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Abstract
In this paper we address the problem of automatically discovering optimal tactics in a com-
bat scenario in which two opposing sides control a number of fighting units. Our approach 
is based on the evolution of behaviour trees, combined with simulation-based evaluation of 
solutions to drive the evolution. Our behaviour trees use a small set of possible actions that 
can be assigned to a combat unit, along with standard behaviour tree constructs and a novel 
approach for selecting which action from the tree is performed. A set of test scenarios was 
designed for which an optimal strategy is known from the literature. These scenarios were 
used to explore and evaluate our approach. The results indicate that it is possible, from 
the small set of possible unit actions, for a complex strategy to emerge through evolution. 
Combat units with different capabilities were observed exhibiting coordinated team work 
and exploiting aspects of the environment.

Keywords Wargames · Evolution of behaviour trees · Genetic programming

1 Introduction

In deciding which strategy to employ in a combat situation, the capabilities of the opposing 
sides and features of the combat environment must be considered. Even though a side may 
be outmatched in some respects, there may exist a set of tactics that could negate the ene-
my’s strengths and expose its weakness. The search for suitable strategies that may be used 
in future warfare scenarios can be undertaken through the process of wargaming, where a 
simulation is used instead of real combat.

In wargames that use computer-based simulation, the fidelity of the simulation is impor-
tant in terms of its usefulness in discovering strategy that could be mapped to a real-world 
scenario. When considering the behaviour of computer-controlled entities, such as different 
combat units, they need to have the capability of behaving competitively, by employing 
their own set of tactics that is appropriate to the environment and their capabilities.
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The development of realistic automated entities to take part in wargames is challenging 
because of their complexity, in terms of having to operate in an environment with a large 
state space, with uncertainty due to a limited visibility of the opponents manoeuvres and 
capabilities. The rise of such agents in a variety of games played against humans offers a 
possible solution. In particular, real-time strategy (RTS) games are a platform in which the 
coordination of heterogeneous combat units to defeat an opponent is a prominent feature.

A number of techniques have been applied to build artificial intelligence (AI) players 
for RTS games. For example, AI trained using multi-agent Reinforcement Learning (RL) 
has been developed for the game Starcraft and has been ranked as better than 99.8% of 
ranked human players (Vinyals et al., 2019). Earlier examples, documented in the review 
by Robertson and Watson (2014), include other approaches based on RL, in addition to 
Monte Carlo Tree Search and Case-Based planning techniques. The application of evolu-
tionary algorithms to the challenge of creating automated opponents for RTS games has 
also shown some promise. Evolutionary algorithms are in the family of metaheuristic tech-
niques that has seen wide use in operations research (Gupta et al., 2021; Osman & Laporte, 
1996). Recently, their use combined with simulation-based evaluation, termed simheuris-
tics, has seen an increase of activity (Juan et al., 2015, 2021; Lam et al, 2019).

Our evolutionary approach offers the potential benefit of explainability over the current 
state of the art approaches, not so much due to the evolution, but due to the behaviour tree 
construct that is evolved. Typically, RL-based approached result in a neural network type 
controller, where the ‘strategy’ enacted is encoded as a large volume of numbers that act 
as weights inside the neural network. It is virtually impossible for a human to discern the 
behaviour resulting from these weights, hence a neural network is typically seen as a black-
box approach, offering an output in response to an input without offering a rationale for that 
output. Strategies discovered through Monte Carlo based techniques are also difficult for a 
human to understand, as that technique relies on mass-scale simulation, typically against a 
random opponent and using statistical properties of winning to determine the next action, 
rather than trying to capture the logic for those actions. Behaviour trees on the other hand, 
are a structure that was originally designed for human readability, as they were intended 
for game designers to encode the behavioural logic for computer games (Isla, 2005). Thus, 
for a chosen behaviour of a particular unit, it is possible to trace back manually through the 
behaviour tree and identify the decisions that were made in order to choose that behaviour.

In this paper, which is an extended version of the work presented in Masek et al. (2019), 
our approach for optimal behaviour discovery is presented. The key to our approach is the 
composition of a small set of possible actions into a behaviour tree structure that can func-
tion as a controller for the Blue Team entities in a wargame simulation. Rather than use an 
explicit set of rules to compose the possible actions into a high level behaviour, we allow 
this high level behaviour to emerge through the process of evolution, driven by simulation-
based evaluation. Building on from our initial work in Masek et al. (2019), in this paper we 
provide detailed insights into aspects of the approach, and perform a thorough evaluation. 
In particular, a novel means of using the tree in the agent model to determine the action 
taken is introduced in Sect. 3.2. This approach, which allows for the evolution of timing 
into the behaviour tree, was able to evolve tactics that realise complex collaborative agent 
behaviour from a small set of coarse primitive actions.

In order to systematically evaluate our approach, a set of test scenarios was needed 
where the ‘optimal’ strategy was known. Full-scale realistic scenarios are not suitable for 
this purpose, as their complexity often means that multiple strategies can be employed 
and it is uncertain which one is the best. Our design of a set of small-scale scenarios was 
guided by the work of Hullett and Whitehead (2010), who documented a set of game level 
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design patterns for first person shooter computer games. Results using the design patterns 
of an open area and a choke point presented in Masek et al. (2019) are expanded upon here. 
Additionally, in this paper we introduce a scenario based on the stronghold design pattern 
and use it to explore differing tactics that arise when the Blue Team has partial visibility 
as opposed to full visibility of the scenario. Two, more complex, scenarios are also evalu-
ated, Urban Warfare, which was also presented in Masek et al. (2019), and a larger sce-
nario, Land Warfare, which is introduced here. In addition to the expanded set of scenarios, 
we also compare our approach to a set of existing techniques and analyse our approach in 
terms of computational resources required.

The rest of this paper is organised as follows: In Sect. 2 we provide a background to 
the use of evolution for strategy discovery in wargame-like scenarios, including strategy 
games. Section  3 contains a description of our approach of using genetic programming 
to evolve behaviour trees that are evaluated through an agent-based simulation. Section 4 
contains a description of the experiments and results, followed by the conclusion in Sect. 5.

2  Background

Evolutionary algorithms are population-based search and optimisation algorithms, using a 
set of solutions that evolve over a number of generations. They can scale to large, complex 
search spaces and can cope with discontinuities and local optima in the fitness landscape. 
This gives evolutionary algorithms an advantage in warfare scenarios where a number of 
different strategies can lead to success, but the success of a strategy will change based on 
the opponent. In particular, there is an element of intransitivity in the ranking of strate-
gies preventing a simple linear ranking. As an example of this intransitivity, Ontanón et al. 
(2013) report that for a 2011 Starcraft AI competition out of the top three bots, Skynet, 
UAlbertaBot and AIUR, Skynet was superior to UAlbertaBot, UAlbertaBot was superior 
to AIUR, and AIUR was superior to Skynet. The complexity of warfare scenarios pre-
sents difficulty in finding an objective measure of fitness for a solution, and in that respect 
simulation-based evaluation is typically favoured. It must be acknowledged though that 
this shifts the burden from having to determine an objective fitness measure into having to 
decide which aspects of warfare are simulated and the fidelity of this simulation, and the 
problems of dealing with uncertainty persist.

Behaviour trees are data structures where nodes of the tree represent condition checks 
and actions of an in-game entity (typically agent-based). They are widely used in the crea-
tion of hand-coded game AI. Complex behaviours can be built by arranging simple control 
flow and action nodes in a tree structure, which is traversed depth first to determine which 
actions to execute. The behaviour tree provides flexibility as it lends itself to a hierarchi-
cal structure, where behaviour trees corresponding to simple behaviours can be used as 
sub-trees in a larger behaviour tree that implements a more comprehensive higher level 
behaviour.

