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Abstract
Micro, Small, and Medium Enterprises (MSMEs) operating in the food retailing sector
encounter two main concerns with respect to their perishable inventory management system,
i.e., the product’s shelf life and investment in warehouse monitoring systems. New technolo-
gies like the Internet of Things (IoT), automated inventory control platforms, and automatic
storage and retrieval systems offer effective solutions to these issues. However, MSMEs are
reluctant to adopt these technologies due to their prior perception of higher implementation
costs and the expected benefits. The present study aims to optimize IoT implementation in
MSMEs’ inventory management systems and to provide tangible proof of its feasibility and
usefulness. In so doing, we propose a mathematical model and analyze the impact of IoT
through two case studies. The model provides a cost–benefit analysis of IoT investments that
aim to increase products’ shelf life. We adopted the fractional program method, solved by
particle swarm optimization on MATLAB software. The findings demonstrate the positive
correlation between adopting IoT and reduced inventory costs supporting IoT deployment
for improved perishability performance in MSMEs. The study offers several insights and
practical guidelines in considering IoT deployment in MSMEs.
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1 Introduction

The dynamic behavior of customers, cut-throat competition, rapid growth in technology,
and globalization have all imposed critical challenges on maintaining acceptable quality and
optimal inventory levels in retail industries and warehouse sectors (Gupta et al., 2020). For
practitioners, monitoring and control aspects of warehouse management are vital tasks that
include analyzing various parameters such as enzymes, micro-organisms, temperature, and
humidity which constitute serious challenges whenmanaging perishable items (Bakker et al.,
2012; Gupta et al., 2020; Pérez et al., 2019). In recent years, issues concerning the manage-
ment and warehousing of perishable items have gained increased interest among researchers
and practitioners (Gupta et al., 2020; Tiwari et al., 2017). Perishable items are characterized
by shorter shelf life and require meticulous warehousing and management systems to avoid
spoilage, maintain their availability, and ensure revenue generation for the whole business
(Gupta et al., 2020; Patel & Gor, 2019). Perishable warehouse and inventory management
systems concern several items (e.g., storage of pharmaceuticals, fruit, vegetables, grains, and
volatile liquids).

Previous studies have argued that most food companies, particularly Micro, Small, and
Medium Enterprises (MSMEs), view higher perishability rates as the main reason for declin-
ing revenue generation (Kamble et al., 2020b; Zhu et al., 2021). MSMEs face enormous
financial and organizational challenges in warehouse facility management (Belhadi et al.,
2018), involving significant national economic losses. According to Yang et al. (2019), 30%
of perishable items handled by MSMEs deteriorate due to improper handling and lack of
facilities (e.g., China loses 43 billion US$ per year). In the context of MSMEs, deterioration
is a widespread phenomenon in perishable items, leading to wastage of around 20% of all
food production (Li et al., 2019). In a developing country like India, improper maintenance
of perishable items by MSMEs led to annual losses of 40%, at a value of over 14 billion US$
a year. The main causes of such losses in MSMEs are poor storage systems, outdated storage
facilities, improper handling of units, poor collaboration, and lack of infrastructure (Sharon
et al., 2014). Sharon et al. (2014) found that inadequate and outdated warehouse facilities in
MSMEs generated 6% of post-harvest losses. Insufficient storage and non-optimized han-
dling depend on various factors like lack of communication, lack of logistic facilities, and
inadequate strategies between supply chain partners.

To maintain product quality and the smooth flow of inventories, the public and pri-
vate sectors have introduced many initiatives to develop warehouse facilities via high-tech
infrastructures. For instance, the National Horticulture Mission (NHM), India, estimates that
over US$ 8.5 billion was invested in the warehouse sector, and 101 high-tech cold storage
projects were approved in 2019. The recent literature has extensively recommended adopting
advanced technologies such as the internet of things (IoT) for perishable inventory manage-
ment (Čolaković et al., 2020; Kamble et al., 2018b; Moeuf et al., 2018; Pundir et al., 2019a;
Salunkhe&Nerkar, 2017). According to Kamble et al. (2019), IoT substantially improves the
product picking process, communication between processes and reduces product spoilage. It
thus appears that IoT has great potential to help food-related MSMEs to control food product
quality, reduce waste by enhancing food shelf life, manage operating conditions equipment,
and reduce energy consumption (Kamble et al., 2018b, 2020b).

Despite the vast potential of IoT in the food retail supply chain (Kamble et al., 2019; Pundir
et al., 2019b; Sharon et al., 2014), the adoption of IoT for perishable or Non-Instantaneous
Deteriorating Items (NIDIs) inventory management is still in the nascent stage, especially for
MSMEs (Hansen & Bøgh, 2021). Many financial, organizational, and technical challenges
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hinder IoT investment in MSMEs (Hansen & Bøgh, 2021; Huang et al., 2020; Kamble
et al., 2018b). A study by Kamble et al. (2019), for instance, argued that the apparent lack of
successful IoT initiatives ismainly due to the perceptionof highoperating and implementation
costs. However, no validation studies are available in the present literature. Hence, there is
an urgent need to conduct additional studies to validate the benefits of IoT and convince
MSME managers/owners. The current research focuses on IoT implementation in MSMEs
in the NIDIs context. A mathematical model with IoT investment for profit maximization in
a single warehouse environment is developed and validated using a case study.

The remainder of the paper is organized as follows. Section 2 presents a literature reviewon
our study’s three main topics, i.e., IoT, MSMEs, and perishable items warehousing. Section 3
illustrates the IoT-based model for perishable items inventory management in the context of
MSMEs. Section 4 presents the model formulation, while Sect. 5 demonstrates the model’s
application and offers insights for discussion and implications. Finally, Sect. 6 concludes the
paper with the limitations and the future research agenda.

2 Literature background

2.1 Internet of things implementation in MSMEs

IoT refers to an object-space connected network wherein real-time communication between
physical and cyber systems is established. It includes several information and communication-
based technologies such as computers, mobile technologies, smart sensors, and analytics
platforms (Hansen&Bøgh, 2021;Moeuf et al., 2018). IoT is based onmutual intelligent rela-
tionship formation through sensing, information processing, and networking among objects
with minimum human intervention.

