼ sH(q). Furthermore, according to the standard multifractal frame-
work, the multifractal scaling exponent, τ(q) = qH(q) − 1 can be used to characterize
the multifractal nature. The multifractal series may be characterized based on the singular-
ity strength function, α(q) = dτ(q)

dq . This quantity informs the singularities in a time series
and the multifractal spectrum, f (α) = q[α − H(q)] + 1, obtained through the Legendre
transform (Halsey et al., 1986). The strength of multifractality can be estimated by the width
of the generalized Hurst exponents 	H = Hmax − Hmin and the multifractal spectrum
	α = αmax − αmin for univariate and bivariate series (see Table 6).

To investigate the sources of the multifractality, we employ the shuffling and surrogate
procedures10 to the original data for 100 times andwe re-estimate the degree ofmultifractality
	H and 	α. Finally, we can decide about the source of multifractality as follows.

• If 	H and 	α of the original data > 	H and 	α of the surrogated data > 	H and 	α

of the shuffled data, then the multifractality is caused by the long-range correlation.

9 The augmented Dickey–Fuller and Phillips–Perron tests accept the null hypothesis of unit root for all
variables and the Kwiatkowski–Phillips–Schmidt–Shin test rejects the null hypothesis of stationarity of all
variables.
10 For more details about these procedures, readers can refer to Ftiti et al. (2019).
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 2 The dynamic of gold, oil prices and exchange rates
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Table 6 Multifractal degrees of univariate and bivariate series

Variable 	H 	α

Original
data

Shuffled
data

Surrogate
data

Original
data

Shuffled
data

Surrogate
data

Gold 0.4094 0.2966 0.3860 0.6025 0.4465 0.4816

Oil 0.4513 0.4387 0.4224 0.6176 0.6057 0.5822

Bivariate 0.3680 0.1924 0.2325 0.5352 0.2962 0.3632

USD/EUR 0.4707 0.3591 0.3585 0.6553 0.5171 0.5064

Bivariate 0.3405 0.1701 0.2259 0.5200 0.2899 0.4912

USD/GBP 0.5227 0.3892 0.3967 0.7366 0.5498 0.5557

Bivariate 0.3773 0.1621 0.2152 0.5562 0.2534 0.4648

USD/CHF 0.3838 0.3226 0.3319 0.5462 0.4640 0.4728

Bivariate 0.3914 0.1837 0.1726 0.5687 0.2712 0.2577

USD/JPY 0.4699 0.3188 0.3470 0.6501 0.4710 0.4821

Bivariate 0.2790 0.2232 0.1756 0.3936 0.3277 0.2725

USD/CAD 0.4091 0.3121 0.3014 0.5666 0.4341 0.4255

Bivariate 0.3590 0.2043 0.1937 0.5365 0.3358 0.3294

USD/AUD 0.4024 0.3195 0.3275 0.5551 0.4379 0.4494

Bivariate 0.3724 0.1875 0.1893 0.5599 0.2981 0.3002

Bivariate series refers to the relationship between gold and the other variables under study. 	H and 	α

represent the degree of multifractality measures from the generalized Hurst exponents and the multifractal
spectrum, respectively

• If 	H and 	α of the original data > 	H and 	α of the shuffled data > 	H and 	α of
the surrogated data, then the multifractality is caused by the fat-tailed distribution.

When the degree of multifractality decreases after the two procedures, we conclude that
both the long-range correlation and fat-tailed distribution contribute to the multifractality.

It is widely known that the multifractal spectrum (generalized Hurst exponent) of a
monofractal time series is a point (order q independent), that is, the widths of the multi-
fractal spectrum and the generalized Hurst exponent are zero, whereas, they are different
than zero for multifractal time series. Table 6 shows that the widths for all studied series in
the univariate case are significantly non-zero, which supports the multifractal behavior of our
studied series. From a separate markets point of view, we can deduce that long memory and
fat-tailed distribution significantly contribute to the multifractality, since the degree of mul-
tifractality decreases after both shuffle and surrogate procedures. Moreover, for the bivariate
cases (all series with gold markets), the results show that the widths are also significantly
non-zero, confirming the multifractality in the bivariate cases. From an integrated markets
point of view, we have different conclusions. First, the degree of multifractality decreases
after the shuffle procedure for gold–oil, gold–EUR, and gold–GBP relationships, which indi-
cates that long memory plays a crucial role in the sources of multifractality. Second, there is
evidence that both long memory and fat-tailed distribution contribute to the multifractality
for the gold–CHF, gold–CAD, and gold–AUD relationships. Third, the multifractality of the
gold–JPY relationship is explained only by the fat-tailed distribution.
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Based on the abovementioned results, there is evidence of non-linear dependency and
multifractality for the gold–oil and gold–USD relationships, which indicates the vulnerability
to the use of a normal and linear framework.