The transparent nature of behaviour trees, in that the decision points leading to executed 
actions are distinctly identifiable in the tree, lend them to applications in behaviour model-
ling for wargaming and RTS games. For example, the Norwegian army is using behaviour 
trees that have been manually derived to model behaviour for combat units (Evensen et al., 
2018). In other work, behaviour trees have also been constructed automatically by analys-
ing examples of RTS gameplay (Robertson & Watson, 2015).
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There is limited existing work on the use of evolutionary algorithms to produce behav-
iour trees. Perez et al. (2011) applied grammatical evolution of behaviour trees for a 2D 
platform game using the Mario AI Benchmark environment (Togelius et al., 2009) produc-
ing behaviour tree controllers for the central character, Mario. They used a constrained tree 
structure composed of behaviour blocks and remarked that behaviour trees are a good solu-
tion for combining a variety of different behaviours (e.g. reacting to enemies and pathfind-
ing). A less constrained application, and one more relevant to combat, Berthling-Hansen 
et al. (2018) used the multi-objective NSGA-II algorithm (Deb et al., 2000), with changes 
to allow for genetic programming of behaviour trees. They were able to evolve follower 
behaviour for a simulated soldier in a 3D environment based on the primitive behaviours of 
checking distance to a target and moving towards it.

There also exist other approaches where behaviour trees are evolved specific to lower 
level goals and are then used within a higher level controller to generate a larger behaviour 
tree that represents a more complex behaviour. An example is the work of Lim et al. (2010) 
applied to the commercial game DEFCON. In their work, evolution was used to separately 
create a number of behaviour trees, one for each task in the game. These trees were then 
used in a manually designed game playing agent. Similarly, Hoff and Christensen (2016) 
used genetic programming to generate behaviour trees for individual aspects of the game 
Zero-K, which they then combined together to produce a player agent.

As can be seen from the above discussion of related work, behaviour trees have only 
played a limited role in an AI solution, either having to be specified manually by a human 
expert, or automated but only serving as a ‘partial’ solution that then relies on other tech-
niques to build up a complete AI solution. Our approach aims to reach further, to produce 
a complete AI approach for addressing tactical combat scenarios through behaviour trees 
evolved so as to determine the appropriate actions for a set of diverse units from the begin-
ning of the scenario till its end.

3  The approach

The components and steps of our approach are presented in Fig. 1. Input consists of a set 
of condition and action node types that can be evolved into a behaviour tree, a fitness func-
tion, and a scenario in which solutions will be simulated. The behaviour trees and fitness 
function are used for transforming the simulation-based outcomes into a single measure of 
fitness.

The evolution component of the approach starts by generating an initial population 
and iterating between evaluation and production of the next generation. Evaluation is per-
formed by sending each individual of the population, in turn, to the evaluator. The evalua-
tor instantiates the scenario and uses the individual as the behaviour tree controller for the 
Blue Team entities. Once a scenario is complete, measures of effectiveness, such as units 
remaining and their status, are sent back to calculate fitness using the fitness function.

Production of the next generation is through the use of a selection scheme to choose 
candidates from the previous generation. Each candidate may go into the population of 
the next generation unchanged, or based on a probability, undergo the genetic operators of 
mutation or crossover. The specific details of the operators used in our experiments will be 
discussed in the next section.

As the evolutionary process is an iterative search it may continue for an indeterminate 
number of generations (though a stopping criteria may be imposed). At each generation, 
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output is produced in the form of a candidate set of solutions (the current population) 
whose behaviour can be manually examined. Typically this examination is performed on 
the individual with the highest fitness.

3.1  Evaluator

The evaluator chosen for this project was MicroRTS (Ontañón, 2013). MicroRTS is a sim-
ple real time strategy game initially designed for testing theoretical ideas in relation to AI 
research. MicroRTS is played on a game board divided into a grid of square tiles. Tiles are 
either accessible or inaccessible. A game takes place over a set number of time units (we 
have used 3000 and 5000 in our experiments). These time units are abstract and do not cor-
respond to real time. The game time can be slowed down so that a human can participate or 
visualise a game, but for use in AI training MicroRTS can run games as fast as the process-
ing hardware allows.

We have used four of the unit types available within MicroRTS, and their capabilities 
are summarised in Table 1. Each unit type has a certain number of Hit Points, an integer 
value corresponding to the amount of damage the unit can receive before being destroyed. 
The Base Unit is immobile and lacks any attack capability. We have used the Base in our 
experiments as a point for other units to attack or defend.

Fig. 1  (Reproduced from Masek et al., 2019): An overview of the approach. Provided with the input of the 
Behaviour Tree primitive node set, fitness function and scenario. The evolutionary algorithm (1) creates an 
initial population and then iterates between (2) evaluating the current population and (3) producing the next 
generation. Evaluation is performed by a simulation engine, in our case MicroRTS. At each generation, the 
fittest individual serves as a candidate solution
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We have used three mobile combat unit types: Light (as a proxy for infantry), Heavy 
(proxy for armor) and Ranged (proxy for artillery). These units can move from one tile 
to the next in a 4-connected fashion (i.e. vertically or diagonally). The Heavy Unit is the 
slowest, taking 12 time units to move between tiles, with the Light Unit the fastest at 8 time 
units per move. The Heavy and Light have an attack range of 1, meaning they can only 
attack units in adjacent (4-connected) tiles. The Ranged unit has an attack range of 3 tiles, 
and has the ability to attack diagonally. The time needed to perform an attack is the same 
for each unit type, at 5 time units. The amount of damage inflicted by a successful attack is 
between 1 and 4 hit points, depending on unit type.

In our experiments we did not make use of MicroRTS units that can produce other units 
or gather resources (common gameplay mechanics found in RTS games) so as to constrain 
the problem space to one closely related to military wargaming.

3.2  Agent behaviour tree model

For the Blue Team, we utilise a behaviour tree controller for each agent, and this controller 
is evolved in our approach. Behaviour trees are modular, goal orientated models, which are 
hierarchical in nature. Each subtree typically represents a solution to a smaller goal, requir-
ing simple behaviour (for example, ‘move towards the nearest enemy’, or ‘move towards 
the nearest ally’), and these subtrees when coupled together have the ability to produce a 
more complex behaviour to achieve a higher level goal (for example, ‘escort an ally whilst 
drawing fire away from them’.

A behaviour tree is constructed from a set of nodes. The primitive set of behaviour tree 
nodes that we have used in our experiments is listed in Table 2. As a behaviour tree is tra-
versed, each node performs its intended activity and returns to the parent node with one of 
three states, ‘success’, ‘failure’, or ‘running’. The terminal (or leaf) nodes correspond to 
the input set of condition and action nodes and are specific to the domain (ie. in a combat 
domain, the actions will typically be either offensive or defensive). The non-terminal nodes 
in a behaviour tree act to provide a logical structure for the terminal nodes and are generic. 

Table 1  MicroRTS units used in our experiments

Unit type Attributes Commands Observability

Light unit Hit Points: 4
Attack Range: 1 tile
Move Time: 8 time units per tile
Attack Time: 5 time units per attack
Damage: 2 hit points

Move
Attack
Wait

Partial Sight Radius: 2
Full Sight Radius: Whole board

Heavy unit Hit Points: 4
Attack Range: 1 tile.
Move Time: 12 time units per tile.
Attack Time: 5 time units per attack.
Damage: 4 hit points

Move
Attack
Wait

Partial Sight Radius: 2
Full Sight Radius: Whole board

Ranged unit Hit Points: 1
Attack Range: 3 tiles
Move Time: 10 time units per tile.
Attack Time: 5 time units per attack.
Damage: 1 hit point

Move
Attack
Wait

Partial Sight Radius: 3
Full Sight Radius: Whole board

Base unit Hit Points: 10 Partial Sight Radius: 5
Full Sight Radius: Whole board
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We use two standard non-terminal nodes, the selector node, which attempts to execute each 
of its child nodes in order, until one succeeds, or until they are all visited, and the sequence 
node, which attempts to execute all children in order until one fails or all are visited. For 
our non-terminal nodes, we constrained the ‘arity’, the number of children between 1 and 
4 inclusive.

