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Abstract
In this paper, a multi-echelon, multi-period, decentralized supply chain (SC) with a single 
manufacturer, single distributor and single retailer is considered. For this setting, a two-
phase planning approach combining centralized and decentralized decision-making pro-
cesses is proposed, in which the first-phase planning is a coordinated centralized controlled, 
and the second-phase planning is viewed as independent decentralized decision-making 
for individual entities. This research focuses on the independence and equally powerful 
behavior of the individual entities with the aim of achieving the maximum profit for each 
stage. A mathematical model for total SC coordination as a first-phase planning problem 
and separate ones for each of the independent members with their individual objectives and 
constraints as second-phase planning problems are developed. We introduce a new solu-
tion approach using a goal programming technique in which a target or goal value is set for 
each independent decision problem to ensure that it obtains a near value for its individual 
optimum profit, with a numerical analysis presented to explain the results. Moreover, the 
proposed two-phase model is compared with a single-phase approach in which all stages 
are considered dependent on each other as parts of a centralized SC. The results prove that 
the combined two-phase planning method for a decentralized SC network is more realistic 
and effective than a traditional single-phase one.
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1 Introduction

Supply chain management (SCM) can be defined as the management of different entities of 
a SC network which is indeed a challenging and complex decision-making process (Haji-
aghaei-Keshteli & Fathollahi Fard, 2018). Depending on the approach adopted, SC struc-
tures can be divided into two types, centralized and decentralized. In a centralized one, 
decisions for all the members or stages are managed by a central decision-maker (DM) 
whereas, in a decentralized one, each member makes its own decisions by optimizing its 
individual objectives without fully knowing the decisions or related information of the 
other members in the chain (Bose & Pekny, 2000). Although centralized SCs are easier 
in terms of planning than decentralized ones, in most real-world cases, it is rare to have 
a completely centralized structure because it requires a high degree of integration among 
its stages which is difficult to achieve (Haque et al., 2020a). It is also unrealistic to per-
form centralized decision-making when the SC members are independent economic enti-
ties interested in their own levels of profitability and some are competitors of others (Hey-
dari, 2014). A multi-stage or multi-echelon SC consists of multiple tiers or levels which 
are generally used by some decentralized decision-making approaches, with these stages 
or entities often having equal power. Power can be defined as the capability of one chan-
nel member to control the decision variables of others in a given channel (Mokhlesian & 
Zegordi, 2014); for example, in a grocery SC, manufacturers and retailers usually come 
from different organizations, operate under different industrial environments, are equally 
powerful and, sometimes, even have some conflicting interests (Swaminathan et al., 1998). 
Similar examples are supermarkets in which various products come from diverse individual 
companies through distributors or other logistics providers, with each member operating 
separately, being independent in nature and not practically emerging as dominant or supe-
rior to any other. This type of network structure is also noticed in pharmaceutical chains 
(Nematollahi et al., 2017), decentralized customized manufacturing industries (Mourtzis & 
Doukas, 2012) and many other multi-agent SC networks consisting of individual business 
entities.

In the literature, most decentralized approaches are implemented through hierarchical 
relationships among partners which can be achieved in a centralized management system. 
However, as SC members from separate companies do not want to share their confidential 
information, centralized planning processes are impractical (Taghipour & Frayret, 2013). 
Although full information-sharing can improve coordination in a SC (Liu et al., 2020) and 
also benefit its parties (Bakal et al., 2011), in most cases, it is almost unachievable. Some-
times, as a lack of available easy-to-use information hinders the collaborative ambitions of 
SC partners (Hernández et al., 2013), therefore, planning a decentralized SC network using 
traditional centralized approaches is unrealistic. Usually, a centralized approach for solving 
SC planning problems is only approximating real-world scenarios since, in practice, most 
SCs are decentralized. Wang et al. (2004) identified the following problems associated with 
centralized optimization models:

a. ignorance of independence and competitiveness among SC members;
b. the increased cost of information processing required by a central DM; and
c. the difficulties of modeling a large SC model.

Also, due to market segmentation, many manufacturers are now minimizing vertical inte-
gration in their operational strategies and becoming specialized in certain components 
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which increases the number of decentralized SC practices and provides individual mem-
bers with more freedom in their decision-making processes without affecting the chain’s 
overall configuration (Qu et  al., 2010). In the modern era, SC players or members are 
focusing more on their core businesses while retaining partnerships with others through 
different policies and/or coordination mechanisms (Thomas et  al., 2015). Consequently, 
decentralized SCs with different objectives are becoming more popular. Global SCM is 
continually facing the challenge of developing effective decision-making frameworks that 
can coordinate the distinctive strategies of different entities across their SCs (Narasimhan 
& Mahapatra, 2004). Furthermore, several SC studies focused on different types of coordi-
nating contracts (Li et al., 2009) whereby some coordination mechanisms were developed 
to facilitate the involvement of SC members in a mutual decision-making system which 
ultimately forced a decentralized SC to be operated as a centralized one. Recently, Glock 
et al. (2020) studied a decentralized SC and proposed a buyback contract as a coordina-
tion scheme but limited for a two-stage network. All these raise a new research problem 
regarding modeling a multi-stage decentralized SC network that gives equal priority to its 
independent members while they maximize their own profits.

