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Abstract
The post-disaster humanitarian logistic operations deal with the supply of emergency relief 
materials to mitigate damages in the affected areas. Immediately after the disaster, it is 
challenging to estimate the demand for emergency relief materials. As a result, the demand 
for such materials at the point of demand and the corresponding transportation costs for the 
entire supply chain network becomes uncertain. This paper proposes a new probabilistic 
fuzzy goal programming model for making decisions to manage the post-disaster supply 
of emergency relief materials. A suggested procedure converts the proposed model to its 
deterministic equivalent when the demands for the relief materials follow uniform distri-
butions. We implement the differential evolution, a metaheuristic technique, for analyzing 
demand satisfaction for relief materials under various scenarios. A case example based 
on the Nepal Earthquake in 2015 demonstrates the usefulness of the proposed approach. 
The solution of the model will help the Disaster Management Agency coordinate with the 
humanitarian organizations and foreign countries to provide the required emergency relief 
materials so that an adequate level of supply can be assured to the affected areas with the 
least possible transportation cost.
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1  Introduction

Natural and anthropogenic disasters have a devastating effect on essential services. In 
such situations, allocation, and supply of emergency relief materials (RM) to those in 
need are the most critical activities of disaster relief operations. These activities aim 
to save lives and alleviate the human suffering of survivors (Yu et al., 2021; Zhu et al., 
2019). As per the United Nations Office for the Coordination of Humanitarian Affairs, 
about 134 million people were provided humanitarian assistance in 2018 (UN OCHA, 
2018). The joint humanitarian response plans of the UN show that approximately 72% 
of the affected people received some sort of international humanitarian support, and 
only 28% received domestic humanitarian aid. Therefore, managing the supply of emer-
gency RM in the post-disaster phase is crucial (Dubey & Gunasekaran, 2016; Jana et al., 
2019).

Scholars study various aspects of managing the post-disaster supply of emergency 
RM. These include logistics planning for shipping multiple items (Özdamar et  al., 
2004), removing bottlenecks of the supply network (Day et  al., 2012), arriving at the 
best transportation decisions (Park et  al., 2018; Wang et  al., 2016a); exploring the 
involvement of private sector players in supplying RM (Tomasini and Van Wassenhove, 
2009), and integrating the local and responding foreign organizations (Day, 2014), etc. 
The decision-making environment in such situations witnesses conflicting goals evolv-
ing from the structure of the relief chain, nature of operations, and incomplete or lack 
of information about the demand, supply, and cost of emergency RM (Bozorgi-Amiri 
et al., 2013).

The common cause of uncertainty in supply is a delay in supplying the RM from the 
suppliers. Most of the time, it is difficult to know about the availability of resources and 
predict the contribution of suppliers (Abazari et  al., 2020). Uncertainty in demand is 
caused by inaccurate assessments that are obvious in the immediate post-disaster situa-
tion (Liu et al., 2018). Uncertainty in the cost is mainly caused by the ambiguity related 
to the selection of routes, mode of transportation, and suppliers. Consequently, math-
ematical models focusing on managing the supply of emergency RM must address the 
two major issues—uncertainty in available information and achieving conflicting goals 
in post-disaster situations.

This research proposes a mathematical model that can simultaneously capture the 
probabilistic and fuzzy uncertainties and quantify the trade-offs between the total cost of 
supplying the RM and demand satisfaction for post-disaster humanitarian logistic opera-
tions. Such a model is important as it will better capture the uncertainties of the deci-
sion environment. Consequently, the model will help make superior decisions related 
to humanitarian aid delivery in complex disaster situations. The existing humanitarian 
logistics (HL) literature has a scarcity of such models. The present research will void 
this critical gap in the HL literature.

The objective of this research is to model the disaster response planning for sup-
plying emergency RM to the affected areas, defined as a point of demands (PD), in the 
response phase by capturing the innate uncertainty existing in various components like 
cost, supply, and demand. Emergency RM are to be supplied to the PD where actual 
requirements are not known with certainty. So, the demands for the RM are defined as 
random variables. Consequently, the overall cost of transporting the RM are also not 
known with certainty. Therefore, the level of satisfaction of the goals in such a situa-
tion is ambiguous. As a result, the goals of the model become probabilistic and fuzzy 
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simultaneously. Thus, a novel probabilistic fuzzy goal programming model is proposed 
to tackle this challenging emergency RM supply problem. The problem is finally solved 
using differential evolution, an artificial intelligence-based search technique.

This research contributes to the existing humanitarian supply chain literature in the fol-
lowing ways:

•	 Achieving a unique relief logistics model for supplying the emergency RM to different 
layers of PD that contemplates various sources uncertainties in the relief chain. This is 
crucial as uncertainties in the relief chain make decision-making very challenging.

•	 Developing a novel probabilistic fuzzy goal programming model to deal with the post-
disaster supply of RM and deriving its equivalent model under the assumption of uni-
form demands and overall total cost of supplying the RM.

•	 Applying the proposed model to a real-world post-disaster situation to manage the sup-
ply of emergency RM.

The paper is organized as follows. Section 2 presents the literature review. Section 3 
describes the problem under study and the mathematical model. Section  4presents the 
methodology. Section 5 presents a case example based on the 2015 Nepal earthquake. Sec-
tion 6 presents the results and discussions. Section 7 presents the theoretical and manage-
rial implications, and Sect. 8 concludes the paper.

2 � Literature review

The aftermath of any disaster necessitates an immediate supply of emergency RM to mini-
mize human sufferings (Dubey & Gunasekaran, 2016; Wang et al., 2016b; Behl & Dutta, 
2020a; Behl & Dutta, 2020b; Shafiq & Soratana, 2020; Cao et al., 2021). Because of vari-
ous trade-offs and uncertainty in the decision-making environment (Maiyar & Thakkar, 
2020), it is always challenging to achieve this goal during execution (Dubey et al., 2019a; 
Özdamar et al., 2004). Authors study the humanitarian aid delivery problem under uncer-
tainty in demand and cost (Faiz & Vogiatzis, 2020; Liu & Nagurney, 2013; Sun et  al., 
2018; Tofighi et al., 2016; Zokaee et al., 2016), demand and carbon price (Rezaee et al., 
2017), estimated arrival times, travel time and cost, transportation plan risk (Zheng & 
Ling, 2013), the response time (Bastian et  al., 2016), loading–unloading time (Abazari 
et al., 2020), inventory amounts (Cao et al., 2021), etc. Majorly, the concepts of two-stage 
stochastic programming (Grass & Fischer, 2016). In some cases, two-stage stochastic 
programming is combined with other techniques like variational inequality theory (Liu 
& Nagurney, 2013). A section of literature utilized the robust optimization technique for 
addressing similar problems (Faiz & Vogiatzis, 2020; Liu et al., 2018; Zokaee et al., 2016). 
The most important shortcoming of the models used in these studies is the inability to 
capture the trade-offs arising in the disaster relief chain. In other words, these models can 
accommodate a single criterion.