In implementing our behaviour tree model we experimented with three different ways of 
traversing (ticking) the behaviour tree in order to determine the action a unit is ordered to 
perform. The first is a conventional approach, and the two others are novel, specifically for-
mulated to encourage more complex emergent behaviour from the evolved behaviour tree.

1. Conventional approach If an action node corresponds to an activity that cannot be 
completed immediately, it returns the state ‘running’ (e.g. The action of moving a unit 
to a particular position, which cannot be done instantaneously). Actions that can be com-
pleted immediately (e.g. checking for enemy bases, or a move command where the unit 
has either successfully reached the target destination or the destination is unreachable) 
return either ‘success’ or ‘failure’. To determine which action a unit will be ordered to 
perform, the tree is ticked from the root node until a node returns the ‘running’ state, 
with the agent then being tasked with completing that action.

2. Pause node approach Differs from the conventional approach in that nodes only return 
either ‘success’ or ‘failure’, without the use of the ‘running’ state. In this approach, 
actions that cannot be accomplished instantaneously, but are possible, return ‘success’. 
This would mean, in a conventionally ticked behaviour tree, that traversal of the tree 
would continue and if another subsequent action node was encountered, that action 
would override previous actions. To introduce an evolvable means of stopping the 
behaviour tree execution so as to result with a particular action, a ‘pause’ construct was 
introduced. When encountered, this ‘pause’ node causes the tree traversal to stop, with 
the agent given the command to perform the last ticked action. The next time that the 

Table 2  Primitive set used to build behaviour trees in our experiments (reproduced from Masek et al., 2019)

Terminal nodes Description

AttackClosestEnemy A command is issued for the agent to attack the closest enemy fighting unit. If there 
are no enemies, this node returns a failure

If there are enemies, this node returns a success
AttackClosestBase A command is issued for the agent to attack the closest enemy Base unit

If there are no bases, this node returns a failure. If there are bases, this node returns 
a success

MoveToClosestAllies A command is issued for the agent to move towards the closest allied unit
If there are no allies, this node returns a failure. If the command to move towards 

the closest ally was executed, this node returns a success
Idle A 10 frame wait command is issued to the agent. This node always returns true
CheckForEnemies Returns true if enemy fighting units are present on the map, otherwise returns false
CheckForAllies Returns true if an ally is within a distance of 2 units, otherwise returns false
CheckForBases Returns true if an enemy base is present on the map, otherwise returns false

Non-terminal nodes (Arity of 1–4) Description

Selector Executes child nodes in order until one succeeds
Sequence Executes child nodes in order until one fails or all are visited
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behaviour tree is queried, execution begins from the previous ‘pause’ node, rather than 
from the root.

3. Per node approach In this approach, each time the behaviour tree is queried, a single 
node is ticked, with subsequent queries of the tree ticking subsequent nodes. In this 
approach, rather than an explicit pause node, the pause is done for every node. This 
approach, through evolution, encourages behaviour that needs to occur earlier in the 
scenario to be present closer to the top of the behaviour tree.

In each case, the time interval between when the behaviour tree is queried to determine 
the next action was 10 game time units (where a scenario was typically run for a duration 
of 3000 game time units).

A set of experiments was run to determine which approach to ticking the behaviour tree 
produced suitable results through evolution. Experiments were conducted in the Plain Ter-
rain scenario, this scenario will be described in more detail in Sect. 4.1.1. Twelve experi-
mental runs of evolution were conducted with each tree ticking approach. Each experimen-
tal run consisted of running the evolutionary process for 20,000 generations, with each run 
having a different setting for the probability of mutation and crossover. Mutation probabil-
ity was set to one of: [0.2, 0.4, 0.6, 0.8] and crossover probability to one of: [0.4, 0.6, 0.8]. 
For each experimental run, the best solution in the final generation, and also the best and 
average fitness across the generations were examined to determine a suitable tree ticking 
scheme.

In examining the solutions resulting from the experimental runs, the Conventional 
Approach failed to generate a winning set of tactics through evolution. In all twelve of the 
Conventional Approach experimental runs, the fittest solution at the end of the evolution-
ary process resulted in a defeat (loss of all Blue Units and Base). Both the Pause Node 
and Per Node approaches resulted in collaborative behaviour in the Blue Team, leading to 
success. In the Pause Node approach, eight out of the twelve experiments resulted in the 
fittest solution from the last generation winning (no Red Units or Bases remaining), with 
the remaining four losing. For the Per Node approach, eight experiments resulted in a win-
ning solution in the final generation, four resulted in a draw (both red and Blue Units were 
remaining) and there were no losses.

The progress of the evolution for these comparison experiments is shown in Fig.  2. 
This figure shows the average of the best solutions in each generation for each of the three 
approaches. This shows the clear dominance of the Per Node approach in evolving a solu-
tion with higher fitness sooner, thus this approach has been utilised in the subsequent 
experiments that are reported in this paper.

For units on the Red Team, standard controllers from the MicroRTS environment were 
utilised. For all scenarios, except our largest one, Land Warfare, we used an AI, called 
‘rush’, where each unit attacks the closest accessible Blue Team unit. For the Land Warfare 
scenario, which features a much larger terrain with several unit groups, we chose a ‘defend’ 
type AI which stays in its defined place until enemy units come within a certain range. The 
scenarios themselves are described in detail in Sect. 3.3.4.

3.3  Evolutionary approach

In our approach we utilised genetic programming, an evolutionary algorithm first pro-
posed by Koza (1992). In genetic programming, individuals take the form of trees, with 
the standard genetic operators such as crossover and mutation adapted into versions 
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that work specifically with tree structures. This makes genetic programming a suitable 
approach for behaviour tree evolution, using the primitive node set, and evolving tree 
structures using it. The specific operators and settings used in our implementation are 
discussed.

3.3.1  Population initialisation

The initial population is randomly generated using two methods, grow and full, with 
each method used to create half of the population. This method, known commonly as 
‘ramped half and half’ (Koza, 1992), is widely used as it creates an initial population 
with greater diversity than if just the grow or full method were used exclusively. Each 
method produces trees of a specified maximum depth using two steps: 1. Growing the 
tree using non-terminal nodes until depth reaches one level less than the intended tree 
depth, and 2. Add a layer of terminal nodes. The grow method constructs the tree ran-
domly from the root, adding non-terminal nodes until one reaches the intended tree 
depth – 1, whilst the full method ensures all branches have non-terminal nodes up to the 
intended depth – 1. An example showing these two steps for the grow and full method 
to generate trees at depth of 4 and node arity 2 is shown in Fig.  3. For our experi-
ments we used a minimum and maximum tree depth of two and six respectively, with 
arity of nodes (number of children) between 1 and 4. These numbers were determined 
empirically for our scenarios, with a trade-off existing as the greater the maximum 
depth and/or arity, the greater the number of possible node and branch combinations 
possible, which could result in more complex behaviour. On the other hand this implies 
an increase in the search space which would necessitate either a larger population size, 
more generations, or both to allow the algorithm to find an optimal solution.
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3.3.2  Fitness function

The fitness function is an important element, as it defines the ‘optimum’. Our fitness func-
tion. shown as Eq. 1, consists of taking the difference between the Blue Team hit points 
(blueHP) and Red Team hit points (redHP) at the completion of simulation of a scenario. 
To keep the fitness as a positive number, we add the constant maxHP, which are the hit 
points of the team that starts with the largest number of hit points. The hit points of a team 
are calculated by summing the hit points of each unit on that team. Each unit in MicroRTS 
starts with a set number of hit points, based on unit type (Table 1). Damage during the sce-
nario is modelled as a loss of hit points, where zero hit points results in the unit removed 
from the scenario.