The implications of IoT are not well developed among MSMEs, and very few successful
cases are available in the literature. This means that MSMEs’ real benefits and the require-
ments for implementing IoT are not fully known (Moeuf et al., 2018). Theoretically, several
studies have asserted that IoTmight be extremely useful for smaller companies. For instance,
(Moeuf et al., 2018) found that 90% of experts agreed that IoT is a crucial Industry 4.0 tech-
nology that MSMEs should leverage to generate exploitable data. Hansen and Bøgh (2021)
posit that IoT would shape the future of operation management in MSMEs and has consider-
able potential to ensure their survival and competitiveness. This is further supported by Shin
(2017), who stated that IoT is a crucial enabler for MSME innovation. However, the practical
implementations of IoT in the MSME context are lacking in the literature. According to
Hansen and Bøgh (2021), MSMEs owners and managers are reluctant to invest in IoT as they
are unaware of its usefulness. Moeuf et al. (2018) and Shin (2017) called for more studies to
provide empirical evidence on the potential of IoT in the context of MSMEs.

2.2 IoT implementation and investment in warehousemanagement of perishable
items

By 2025, IoT smart objects are expected to reach 212 billion entities, generatingmore interest
from researchers and practitioners (Salunkhe & Nerkar, 2017). In recent years, research on
the smart warehouse, logistics, and automation has gained considerable traction, with most
studies driven by customer-centric approaches. As automation plays a crucial role in item
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(Jennings et al. 2001)

Rate of inflation, Delay in 
payment, Time value of 

money (Bakker et al. 2012) 

2011-2015 

Preservation technology, 
Monitoring technology 
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(Dye 2013; Reaidy et al. 

2015) 

2016 to onwards

Two warehouse problem 
(Tiwari et al. 2017)

Cross perishable process 
(Yang et al. 2019)

IoT implementation process 
(This Paper)

Fig. 1 Progress in the literature of perishable inventory

selection at retail outlets, developing novel IoT implementation strategies in the warehouse
is also gaining interest (Kamble et al., 2018a).

Advances in research on IoT have evolved significantly since 2011, successfully fulfilling
Industry 4.0 (Kamble et al., 2020b). The growth of MSMEs is central to warehousing, given
the nature of business (Mogale et al., 2020). Hansen and Bøgh (2021) confirmed thatMSMEs
struggle to adopt advanced technologies due to a lack of resources, knowledge, dedicated
strategies, and practical research implications.

Recently, Kumar et al. (2021) provided a comprehensive literature review on ware-
house management systems through a systematic evolutionary method that considered
peer-reviewed articles published between 1990 and 2019. They identified three clusters based
on warehouse management themes, sub-themes, and topics. The first cluster (1990–2000)
shows that the preliminary studies were published on operation strategy (planning, policy,
and warehouse location/size) and warehouse operations (reception, storage, picking, and
shipping), while the second cluster (2000–2010) reveals that the primary focus in this period
was resource management and infrastructure design (location-allocation/ reallocation, lay-
out design, safety, and ergonomics). The third cluster (2010–2020) focuses on integrating
technologies and equipment (sub-theme: technology implementation, automation, control,
equipment configuration) and performance evaluation. Concerning the existing literature,
Fig. 1 provides information on the chronological development of automation and emerging
practices in the targeted area.

The literature is relatively scarce regarding the warehouse management of perishable
items (i.e., NIDIs) forMSMEs. Bakker et al. (2012) discussed various criticalNIDI issues that
included discount models, the concept of shortages and back-ordering, single item andmulti-
item inventory control systems, multi-warehouse theory, the need for advanced technologies
for deteriorating inventory, multi-echelon inventory control, the concept of inflation, the
time value of money, and permissible delays in payment. Bakker et al. (2012) enhanced the
literature by including warehouse and profit aspects. New parameters later evolved in the
modeling like inventory policy (FIFO, LIFO), customer service levels, promotions or budget
constraints, waste or shrinkage, returns, advances in technology, and product strategy.

At the same time, COVID-19 has shown the need for an advanced warehousing system
that is self-sustainable and operational (Kumar et al., 2021).

Table 1 presents the application and other aspects of advancement in inventory manage-
ment, warehousing, andMSMEs. However, the intervention of new technologies such as IoT
and blockchain-related issues have not been discussed extensively (Fig. 2).

Not every aspect of the NIDImodel can be categorized without the concept of demand and
deterioration. Perishable inventory management typically follows price-dependent demand
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Fig. 2 IoT integration in the warehouse sector for a perishable inventory model

as these commodities are not unique. Customers, therefore, switch to alternative items if
prices increase. Bakker et al. (2012) stated that an item’s price is a key factor that encourages
customers to buymore items. They also showed that price-dependent demand ismore realistic
in the current business environment as lot size and retailer price are mutually interdependent.
Tiwari et al. (2017) studied the impact of price-dependent demand on replenishment strategies
with attractive price discounts under the first-in-first-out (FIFO) dispatch policy; seasonal
products are generally based on a price-dependent demand function.

Chakraborty et al. (2020) proposed two static models showing that dynamic pricing can
effectively increase overall profit, developing a price-dependent demand-based model with
the time value of money. Li et al. (2019) considered price-dependent demand to explore the
possibility of a preservation technology for blackberries, predicting the deterioration period
of the items. Pérez et al. (2019) studied stock-dependent demand using a discounted cash
flow approach for inflationary conditions. The present study focuses on a perishable inventory
management system for MSMEs, thereby contributing to their strategies and implications.

3 IoT-basedmodel for NIDI inventorymanagement in the context
of MSMEs

According to Čolaković et al. (2020), a typical IoT network includes four essential layers.
The first layer is a sensing layer that includes different types of ‘things’ like RFID tags,
sensors, and actuators. Second, the networking layer enables the flow of information through
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the wired or wireless network. Third, the service layer connects the application by a middle-
ware technology. Finally, the interface layer displays information to retailers and promotes
interaction with the system.

In our study, the service and interface layers are together referred to as application and
networking layers.

3.1 Framework for sensing layer

The design and implementation of sensing layers are crucial for IoT implementation, com-
bined with hardware such as the RFID tag, sensors, and actuators that sense and monitor
the physical systems and collect the data (Kamble et al., 2019). Yang et al. (2019) used a
network of wireless sensors to collect and transmit information about temperature, humidity,
the physical position of items, etc., in real-time to create a smart management system. The
general type of sensor includes a temperature sensor, a humidity sensor, and a gas sensor. An
actuator is a device that organizes a system and performs actions in an IoT system (Salunkhe
& Nerkar, 2017). Embedded systems are generally controllers that detect an electrical func-
tion with real-time processes (Čolaković et al., 2020; Modh et al., 2015; Salunkhe & Nerkar,
2017; Yang et al., 2019).