Goal programming (GP) and its variants are known for measuring the trade-offs among 
goals that are conflicting in nature (Papathanasiou & Ploskas, 2018; Sharma et al., 2009). 
GP models have been successfully applied to access the trade-offs in humanitarian supply 
chain management (Vitoriano et  al., 2009; Hong et  al., 2015; Charles et  al., 2016; Ran-
sikarbum & Mason, 2016; Chong, 2019). These models fail to incorporate the trade-offs 
under probabilistic uncertainty. For example, in the disaster relief distribution considered 
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in this work, the supply of emergency RM to the PD, located in multiple layers and acces-
sible through a specific mode of transportation, under demand and cost uncertainties. The 
existing relief supply chain models in the HL literature cannot solve such a problem. To 
overcome this disadvantage, we develop a model utilizing the concepts of probabilistic 
fuzzy goal programming (PFGP) (Jana et  al., 2016; Mohamed, 1992) for managing the 
supply of emergency RM under uncertainty. Table 1 summarizes some of the important 
optimization models on the relief supply chain, highlighting their key characteristics to dis-
tinguish the novelty of the proposed model from the existing literature. This is the only 
model that can accommodate the objective function related to the relief supply chain with 
probabilistic goals with fuzzy satisfaction levels. Because of this typical structure of the 
goals, the proposed model becomes unique and challenging for finding the solution.

The proposed PFGP model is solved by a population-based genetic type artificial intel-
ligence (AI) algorithm, known as Differential evolution (DE). The DE algorithm was pro-
posed by Storn and Price (1997). The algorithm has been applied to solve problems from 
different domains, as documented in the literature (Das & Suganthan, 2010). There are few 
applications of DE in the area of SCM (Routroy & Kodali, 2005; Yu et al., 2020) and sto-
chastic SCM (Lieckens & Vandaele, 2016), two-stage humanitarian logistic under uncer-
tainty (Tofighi et al., 2016), and supply allocation for disaster relief operations (Chen et al., 
2020). So, there are ample scopes of application of DE for solving the problem related to 
the supply of emergency RM and set the motivation for selecting the technique.

3 � Problem formulation

Disasters cause severe damage to the underlying infrastructure facilities like the supply 
of electricity, water, transportation, and telecommunication. This leads to uncertainty in 
receiving information about the number of affected peoples and the demands of life-saving 
humanitarian aid. Thus, ensuring the supply of life-saving resources for the affected people 
is critical to alleviating the impact of the disaster (Dubey et al., 2019b). Countries world-
wide, humanitarian agencies, NGOs, etc., extend their support in various ways, including 
the supply of life-saving relief materials to disaster-affected countries. Most of such relief 
materials are transported through cargo planes, and some are through ships. These points 
are denoted as Main Point-of-Entries (MPE). The country’s Disaster Management Agency 
(DMA) will coordinate with the entire supply process of the humanitarian aid received 
from foreign countries, humanitarian organizations, and internal sources. Aid received 
from the internal sources may be collected and supplied to some distribution centers that 
act as MPE. In our modeling, we treat these two types of sources of humanitarian aid as 
MPE.

3.1 � Assumptions

The following assumptions are developed based on United Nations World Food Pro-
gramme (UN-WFP) (2015), and the UNWFP, Situation Report 21.05.2015:

a.	 There will be a limited number of MPE from where the supply will take place to the 
affected areas.
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b.	 We consider the supply of essential aid into three layers – Layer 1, Layer 2, and Layer 
3. Layer 1 locations are accessible through major roads from the MPE. Relief materials 
will be directly sent to these locations by road transport.

c.	 There are two types of locations in Layer 1—staging areas (SA) and PD. SA are the tem-
porary storage places from where the relief materials will be transported to PD located 
in Layer 2 and Layer 3. PD located in Layer 1 will receive relief materials directly from 
the MPEs through the roadways.

d.	 PD in Layer 2 are not accessible from the MPE. They are accessible from the SAs using 
mini transport vans.

e.	 PD in Layer 3 are remote and not accessible through roadways. Helicopters, porters, or a 
combination must be utilized to reach the affected people and deliver the relief materials.

Table 2   Notations and descriptions

Notation Description

xmes Amount of relief material of type m(m = 1,2,… ,M) transported from M-PE e(e = 1,2,… ,E) to 
SA s(s = 1,2,… , S) through main road/highway, an integer decision variable

xL1
mep1

Amount of relief material of type m(m = 1,2,… ,M) transported from M-PE e(e = 1,2,… ,E) to 
POD p1(p1 = 1,2,… ,P1) in Layer-1 through main road/highway, an integer decision variable

xL2
msp2

Amount of relief material of type m(m = 1,2,… ,M) transported from SA s(s = 1,2,… , S) to 
POD p2(p2 = 1,2,… ,P2) in Layer-2 through narrow roads, an integer decision variable

xL3
msp3

Amount of relief material of type m(m = 1,2,… ,M) transported from SA s(s = 1,2,… , S) to 
POD p3(p3 = 1,2,… ,P3) in Layer-3 through air transportation, an integer decision variable

Rme Amount of relief material of type m(m = 1,2,… ,M) available at the M-PE e(e = 1,2,… ,E)

cmes Unit transportation cost of relief material of type m(m = 1,2,… ,M) transported from M-PE 
e(e = 1,2,… ,E) to SA s(s = 1,2,… , S) through main road/highway

cL1
mep1

Unit transportation cost of relief material of type m(m = 1,2,… ,M) transported from M-PE 
e(e = 1,2,… ,E) to POD p1(p1 = 1,2,… ,P1) in Layer-1 through main road/highway

cL2
msp2

Unit transportation cost of relief material of type m(m = 1,2,… ,M) transported from SA 
s(s = 1,2,… , S) to POD p2(p2 = 1,2,… ,P2) in Layer-2 through narrow roads

cL3
msp3

Unit transportation cost of relief material of type m(m = 1,2,… ,M) transported from SA 
s(s = 1,2,… , S) to POD p3(p3 = 1,2,… ,P3) in Layer-3 through air transportation

D̃L1
m

Demand of relief material of type m(m = 1,2,… ,M) in Layer-1, a random variable

D̃L2
m

Demand of relief material of type m(m = 1,2,… ,M) in Layer-2, a random variable 

D̃L3
m

Demand of relief material of type m(m = 1,2,… ,M) in Layer-3, a random variable 

T̃C Targeted total transportation cost for all the relief materials, a random variable

R̃D
Anticipated demand for all the relief materials of relief items, a random variable