A good solution under this fitness function corresponds to a high fitness value, min-
imising blue losses (ie. maximising blueHP) and maximising red losses (ie. minimising 
redHP). Gajurel et al. (2018), used a similar fitness function, calculating the difference in 
Red Team hit points between the start and end of the game (ie. amount of damage that red 
sustains) plus the total Blue Team hit points as a measure of fitness. Depending on the sce-
nario, other fitness functions may be more appropriate. For example, if the objective is to 
eliminate a target ‘at all cost’, or to do it whilst minimising time taken, these objectives can 
be factored into a fitness equation.

3.3.3  Selection scheme

Selecting individuals from the current generation for inclusion in the next generation is 
based on the fitness measure. We used the Stochastic Universal Sampling (SUS) selection 
scheme (Baker, 1987). The SUS scheme works in such a way that all individuals regardless 
of fitness have a chance to be selected into the subsequent generation, with higher fitness 

(1)Fitness = blueHP − redHP + maxHP

Fig. 3  Example of tree growth using the Grow and Full methods. Here the desired depth of the tree is 4 and 
the arity of each node is 2
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individuals having a greater chance, however SUS is also designed so that the fittest solu-
tions cannot be chosen exclusively without less fit solutions also being represented. It is 
important for low fitness solution to have a chance of being selected, especially early on in 
the process of evolution, to give the process time to explore the search space, rather than 
converging early which risks converging to a local optimum that happens to be near an 
individual in the initial population, where a better optimum might exist in an unexplored 
part of the search space. SUS is a standard selection scheme in evolutionary computation 
in general, and not particular to genetic programming.

3.3.4  Mutation scheme

Once an individual is selected for the next generation it has a chance, based on the muta-
tion probability, to undergo mutation which applies a change to the individual so as to 
explore the solution space. Since our individuals are represented as trees, a mutation 
scheme especially designed for this type of representation needed to be chosen in order for 
the resulting mutated trees to remain valid. We have used Subtree mutation, a standard tree 
mutation operator, where a random node on the existing tree is chosen and the subtree of 
that node is replaced with a randomly generated subtree. The new sub-tree was generated 
using the grow method, with the same constraints on minimum and maximum depth for 
the complete tree as discussed in the initialisation section. This has the effect of replacing a 
tree branch with a new random sub-tree, or if applied to the root note the entire tree will be 
a new individual.

3.3.5  Crossover scheme

Crossover, which aims to exploit aspects of existing solutions by exchanging parts of two 
individuals, is applied, with each individual introduced into the new population having a 
probability of undergoing crossover. We used single point subtree crossover, a standard 
crossover scheme for tree structures, where two individuals are first chosen using SUS. 
A random point is then chosen on each individual tree and the two sub-trees from those 
nodes are swapped over. This has the effect of exchanging branches between the trees so 
that different existing behaviours can be mixed between trees, giving good ‘partial’ solu-
tions a chance to be combined. In the extreme case, where crossover occurs at the root of 
individual A and a branch from individual B, the branch will become a new tree of its own, 
replacing A, while the entire tree of A takes the place of the branch on B.

4  Experiments and results

This section provides a description of the experiments that were undertaken to evaluate 
the approach and the results produced. Firstly, a set of scenarios are introduced. These sce-
narios were developed to feature terrain layout where a known ‘optimum’ strategy exists. 
A summary is then provided of the evolved strategies for each scenario, followed by an 
analysis of win/loss rates for solutions evolved over a number of runs of each experiment. 
We then compare the effectiveness of the evolved behaviour tree agents against the effec-
tiveness of existing ‘state of the art’ agents when placed in the same scenario. This section 
is concluded with a discussion of computational requirements and scalability.
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4.1  Scenarios

The scenarios in the project have been developed to model existing, isolated battle sce-
narios, inspired by the work of Hullett and Whitehead (2010), who identified a number 
of ‘design patterns’ in first person shooter levels, along with the tactics that should be 
employed in order to maximise chances of success. The purpose of using these scenar-
ios is to assess whether the optimal behaviour recommended for such scenarios can be 
evolved into the behaviour tree. Three basic scenarios, Plain Terrain, Choke Point and 
Stronghold each contain one design pattern in a 24 × 24 grid, with two larger scenarios, 
Urban Warfare (32 × 32 grid) and Land Warfare (64 × 64 grid) contain multiple design 
patterns in the one scenario. Increasing the grid size allows for larger, more complex, 
scenarios to be modelled, but increases the simulation time needed in order to allow 
extra time for units to traverse the larger terrain. The scenarios will now be detailed.

4.1.1  Plain terrain

The Plain Terrain scenario is based on the arena design pattern (Hullett & Whitehead, 
2010), which features a wide open area with minimal cover. The scenario is shown in 
Fig. 4. The Blue Team features a single Ranged and a single Heavy Unit, with the Red 
Team featuring five Light Units. Each side has a Base (in opposite corners of the map). 
The capabilities of the two sides are summarised in Table 3.

According to Hullett and Whitehead (2010), the optimum strategy in such a scenario 
where the blue side is ‘numerically inferior’ is to “move deliberately and make use 
of cover”. Since the only cover provided in this scenario are the units themselves, the 
movement of the Blue Units needs to be heavily coordinated.

Fig. 4  Plain Terrain scenario
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4.1.2  Choke point

The Choke Point scenario, based on the choke point design pattern (Hullett & White-
head, 2010), is shown in Fig. 5. This scenario uses a section of non-traversable terrain 
(coloured in green) to separate the grid into two areas with a narrow path (the choke 
point) between them. Whilst being non-traversable the terrain does not block visibility, 
nor the capability to shoot over it (assuming the target is within shooting range). The 
capabilities of the Blue and Red Teams in this scenario are listed in Table 4. In this situ-
ation, when blue is outnumbered by Red, the optimal strategy, as indicated in Hullett 
and Whitehead (2010), is for Blue to use the narrow choke point to reduce the power of 

Table 3  Blue and Red 
capabilities in the Plain Terrain 
scenario

Plain terrain (grid size 24 × 24) Blue Red

No. base (HP = 10) 1 1
No. light (HP = 4, Damage = 2) 0 5
No. heavy (HP = 4, Damage = 4) 1 0
No. ranged (HP = 1, Damage = 1) 1 0
Total fighting units 2 5
Total HP 15 30
Attack strength (sum of damage given) 5 10

Fig. 5  Choke Point scenario

Table 4  Blue and Red 
capabilities in the Choke Point 
scenario

Choke point (grid size 24 × 24) Blue Red

No. base (HP = 10) 1 1
No. light (HP = 4, Damage = 2) 0 5
No. heavy (HP = 4, Damage = 4) 1 0
No. ranged (HP = 1, Damage = 1) 1 0
Total fighting units 2 5
Total HP 15 30
Attack strength (sum of damage given) 5 10
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the larger Red Team. Due to the narrow path and the surrounding terrain, the size of the 
team that red is able to mount against blue is constrained.