3.1.1 Protocols

A protocol is a standard set of rules that allow electronic devices to communicate with
each other. The protocols decide the data transmission mode, and commands are based on
Bluetooth, RFID, Zing bee, or BLE technology (Čolaković et al., 2020).

3.2 Framework for networking layer

3.2.1 Gateway

A gateway is a part of networking hardware used in communication networks that permit
data to flow from one node to another. Gateways are distinct from routers or switches in that
they communicate using more than one protocol (Salunkhe & Nerkar, 2017). Some available
gateways include LTE Cellular Gateways, Ethernet Gateways, Cellular Gateway, Wireless
sensor adapters, and Modbus Gateway.

3.2.2 Connectivity

Connectivity processes enable the device to communicate from the server and include
3G/4G/5G, Wi-Fi, and White space spectrum.

3.2.3 Connection management platform (CMP)

CMP is an integral part of the networking layer,mainly responsible for connecting the sensing
& application and the management layers. The connection management platform includes
connectivity analyses and monitoring.

123



Annals of Operations Research

Fig. 3 Technological framework for IoT implementation in the warehouse system

3.3 Framework for application andmanagement layer

After successfully implementing the sensing and networking layers, the application and
management layer provides themuch-required human–machine interface. This layer predicts
how much effort is required in the warehouse to maintain an optimal inventory level. The
framework is based on the synchronization process, data analytics, andmaintenance concepts.

Nunes (2008) defined the perishability index (PI) of each perishable item on which the
operating conditions are determined. The perishability index helps the warehouse operation
to retain the appropriate temperature and humidity for a specific type of inventory. Based on
the discussion in the previous sections, we put forward an IoT implementation framework
for the retailer’s warehouse (See Fig. 3).

4 Model formulation

4.1 Notations and assumptions

4.1.1 Notations

The following notations were used in the model.

Notation Details

Decision variables

ϕ Amount of IoT investment to reduce spoilage rate

m(ϕ) Reduced deterioration rate (Proportion to IoT implementation condition), 0 ≤ m(ϕ) ≤ 1

T Duration of one cycle

T n∗
Duration of n cycle

t1 A point at which stock in the warehouse is zero

Known parameters

D Demand rate (per unit time)
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Notation Details

ch Holding cost of the item in the retailer’s warehouse (per unit/time)

c Purchasing cost per unit item

p(> c) Retail price per unit item

cl Cost of lost sales (| /unit)
cs Shortage cost per unit time

θ Rate of deterioration (fix rate)

R Replenishment cost per order in the single-warehouse system

Dependent parameters

Hs The overall cost imposed on the sensing layer

Hgs Investment cost on gas sensors

Hts Investment cost on temp. sensors

Hhs Investment cost on humidity sensors

Ha Investment cost on actuators

He Investment cost on embedded system

Hp Investment cost on protocol setup

Hn The overall cost imposed on the networking layer

Hg Investment cost on Gateways

Hc Investment cost on connectivity

Hcm Investment cost on Connection Mgmt

Ham The overall cost imposed on the application and management layer

Hsy Investment cost on synchronization of the system

Hhi Hidden infrastructure cost

x A point at which random deterioration being started with limit, a random variable over
(l, u) with Probability Density function f (.) and Cumulative distribution function F(.)

Functions

I1(t) (Case 1) Stock level during no backlogged

I2(t) Stock level during the backlogged condition in case 1

I3(t) Level of inventory during case 2

T P(t1, T , ϕ) Total profit function

4.1.2 Assumptions

The following assumptions are made.

(i) Lead time is zero and constant market demand (Tiwari et al., 2017).
(ii) At period [0, x], there is no deterioration; then the product starts deteriorating at a rate

of θ, where X is the random deterioration start time (Yang et al., 2019).
(iii) During the cycle, there is no repair or replacement of spoiled items (Chakraborty et al.,

2020; Patel & Gor, 2019).
(iv) Yang et al. (2019) and Li et al. (2019) developed a mathematical model to implement

preservation technologies in inventory management systems. Their model considers
preservation cost as a variable. In our model, the total investment cost function is
ϕ, for IoT implementation, and includes the implementation costs related to sensing,
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networking, and application and management layers. Hence, m(ϕ) Is a continuous,
concave, increasing function of the retailer’s capital investment ϕ. Through m(0) � 0
and lim

ϕ→∞ m(ϕ) � 1. Hence, we assume m′(ϕ) > 0, which shows that IoT investment

is beneficial, and m′′(ϕ) < 0, to represent the return of the IoT implementation cost.
(v) We followed the assumption of Pérez et al. (2019) according to which demand is

partially backlogged, where decreasing function β(y) (i.e., β ′(y) < 0) represents a
fraction of partially back-ordered demand. According to Dye (2013), it shows the time
duration for the next replenishment cycle which satisfies the condition 0 ≤ β(y) ≤ 1
with β(0) � 1or0 for all y. According to Patel and Gor (2019), the value of y decides
whether shortages are either lost or wholly backlogged.

vi. We considered infinite replenishment to reduce complexity (Chakraborty et al., 2020;
Gupta et al., 2020).

vii. Preservation technologies are functional (Li et al., 2019).

We assume that the spoilage of an item starts from any random stage in time x. Conse-
quently, we considered two special cases:

• Case 1: The product starts deteriorating before the inventory level reaches zero (see Fig. 4).
• Case 2: The inventory level reaches zero before deterioration starts (see Fig. 5).

Fig. 4 Inventory level when x < t1

Fig. 5 Graphical representation of the stock when (x > t1)
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Profit functions for cases 1 and 2 are calculated separately and drive the expected average
profit from the conditions. We used similar values in both cases in the solution approach, so
the model is formulated only once.

The total Investment cost of IoT � Overall cost incurred of sensing layer + Overall cost
incurred of networking layer + Overall cost incurred of application and maintenance layer +
Hidden implementation cost.

The overall cost of sensing layer � Investment cost of gas sensors + Investment cost of
temperature sensors + Investment cost of humidity sensors + Investment cost of actuators +
Investment cost of the embedded system + Investment cost of protocol setup.

Hs � (Hgs + Hts + Hh + Ha + He + Hp) (1)

The total cost incurredof the networking layer� Investment cost ofGateways+ Investment
cost of Connectivity + Investment cost of connection management.

Hn � Hg + Hc + HCm (2)

The overall cost imposed on the application and management layer � investment cost of
synchronization + Hidden infrastructure cost.