5.2 Is gold a hedge or a safe haven against oil and the USD?

5.2.1 Evidence from time-scale varying measure

We apply an extension of the detrending moving average cross-correlation analysis to gold,
oil, and exchange rate return series using the q-DMCA cross-correlation coefficient for dif-
ferent window lengths from 20 observations (1.5 h) to 3162 observations (approximately
2 months). For each pair of composite variables, we estimate the coefficient ρq−DMCA(s)
for the medium (q = 2) and high fluctuations (q = 4).

The correlations between gold, oil, and exchange rates computed from Eq. (11) are shown
in Fig. 3a. Overall, we note that the cross-correlations between bivariate series are not the
same for different window sizes which yields useful policy implications, as we consider a
large set of agents with different investment horizons, such as market participants, traders,
hedges funds, and policymakers.

Regarding the relationship between gold and oil, empirical results indicate independence
between the two markets for medium fluctuations (q = 2), regardless of the time scale
which shows a correlation close to zero for all time scales. This result makes it possible for
gold to act as a weak hedge against oil price movement. For extreme movement, the results
(Fig. 3a) show a pronounced relationship in a short time scale (less than 600), with an average
correlation of -15%, and then becomes close to zero. This finding suggests that gold has a
capability of acting as a safe haven against extreme oil price movements, particularly for
short time scales.

Concerning the dynamic of the relationship between gold and exchange rates, the pattern
is different from that with oil. We observe (Fig. 3b–g) that for both medium and large
fluctuations, the relationship between gold and currency markets is negative, with more
pronounced negative correlation in medium fluctuations (q = 2). For large fluctuations,
the correlation between gold and currency markets is around -20% on average. This result
indicates the capability of gold to act as a hedge and safe haven against currency market
movements.

To obtain reliable results, we employ a bootstrap test based on the iterative amplitude
adjusted Fourier transform, as developed by Schreiber and Schmitz (1996), to control poten-
tial correlation between studied series. This method for surrogate data aims to test the
non-linearity of the investigated series. The implementation of the test is easy; the statis-
tic is defined as the q-DMCA coefficient; the distribution of the statistic is generated by
an ensemble of the statistic ρq−DMCA(s), which is obtained by applying the surrogated
procedure 1000 times; and the q-DMCA coefficient ρsur

q−DMCA(s) of each couple of
surrogated series is calculated. The null hypothesis is that the cross-correlation between
original series possesses the same dependence traits as those obtained from surrogated
series, namely,ρq−DMCA = ρsur

q−DMCA(s), where ρsur
q−DMCA(s) is the mean of all

ρsur
q−DMCA(s) values. The difference in terms of correlation between the original series

and the surrogated series is quantitatively described by a two-tailed p-value, which is defined
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3 Cross-correlation at different time scales. a Time scales varying cross-correlation between gold and oil.
b Time scales varying cross-correlation between gold and USD/EUR exchange rate. c Time scales varying
cross-correlation between gold and USD/GBP exchange rate. d Time scales varying cross-correlation between
gold and USD/JPY exchange rate. e Time scales varying cross-correlation between gold and USD/CHF
exchange rate. f Time scales varying cross-correlation between gold and USD/CAD exchange rate. g Time
scales varying cross-correlation between gold and USD/AUD exchange rate
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as

p = Prob
(∣
∣ρsur

q−DMCA(s) − ρsur
q−DMCA(s)

∣
∣ >

∣
∣ρq−DMCA(s) − ρsur

q−DMCA(s)
∣
∣
)

(22)

If the null hypothesis cannot be rejected, this implies that gold is aweak hedge (safe-haven)
financial instrument.