4.1.3  Stronghold

The Stronghold design pattern (Hullett & Whitehead, 2010) is designed as a location 
that is easily defended. It is a special case of the arena design pattern, with a limited 
number entrances which may be choke points. This set of two scenarios (differing by the 
size of the choke point entrances), depicted in Fig. 6, features a Blue Base in the centre, 
protected by two Heavy and two Ranged units. The central area acts as a stronghold, 
surrounded by impassable terrain, apart from two entrance points near opposite corners 
of the map. To reach the stronghold, the red attackers must traverse a narrow, winding 
path (choke point). The path also follows the gallery design pattern (Hullett & White-
head, 2010), allowing the blue Ranged units to engage Red Units passing through.

The Red Team consists of 14 Heavy Units. As Heavy Units have an attack range of 
1, they cannot fire over the narrow path’s wall, however are susceptible to fire from blue 
Ranged units (if they are close enough). The capabilities of the two sides are summa-
rised in Table 5.

This scenario explores the behaviour that emerges for the blue side in a stronghold 
environment with ambush possibilities for both blue and red.

Blue could let itself be distracted by attackers coming from one entry point, leaving the 
Base vulnerable to ambush from the other entry point.
Blue could ambush Red Units as they pass through the path leading to the stronghold, 
targeting those using Ranged Blue Units.

Fig. 6  Stronghold scenario
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This stronghold scenario also has been used to compare full visibility for blue versus 
partial visibility for blue, with the sight radius of units indicated in (Table 5).

4.1.4  Urban warfare

The Urban Warfare scenario (Fig. 7) is a larger scenario which features multiple design 
pattern elements, including multiple choke points. Whereas the previous scenarios fea-
ture just a single design pattern each, in order to evaluate whether the known optimal 
behaviour can be discovered, the goal of this scenario is to provide a more holistic test 
of our approach in a setting where multiple ‘optimal’ strategies can be employed. The 
capabilities of the two sides are shown in Table 6. The blue units are placed at the bot-
tom of the map. The scenario includes a large Red Base in the top right-hand corner, 
providing a large incentive if destroyed. A number of red combat units are placed in the 
bottom right-hand corner. As these Red Units employ the ‘rush’ controller, they will 
make their way through the map, engaging with the blue units at some point during 
the scenario. The shortest path to the large Red Base is defended by red Ranged units 
behind the cover of impassable terrain, making these ‘snipers’ invulnerable to all but the 
blue Ranged units, though blue only has two of these units. An alternate, safer, path to 
the large Red Base exists on the left-hand side of the map, an example of the Flanking 
Route design pattern from Hullett and Whitehead (2010).

4.1.5  Land warfare

Like the previously described Urban Warfare scenario, the Land Warfare scenario, 
depicted in Fig.  8, is another larger scenario used to more comprehensively evaluate 
the approach. The scenario features a river system with three crossing points / bridges 
and several Red Bases and unit groups. A defence oriented AI is used for the Red Units, 
which remain at their position until a Blue Unit is within a certain distance. Because 
of the large map size, the maximum number of time units per simulation has been 
increased to 5000 (from 3000 as in the other experiments). Capabilities or blue and red 
are summarised in Table 7.

Interesting features include choice of river crossing (choke points). Two protected 
red snipers (Ranged units protected by terrain) at one river crossing along with larger 
heterogeneous teams for both blue and red.

Table 5  Blue and Red 
capabilities in the stronghold 
scenario

Stronghold (grid size 24 × 24) Blue Red

No. base (HP = 10) 1 0
No. light (HP = 4, Damage = 2) 0 0
No. heavy (HP = 4, Damage = 4) 2 (sight radius 2) 14
No. ranged (HP = 1, Damage = 1) 2 (sight radius 3) 0
Total fighting units 4 14
Total HP 20 56
Attack strength (sum of damage given) 10 56
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4.2  Experiments

For each scenario, multiple evolution runs were undertaken, from an initial population of 
100 solutions, which was obtained by random initialisation. Experiments were performed 

Fig. 7  Urban Warfare scenario, shown un-annotated (top) for clarity, and with annotation (bottom) to indi-
cate role of unit placement and environment
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with varying mutation and crossover probabilities. Mutation probability was set to one 
of: [0.2, 0.4, 0.6, 0.8] and crossover probability to one of: [0.4, 0.6, 0.8]. This resulted in 
twelve combinations of settings, or twelve experimental runs of evolution for each sce-
nario. For the Land Warfare scenario only six of these were completed due to computation 
time requirements. In each run, evolution occurred for 20,000 generations in the case of all 
scenarios except Urban and Land Warfare, where it was reduced to 10,000 generations to 
decrease computation requirements. The Per Node tree traversal scheme was used. The fit-
test solution found in each run was subsequently examined to analyse the behaviour exhib-
ited by the Blue Team agents.

Table 6  Blue and Red 
capabilities in the Urban Warfare 
scenario

Urban warfare (grid size 32 × 32) Blue Red

No. base (HP = 10) 0 5
No. light (HP = 4, Damage = 2) 6 2
No. heavy (HP = 4, Damage = 4) 10 21
No. ranged (HP = 1, Damage = 1) 4 18
Total fighting units 20 41
Total HP 68 160
Attack strength (sum of damage given) 56 106

Fig. 8  Land Warfare scenario. Here impassable terrain (green) has been used to depict a river, with crossing 
points indicated
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The tactics employed by the Red Team were static in each scenario. For the Plain Ter-
rain, Choke Point, Stronghold and Urban Warfare scenarios, the Red Team utilised a ‘rush’ 
type controller, where each Red Unit was instructed to attack the nearest Blue Unit. For 
the Land Warfare scenario, the Red Team used a ‘defence’ controller, where Red Units 
remained at their initial position until a Blue Unit came withing range, upon which the Red 
Unit would attack the Blue Unit.

4.3  Plain terrain scenario

The Plain Terrain scenario offers no accessibility obstructions for the agents on the map. 
The open space can put the Blue Team at a tactical disadvantage by potentially allow-
ing the larger Red Team to surround the smaller Blue Team. In all of the fittest solutions 
from each experiment, one example shown in Fig.  9a–d, the Blue Team Units start by 

Table 7  Blue and Red 
capabilities in the Land Warfare 
scenario

Land warfare (grid size 64 × 64) Blue Red – 
defensive 
AI

No. base (HP = 10) 0 12
No. light (HP = 4, Damage = 2) 10 15
No. heavy (HP = 4, Damage = 4) 10 25
No. ranged (HP = 1, Damage = 1) 10 12
Total fighting units 30 52
Total HP 90 292
Attack strength (sum of damage given) 70 142

Fig. 9  Progress of one strategy 
through the Plain Terrain sce-
nario, with the initial positioning 
shown in (a), the Blue Team 
manoeuvre around the Red Units 
and proceeds to destroy the Red 
Base (b), after which the Blue 
Heavy provides cover for the 
Blue Ranged as it destroys the 
Red Units (c and d)
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manoeuvring around the Red Units. This is accomplished by the Blue Team initial moving 
to the right, whereas the Red Team start moving to the left. This is somewhat an artefact 
of the movement scheme, as units move in a 4-connected fashion and are unable to move 
diagonally. After avoiding the Red Team, the Blue Units move to destroy the Red Base. 
The Blue Ranged unit then stays close to the wall, preventing it from being surrounded. 
The Blue Heavy Unit positions between the Blue Ranged and the Red Units, seen in. The 
Blue Ranged Unit attacks the Red Units from behind the cover that the Blue Heavy pro-
vides, eliminating the Red Team. Whilst the Blue Heavy protects the Blue Ranged, it con-
stantly moves back and forth to prevent being targeted by the adjacent Red Units.