Ham � Hsy + Hhi (3)

Therefore, the total investment cost of IoT is given by Eq. 4, where the limit i � 1 to n
defines the number of setups.

ϕ �
(

n∑
i�1

Hs +
n∑

i�1

Hn +
n∑

i�1

Ham

)
(4)

4.1.3 Case 1:x ≤ t1

In case 1, we discussed the change in stock level with zero shortage. The literature review
suggests that most previous research assumes a specific period in which no-spoilage occurs
since, without any monitoring technology like IoT, standalone preservation mechanisms
cannot predict a product’s remaining shelf life. For example, a cold storage refrigeration
system retains the freshness of perishable items but cannot precisely predict the point at
which the product starts deteriorating (Yang et al., 2019). Shin (2017) argues that IoT helps
to monitor and prevent perishable food from spoilage. Recently Yang et al. (2019) conducted
an experimental study on a real-time shelf life estimation with IoT by kinetic food quality
models. Technically, it is well proven that IoT can monitor and control aspects of warehouse
management systems and offers managers new opportunities and benefits (Čolaković et al.,
2020).

To identify the managerial implications of IoT implementation, we selected one business
cycle, as shown in Fig. 4. For the analysis, it is more useful to consider a random point from
which deterioration will start. We also examined how the implementation of IoT plays a role
in optimal inventory level decisions with the variance in the deterioration occurrence over
time. In Fig. 4, we represent the length of the business cycle on the x-axis and the ware-
house inventory level on the y-axis; the condition I1(0 < t < x) shows the level of inventory
before deterioration starts. After a specific period at a certain point, x deterioration begins
over the condition I1(x < t < t1). The proposed IoT-governed preservation mechanism is
implemented in the second interval (x ≤ t ≤ t1) and we investigated whether IoT investment
is beneficial for a retailer or not with function m′(ϕ) > 0, along with the decision of the IoT
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investment return with condition m′′(ϕ) < 0. The condition I2(t1 < t < T ) depicts the level
of inventory during the shortage period.

The differential equation represents the change in stock level during the no shortage period.

d I1(t)

dt
� −D;When 0 ≤ t ≤ x (5)

For the second interval,

d I1(t)

dt
� −D − {1 − m(ϕ)}θ I1(t);When x ≤ t ≤ t1 (6)

Solving the above equation under the boundary condition I1 � 0,

I1(t) � D(x − t) +
D

θ(1 − m)

[
e(1−m)(t1−x) − 1

]
; 0 ≤ t ≤ x (7)

For the second interval,

D

θ(1 − m)

[
eθ(1−m)(t1−x) − 1

]
;Where x ≤ t ≤ t1 (8)

The overall inventory holding cost during the period (0, t1) is given by

(9)

ch

t1∫
0

I1 (t) dt � ch

x∫
0

I1 (t) dt + ch

t1∫
x

I1 (t) dt � Dch x2

2

+
Dch

θ (1 − m)

[
eθ (1−m)(t1−x)

{
x +

1

θ (1 − m)

}
−

{
t1 +

1

θ (1 − m)

}]

The costs incurred during the backlogged period [t1, T ] and (T − t) is queue time for
customers who seek the item at the time t (t1 ≤ t ≤ T ) and waiting for the product till
the next replenishment is receive in the warehouse. Therefore, the demand which will be
backlogged is a fraction of β(T − t) and the rest is zero.

The change in stock level during [t1, T ] shortage period is expressed by-

d I2(t)

dt
� −Dβ(T − t);When t1 ≤ t ≤ T (10)

Solving the equation at I2(t1) � 0,

I2(t) � −D

t∫
t1

β(T − y)dy;When t1 ≤ t ≤ T (11)

The overall backlogged cost during shortage for the entire period is

Dcs

T∫
t1

(T − t)β(T − t)dt and the total lost sales cost is c1D
T∫

t1
[1 − β(T − t)]dt , while

the total amount of back-ordered and sales quantity is represented by D
T∫

t1
β(T − t)dt ,

Dt1 + D
T∫

t1
β(T − t)dt , respectively.
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The total output volume is I1(0) with the back-ordered quantity is:

Dx +
D

θ(1 − m)

[
e(1−m)(t1−x) − 1

]
+ D

T∫
t1

β(T − t)dt (12)

The overall investment in IoT for the period [0, T ] is T ϕ.

4.1.4 Case 2: t1 < x

In this case, we have considered the entire inventory (I3(0 ≤ t ≤ t1)) consumed before the
deterioration starts. The inventory consumption pattern is shown in Fig. 5. For both, the cases
expected average profit function is calculated separately.

The variation in the stock level is given by Eq. (13).

d I3(t)

dt
� −D; 0 ≤ t ≤ t1 (13)

Applying the condition I3(t1) � 0, we obtain Eq. (14)

I3(t) � D(t1 − t); 0 ≤ t ≤ t1 (14)

At a specific period holding cost is given by Eq. (15)

ch

t1∫
0

I3(t)dt � ch Dt21
2

(15)

The overall output or quantity of production in the present situation is given by Eq. (16).

Dt1 + +D

T∫
t1

β(T − t)dt (16)

If the shortage and cost of lost sales are not dependent on x they all are identically similar
to Case 1. Therefore, the average expected profit is given by Eq. (17).

∇(t1, T , ϕ) � T P(t1, T , ϕ)

T
(17)
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where

P (t1, T , ϕ)

� Dpt1

−
t1,∫

l

[
Dx2ch

2
+ cDx +

Dch

θ (1 − m)

{
eθ (1−m)(t1−x) ×

(
x +

1

θ (1 − m)

)
−

(
t1 +

1

θ (1 − m)

)}

+
cD

θ (1 − m)
eθ (1−m)(t1−x)

]
f (x) dx −

u∫
t1

[
cDt1 +

Dcht21
2

]
f (x) dx − K − ϕT

+ (p − c) D

T∫
t1

β (T − t) dt − c1D

×
T∫

t1

{1 − β (T − t)} − cs D

T∫
t1

(T − t)β (T − t) dt

For simplification, we have used the approximation method shown in Eq. (18).

eθ(1−m)(t1−x) ≈ 1 + θ(1 − m)(t1 − x) +
θ2

2
(1 − m)2(t1 − x)2 (18)

We get

T P (t1, T , ϕ)

� Dpt1 −
t1∫

l

[
Dx2ch

2
+ cDx + Dch

{
(t1 − x) x +

θ (1 − m) (t1 − x)2

2
+
(t1 − x)2

2

}

+cD

{
(t1 − x) +

θ (1 − m) (t1 − x)2

2

}]
f (x) dx

−
u∫

t1

[
cDt1 +

Dcht21
2

]
f (x) dx − K − ϕT + (p − c) D

T∫
t1

β (T − t) dt − c1D

×
T∫

t1

{1 − β (T − t)} − cs D

T∫
t1

(T − t)β (T − t) dt

(19)

4.1.5 Solution methodology

The objective of this study is to maximize profit through IoT implementation. The profit
function is given by Eq. (17). This type of problem is called a fractional program (FP). We
begin by considering the definition of the fractional program.