LSA
ms

Minimum amount of relief material of type m(m = 1,2,… ,M) to be stored at the SA 
s(s = 1,2,… , S)

SSA
ms

Storage capacity of relief material of type m(m = 1,2,… ,M) at SA s(s = 1,2,… , S)

� Satisfaction level of the cost goal
�1
m

Satisfaction level of the demand goals in Layer 1 for relief material of type m(m = 1,2,… ,M)

�2
m

Satisfaction level of the demand goals in Layer 2 for relief material of type m(m = 1,2,… ,M)

�3
m

Satisfaction level of the demand goals in Layer 3 for relief material of type m(m = 1,2,… ,M)
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4 � Notations

The probabilistic fuzzy goal programming model for supplying humanitarian aid in the 
early phase of the disaster is developed with the help of the following notations (Table 2):

4.1 � Model objectives

There are two broad categories of objectives in the proposed model. The first category of 
objectives is related to the satisfaction of the demands of relief materials at the three lay-
ers. As the demands are uncertain, the corresponding cost of supplying the relief materials 
is also uncertain. Consequently, both types of objectives are expressed probabilistically. 
Also, there is no guarantee of satisfaction of the objectives in a strict sense in the uncertain 
demand situation. Therefore, satisfaction levels of the objectives are expressed fuzzily.

4.1.1 � Demand for relief material

The demand goal for the relief material m(m = 1, 2,… ,M) at Layer 1 can be expressed as 
follows:

 where D̃L1
m

 is a random variable.
The demand goal for the relief material m(m = 1, 2,… ,M) at Layer 2 can be expressed 

as follows:

 where D̃L2
m

 is a random variable.
The demand goal for the relief material m(m = 1, 2,… ,M) at Layer 3 can be expressed 

as follows:

 where D̃L3
m

 is a random variable.
The left-hand side expression of Eq. (1) under the probability represents the total amount 

of relief material of type m(m = 1, 2,… ,M) transported from M-PE e(e = 1, 2,… ,E) to 
POD p1(p1 = 1, 2,… ,P1) in Layer-1 through the main road/highway, and the right-hand 
side represents the demand of relief material of type m(m = 1, 2,… ,M) in Layer-1. Simi-
larly, we can explain Eqs. (2) and (3).

4.1.2 � Transportation cost

The transportation cost goal has four components. The first component represents the cost 
of transporting relief materials from the MPEs to SAs. The second component represents 
the cost of transporting the relief materials from the MPEs to PD located in Layer 1. The 

(1)Pr

{
E∑
e=1

P1∑
p1=1

xL1
mep1

≥ D̃L1
m

}
≳𝛽1

m
, m = 1, 2,… ,M

(2)Pr

{
S∑

s=1

P2∑
p2=1

xL2
msp2

≥ D̃L2
m

}
≳𝛽2

m
, m = 1, 2,… ,M

(3)Pr

{
S∑

s=1

P3∑
p3=1

xL3
msp3

≥ D̃L3
m

}
≳𝛽3

m
, m = 1, 2,… ,M
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third component represents the cost of transporting the relief materials from the SA to 
PD located in Layer 2. The fourth component represents the cost of transporting the relief 
materials from the SA to PD located in Layer 3. The cost goal can be expressed as follows:

 where T̃C is a random variable.
Equation (1) represents the demand goal for the RM at Layer 1. This goal aims to satisfy 

the demand for relief material of a specific type, ensuring a minimum level of satisfac-
tion. The level of satisfaction is also not guaranteed and hence expressed fuzzily. The other 
two demand goals presented in Eqs. (2) and (3) for the RM at Layer 2 and 3, respectively, 
can also be explained similarly. Equation (4) represents the transportation goal. This goal 
ensures the probability of total transportation cost to be less than the targeted total trans-
portation cost for all the relief materials with a minimum level of satisfaction. The level of 
satisfaction is also expressed fuzzily.

4.2 � Model constraints

The proposed model considers three major types of constraints. The first set of constraints 
ensures that the total supply from the MPEs should not exceed the available relief materi-
als. The second set of constraints ensures the storage of some amount of relief materials at 
the SA to combat the situations of sudden demand. The last set of constraints is related to 
the capacity of SA.

4.2.1 � Supply from MPE

Relief material of type m(m = 1, 2,… ,M) received at the SA is less than the available 
amounts in the MPEs.

4.2.2 � Storage of relief materials at the SA

A minimum amount of relief material of type m(m = 1, 2,… ,M) must be stored at each 
SA to meet the sudden demand and avoid the crisis.

4.2.3 � Storage capacity of SA

Each SA has a maximum capacity for storing various relief items. The relief items received 
from the MPE must not exceed the storage capacity of SA.

(4)
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(5)
E∑
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S∑
s=1
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S∑
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xL1
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E∑
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So, the mathematical model contains probabilistic-fuzzy goals corresponding to the 
demands of relief material to be satisfied at the three Layers and transportation cost, subject to 
constraints for supply from MPE, storage of relief materials at the SA, and storage capacity of 
SA.

5 � Methodology

The proposed methodology has two components. The first component presents a unique 
approach to deal with the probabilistic fuzzy goals corresponding to the demands of different 
emergency relief materials at the PD belonging to the affected areas and the overall transporta-
tion cost. The second component summarizes differential evolution, an artificial intelligence 
approach, to solve the problem.

5.1 � The proposed model

The probabilistic fuzzy goal programming model can be represented as follows (Mohamed, 
1992):

where x is the vector of decision variables. In the above formulation, 
∼
ckj(k = 1,2,⋯ , K; j = 1,2,⋯ , n) Ti are random variables with known probability distribu-
tions. Each probabilistic goal is satisfied with fuzzily.

The i-th goal Pr
{
Gi(x) ≥ Ti

}
≳𝛽i represents the desired level of satisfaction to be at least�i , 

however, a relaxation of�L
i
 , say, may also be permitted to accommodate the uncertainty of 

the decision-making environment. This is very relevant to our case in which the demands of 
emergency relief materials are not known with certainty. Let us assume that the target is to 
satisfy at least 98% of the demands of relief materials at a particular Layer. Under this set-
ting, it is possible to achieve a 100% satisfaction level if all constraints are satisfied. However, 
we may allow a relaxation of 3%, say, and ready to accept a solution in which the demand 
goal is satisfied with the satisfaction of 95%. This solution will surely be a little inferior com-
pared to the initial target satisfaction level, but at the same time will be highly acceptable as 
an implementable solution considering the uncertainty of the decision environment. If �i(x) 
be the membership function corresponding to the i-th goal Pr

{
Gi(x) ≥ Ti

}
≳𝛽i , then it can be 

formulated as:

(7)
E∑
e=1

xmes + LSA
ms

≤ SSA
ms
, m = 1, 2,… ,M; s = 1, 2,… , S

(8)Pr
{
Gi(x) ≥ Ti

}
≳𝛽i, i = 1, 2,… , I

(9)subject to Ax ≤ B

(10)x ≥ 0
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Proposition 1  Problem (8)–(10) can equivalently be formulated as:

Proof  For the complete satisfaction of the k i-th goal Pr
{
Gi(x) ≥ Ti

}
≳𝛽i , its correspond-

ing membership value �i ( 0 ≤ λi ≤ 1 ) should be one (Narasimhan, 1980). The maximum 
value of �i is one. Therefore, the objective will be to maximize �i and reach the target 
threshold subject to�i(x) ≥ �i , and system constraints. Following Zimmermann (1978), the 
relationship can be written for all i = 1,2,… , I as follows:

Using (11), the relationship (17) can be expressed as follows:

This completes the proof.