The Plain Terrain set of experiments found the pairing of the Heavy Unit, with the 
Ranged Unit to be an effective team composition if the units work together. In the initial 
generations, the two Blue Units tended to act independently and were quickly eliminated. 
Solutions where the two Blue Units travelled in proximity, with the shielding of the Red 
Ranged attacker by the Blue Heavy Unit proved superior. This behaviour corresponds to 
the ‘ideal’ behaviour that is advised for the open area design pattern (Hullett & Whitehead, 
2010), where close cooperation and use of cover is recommended when outnumbered, 
which was the case for blue against the Red Units that were rushing to attack.

The approach was successful in finding a solution to the Plain Terrain scenario in most 
of the evolution runs. Of the twelve runs of the experiment, eight resulted in the entire Red 
Team being eliminated, and four resulted in a situation where each team had surviving 
units at the end of the simulation time.

4.4  Choke point

From the Choke Point scenario experiments, a typical evolved behaviour for Blue was for 
the Heavy Unit to enter the choke point, blocking any advancing Red Team units, shown 
in Fig. 10a. This action protects the blue Ranged Unit and allows it to target Red Units that 
come within range, seen in Fig. 10b. The Heavy unit then emerges from the choke point, 
using either the left wall or the inaccessible terrain to prevent itself being surrounded, seen 
in Fig. 10c. The Blue Heavy Unit then proceeds, similar to the behaviour seen in the plain 
terrain, to move and distract the Red Team, whilst shielding the blue Ranged Unit. After 
the elimination of the Red Team fighting units, the Blue Units move to destroy the Red 
Base. Other tactics that emerged in this scenario was for the Blue Ranged Unit to attack 
over the impassable wall, seen in Fig. 10d or for the Blue Units to engage the Red Units on 
their side of the choke point.

Similarly as was found in the Plain Terrain scenario, in the first generations, before a 
strong solution could be evolved, the Blue Units acted without showing any coordination 
and were quickly defeated. Of the sixteen experiments, fifteen resulted in a win for the 
Blue Team, including experiments where blue remained unharmed and one resulted in a 
loss.

4.5  Stronghold—partial visibility

The Stronghold scenario variant with partial visibility reduces the Blue Team’s units abil-
ity to see the red units on the map. Heavy units have a sight radius of two units and Ranged 
Units a sight radius of three tiles.

The dominant tactic that was evolved in these experiments consisted of the Blue 
Units staying in a tight formation, remaining close to the Base, seen in Fig. 11a, and only 
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engaging the Red Units when they are nearby. The Blue Units engage as a team, with the 
Ranged Units doing the majority of the damage, example shown in Fig. 11b.

This experiment further demonstrated the capable team composition of the Heavy and 
Ranged Units. The Heavy Units distracted the Red Team and protected the blue Ranged 
Units. Due to the high frequency of red attackers in this scenario, one of the blue Heavy 
and blue Ranged were eliminated early in most cases. The remaining blue Heavy and 
Ranged were still able to eliminate the majority of the Red Team and survive. These find-
ings further strengthen the notion that the pairing of a Heavy and Ranged Unit is an advan-
tageous combination when faced against a an opposing team that is greater in strength and 
numbers and employs a simple ‘rush’ behaviour.

The approach was successful in finding a solution to the stronghold scenario with partial 
visibility. All experiments resulted in a win for the Blue Team.

Fig. 10  Blue Team tactics evolved in the Choke Point scenario, including (a) the Blue Heavy first block-
ing the chokepoint entrance, followed by (b) the Blue Ranged attacking over the Blue Heavy. Other tactics 
seen included (c) the Blue Heavy using the left boundary or impassable terrain for protection, and (d) Blue 
Ranged shooting over impassable terrain
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4.6  Stronghold—full visibility

The Stronghold scenario with full visibility consists of the same scenario as for partial 
visibility, but the Blue Units have full vision (as with all other scenarios that were experi-
mented with). The dominant tactic involves the Blue Units staying in a tight formation 
and aggressively attacking the Red Units, an example shown in Fig. 12a. The Blue Units 
engage as a team, with the Ranged Units doing the majority of the damage.

Fig. 11  Blue tactics evolved in the Stronghold scenario with limited visibility, including (a) Blue units 
remaining near the blue base and (b) the Blue Ranged and Heavy units working together

Fig. 12  Tactics evolved for the Blue Team in the Stronghold scenario with full visibility. Example of Red 
units being engaged by a grouping of Blue Units shown in (a), and Blue Ranged using the terrain to their 
advantage by firing over it whilst safe from attack in (b)
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This experiment showed less of the previously dominant tactic where the Heavy’s 
protected the Ranged Units and demonstrated that the Blue Units aggressively attacked 
the red team. This was done before the Red team could group up and outnumber the 
Blue team. The Ranged Units also took advantage of their ability to attack over impass-
able terrain where they were safe from the enemy, seen in Fig. 12b. These experiments 
saw the Blue Units using the terrain to their advantage to defeat a larger opposing team.

The algorithm was successful in finding a solution to the Stronghold scenario. All 
experiment runs resulted in a win for the Blue Team.

4.7  Urban warfare

In the Urban Warfare scenario, the prevalent tactic that evolved in experiments involves 
the Blue Units initially staying in a tight formation at the start of the sniper path, but out 
of range of the snipers, waiting for the mobile red units to attack them, seen in Fig. 13a. 
Once most of the red attackers are eliminated (Fig. 13b), some of the Blue Units take 
the safe path, avoiding the snipers and destroying the Red Bases, seen in Fig. 13c, d. 
Once the Red Bases are destroyed, blue makes no further attempt to target the snipers.

In this experiment the evolved behaviour was to avoid engaging with the snipers, as 
the blue Ranged Units, the only units that could target these snipers, were outnumbered. 
The behaviour where blue Ranged Units use their attack range and fire over the impass-
able terrain was also observed, seen in Fig. 13a.

The algorithm was successful in finding a solution to the urban warfare scenario. In 
all twelve runs of the experiment, the best solution at the end of evolution resulted in 
the red units being destroyed, apart from the snipers which were avoided.

4.8  Land warfare

The Land Warfare scenario features a large map with a river system, modelled as 
impassable terrain (in green) and three points that offer the ability to cross. The dom-
inant tactic involves the Blue Team splitting into a smaller group to defend from an 
initial attack from Red Units that start near the middle of the map, while the more sub-
stantial blue team crosses the bridge to the right and work their way up to the top of the 
map. A small group of Ranged Units utilise the river for protection and attack a size-
able red team from safety. The blue units regroup into one team and then eliminate the 
remaining Red Team and Bases.

This experiment presented a situation where some Blue Units were unable to pass 
a bridge without being eliminated by red Ranged Units. The Blue Units were unable 
to engage the red Ranged Units, so they sat idle outside of the red attacking range and 
waited for a group of blue Ranged Units to clear the bridge and make it safe to pass, seen 
in Fig. 14a. Some of the blue Ranged Units also utilised the terrain to their advantage 
by attacking over the river, seen in Fig. 14b. This experiment further demonstrated the 
utility of the Ranged Units and their ability to attack from a safe position. The approach 
was successful in finding a solution to the scenario. Out of the six experiments, two 
resulted in a win for the Blue Team, one resulted in a draw and three resulted in a loss.
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4.9  Win/loss rates

A particular run of MicroRTS can result in one of three outcomes, win, draw or loss. Each 
outcome is defined from the perspective of the Blue Team as:

– Win

o The accessible red units who can attack and be attacked by all Blue Unit types, have 
been eliminated

o All Red Bases have been destroyed
o There is at least one surviving Blue Unit

Fig. 13  Tactics evolved for the Urban Warfare scenario. (a) At the start, Blue Units remain in place, wait-
ing for Red Units to come to them, (b) the Blue Team successfully defeats the first wave of red, (c) a single 
Blue Unit takes the safe path to destroy the Bases, and (d) the single Blue Unit destroys the remaining 
Bases, the other units remain idle
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– Draw:

o The simulation ends with both the blue and Red Team surviving with accessible 
units or Bases

– Loss:

o The accessible blue units have been eliminated
o All Blue Bases have been destroyed
o There is at least one surviving Red Unit

The outcomes for the solution with the highest fitness in each of the experiment runs are 
summarised in Table 8. This shows the number of evolutionary runs made for each experi-
ment and how many of them resulted in the fittest solution winning, drawing or losing 
together with a calculated winning percentage. Note that here we class the Urban Warfare 
experiments as having a 100% win rate. Though red units remained at the end of all runs 
in this scenario, they consisted of the snipers that were in a location not accessible to the 
Heavy and Light Units.