Definition If the objective function is the ratio of two non-linear functions, then the opti-
mization often presented by programming is called fractional programming (Dubey et al.,
2020; Vandana et al., 2018).
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Let us consider function q(x), which is the ratio of f (x) and g(x), that helps to solve
the concavity of the average profit function. This concavity relates to the rate of change of a
function’s derivative, which belongs to set S � {x ∈ X : ch(x) ≤ 0} where g(x) is positive
on X , then in non-linear programming, it will satisfy the sup{q(x) : x ∈ S}. Here sup means
supremum or large set. So, f (x) ≥ 0 is concave function and g(x) > 0and h(x) > 0 are
convex functions (Cambini & Martein, 2009).

q(x) � f (x)

g(x)
(20)

We adopted the standard procedure of Cambini and Martein (2009) to solve the fractional
programming problem.

Proposition 4.1 If we perform fractional programming and consider both g(x) and f (x) are
solved through concave fractional programming, the selective function q(x) will be pseudo
concave on set S. This condition accrues as one of them ((x) or g(x)) is strictly pseudo-convex,
and the other is strictly pseudo concave.

Proposition 4.2 Concave fractional programming provides a set of local maximums. Thus,
there will be one global maximum in the set. In this case, we used Karush–Kuhn–Tucker
conditions and assume that the value of f (x) is strictly concave or g(x) is strictly con-
vex. Karush–Kuhn–Tucker (KKT) is used for non-linear functions in differentiable concave
functions for profit maximization.

Note: KKT solves the first derivative test for non-linear programming.
To prove the proposition, we need to show that the total profit function T P(t1, T , ϕ) is

concave.
As g(x) � x ; where all the values of x show convexity.
Solving Eq. 19, we got

∂T P

∂T
� Dβ(T − t1)[p − c + c1 − cs(T − t1)] − cl D − ϕ (21)

∂T P

∂t1
� Dp −

t1∫
l

[Dch {t1 + θ (1 − m) x (t1 − x)} + cD {1 + θ (1 − m) (t1 − x)}] f (x) dx

− (p − c) Dβ (T − t1)

−
u∫

t1

(cD + Dcht1) f (x) dx − ϕ + cl D {1 − β (T − t1)} + cs D (T − t1)

∂T P

∂t1
� D [p + cl − c − cht1] − [p + cl − c − cs (T − t1)β (T − t1)]

− θ (1 − m) D

t1∫
l

{ch x (t1 − x) + c (t1 − x)} f (x) dx

(22)

and

∂T P

∂ϕ
� Dθm′(ϕ)

2

t1∫
l

[
ch x(t1 − x)2 + c(t1 − x)2

]
f (x)dx − T (23)
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The following proposition establishes the concavity of T P(t1, T , ϕ) for one business
cycle with a backlog.

Proposition 4.3 At any value of ϕ, the profit function T P(t1, T , ϕ) is indeed concave w.r.t.
the length of one business cycle time (T ) and t1, so that [(p − c) + cl − cs(T − t1)] > 0; for
all the values of T and t1 yields.

Proof For any given ϕ, the second-order partial derivatives of Eq. (21).

∂2T P

∂T 2 � −cs Dβ(T − t1) + [p − c + cl − cs(T − t1)] × β ′ D(T − t1) (24)

and

∂2T P

∂t1∂T
� cs Dβ(T − t1) − [p − c + cl − cs(T − t1)]β

′ D(T − t1) � −∂2T P

∂T 2 (25)

Differentiating Eq. (22) w.r.t. t1

∂2T P

∂t21
� −θ(1 − m)D

t1∫
l

(ch x + c) f (x)dx − Dch +
∂2T P

∂T 2 (26)

The term ∂2T P
∂T 2 < 0, because [p − c + cl − cs(T − t1)] > 0 and β ′(T − t1) < 0. Now

according to the definition g′(x) > 0 and 0 ≤ m(ϕ) < 1 solution will follow ∂2T P
∂t21

< 0 (Li

et al., 2019).
The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of

a scalar-valued function or scalar field, which describes the local curvature of a function of
many variables (Li et al., 2019).

|H | �
⎡
⎣ ∂2T P

∂T 2
∂2T P
∂t1∂T

∂2T P
∂t1∂T

∂2T P
∂t21

⎤
⎦ (27)

|H | � ∂2T P

∂T 2 × ∂2T P

∂t21
−

(
∂2T P

∂t1∂T

)2

(28)

Putting the value from Eqs. 25 and 26 in Eq. 28.

det(H) � −[cs Dβ(T − t1) − β ′ D(T − t1)(p − c + cl − cs(T − t1))]

×
⎡
⎣−θ(1 − m)D

t1∫
l

(ch x + c) f (x)dx − Dch +
∂2T P

∂T 2

⎤
⎦ −

[
∂2T P

∂T 2

]2

Li et al. (2019) proposed and proved the lemma on concavity for Hessian matrix solution,

according to that if ∂2T P
∂t1∂T � ∂2T P

∂T ∂t1
, ∂

2T P
∂T 2 < 0 and ∂2T P

∂t2
< 0 then total profit function

T P(t1, T , ϕ) is strictly concave and average profit function i.e. ∇(t1, T , ϕ) � T P(t1,T ,ϕ)
T

will be strictly pseudo-concave which is the complete proof of the proposition.

Proposition 4.4 Investment in IoT is always profitable for the warehouse inMSMEs because
it decreases the length of the shortage period, increases the inventory level in the warehouse,
and the ratio between (t1/T ) i.e., optimal service level improves with the implementation of
IoT.
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Proof As per the assumptions, T − t1 is the length in which the warehouse stock level is
zero, and (0, t1) is the operating period in the cycle [0, T ].