In (18), Ti,∀i = 1,2,… , I are random variables with a known probability distribution. The-
oretically, each Ti can follow any suitable probability distribution. In a real-world situation, the 
distribution of Ti may be estimated based on available data or assumed based on known facts. 
In the considered problem of supplying emergency relief materials under uncertainty, demand 
may be defined to vary between some estimated upper and lower bounds. So, it may be realis-
tic to assume that the probability distribution of demands of relief materials follows a uniform 
distribution.

Proposition 2  If Ti ∼ U(Tai , Tbi ) , then (18) reduces to:

Proof  As Ti ∼ U(Tai , Tbi ) , the density function is.

(11)μi(x) =

⎧
⎪⎨⎪⎩

1 if Pr
�
Gi(x) ≥ Ti

�
≥ βi

Pr{Gi(x)≥Ti}−(βi−βLi )
βL
i

if βi − βL
i
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�
Gi(x) ≥ Ti

�
< βi

0 if Pr
�
Gi(x) ≥ Ti

�
< βi − βL

i

(12)max ∶

I∑
i=1

�i

(13)Subject to Pr
{
Gi(x) ≥ Ti

}
≥
(
�i − �L

i

)
+ �L

i
�i, i = 1, 2,… , I

(14)Ax ≤ B

(15)x ≥ 0

(16)max ∶

I∑
i=1

�i

(17)�i(x) ≥ �i, i = 1, 2,… , I

(18)Pr
{
Gi(x) ≥ Ti

}
≥
(
�i − �L

i

)
+ �L

i
�i, i = 1, 2,… , I

(19)Gi(x) ≥ Tai +
{(

�i − �L
i

)
+ �L

i
�i
}(

Tbi − Tai

)
, i = 1, 2,… , I
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The cumulative distribution function is given by (Lusk & Wright, 1982),

Therefore, (19) is equivalent to

where

where K�i
 is the solution of

Hence, 

Using (23) and (25) in (22), we get (19). This completes the proof.
So, the problem (12)–(15) reduces to

5.2 � Differential evolution (DE)

The DE is a population-based, stochastic search technique extensively used to solve vari-
ous types of optimization problems (Storn & Price, 1997). It works similarly to other 
metaheuristics. However, it shows uniqueness in terms of the use of direction and distance 
information of the present population to steer the search process. The basic operations of 
DE are mutation, crossover, and selection. An initial population of candidate solutions 
needs to be generated first. This is done by generating uniform random numbers within 
a given upper and lower bounds. Potential new solutions are introduced into the popula-
tion by performing mutation and crossover operations. Parent solutions are replaced by 
new solutions (children) if they possess better fitness values. The DE algorithms have been 
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applied to various problem domains and work well for large problem instances as well (Das 
et al., 2016). We present the necessary steps of the DE in the following pseudocode:

In the pseudocode, PS denotes the population size, S denotes the scaling factor for muta-
tion, PC denotes the probability of crossover, N denotes the number of decision variables, 
GEN denotes the number of generations, rand(.) denotes the uniform random number gen-
erator; YGEN

i
 denotes the target vector, YU

j
 denotes the upper limit of the j-th variable, YL

j
 

denotes the lower limit of the j-th variable, VGEN
i

 denotes the N component donor vector 
obtained from the mutation operation, UGEN

i
 denotes the N component trial vector obtained 

from the crossover operation, and f denotes the fitness function.

6 � A case example

We develop this case example based on the 2015 Nepal Earthquake. The rationale for using 
Nepal Earthquake for this study is highlighted here. We want to verify the effectiveness 
of the proposed PFGP model to a real-world and complex disaster relief supply problem. 
As a result, we initially study different disaster relief operations that happened in the past 
decades. We look to model the disaster relief supply situation mathematically. The evi-
dence suggests that the 2015 Nepal Earthquake was a major natural calamity of the previ-
ous decade. The existence of affected areas that are (i) accessible through major roads, (ii) 
accessible from the staging areas using mini transport vans due to narrow road conditions, 
and (iii) not accessible through roadways have provided us to consider a three-layer relief 
distribution problem. Now, uncertainties exist in all the layers. Consequently, the nature of 
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the problem is more complex compared to the disaster relief distribution problem with the 
requirement of resource materials in a single or two layers.

On April 25, 2015, a strong earthquake had a magnitude of 7.8 struck Nepal. Out of 
28.9 million people, approximately 8 million people were affected (NPC, 2015). A total 
of 22,302 people was injured, 198 people were missing, and 8,970 people were deceased. 
Damages were reported from more than 50 districts of Nepal. The 14 worst-hit districts 
were Gorkha, Lamjung, Dhading, Nuwakot, Rashuwa, Kavre, Sindhupalchok, Dolakha, 
Ramechhap, Okhaldhunga, Sindhuli, Kathmandu, Bhaktapur, and Lalitpur. The earthquake 
was devastating mainly due to the poor infrastructure of Nepal, especially in the moun-
tainous rural areas where the houses were made of mud, timbers, and stacked stones. The 
total number of houses fully damaged was 604,930, and partially damaged was 288,856. 
The number of people who needed humanitarian assistance was 2.8 million (NPC, 2015). 
The earthquake was marked as the deadliest earthquake to strike in the region in the past 
81 years.

Immediately after the disaster, the Government of Nepal and various humanitarian 
organizations started the rescue work. Due to the scarcity of drinking water, lack of toi-
lets, and the temporary nature of living conditions, there were concerns about epidemics. 
UNICEF appealed for donations. People were in desperate need of first-aid materials, food, 
drinking water, sanitation kits, and temporary shelters. More than sixty-five countries, 
including various Government and humanitarian aid agencies, started to supply essential 
relief materials to Kathmandu (UN-WFP, 2015).