Fig. 14  Tactics evolved in the Land Warfare scenario. (a) A small group of Blue units waiting idle for the 
red snipers (ranged units surrounded by impassable terrain at the crossing point) to be eliminated so they 
can safely cross the bridge. (b) Blue Ranged attacking over the river

Table 8  Outcomes of the best 
evolved blue for the set of 
experiment runs

Outcome of best evolved blue

Experimental scenario No Runs Win Draw Lose Win %

Plain terrain 12 8 4 0 66.7
Choke point 16 15 0 1 93.75
Stronghold 12 12 0 0 100
Urban warfare 12 12 0 0 100
Land warfare 6 2 1 3 50
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4.10  Comparison to other approaches

To provide a point of comparison to the evolved behaviour tree blue team agents, the same 
scenarios were simulated using a number of alternative approaches to control the blue 
team. The approaches compared are summarised in Table 9.

The performance of each blue team controller on the scenarios is shown in the graphs of 
Figs. 15, 16, 17, 18 and 19. In each graph, the x-axis shows the amount of time through a 
run of the scenario simulation and the y-axis shows the corresponding fitness value. Fitness 
at a time step t is measured as the total blue team hit points at t, minus the total red team hit 
points at t, plus the total red team hit points at time step 0 (as the red team in each scenario 
starts with more hit points than the blue team the addition is performed to prevent fitness 
going below 0). From its initial value (equal to the blue team hit points at the start of the 
scenario), fitness goes up when the red team loses more hit points than the blue team and 
fitness goes down if the blue team loses more hit points than the red team in that time step.

As can be seen from the graphs, our evolved behaviour tree approach outperforms 
the others on all except the Urban Combat scenario, where the Naïve MCTS controller 
achieves the same outcome in terms of fitness and does so much earlier. As expected, the 
Custom Rush agent is typically the worst performer, as it attempts the same strategy that 
the red team is using, though it is vastly outnumbered and outmatched by the red team.

Interestingly, the other approaches fair much worse in the ‘sparse’ scenarios (plain ter-
rain, choke point, land warfare) than they do in more complex environments (stronghold 
and urban warfare). Generally, the sparser the terrain, the more important it is that the blue 
team units work in a highly coordinated manner in order to defeat the much stronger oppo-
sition team. This is because there is insufficient terrain to use as cover, so the units need 
to use each other for that purpose. For example, in our approach on the Plain Terrain sce-
nario, a heavy blue unit could shield a blue ranged unit from attack, whilst moving in a 
pattern to prevent being targeted by red units. This type of behaviour can be evolved into 
the behaviour tree as a result of the ‘per node’ ticking approach that we chose, as was dis-
cussed in Sect. 3.2. This could highlight the weakness in the other approaches, of not being 
able to discover such complex team behaviour using the simple set of primitive actions that 
are available in the game.

The ability to discover strategies that feature coordinated team work between blue units 
could also be the reason by our approach does better in the more complex environments. 
Although the other approaches do better here than in the sparse environments, the team-
work aspect provides an extra edge in terms of overcoming the much stronger opposition 
force.

Though this comparison shows our approach outperforming the use of the comparison 
agents, it needs to be acknowledged that this comparison is not completely fair, in that the 
behaviour tree used by our agent has been specifically evolved for that scenario, whereas 
the other agents, whilst still having the ability to explore and learn from the scenarios they 
are placed in have been built with a more diverse range of scenarios in mind.

4.11  Scalability and computational resources required

The experiments were run across three types of computer:

– A 64-bit windows 7 laptop, i7-6820HQ CPU @2.70 GHz with 16.0 GB of RAM
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– A 64-bit windows 8 laptop, i7-4700HQ CPU @2.40 GHz with 16.0 GB of RAM
– A 64-bit windows 10 laptop, i7-7820HQ CPU @2.90 GHz with 32.0 GB of RAM

Each run of an experiment used a population size of 100 individuals, which equates 
to 100 evaluations (games in MicroRTS) per generation. Through load testing of the 
machines used for the runs we determined that five simultaneous evolutionary runs can be 
done on one machine (with 16 GB RAM) without a degradation in performance. Beyond 
five simultaneous runs, the capacity of physical RAM is exceeded, causing a slowdown in 
performance due to paging of memory from the hard disk.

During each experiment, the time taken varied widely, with the amount of variance 
dependent on the complexity of the experiment. The major bottleneck of the evolution-
ary process is the evaluation runs. The variation in run times was due to the variety in the 
solutions being evaluated. An evaluation was terminated when one side won, or when the 
number of time units of the game exceeded 3000 (except for Land Warfare where 5000 war 
used). Examples of how individual solutions can hold up execution include strategies that 
do not actively engage the enemy, or engage the enemy in locations that involve significant 
time spent on traveling to the location. This increases simulation time as the red units have 
to travel to where the blue units. Some cases were also observed where the Blue Team 
eliminated the red fighting units but had not learnt to subsequently target the Red Bases. 
Over the generations until the Base targeting behaviour was learnt, the experiment slowed 
down significantly as most solutions took the maximum simulation time as blue units were 
idling with Red Bases still present.

One factor that influences evaluation time is the number of units present. Figure 20 
shows the computation time for a variety of team sizes (from 1vs 1 to 50v50) as a plot. 
Each box and whiskers set summarises 30 runs of that particular team size. All runs 

Fig. 19  Plot of fitness for each blue team controller evaluated, over a simulation of the Land Warfare sce-
nario
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Fig. 20  Plot of computation time for 100 generations using a Plain Terrain scenario size 32 × 32 tiles using 
a variety of team sizes. For each team size, 30 evolution runs were undertaken to generate this data

Fig. 21  Typical run time per 1000 generations (100 evaluations per generation). The Land Warfare evalua-
tion was run for a maximum of 5000 turns (to allow for travel times over a much larger map) with the other 
experiments capped at 3000 time steps. Victory by either side resulted in early termination of that evalua-
tion
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were performed using a plain terrain scenario of size 32 × 32, population size of 100 
for a total of 100 generations (producing 10,000 Micro RTS runs) with both mutation 
and crossover rates set to 0.6. Each run for a particular team size differed by the random 
number seed, resulting in a different initial population.

The typical time to complete 1000 generations of an evolution run (with 100 indi-
viduals in the population) is given in Fig. 21 for the scenarios. The land warfare runs 
were by far the slowest, due to a much larger terrain, greater number entities, and also a 
longer maximum simulation time per game, so as to allow for the travel time units need 
to traverse the larger terrain between the objectives (Red Bases) placed on it.

The experiments in this project were run for a maximum of 20,000 generations with 
a population size of 100, equating to two million MicroRTS games. The typical length 
in hours to complete a scenario is listed in Table 10.