∂∇
∂T

(t1, T , ϕ) � 0 (29)

and

∂∇
∂t1

(t1, T , ϕ) � 0 (30)

Simplifying Eq. (17), we get,

∇(t1, T , ϕ) � Dβ(T − t1)[p − c + cl + cs(T − t1)] − cl D − ϕ (31)

And

(32)

(p − c + cl ) [1 − β (T − t1)] + cs (T − T1)β (T − t1) + c

�
t1∫

l

[ch {t1 + θ (1 − m) x (t1 − x)} + c {1 + θ (1 − m) (t1 − x)} f (x) dx

+

u∫
t1

(c + cht1) f (x) dx

Hence, we can say that cycle time (T ) and deterioration starting point (t1) is the function
of IoT investment cost (ϕ). By implicit differentiation w.r.t. ϕ we get,

a1
T

� {
[p − c + cl + cs(T − t1)]β

′(T − t1) − csβ(T − t1)
} ×

(
dT

dϕ
− dl1

dϕ

)
(33)

a2T � a1 + [a3 + a4]T
dt1
dϕ

(34)

where

a1 � θm′(ϕ)

2

t1∫
l

(t1 − x)2(ch x + c) f (x)dx > 0,

a2 � θm′(ϕ)

t1∫
l

(t1 − x)(ch x + c) f (x)dx > 0,

a3 �
t1∫

l

{θ(1 − m)(ch x + c) + 1} f (x)dx > 0,

and

a4 �
u∫

t1

ch f (x)dx > 0.

Solving Eq. (33) and (34), we can get

dt1
dϕ

� a2T − a1
[a3 + a4]T

(35)
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and

dT

dϕ
− dt1

dϕ
� − a1

T {csβ(T − t1) − [p − c + cl + cs(T − t1)]β ′(T − t1)} (36)

Further

a2T � a1 > 0; sinceT − t1 − x

2
� T − t1

2
+

x

2
> 0 (37)

As T > t1,
dt1
dϕ

> 0, Therefore, the IInd part of the proposition is proved.

a1 > 0; [p − c + cl + (T − t1)] > 0 (38)

Proposition 4.3 and β(T − t1) is a decreasing function.

β ′(T − t1) < 0 (39)

dT

dϕ
− dt1

dϕ
< 0 (40)

To prove the Ist part of the proposition, we differentiate t1
T w.r.t. ϕ,

d

dϕ

(
t1
T

)
� 1

T 2

(
dt1
dϕ

T − dT

dϕ
t1

)
>

t1
T 2

(
dt1
dϕ

− dT

dϕ

)
> 0 (41)

The above results indicate that the service level is directly proportional to ϕ, so the propo-
sition is entirely true and well-proofed.

Proposition 4.5 Small retailers always try to limit the stock out period. Therefore, the imple-
mentation of monitoring and control techniques such as IoT is essential. High investment in
IoT implementation is required to optimize the decision variables so that stock in time gets
elongated and helps the retailer reduce spoilage and mitigate the extra cost of IoT implemen-
tation.

Proposition 4.6 For any given ϕ, the overall profit per unit time, has a unique global maxi-
mum, The profit function T P(t1, T , ϕn+1) w.r.t. ϕn+1.

∂2T P

∂(ϕn+1)
2 � m′′(ϕn+1)Dθ

2

t1∫
l

[
ch x(t1 − x)2 + c(t1 − x)2

]
f (x)dx, 0 (42)

where m
′ ′
(ϕn+1) < 0., To optimize and solve the profit function (t1, T , ϕn+1), we required

a special algorithm due to the non-linear feature of the problem(Dubey et al., 2020; Dye,
2013; Vandana et al., 2018). We have followed the solution approach of Tiwari et al. (2017),
who state that analytical methods fail to solve a highly complex problem and require high
computational work and analytics. Particle swarm optimization algorithm (PSO) has been
used broadly to obtain feasible solutions based on the food-searching activities of birds
(Mogale et al., 2020; Tiwari et al., 2017). We have adopted the PSO technique with a contin-
uous iteration process due to its broader acceptance and applicability in perishable inventory
management literature.

Proposition 4.7 For any value of IoT implementation cost (ϕ) distributed over time, the
overall profit per unit time for a specific time horizon, say n � 4years, has a unique global
maximum. Hence, the overall implementation cost is distributed in a span of four years.
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Table 2 Model formulation for investment distributed in 4 years using amortization and depreciation

Period (Years) 0 1 2 3 4

hIoT facilities
depreciation

Z � percentage of
depreciation (0.15
< z > 0.40)

Zϕ Zϕ Zϕ Zϕ

Profit term Year 1 Year 2 Year 3 Year 4

Assets ϕ ϕ1 �
ϕ − Zϕ

ϕ2 �
ϕ1 −
Zϕ

ϕ3 �
ϕ 2

− Zϕ ϕ4 �
ϕ 3

− Zϕ

Profit term Estimated years
(4)n > 0

n − 1 n − 2 n − 3 n − 4

Regardless of their implementation costs, the investment in IoT systems has a specific
financial and economic lifespan. There are various methods to calculate equipment’s eco-
nomic lifespan, such as the decline balance method, straight-line method, and production
units. According to cost accounting standard-16 (CAS-16) which is issued by the council of
the institute of cost accountants of India- “Amortization is the systematic allocation of the
depreciable amount of an intangible asset over its useful life” (ICMAI, 2017). According to
CBDT (Central Board of Direct Taxation), notification clarifies that with effect from April
1, 2017, the depreciation rate will range from 15 to 40 for plant and machinery and 40% for
computer items (Income tax India, 2019). Our model has used the straight-line method for
depreciation calculation (Jennings et al., 2001).

We know that ϕ � T otalcapitalinvenstmentin I OT implimentation.
According to the law of depreciation and amortization, we can split the implementation

cost over the n years and profit from the implementation in Pi � n.

Depreciation � Overall capital cost o f I mplementation

li f e span
(43)

The overall profit is calculated in Eq. 19 for only cycle 1. To see the long-term effect and
tangible benefits of IoT implementation, we have assumed eight replenishment cycles for
four years, i.e., each year, two replenishments. Hence, the implementation cost is split into
four years (Table 2).

Where z � depreciation rate and ϕ1,ϕ2, ϕ3, ϕ4 represents the change in the values of ϕ

for a four-year term, respectively.

5 Computational results

5.1 Numerical illustration and analysis

To illustrate our proposed models, we solved one numerical example involving a small food
company. We used PSO run on MATLAB on a 1.80 GHz Intel Core i5 with 8 GB of memory
RAM computer to solve the problem (Obradovic et al., 2021).