The results of the bootstrap test are presented in Tables 7 and 8 for the medium and high
fluctuations, respectively. Conversely we deduce that gold can act as a significant hedge and
safe haven against USD depreciation with differences at different time scales, (Table 7).
For the gold–oil relationship, we cannot reject the null hypothesis for average dependence,
which leads us to conclude that the two markets are independent in calm periods, (Table 7).
Contrarily, there is negative and significant tail dependence between gold and oil for short
time scales (Table 8). Our results reveal that gold can hedge against oil price movements
weakly but can act as an effective short-term safe haven against extreme oil price movements.
Regarding the currency markets, we put out evidence the gold’s capability to act as a strong
hedge as well as a safe haven against currency market movements (Table 8). This result has
implications for currency investors operating at different time horizons, who want to hedge
their exposure to currency swings and with downside risks for those horizons.

5.2.2 Evidence from time-varying cross-correlation measure

In addition to the developed measure “time scale” described in the previous subsection, we
propose a time-varying of our correlation measure generalized for the qth-order based on
the rolling windows method. Taking this into consideration provided an empirical basis for
building non-linear models rather than the traditional models with a constant coefficient (as
discussed in the introduction), which are not suitable for capturing the nature and dynamics
of the relationship that exist between gold and oil markets and between the gold market and
USD exchange rates.

The time-varying dependence results11 are presented in Fig. 4. First, we observe a large
variation in the correlation of all pairs of series over time. Concerning the time-varying
gold–oil correlation, Fig. 4a shows independence behavior for medium fluctuations (q = 2),
except for July–August 2018. These results confirm the previous results of gold’s hedging
ability against oil price movements. For large fluctuations or -extreme movement (q= 4), the
correlation between oil and gold is sometimes close to zero (July 2017 to February 2018;May
2018 to July 2018; and November 2018 to January 2019) and sometimes negative (February
2018 to July 2018 and October 2018). These results show the safe-haven capability of gold
against oil during extreme price movements in these periods.

Regarding the interdependence between gold and currencies markets, we confirm our
previous findings of the time-scale varying measure, as we cannot reject the hedging and
safe-haven behavior of gold against currency market movements. Figure 4b–g reveal many
interestingfindings regarding the gold–currency correlations during calmand turmoil periods.
First, the time-varying dependence is not constant and differs among currencies. Second,
for all currencies, there are many periods with more marked negative values during calm
periods than during turmoil periods. Third, the cross-correlations for high fluctuations are
very volatile, which explains an investor’s risk in composing his or her portfolio in a turmoil

11 To optimize the clarity of the figures, we do not insert the time varying cross-correlations obtained from the
1000 surrogated data series (the outputs are in line with the test results of the previous subsection). However,
these are available upon request from the corresponding author.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4 Time-varying cross-correlation. a Gold and Oil. b Gold and USD/EUR exchange rate. c Gold and
USD/GBP exchange rate. d Gold and USD/JPY exchange rate. e Gold and USD/CHF exchange rate. f Gold
and USD/CAD exchange rate. g Gold and USD/AUD exchange rate

period. Overall, the dynamics of the cross-correlation between gold and currency markets
shows that gold can act as a hedge and safe haven against currency market movements.

5.3 Intraday portfolio diversification and hedging ratios

The study aims to determine the role of gold as a hedge and safe haven for the majority of
market participants, including traders, hedge funds, and policymakers. In this context, we
evaluate the attractiveness of gold in terms of risk management by taking into consideration
normal (q = 2) and turmoil (q = 4) movements derived from currency and oil prices at
different time scales (s). Following Kroner and Ng (1998), the optimal weight of gold in a 1
USD portfolio of gold/(currencies or oil) is given by

wg(s) = Fq
c/o(s) − Fq

g,c/o(s)

Fq
g (s) − 2Fq

g,c/o(s) + Fq
c/o(s)

(23)
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wg(s) =
⎧
⎨

⎩

0 i f wg(s) < 0
wg(s) i f 0 ≤ wg(s) ≤ 1
1 i f wg(s) > 1

(24)

where g, o, and c denote gold, oil, and currency, respectively. Fq
c/o(s), F

q
g (s), and Fq

g,c/o(s)

refer to the qth-order detrended fluctuation function of the currency, oil, and gold and the
qth-order detrended cross-correlation function between different variables and gold for each
time scale, respectively. All these series are estimated by using the q-DMCA coefficient. We
note that the weight of the currencies (or oil) in the 1 USD gold/(currencies or oil) portfolio
for different time scales is (1−wg). In addition to the optimal portfolio allocation, investors
and market participants seek to minimize the cost risk and the risk of the hedged portfolio.
The hedging strategy consists of holding a long spot position in one unit of currency or oil
futures market hedged by a short position of β(s) in the gold futures market (see, e.g., Kroner
& Sultan, 1993; Hull, 2011), given by