In this case example, we consider the supply of six emergency relief materials—
first-aid materials (FA), dry food (DF), water (WA), sanitation kits (SK), tents (TT), 
and blankets (BT) to the affected areas. Most of these items are received as humani-
tarian aid. All such items are received at the Tribhuvan International Airport (TIA), 
Kathmandu, the country’s main airport. The TIA is defined as the Main Point-of-Entry 
(MPE) (UN-WFP), (2015). The majority of the emergency relief items are received at 
the MPE. Relief items received at the MPE must be supplied to the people of affected 
areas. The affected areas needing the relief items are defined as Point-of-Demands (PD). 
We consider three layers of PD. The first layer (Layer 1) PD can get the supply directly 
from the MPE due to the uninterrupted road connectivity. The second layer (Layer 2) 
PD are the areas that are not connected by narrow roads. The supply of relief materials 
is possible using small transport vehicles. The third layer of (Layer 3) PD are the areas 
that are disconnected from the rest of the country due to avalanches. Layer 3 PD are 
accessible through air and porters, or a combination of both. To ensure the supply of 

Table 3   Demand estimates of relief materials at Layers 1, 2 and 3

U(a, b) denotes the uniform random variable defined between a and b

RM Layer 1 Layer 2 Layer 3

Demand FA U (12,000, 13,000) U (36,000, 40,000) U (16,000, 17,000)
DF U (20,000, 22,000) U (60,000, 64,000) U (24,500, 25,500)
WA U (25,000, 27,000) U (70,000, 75,000) U (33,500, 35,500)
SK U (10,000, 11,000) U (30,000, 32,000) U (13,000, 14,000)
TT U (4000, 4500) U (15,000, 16,000) U (7500, 8000)
BT U (18,000, 20,000) U (60,000, 65,000) U (29,500, 31,500)
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emergency relief materials to PD in Layer 2 and Layer 3, Staging Areas (SA) are desig-
nated at places that are accessible from the MPE through the major roadways. So, relief 
materials can be supplied to the SA by heavy transport vehicles. Helicopter facilities 
are not available at all SA. Therefore, relief materials may be supplied to PD in Layer 3 
from designated SA only.

Data used in the study were collected from various sources, including the United 
Nations World Food Programme (UN-WFP), (2015), a leading agency that coordi-
nates the logistics activities in the humanitarian response, NPC (2015), CDPS, (2016) 
Government of Nepal Official Website, Government of Nepal Transport Department, 
and Baharmand et al. (2020). We followed a similar supply chain network structure as 
implemented by UN-WFP (2015). Temporary SA were built to store the relief mate-
rials and supply them to the PD according to the estimated demands. The eight SA 
are Dhulikhel (SA1), Bharatpur (SA2), Deurali (SA3), Chautara (SA4), Dhading Besi 
(SA5), Bidur (SA6), Dhunche (SA7), and Charikot (SA8). SA1 and SA2 are designated 
as major distribution hubs in which helipad facilities are available (UN-WFP, Situation 
Report May 21, 2015). So, relief materials are supplied from these two SA to all the PD 
in Layer 3. The number of PD selected in Layer 1, Layer 2, and Layer 3 are 3, 12, and 8, 
respectively. Due to space constraints, data on transportation cost from MPE to SA, PD 
in Layer 1, from SA to PD in Layer 2 and Layer 3, minimum storage of relief materials 
in SA, and storage capacity of SA are not mentioned in the paper. They may be available 
on request from the authors.

7 � Results and discussion

This section offers the results of the proposed model obtained using the DE approach. 
According to the considered number of RM, MPE, SA, PD, the model (26)–(29) is formu-
lated. This model consists of 301 variables and 157 constraints. Out of the 301 variables, 
282 are decision variables, and the remaining 19 are membership functions correspond-
ing to the goals. All �i are taken as 0.9 and all �L

i
 are taken as 0.05. So, the minimum 

value of the satisfaction probability of each goal is 90%. The model is implemented in R (R 
Core Team, 2013), and ’DEoptimR’ function (Schwendinger, 2019) is used in the code. All 
the computations are done in a PC having processor Intel(R) Core(TM) i5-7200 CPU @ 
2.50 GHz 2.71 GHz 8 GB RAM, 64 bits operating system. The execution time for all the 
case instances is less than one minute.

The estimated demands of six RM at Layers 1, 2, and 3 are presented in Table 3.
As demands of RM are random variables, we investigate different scenarios about their 

satisfaction. Demands satisfaction at Layers 1, 2, and 3 will depend on the availability of 
RM at the MPE. Our analysis will help in making crucial decisions in this matter. The fol-
lowing scenarios are considered:

Scenario 1 70% of overall demand satisfaction for RM at Layer 1, 2, and 3.
Scenario 2 80% of overall demand satisfaction for RM at Layer 1, 2, and 3.
Scenario 3 90% of overall demand satisfaction for RM at Layer 1, 2, and 3.
Scenario 4 100% of overall demand satisfaction for RM at Layer 1, 2, and 3.
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7.1 � Scenario 1. 70% of overall demand satisfaction for RM at Layer 1, 2, and 3

The solution obtained for Scenario 1 is as follows. The notations used are self-explanatory 
and defined previously.

x111 = 13,425, x112 = 300, x113 = 7700, x114 = 300, x115 = 4700, x116 = 7700, x117 = 
7700, x118 = 300, x211 = 18,815, x212 = 24,660, x213 = 9000, x214 = 1000, x215 = 1000, 
x216 = 1000, x217 = 1000, x218 = 14,000, x311 = 1000, x312 = 39,000, x313 = 6105, x314 = 
1000, x315 = 1000, x316 = 9000, x317 = 14,000, x318 = 14,000, x411 = 10,165, x412 = 400, 
x413 = 4600, x414 = 2930, x415 = 4600, x416 = 4600, x417 = 7600, x418 = 400, x511 = 5782, 
x512 = 200, x513 = 2269, x514 = 200, x515 = 200, x516 = 3800, x517 = 3800, x518 = 2096, 
x611 = 22,480, x612 = 27,160, x613 = 9500, x614 = 500, x615 = 500, x616 = 9500, x617 = 500, 
x618 = 500. xL1