To illustrate the model, we assumed the following values:
Replenishment cost per order K � | 120 per order, Retail price � | 35/per unit, Cost of

purchase of item� | 20 per unit, Inventory holding cost ch � | 3 per unit/ unit time, Goodwill
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cost cs � | 4/per unit/per year, Fixed demand per unit time D � 1000, td � 0:0417, W �
101, cl � | 5/per unit, θ � 0.2, Rate of Backlog is assumed to be β(x) � e−x . The uniform
distributed deterioration rate was U ∼ (0.024, 0.076) with a standard deviation of 0.013.
The reduced deterioration rate is m(ϕ) � 1 − e−aϕ with simulation coefficient a � 0.02,
depending on the percentage change in deterioration rate regarding capital expenditure in
IoT implementation.

The Probability density function (PDF) is given by Eq. (44).

f (x) � 3x2(
u3 − l3

) ,where l � 0.03 ≤ x ≤ u � 0.08 (44)

5.2 Sensitivity analysis

To explain the robustness of the proposed IoT implementation model in the warehouse and
to analyze the impact of the parameters on the desired optimal solution, we performed the
sensitivity analysis by changing the model’s operating parameter values within the range of
− 30–30%.

The prior literature argues that one of the most common problems faced by agri-food
manufacturing MSMEs worldwide is poor inventory management of perishable items (Zhu
et al., 2021), affecting the profit of smaller companies and threatening their survival. Our
study thus drawsmeaningful insights forMSMEmanagers/owners seeking efficient inventory
management using IoT.

Tomaximize profit (∇∗) inventorymanagers inMSMEs always try to maintain warehouse
stock levels to avoid shortages of items by implementing advanced monitoring and control
technology that regulates the preservation of items. The IoT implementation decision is
adjusted so that overall profit and other decision variables are not affected. Higher inventory
holding costs push small agri-food retailers to decrease their stock level. Thus, a shorter cycle
reduces investment in IoT (Fig. 6 a, b). The observation from Table 3 and Fig. 6c shows that
an increment in the inventory-holding cost and a reduction in the IoT implementation cost
counter one another so that the overall profit is constant.

Table 3 shows that when the deterioration rate is high, retailers spend more on IoT
investment. On the other hand, Fig. 7 proves that cycle time remains unchanged with high
investments. Therefore, managers in small agri-food retailers should increase the order size
to enhance their profit and invest in technology. As the product cost is directly proportional to
the order level, it directly affects the stock in any given period. If the item’s price is high, then
the preservation and monitoring technology investment is higher to reduce the deterioration
rate. Table 3 shows that the value of the cycle length and the inventory level strongly depends
on the value of the simulation coefficient (a). The lower value of the simulation coefficient
indicates an insignificant impact of IoT investment on spoilage rate (Fig. 8).

According to Fig. 9, service level (t1/T) increases as an increment in standard deviation.
Table 4 depicts an increase in total profit after IoT implementation, but it is insignificant as
we deployed the overall IoT implementation cost in one cycle. Earlier studies suggest that
when the implementation cost is relatively high and imposes long-term benefits over time, the
lifecycle costing depends on the price distribution over a certain period and can be calculated
through the amortization and depreciation concept (Moon & Phillips 2021). To this end, we
integrated the concept of amortization and depreciation and built proposition 4.7. Although
we initially developed our model for just one cycle (T), it was extended by n number of cycles
(T n∗

) and the results are shown in Table 5.
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Fig. 6 Effect of change in the parameter of inventory holding cost on the variables

The findings show that investment in IoT is likely to be beneficial for small retailers in
warehouse management.

5.3 Theoretical contributions and implications of the study

Our study investigated the usefulness of IoT implementation in managing warehouses and
the inventory of perishable items, especially for MSMEs. We first formulated a practical
IoT-based inventory model in retail operations that emphasized the investment cost, which
is of utmost importance for MSMEs. We then examined the profitability and impact of IoT
investment on inventory management of perishable items. Our findings suggest that a higher
holding cost pushes inventory managers in MSMEs to decrease inventory levels, which
eventually leads to a shorter cycle length. These benefits lead to increased product shelf-life,
demanding more investments in IoT-based preservation technologies. Therefore, low stock-
in period and IoT implementation are also reduced due to the short cycle length and longer
product shelf-life, requiring more investment in preservation technology and IoT.

On the other hand, a higher deterioration rate prompts managers inMSMEs to invest more
in advanced monitoring and preservation technology to maintain their warehouse inventory
levels. To alleviate the effect of items’ goodwill cost, managers are advised to spend more
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Table 3 Sensitivity analysis of critical parameters for a single cycle

Parameter Change (%) Value t1 T ϕ ∇∗ Change in profit (%)

a − 30 0.014 0.201 0.240 106.2 13,998.2 − 0.268

− 20 0.016 0.215 0.250 103.1 14,013.5 − 0.0785

− 10 0.018 0.218 0.255 102.2 14,024.7 − 0.0654

0 0.02 0.221 0.258 101 14,030.5 0

10 0.21 0.224 0.261 100.4 14,045.7 0.0712

20 0.024 0.225 0.265 99.9 14,055 0.1297

30 0.26 0.231 0.268 96.67 14,062 0.1838

c − 30 14 0.226 0.26 89.5 20,040.5 42.783

− 20 16 0.225 0.257 94.85 18,036.8 28.513

− 10 18 0.223 0.257 99.24 16,036 14.252

0 20 0.221 0.258 101 14,030.5 0

10 22 0.219 0.259 105.39 12,036.7 − 14.243

20 24 0.217 0.26 107.57 10,039 − 28.476

30 26 0.213 0.262 108.66 8043.11 − 42.696

p − 30 24.5 0.202 0.267 85.872 3582.06 − 74.479

− 20 28 0.211 0.263 94.04 7060.68 − 49.695

− 10 31.5 0.217 0.26 99.22 10,546.2 − 24.862

0 35 0.221 0.258 101 14,030.5 0

10 38.5 0.225 0.257 105.46 17,527.9 24.88

20 42 0.227 0.256 107.49 21,021.7 49.772

30 45.5 0.229 0.255 109.1 24,516.7 74.673

ch − 30 2.1 0.265 0.297 125.8 14,131.4 0.6811

− 20 2.4 0.248 0.281 117.502 14,097.1 0.4367

− 10 2.7 0.234 0.269 109.884 14,065.4 0.2109

0 3 0.221 0.258 101 14,030.5 0

10 3.3 0.21 0.248 96.188 14,008.1 0.1974

20 3.6 0.2 0.24 89.938 13,928 0.3833

30 3.9 0.192 0.233 84.005 13,957.5 0.5579

θ − 30 0.014 0.221 0.258 84.978 14,053.6 0.1268

− 20 0.016 0.221 0.258 91.655 14,046.9 0.0791

− 10 0.018 0.221 0.258 97.544 14,041 0.037

0 0.02 0.221 0.258 101 14,030.5 0

10 0.022 0.221 0.258 107.578 14,031 − 0.341

20 0.024 0.221 0.258 111.929 14,026.7 − 0.065

30 0.026 0.221 0.258 115.931 14,022.7 − 0.921

cl − 30 3.5 0.219 0.258 101.416 14,039.9 0.0291

− 20 4 0.22 0.258 101.7 14,038.4 0.018

− 10 4.5 0.221 0.258 101.8 14,037.1 0.0091
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Table 3 (continued)