β(s) = Fq
g,c/o(s)

Fq
g (s)

(25)

Tables 9 and 10 display portfolio weights and hedge ratios for calm and turmoil periods,
respectively. Beginning with the portfolio weights, in a 100 USD portfolio of gold and oil
futures, the optimal portfolio weight of gold futures for calm period varies from 0.8812 USD
(s = 398) to 0.9136 USD (s = 1000). We deduce that the weight of gold futures in gold
and oil futures portfolio remained important and stable as the time scale increased. For gold
futures and currency portfolios, weights vary substantially across exchange rates. They range
between 12.97% (s= 3162) and 24.64% (s= 20) for the Euro currency market; 30.17% (s=
1000) and 41.59% (s = 100) for the Pound currency market; 6.9% (s = 1995) and 15.62% (s
= 20) for the Yen currency market; 8.61% (s = 1585) and 22.09% (s = 3162) for the Swiss
Franc currency market; 24.43% (s = 631) and 30.27% (s = 100) for the Canadian dollar
currency market; and 26.98% (s = 398) and 40.39% (s = 1995) for the Australian dollar
currency market. These results suggest that i) the weight of gold futures is important in a
gold–exchange rate portfolio, especially for a short horizon and ii) the weight of gold futures
decreased as the time scale increased for the EUR, JPY, and CHF.

The hedge ratio regarding oil futures fall in the range of -0.0395 (s = 1995) and 0.2626
(s = 1000). This result suggests that to minimize risk for short hedgers in a 4-week trade, a
long position of 1 USD in the oil market should be hedged by a short position of 0.0395 USD
in the gold market. However, the hedge ratios for currencies are important; they vary from
-0.3036 (s = 20) to -0.3925 (s = 1000) for the Euro currency market; -0.2251 (s = 3162) to
-0.3371 (s = 1000) for the Pound currency market; -0.3280 (s = 20) to -0.4090 (s = 3162)
for the Yen currency market; -0.2876 (s = 3162) to -0.3544 (s = 1000) for the Swiss Franc
currency market; -0.2372 (s = 20) to -0.3157 (s = 1995) for the Canadian dollar currency
market; and -0.3088 (s= 50) to -0.4417 (s= 1585) for the Australian dollar currency market.
We deduce that i) the hedge ratio increased when the time scale increased and ii) investors
require more gold assets for intraday investments (s = 20) to minimize portfolio risk.

Similarly, the optimal portfolio weight and hedge ratio for turmoil periods are presented
in Table 10. The empirical results suggest that the weight of gold futures is also important in
gold/oil and gold/currency portfolios, except for the JPY. From the results of the hedge ratio,
we find that, contrary to calm periods, in turmoil periods, the hedge ratio decreased when the
time scale increased for the oil, EUR, GBP, and CAD. This finding implies that to minimize
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oil and exchange rate risk, especially in less than 1-week trade (for s < 631), investors should
hold more gold assets in turmoil periods in the case of oil and these three currencies.

The yellow metal is commonly considered as one of the most effective hedges or safe-
haven investment tools, as it has a very low correlation with other assets. Moreover, investing
in gold can yield certain commission and tax advantages; the front-end load or commission
for derivatives (mainly futures or options) is usually lower than the commission loaded on
spot markets and investing in gold futures offers eligibility for the well-known 60/40 tax
rule. In other words, regardless of the investment result on a gold futures contract, taxation
is treated as 60% long-term capital gains and 40% short-term capital gains, which provides
an effective tax rate lower than the ordinary income rate.