111
= 9065, xL1

211
= 15,330, xL1

311
= 18,830, xL1

411
= 7665, xL1

511
= 3132, xL1

611
= 

13,930, xL2
211

= 1260, xL2
223

= 23,660, xL2
323

= 13,220, xL2
623

= 26,660, xL2
135

= 7400, xL2
235

= 
8000, xL2

336
= 5105, xL2

435
= 4200, xL2

535
= 2069, xL2

635
= 9000, xL2

446
= 2530, xL2

157
= 4400, xL2

457
= 

4200, xL2
169

= 7400, xL2
369

= 8000, xL2
469

= 4200, xL2
569

= 3600, xL2
669

= 9000, xL2
1811

= 7400, 
xL2
3811

= 13,000, xL2
4811

= 7200, xL2
5811

= 3600, xL2
2812

= 13,000, xL2
3812

= 13,000, xL2
5812

= 1896, 
xL3
111

= 11,865, xL3
211

= 17,815, xL3
411

= 9765, xL3
511

= 5582, xL3
611

= 21,980, xL3
326

= 24,780.
We summarize the solution obtained in Scenario 1 in the case when the objective is to 

satisfy 70% of the overall demand of relief materials at Layer 1, 2, and 3 as follows:
From the above solution, we find that the supply of 9065, 27,860, and 11,865 boxes 

of first-aid materials (FA) must be ensured to satisfy the demands at Layer 1, 2, and 3, 
respectively. Similarly, the supply of 15,330, 44,660, and 17,815 packets of dry food (DF) 
must be ensured to satisfy the demand at Layer 1, 2, and 3, respectively. The supply of 
18,830, 52,325, and 24,780 quantity of water (WA) pouches must be ensured to satisfy the 
demands at Layer 1, 2, and 3, respectively. The supply of 7665, 22,330, and 9765 packets 
of sanitation kits (SK) must be ensured to satisfy the demands at Layer 1, 2, and 3, respec-
tively. The supply of 3132, 11,165, and 5582 pieces of tents (TT) must be ensured to sat-
isfy the demands at Layer 1, 2, and 3, respectively. Finally, the supply of 13,930, 44,660, 
and 21,980 pieces of blankets (BT) must be ensured to satisfy the demands at Layer 1, 2, 
and 3, respectively. The above results will help the disaster management team to plan and 
maintain the above-mentioned minimum quantities of relief materials to be made available 
at the MPE to satisfy 70% of the overall demand at three different layers.

7.2 � Scenario 2. 80% of overall demand satisfaction for RM at Layer 1, 2, and 3

The solution obtained for Scenario 2 is as follows:
x111 = 1117, x112 = 19,700, x113 = 7700, x114 = 300, x115 = 4700, x116 = 7700, x117 = 

6283, x118 = 300, x211 = 21,360, x212 = 15,040, x213 = 9000, x214 = 1000, x215 = 9000, 
x216 = 9000, x217 = 1000, x218 = 14,000, x311 = 17,120, x312 = 39,000, x313 = 1000, x314 = 
1000, x315 = 1000, x316 = 9000, x317 = 14,000, x318 = 14,000, x411 = 14,600, x412 = 3080, 
x413 = 4600, x414 = 400, x415 = 4600, x416 = 4600, x417 = 7600, x418 = 400, x511 = 6580, 
x512 = 200, x513 = 200, x514 = 200, x515 = 3800, x516 = 3800, x517 = 2160, x518 = 3800, 
x611 = 29,500, x612 = 29,500, x613 = 500, x614 = 500, x615 = 660, x616 = 9500, x617 = 500, 
x618 = 9500. xL1

111
= 10,360, xL1

211
= 17,520, xL1

311
= 21,520, xL1

411
= 8760, xL1

511
= 3580, xL1

611
= 

15,920, xL2
411

= 3040, xL2
611

= 3880, xL2
123

= 6657, xL2
223

= 14,040, xL2
323

= 25,800, xL2
423

= 2680, 
xL2
623

= 29,000, xL2
135

= 7400, xL2
235

= 8000, xL2
435

= 4200, xL2
157

= 4400, xL2
257

= 8000, xL2
457

= 
4200, xL2

557
= 3600, xL2

658
= 160, xL2

169
= 7400, xL2

269
= 8000, xL2

369
= 8000, xL2

469
= 4200, xL2

569
= 

3600, xL2
669

= 9000, xL2
1811

= 5983, xL2
3811

= 13,000, xL2
4811

= 7200, xL2
5811

= 1960, xL2
2812

= 
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13,000, xL2
3812

= 13,000, xL2
5812

= 3600, xL2
6812

= 9000, xL3
111

= 817, xL3
211

= 20,360, xL3
311

= 
16,120, xL3

411
= 11,160, xL3

511
= 6380, xL3

611
= 25,120, xL3

128
= 12,743, xL3

265
= 12,200.

We summarize the solution obtained in Scenario 2 in the case when the objective is to 
satisfy 80% of the overall demand of relief materials at Layer 1, 2, and 3 as follows:

The supply of 10,360, 31,840, and 13,560 boxes of FA must be ensured to satisfy the 
demands at Layer 1, 2, and 3, respectively. Similarly, the supply of 17,520, 51,040, and 
20,360 packets of DF must be ensured to satisfy the demand at Layer 1, 2, and 3, respec-
tively. The supply of 21,520, 59,800, and 28,320 quantity of WA pouches must be ensured 
to satisfy the demands at Layer 1, 2, and 3, respectively. The supply of 8760, 25,520, and 
11,160 packets of SK must be ensured to satisfy the demands at Layer 1, 2, and 3, respec-
tively. The supply of 3580, 12,760, and 6380 pieces of TT must be ensured to satisfy the 
demands at Layer 1, 2, and 3, respectively. Finally, the supply of 15,920, 12,760, and 
25,120 pieces of BT must be ensured to satisfy the demands at Layer 1, 2, and 3, respec-
tively. The above results will help the disaster management team to plan and maintain the 
above-mentioned minimum quantities of relief materials to be made available at the MPE 
to satisfy 80% of the overall demand at three different layers.

7.3 � Scenario 3. 90% of overall demand satisfaction for RM at Layer 1, 2, and 3

The solution obtained for Scenario 3 is as follows:
x111 = 300, x112 = 19,700, x113 = 7700, x114 = 300, x115 = 4700, x116 = 7700, x117 = 

5375, x118 = 7700, x211 = 23,905, x212 = 29,000, x213 = 9000, x214 = 1000, x215 = 1420, 
x216 = 9000, x217 = 1000, x218 = 14,000, x311 = 30,685, x312 = 39,000, x313 = 1000, x314 = 
1000, x315 = 1000, x316 = 6450, x317 = 14,000, x318 = 14,000, x411 = 13,465, x412 = 400, 
x413 = 4600, x414 = 4600, x415 = 4600, x416 = 4600, x417 = 7600, x418 = 4600, x511 = 7377, 
x512 = 200, x513 = 3755, x514 = 3800, x515 = 200, x516 = 3800, x517 = 200, x518 = 3800, 
x611 = 29,500, x612 = 29,500, x613 = 9500, x614 = 500, x615 = 1180, x616 = 9500, x617 = 
500, x618 = 9500, xL1