Parameter Change (%) Value t1 T ϕ ∇∗ Change in profit (%)

0 5 0.222 0.258 101 14,030.5 0

10 5.5 0.221 0.257 102.23 14,029.5 − 0.009

20 6 0.221 0.257 103.6 14,029.3 − 0.0178

30 6.5 0.222 0.257 104.415 14,028.1 − 0.026

cs − 30 2.8 0.219 0.258 101.15 14,039 0.0227

− 20 3.2 0.22 0.258 101.165 14,037.9 0.014

− 10 3.6 0.22 0.258 101.813 14,036.8 0.0071

0 4 0.221 0.258 101 14,030.5 0

10 4.4 0.221 0.258 102.813 14,028.6 − 0.007

20 4.8 0.221 0.257 103.15 14,025.5 − 0.0143

30 5.2 0.222 0.257 103.476 14,024.8 − 0.0274

Fig. 7 Graph between change in IoT investment vs. cycle time vs. change in deceleration rate

on advanced technology to support the stock-in period. We also observed that a higher value
of simulation coefficient ‘a’ increases shelf life and reduces shortages. Thus, the threshold
value of ‘a’ decides the level of the IoT investment in the warehouse. Our study presents
meaningful implications from both a theoretical and a practical perspective.

At the theoretical level, our study is among the first to open the debate on the applicability
of IoT in the specific context of MSMEs operating in a critical sector such as food retailing.
Indeed, the application of digital technologies such as IoT has long been unsuitable in the
context ofMSMEs given themany constraints hindering these companies from implementing
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Fig. 8 Value of simulation coefficient (a) over ‘t1’, ‘T’ by Change (%)

Fig. 9 Service level Vs. standard deviation

Table 4 Result of the model for one cycle

Effect of IoT implementation ϕ∗ t∗1 T ∗ ∇∗

With IoT implementation 101 0.221 0.2586 14,055.8

Without IoT implementation 0 0.133 0.1978 13,975.6
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Table 5 Maximum expected profit for the four years of the span

Effect of IoT implementation ’∗ t1∗ Tn
∗ ∇∗

Year 1 25 0.221 0.2586 28,111.6

Year 2 25 0.221 0.2586 41,166.5

Year 3 25 0.221 0.2586 60,221.5

Year 4 25 0.221 0.2586 74,276.1

and leveraging digital capabilities (Kamble et al., 2018a, 2020b). Our study asserts that, just
like large corporations, MSMEs could implement and benefit from IoT. Hence, scholars and
researchers could build upon our findings to explore this topic. On the other hand, we use
a novel problem formulation for IoT application in warehouse management (Kamble et al.,
2020a) which could be highly useful for researchers seeking to explore and resolve item
perishability in warehousing management.

At the managerial level, two critical implications of our study advance the understanding
of MSME owners and managers on the relationship between IoT and perishable items inven-
tory management in the context of MSME retailers. First, our study provides practical proof
of the feasibility and usefulness of IoT in managing perishable items in the context of small
companies. MSME owners/managers need to understand that IoT investment is beneficial,
even though it may be costly at the beginning of the implementation process. They should
therefore deploy a long-term vision to leverage IoT implementation efficiently. Second, man-
agers of perishable item warehousing need to be aware that preserving high levels of stocks
from perishing requires increased investment in new monitoring and control technologies
such as IoT. Hence, the implementation of IoT should be regarded as a strategic initiative for
its profitability and growth management. It is true that MSMEs, especially in the food supply
chain, struggle with the high cost of warehousing and inventory management. However, the
implementation of IoT should not be seen as an additional investment but rather as a solution
that can drastically reduce the high cost of inventories. Accordingly, we believe this studywill
help managers better understand how to leverage IoT to solve item perishability in MSMEs.

6 Conclusion and future research

The advancement in automated monitoring and control technologies in warehouses has led
to new opportunities and challenges for retailers in implementing and maintaining their
warehouses’ perishable inventories. However, automated monitoring and control technology
such as IoT seems more profitable for MSMEs in the retailing sector. To address this issue,
we formulated and analyzed IoT implementation costs in the retailer warehouse. The study
aimed to investigate the impact of IoT on existing operating parameters (holding cost, selling
cost, deterioration rate, shortage cost, goodwill cost, unit purchase cost) and how it can
increase the overall profit of retailers by reducing spoilage.

To this end and to examine the feasibility of IoT implementation strategies, we developed
two cases (case 1; x ≤ t1 and case 2; t1 < x) and compared their results, which show
that IoT implementation increases retailers’ profit margin. With the help of a sensitivity
analysis, we also observed that the simulation coefficient, deterioration rate, and selling price
significantly impacts profit. Since IoT implementation is a significant budgetary investment,
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the overall implementation cost can be divided over time. We also looked at a scenario
where the implementation cost is divided over a certain timespan, including amortization
and depreciation in the model. Our analysis suggests that retailers could gain more profit in
upcoming cycles. We analyzed this notion with the help of a digital example.

However, we also need to specify certain technical limitations of our model. First, we only
focused on retailer benefits. It would be interesting to analyze the effect of IoT under the
impact of demand-dependent carbon emissions. Second, as is frequent in the prior literature,
we only considered deterministic demand rates with zero lead time. Our analysis could be
extended by adding more realistic conditions such as delays in product availability, non-zero
lead time, carbon emission sensitivity demand, and return on investment (ROI).

Moreover, IoT and other technology cannot be implemented on a large scale without
government support, conducive policies, and stakeholders’ cooperation. Further, the fac-
tor related to cross perishability is also an essential variable in IoT implementation, which
requires more explorative studies in the future. Finally, modeling the payback period of IoT
investment could be a relevant and insightful addition to this study.
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