Based on the economic theories usually grounded on inverse relationships between
gold–oil and gold–US exchange rates, we aim to clarify the non-linearity that exists in these
relationships based on an original multifractal approach. This study is related to the litera-
ture which examines the role of gold as a hedge or safe-haven asset. Recently, Huynh et al.
(2020a) and Huynh et al. (2020b) employed the transfer entropy to analyze informational
linkage among cryptocurrency markets and gold (and oil), respectively. They argued that
investors should conduct portfolio rebalancing by including gold (cryptocurrency) to hedge
against the unexpected movement in the cryptocurrency (oil) market. Furthermore, Tham-
panya et al. (2020) used the linear and non-linear Autoregressive Distributed Lag (ARDL)
framework to investigate the hedging effectiveness of gold and bitcoin for equities. Their
results reveal that the effects of gold on the stock market are asymmetric in most of the cases.
Our approach outperforms the existing techniques employed previously and gives at least two
advantages by considering heterogeneity in the horizons of investors and by simultaneously
measuring the dependences across tranquil and turmoil market conditions.

Our empirical results yield some interesting implications for investors, financial institu-
tions, and policymakers. First, there is evidence of non-linear relationships among gold, oil,
and currencies, which are affected by longmemory and fat-tailed distribution. These findings
provide comprehensive knowledge of integration among gold and the other two markets, and
a clearer view for investors to develop profitable strategies. Second, the linkage between gold
and oil prices is insignificant under normal market conditions. Nevertheless, there is a nega-
tive and significant relationship between gold and oil under exceptionalmarket circumstances
but only in the short term, precisely during the last year of 2018 (see Fig. 4a); after US Pres-
ident Donald Trump’s threat of sanctions against Iran (OPEC’s third-largest oil producer),
the constantly increasing global demand, and the deteriorating situation in Venezuela. These
three reasons explain why the price of crude oil rose to USD 76.90. However, in the same
period, a trade war between the US and China led to the cessation of Chinese imports of US
oil. This deterioration in imports (less than BPD 500,000) hurt US oil producers and led to a
large increase in stocks in the US. This largely contributed to a large drop in crude oil below
USD 45 at the end of 2018. Thus, the direction of the linkage between gold and oil changes
in extreme conditions, resulting in profitable situations of holding gold and oil commodities
when performing portfolio diversification. Therefore, traders and portfolio managers should
carefully monitor their oil and gold portfolio in such situations. Finally, our results reveal
that there is a significant negative relationship between gold prices and the USD for all time
scales. Contrarily, this suggests, that when a loss is caused by a depreciating USD, traders
and investors could earn profits from the increase in the price of gold. However, investors of
origin other than those in the US should act with other hedging strategies so as not to take on
exchange rate risk and deterioration in the price of gold and consequently, destruction of their
portfolio. Some macro-prudential policies should be adopted by policymakers, particularly
in emerging countries, whose currencies are susceptible to shocks that affect international
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trade and capital flows due to the fragility of their economic and financial systems as well as
their significant external debt.

Overall, our results on the usefulness of gold as a hedge and safe haven at different invest-
ment horizons favor the benefits of including gold futures in oil futures and currency portfolios
for risk management purposes. However, the size of those benefits varies by investment hori-
zon according to specific kinds of portfolios, namely, those whose portfolio diversification
and hedging ratios were optimally determined.

6 Conclusion

We complete the previous studies dealing with gold’s role in the financial market, especially
with currency and oil markets. Our study offers valuable insights on the role played by the
gold market during calm and extreme periods by using intraday data and multifractal method
considering the heterogeneity of investors.

Our results provided evidence of negative and significant average and tail dependence
for all time scales between gold and USD exchange rates, which is consistent with the role
of gold as an effective hedge and safe-haven asset. Furthermore, the evidence of average
independence for all time scales and negative and significant tail dependence between gold
and oil for short time scales indicated that gold can be used by investors as a weak hedge
and as an effective short-term safe-haven asset under exceptional market circumstances. The
results of the time-varying dependence also show that gold offers intraday hedging and safe-
haven benefits to investors at specific periods of time. The role of gold as a hedge and safe
haven is pronounced for the case of currency market movements.