111
= 11,655, xL1

211
= 19,710, xL1

311
= 24,210, xL1

411
= 9855, xL1

511
= 4027, 

xL1
611

= 17,910, xL2
411

= 510, xL2
611

= 740, xL2
123

= 4145, xL2
223

= 28,000, xL2
323

= 3527, xL2
623

= 
29,000, xL2

135
= 7400, xL2

235
= 8000, xL2

435
= 4200, xL2

535
= 3555, xL2

635
= 9000, xL2

446
= 4200, 

xL2
546

= 3600, xL2
157

= 4400, xL2
257

= 420, xL2
457

= 4200, xL2
658

= 680, xL2
169

= 7400, xL2
269

= 8000, 
xL2
369

= 4450, xL2
469

= 4200, xL2
569

= 3600, xL2
669

= 9000, xL2
1811

= 5075, xL2
3811

= 13,000, xL2
4812

= 
4200, xL2

5812
= 3600, xL2

6812
= 9000, xL3

211
= 22,905, xL3

311
= 29,686, xL3

411
= 12,555, xL3

511
= 

7177, xL3
611

= 28,260, xL3
128

= 15,255, xL3
326

= 2175.
We summarize the solution obtained in Scenario 3 in the case when the objective is to 

satisfy 90% of the overall demand of relief materials at Layer 1, 2, and 3 as follows:
The supply of 11,655, 35,820, and 15,255 boxes of FA must be ensured to satisfy the 

demands at Layer 1, 2, and 3, respectively. Similarly, the supply of 19,710, 57,420, and 
22,905 packets of DF must be ensured to satisfy the demand at Layer 1, 2, and 3, respec-
tively. The supply of 24,210, 67,275, and 31,860 quantity of WA pouches must be ensured 
to satisfy the demands at Layer 1, 2, and 3, respectively. The supply of 9855, 28,710, and 
12,555 packets of SK must be ensured to satisfy the demands at Layer 1, 2, and 3, respec-
tively. The supply of 4027, 14,355, and 7177 pieces of TT must be ensured to satisfy the 
demands at Layer 1, 2, and 3, respectively. Finally, the supply of 17,910, 57,420, and 
28,260 pieces of BT must be ensured to satisfy the demands at Layer 1, 2, and 3, respec-
tively. The above results will help the disaster management team to plan and maintain the 
above-mentioned minimum quantities of relief materials to be made available at the MPE 
to satisfy 90% of the overall demand at three different layers.
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7.4 � Scenario 4. 100% of overall demand satisfaction for RM at Layer 1, 2, and 3

The solution obtained for Scenario 3 is as follows:
x111 = 17,250, x112 = 19,700, x113 = 1500, x114 = 300, x115 = 4700, x116 = 7700, x117 = 

300, x118 = 7700, x211 = 26,450, x212 = 29,000, x213 = 9000, x214 = 1000, x215 = 7800, 
x216 = 9000, x217 = 1000, x218 = 14,000, x311 = 34,882, x312 = 39,000, x313 = 5268, 
x314 = 1000, x315 = 1000, x316 = 9000, x317 = 14,000, x318 = 14,000, x411 = 14,350, x412 = 
12,500, x413 = 4600, x414 = 400, x415 = 4600, x416 = 4600, x417 = 7600, x418 = 400, x511 = 
8175, x512 = 200, x513 = 3800, x514 = 200, x515 = 1750, x516 = 3800, x517 = 3800, x518 = 
3800, x611 = 29,500, x612 = 29,500, x613 = 9500, x614 = 500, x615 = 9500, x616 = 9500, 
x617 = 1700, x618 = 9500, xL1

111
= 12,950, xL1

211
= 21,900, xL1

311
= 26,900, xL1

411
= 10,950, 

xL1
511

= 4475, xL1
611

= 19,900, xL2
123

= 19,400, xL2
223

= 28,000, xL2
323

= 36,482, xL2
423

= 12,100, 
xL2
623

= 26,600, xL2
135

= 1200, xL2
235

= 8000, xL2
336

= 4268, xL2
435

= 4200, xL2
535

= 3600, xL2
635

= 
9000, xL2

157
= 4400, xL2

257
= 6800, xL2

457
= 4200, xL2

557
= 1550, xL2

658
= 9000, xL2

169
= 7400, xL2

269
= 

8000, xL2
369

= 8000, xL2
469

= 4200, xL2
569

= 3600, xL2
669

= 9000, xL2
3811

= 13,000, xL2
4811

= 7200, 
xL2
5811

= 3600, xL2
1812

= 7400, xL2
2812

= 13,000, xL2
3812

= 13,000, xL2
5812

= 3600, xL2
6812

= 9000, 

Fig. 1   Comparison of cost for 
different scenarios

Fig. 2   Minimum availability of RMs at the MPE



167Annals of Operations Research (2022) 319:149–172	

1 3

xL3
111

= 16,950, xL2
211

= 25,450, xL2
311

= 22,882, xL2
411

= 13,950, xL2
511

= 7975, xL2
611

= 29,000, 
xL2
326

= 1518, xL2
626

= 2400.
We summarize the solution obtained in Scenario 4 in the case when the objective is to 

satisfy 100% of the overall demand of relief materials at Layer 1, 2, and 3 as follows:
The supply of 12,950, 39,800, and 16,950 boxes of FA must be ensured to satisfy the 

demands at Layer 1, 2, and 3, respectively. Similarly, the supply of 21,900, 63,800, and 
25,450 packets of DF must be ensured to satisfy the demand at Layer 1, 2, and 3, respec-
tively. The supply of 26,900, 74,750, and 35,400 quantities of WA pouches must be 
ensured to satisfy the demands at Layer 1, 2, and 3, respectively. The supply of 10,950, 
31,900, and 13,950 packets of SK must be ensured to satisfy the demands at Layer 1, 2, 
and 3, respectively. The supply of 4475, 15,950, and 7975 pieces of TT must be ensured 
to satisfy the demands at Layer 1, 2, and 3, respectively. Finally, the supply of 19,900, 
63,800, and 31,400 pieces of BT must be ensured to satisfy the demands at Layer 1, 2, 
and 3, respectively. The above results will help the disaster management team to plan 
and maintain the above-mentioned minimum quantities of relief materials to be made 
available at the MPE to satisfy 100% of the overall demand at three different layers.

The supply of RM to the affected areas incurs a considerable cost in an emergency. 
Therefore, the total cost is an essential factor in making supply decisions. We now ana-
lyze the cost in the considered scenarios and present the comparison in Fig. 1.

Figure  1 shows that the cost incurred to satisfy 70%, 80%, 90%, and 100% of the 
demand of RM at the three layers are US$ 3.0233, US$ 3.4552, US$ 3.8871, and US$ 
4.319 million, respectively. So, the total cost of supplying emergency relief materials to 
the affected areas increases with the increase in the percentage of satisfying demands.