A key factor to consider when increasing the complexity of the scenario, besides the 
increase in evaluation time for a particular solution, is the increased complexity of the 
search space that this entails. Practically, this has an impact on the number of genera-
tions (assuming a fixed population size) needed to adequately explore the search space 
in order to find optimal solutions, and also on the number of runs needed, as each run 
may converge to a different optimal solution. Consider the fitness plots shown in Fig. 22 
for three runs of the land warfare experiment. The maximum possible fitness for this 
scenario is 382 (all Red Units eliminated with no Blue Units damaged). The blue line 
shows the fitness of the best individual in each generation, whilst the red line shows 
the average fitness of each generation. The average fitness fluctuates and does not con-
verge to the best due to the effect of mutation altering individuals as part of the search 
process. Looking at the best fitness, it does not achieve the theoretical maximum in any 
of the three runs with (a) and (b) indicating that the fitness is trending in an upward 
direction and has not plateaued by generation 10,000, indicating that running the algo-
rithm beyond 10,000 generations may be worthwhile. The graph in (c) was purposefully 
chosen here to give an example of a run where a good optimal solution is not found. If 
only looking at (c) in isolation, the conclusion may be reached that no better solution 
than the one found early on in the evolution exists. This underscores the importance of 
multiple experiment runs for each scenario and continuing the evolution to explore for 
even better solutions.

The above can be compared to the much simpler Plain Terrain scenario. Here 12 
runs of the experiment were run (differing by mutation and crossover probabilities) for 
20,000 generations. Of the 12, three achieved the maximum possible fitness of 45, two 
a fitness of 43, two a fitness of 41 and five a fitness of 40. Of the 12 runs, eight achieved 
their maximum fitness in under 10,000 generations, including two of the three runs that 
achieved a fitness of 45.

Table 10  Typical experiment 
completion time

Scenario Time (h)

Plain terrain 7
Choke point 7
Stronghold 25
Urban warfare 200 (8.3 days)
Land warfare 1320 (55 days)
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Fig. 22  Fitness plots for three separate runs (a, b and c) of the Land Warfare scenario evolutionary pro-
cess. Average and Best fitness are shown for each generation. The figure illustrates that a single run may 
not result in finding the optimal fitness, necessitating multiple runs. In (a) a high fitness is achieved early, 
whereas (b) shows a run where fitness steadily increases across the run, while a fitness at a level found in 
(a) and (b) is not found at all in (c)
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5  Limitations and future work

Whilst we have demonstrated our approach can address a variety of scenarios to yield com-
petitive results in regards to the demonstrated blue team strategy, there is scope for further 
investigation into various aspects on the path to a complete solution to discovering optimal 
strategies in realistic wargaming scenarios. In this section we discuss some of the limita-
tions of the work and identify future work that can be undertaken to resolve these.

One limitation is that our evaluation has focused on static scenarios, with a simplified 
non-changing terrain, with the red team employing simple reactive behaviour, with limited 
variability. This was a simplification made in order to cut the run time of the simulation so 
that we could focus on demonstrating our approach without the burden of optimisation and 
scaling. To compensate for the simplicity of the red team tactics, we chose to give the red 
team much higher strength than the blue team (in terms of number of units, total hit point 
and total attack strength). Future work could focus on increasing the fidelity of the simula-
tion and the sophistication of the red team AI, which will invariably lead to the issue of 
optimisation, which is discussed next.

The computational time issues can be somewhat addressed due to the scalable nature 
of evolutionary approaches. In addition to multiple simultaneous scenario runs, the evalu-
ation of a generation can also be parallelised. Though we have not done so in this project, 
each run of MicroRTS to evaluate an individual is independent of the other runs, thus a 
multiprocessor environment can be employed, where the 100 (or however many) individu-
als in a population are evaluated simultaneously on 100 processors during the time it would 
normally take for one evaluation, plus communication overhead.

Another factor that can mitigate lengthy evolution time for new scenarios is the use of 
an initial population that is not completely random. In addition to some random individu-
als, strong individuals evolved against other scenarios, or in fact human-developed solu-
tions, can be injected into the starting population. If these turn out to be promising in the 
new scenario they will be selected for subsequent generations and through the process 
of crossover, aspects of these strong solutions can make their way into other individuals. 
Through the process of mutation, the individuals themselves can be adapted to the scenario 
that is being evolved for.

Besides purely computational cost considerations, an important avenue for further work 
is to investigate the relationship between aspects of the simulation and actual warfare to 
determine what the simulation needs to model and to what fidelity. Whilst there are seem-
ingly many similarities between RTS games and actual warfare scenarios, the broad success 
of developing automated players for RTS games does not necessarily translate to actual 
scenarios. Broadly, the major difference is that an AI player for a game can be developed 
and tested specifically for that game, whereas a combat AI that has been developed using a 
simulation as a proxy for real combat will not necessarily work in the actual environment.

Examining and including uncertainty is a particular aspect for consideration in future 
work. In strategic planning, uncertainty can be categorised into four levels (Courtney et al., 
1997), including: Level 1—‘A clear enough future’, Level 2—‘Alternate futures’, Level 
3—‘A range of futures’ and 3—‘True ambiguity’. Defence planning typically focuses on 
Level 2, evaluating capability against a discrete set of possible future scenarios, such as the 
Australian Capability Context Scenarios (ACCS). Modelling and simulation has also been 
attempted to reach Level 3, for example Bowden et  al. (2015) suggest starting with the 
ACCS scenarios to map the space of possible futures in which a given set of capabilities 
can achieve success withing a set level of risk. In a simulation-based context this type of 
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continuous uncertainty can be modelled by the variables in the scenario having a range of 
values, with a given blue team strategy evaluated based on its robustness. These variables 
could encompass variability in red team tactics, the blue team level of situational aware-
ness, and variability in the environment (e.g. different weather conditions) among others.

6  Conclusion

In this paper, the evolution of behaviour trees for the discovery of optimal combat behav-
iour has been explored. The approach explored uses genetic programming which allows 
behaviour trees to evolve from a set of provided condition and action nodes. Behaviour 
trees from one generation were then used as agent controllers in a multi-agent simulation to 
evaluate them, with the fitness used to select the next generation, subject to the evolution-
ary operators of mutation and crossover. Through a set of scenarios devised, we have dem-
onstrated that complex behaviour can emerge from a small set of primitive actions.

The approach was successfully demonstrated through a set of experiments to evolve a 
Blue Team against a static reactive AI Red Team opponent. The resulting evolved Blue 
Team behaviour in the test scenarios could exploit the properties of the scenario, employ 
tactics that are known to be optima, and lead to victory. In particular:

• Units learn to work together in synchronisation—e.g. a combination of Heavy (armor) 
and Ranged (artillery) units.

• Units in a relatively weak blue side learned to exploit a choke point in the terrain to 
defeat a larger Red Team employing a rush behaviour tactic.

• Blue units learn to protect a Base situated in a stronghold surrounded by a red side by 
surrounding their Base and firing over the terrain to avoid direct engagement.

• Units learn to avoid dangerous sections of terrain, such as those protected by enemy 
snipers.

• Units learn to avoid contact until necessary utilising various strategies—for example, 
enveloping a bridge protected by snipers from both sides to maximise chance of elimi-
nating them.

The advantages of using evolution is the ability to search a large space with local 
optima, and through a number of runs find solutions that are promising. The disadvan-
tage is the high computation time when simulation-based evaluation is involved. This can 
be mitigated through the exploitation of the parallelism of the problem, where candidate 
solutions can be evaluated independently and through techniques such as initial population 
seeding.
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