Extending our analysis to the optimal hedging strategies between gold, currency, and
oil markets, evidence shows that, to reduce risk for different investment horizons, investors
should add gold to their portfolios without lowering the anticipated returns of their portfolios.
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Appendix 1

See Fig. 5.
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Fig. 5 The cumulative sum of the return series
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Appendix 2

Proof of the specification of the q-DMCA coefficient.
Based on Kwapien et al. (2015), we present the proof of the specification of the q-DMCA

coefficient as follows.
For q ≥ 0, we have −1 ≤ ρq ≤ 1, according to the Cauchy–Schwarz-like inequality.
According to the relation 2aαbα ≤ a2α + b2α and for any two parts ν and μ,
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4N 2
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Thus,
[
Fq
XY (s)

]2 ≤ Fq
XX (s)Fq

YY (s), For q ≥ 0.
For q < 0, the implication |a| ≤ |b| ⇒ |a|q ≤ |b|q is false and the values of ρq(s) may

arbitrarily converge to large positive or large negative values: |ρq(s)| � 1 for some scales s.
This case may be viewed as an indicator of a lack of cross-correlations. In other words, the
denominator in Eq. (11) may be arbitrarily small compared to the numerator modulus. This
situation can occur only when the two series are uncorrelated or weakly correlated.

One of the ways to overcome this problem, as discussed in Kwapien et al. (2015), is to
redefine Eq. (11) in the following way:

ρ∗
q (s) =

{
ρq(s) i f

∣
∣ρq(s)

∣
∣ ≤ 1

1
ρq (s) i f |ρq(s)| >1
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Kwapień, J., Oświęcimka, P., & Drożdż, S. (2015). Detrended fluctuation analysis made flexible to detect

range of cross-correlated fluctuations. Physical Review E, 92, 052815.
Lescaroux, F. (2009). On the excess co-movement of commodity prices—A note about the role of fundamental

factors in short-run dynamics. Energy Policy, 37(10), 3906–3913.
Lucey, B. M., Sharma, S. S., & Vigne, S. A. (2017). Gold and inflation(s): A time-varying relationship.

Economic Modelling, 67, 88–101.
Madani, M. A., Ftiti, Z., Louhichi, W., & Ben Ameur, H. (2020). Intraday hedging and the safe haven role of

Bitcoin. Bankers, Markets & Investors, 163, 2–13.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.
Miyazaki, T., Toyoshima, Y., & Hamori, S. (2012). Exploring the dynamic interdependence between gold and

other financial markets. Economic Bulletin, 32, 37–50.
Narayan, P. K., Narayan, S., & Zheng, X. (2010). Gold and oil futures markets: Are markets efficient? Applied

Energy, 87(10), 3299–3303.
Nguyen, C., Bhatti, M. I., Komorníková, M., & Komorník, J. (2016). Gold price and stock markets nexus

under mixed-copulas. Economic Modelling, 58, 283–292.
Nguyen, D. K., Sensoy, A., Sousa, R. M., & Uddin, G. S. (2020). US equity and commodity futures markets:

Hedging or financialization? Energy Economics, 86, 104660.
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Wa̧torek, M., Drożdż, S., Oświȩcimka, P., Stanuszek, M., . (2019). Multifractal cross-correlations between
the world oil and other financial markets in 2012–2017. Energy Economics, 81, 874–885.

Xu, L., Ivanov, P. C., Hu, K., Chen, Z., Carbone, A., & Stanley, H. E. (2005). Quantifying signals with power-
law correlations: A comparative study of detrended fluctuation analysis and detrended moving average
techniques. Physical Review E, 71(5), 051101.

Ye, Y. (2007). Analysis on linkage between gold price and oil price. Gold, 28, 4–7.
Zebende, G. F. (2011). DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Physica a:

Statistical Mechanics and Its Applications, 390, 614–618.
Zhang, Y., Xu, L., & Chen, H. M. (2007). An empirical study on the relationship between prices of petroleum

and gold industry. Res. Financ. Econ. Issues, 7, 35–39.
Zhou, W. X., Sornette, D., & Yuan, W. K. (2006). Inverse statistics and multifractality of exit distances in 3D

fully developed turbulence. Physica D Nonlinear Phenomena, 214(1), 55–62.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Is gold a hedge or safe haven against oil and currency market movements? A revisit using multifractal approach
	Abstract
	1 Introduction
	2 Literature review
	3 Empirical design
	3.1 The generalization of the DMCA

	4 Numerical experiments for the proposed measure q-DMCA
	5 Empirical validation
	5.1 Data and preliminary analysis
	5.2 Is gold a hedge or a safe haven against oil and the USD?
	5.2.1 Evidence from time-scale varying measure
	5.2.2 Evidence from time-varying cross-correlation measure

	5.3 Intraday portfolio diversification and hedging ratios

	6 Conclusion
	Appendix 1
	Appendix 2
	References