Next, we estimate the minimum level of individual relief materials that are to be ensured 
at the MPE so that the demands for different scenarios can be fulfilled in the affected areas. 
Figure 2 presents the number of units of individual relief materials to be supplied to Layer 
1, 2, and 3 in different scenarios.

From Fig. 2, we find that the minimum quantity of FA to be maintained at the MPE for 
Scenarios 1, 2, 3, and 4 are 51,190, 58,160, 65,130, and 72,100, respectively. Similarly, for 
DF, the respective quantities are 85,805, 96,920, 108,035, 119,150. For WA, the respec-
tive quantities are 103,935, 117,640, 131,345, and 145,050. For SK, the respective quanti-
ties are 42,960, 48,640, 54,320, and 60,000. For TT, the respective quantities are 21,480, 
24,320, 27,160, 30,000. Finally, for BT, the respective quantities are 84,570, 96,080, 
107,590, 119,100.

While comparing our findings with the previous literature, we agree with Gralla et al. 
(2014) that the comparison is not easy as each model is different from the other due to vari-
ous reasons. However, some of the major similarities and dissimilarities are identified. We 
primarily capture and quantify the trade-offs between the total cost of supplying the RM 
and demand satisfaction. From this point of view, our findings are in line with Vitoriano 
et al. (2011), Bozorgi-Amiri et al. (2013), Bastian et al. (2016), Ransikarbum and Mason 
(2016), and Sarma et al. (2020). In particular, the trade-offs between demand and supply 
(Vitoriano et  al., 2011), demand and cost (Bozorgi-Amiri et  al., 2013), budget, demand, 
and response time (Bastian et  al., 2016), resources and budget (Ransikarbum & Mason, 
2016; Sarma et al., 2020) are quantified. On the other hand, our study is unique in terms 
of the mathematical model and quantifying uncertainties. Authors use goal programming 
(Bastian et  al., 2016; Ransikarbum & Mason, 2016; Vitoriano et  al., 2011), fuzzy logic 
(Sarma et  al., 2020), and robust optimization (Bozorgi-Amiri et  al., 2013). The present 
study uses a novel probabilistic-fuzzy goal programming model. Like the present study, 
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Baharmand et al. (2020) also consider the 2015 Nepal Earthquake problem. However, the 
objective of the study is to locate temporary relief distribution centers.

8 � Theoretical and managerial implications

This research has significant theoretical and managerial implications. First, it introduces a 
novel probabilistic fuzzy goal programming model to the humanitarian logistics literature 
to manage the supply of emergency relief materials in the post-disaster phase. The goals 
of the model are probabilistic as well as fuzzy in nature. The concept is highly effective in 
capturing the uncertainty of the decision-making environment related to relief distribution. 
Let us consider the example of the cost goal, say. The probability that the total cost of relief 
operations is less than or equal to an estimated total cost is ‘fuzzily greater than or equal to’ 
to some given satisfaction level. We introduce the ‘fuzzily greater than or equal to’ over the 
strict satisfaction level because there is no certainty that the cost goal will be satisfied with 
a probability of 0.98, say. This kind of strict inequality in the goal satisfaction level leads 
to non-satisfaction with the goal. Therefore, it is not possible to find any solution to such a 
problem. On the contrary, the ‘fuzzily greater than or equal to’ satisfaction level of the goal 
is more practical in the real-world situation and offers flexibility to the decision-maker.

The proposed setting will also ensure the best compromise solution under the given set 
of system constraints arising from the disaster relief distribution problem. In the previous 
section, we compare the relief distribution models proposed by various researchers and 
how they capture the trade-offs between the total cost of supplying the relief materials and 
demand satisfaction. We find the existence of deterministic and stochastic models only 
for capturing the trade-offs. Apart from this, we derive the deterministic counterpart of 
the proposed model under the assumption that the probability distribution of demands of 
relief materials follows a uniform distribution. Through Propositions 1 and 2, we prove the 
equivalence of the original and derived models. These aspects demonstrate the theoretical 
contributions of the paper.

Second, this research will help the policymakers and humanitarian actors design and 
execute an effective emergency relief distribution plan for helping the affected people. 
After analyzing various demand scenarios under the complex trade-offs between the prob-
ability of satisfying demands and cost incurred to transport them to the affected areas with 
uncertain satisfaction level, we get a clear idea about what will be the minimum level of 
which emergency relief materials so that the demand can be fulfilled by incurring least 
cost. In other words, we can say that the proposed research will help the disaster manage-
ment authority to better coordinate the supply of the RM with different nodes in the relief 
distribution chain. In the case of a shortage of relief materials at the MPE, measures can 
be taken by coordinating with the respective humanitarian organizations and countries to 
provide such aids. So, the proposed model’s solution will help improve managerial under-
standing in a critical and uncertain situation. The emergency relief distribution decision-
makers can apply the suggested model to obtain the best-compromised solution under the 
presence of stochastic and fuzzy uncertainties.
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9 � Conclusions

The problem of the post-disaster supply of emergency RM was studied. It was challenging 
as the supply of multiple RM were to be supplied to PD located in three different layers 
that are accessible through separate models of transports. Moreover, accessing the demand 
precisely immediately after the disaster was almost an impossible task. So, the demands 
for RM, and hence the corresponding cost of supply, were modeled as random variables. 
A new PFGP model was proposed to formulate the problem. Under the assumption of uni-
form demands of RM, an equivalent model was derived. Finally, the model was solved 
using the DE. The proposed model was applied to a case example that was designed based 
on the Nepal Earthquake in 2015. Four different scenarios of demands of RM at the three 
layers and costs were investigated. The major contribution of this research is to manage the 
supply of RM to maintain the minimum level of each of the RM so that demands can be 
fulfilled at the PD.

The assumption of uniform distribution for the demands of RM at the PD is a limitation 
of this work. Because of the non-availability of historical data, such an assumption was 
made. The distribution of demands for each RM at the PD could be estimated if historical 
data were available. In such a case, the derivation of the equivalent model may not be pos-
sible. However, Monte-Carlo simulation-based search techniques (Jana & Biswal, 2004; 
Jana & Sharma, 2010) may be designed to overcome this challenge. There are various AI-
based search techniques available. They may also be applied to find the solution to the 
PFGP problem.

The proposed approach may be applied to manage the supply of RM in disasters other 
than earthquakes. The work could be extended to manage the supply of emergency RM 
in pandemic situations like COVID-19 to help thousands of migrant workers who were 
stuck due to the lockdown for several weeks without proper food and basic necessities. 
The model can also be extended to address the trade-offs among conflicting goals appear-
ing in business logistics problems under uncertainties. It will be interesting to study the 
proposed model by incorporating goals like the time required to supply the relief materials 
and equity.

Acknowledgements  The authors thank the Guest Editor and reviewers for their insightful comments to 
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