Though a number of researches were conducted on decentralized SC planning, very 
few of them focus on independence and/or equally powerful characteristics of the mem-
bers. However, most of them focus on contract mechanism or leader–follower strategies 
to model such a SC structure, which limit their applicability for a multistage decentralized 
network with non-dominating entities. In addition, less researches are found dealing with 
quantitative modelling for the complete decentralized network under restricted information 
sharing characteristics. To address this research gap in the mentioned SC problem environ-
ment, the aim of this paper is to develop a mathematical model for a multi-stage decen-
tralized SC with different independent, equally powerful members that ensures the best 
feasible operational plan for each stage while maximizing the individual members’ targets 
or goals in a two-phase setting. To ensure coordination among the different stages, in the 
first-phase, an optimization problem is formulated with some specific decision variables 
(coordinated distribution quantities from each upstream-to-downstream stage) and, in the 
second, optimization problems for each independent stage are developed separately with 
their multi-period planning strategies to fulfill individual requirements. It is assumed that 
the first-phase coordination will be conducted by a central independent authority who will 
collect necessary information from the individual member to ensure some synchronization 
through the chain. However, though this type of planning is new and innovative in the SC 
context, this structure is widely implemented in some other popular sectors. For example, 
the operations of decentralized electricity market conduct their planning strategies intro-
ducing such an independent authority (system operator) that determines some decisions 
(i.e. market-clearing price) to ensure effective communication between the market’s suppli-
ers (i.e., generator companies) and its consumers (e.g., large industries, distributor compa-
nies, residential loads, etc.) (Zaman et al., 2017). Moreover, a similar type of operation can 
be seen in the garments industry where there is an independent authority usually named 
“buying house” who ensure the connection between its apparel suppliers and ultimate con-
sumers, without disclosing the confidential information of each member of the chain (Jack-
son & Shaw, 2001). Thus, the incorporation of such a central authority to handle some of 
the decisions to ensure coordination among multiple entities is useful and practical where 
all the entities of the SC do not belong to the same organization.

Finally, a goal programming (GP)-based solution approach for solving the two-phase 
model to obtain feasible decision variables (production or ordering quantities, inventory or 
shortage amounts) for each stage using values obtained from both the SC planning phases 
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is proposed. By applying this technique, the maximum attainable profit for each member is 
achieved and the equal-power characteristics of the stages are satisfied. Several experiments 
are conducted using a broad range of data sets using both LINDO and MATLAB software to 
justify the model. To analyze the results, a comparison with a traditional single-phase central-
ized SC network is performed. The major contributions of this study are:

 i. A two-phase modeling of a multi-stage decentralized SC consisting of independent, 
equally powerful stages while achieving the maximum target or goal of each stage;

 ii. Proposing a new central body for coordinating the solutions among all the entities of 
the SC;

 iii. Developing a new solution methodology using a GP approach; and
 iv. Conducting different experiments to validate the model and sensitivity analyses of 

some major parameters.

In a nutshell, the combined approach developed addresses some specific aspects of decen-
tralized SC planning, primarily emphasizing the coordination mechanism of a multi-stage SC 
consisting of single entities in each stage. This research focuses on the nature of equal owner-
ship of the independent entities of such a network in which every member tries to maximize 
its own objectives. The research contributes to the literature in several dimensions. Firstly, it 
addresses a very important but less explored field of research in case of decentralized SC plan-
ning, where the aim is to ensure coordination among multiple independent, non-dominating 
entities under restricted information sharing characteristics. Secondly, the research proposes 
a mathematical model to address the mentioned research problem with a two-phase planning 
approach to handle the individual decision-making characteristic of each member of the chain, 
in a more logical way. Thirdly, the research develops a new solution heuristic to solve the 
model based on a popular GP technique which provides an easily implementable feasible solu-
tion technique. In addition, the numerical analyses conducted in this paper justify the useful-
ness of the proposed model and the developed solution approach.

For a clear understanding, the definitions of the different terms used in this paper are pro-
vided below.

Coordination Aligning mechanisms between the demands and supplies of successive 
stages in a multi-stage decentralized network.

Equally powerful stage In a decentralized network, each stage neither imposes its own 
decisions nor controls the decision variables of other stages, i.e., there is no leader and fol-
lower among the entities.

Independent entities Members of a SC that can make their own decisions without being 
influenced by others in the chain.

The structure of this paper is organized as follows. A literature review is presented in 
Sect. 2, the research problem is discussed in Sect. 3 and the model formulated in Sect. 4. In 
Sect. 5, the solution approach is outlined, and, in Sect. 6, the experimental results and analyses 
are provided. A sensitivity analysis is performed in Sect. 7 and, finally, conclusions and future 
research directions are discussed in Sect. 9.
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2  Literature review

Different researchers have attempted to formulate different methodologies for modeling 
a multi-stage SC considering different scenarios to ensure coordination among its stages. 
Arshinder and Deshmukh (2008) demonstrated the importance of this coordination and 
also noted the possible challenges and difficulties faced to achieve it. Compared with the 
literature on centralized SC systems, that on decentralized ones is less extensive. Detailed 
reviews of the coordination mechanisms of SC systems with separate and independent eco-
nomic entities that can be found in Li and Wang (2007) and Rius-Sorolla et al. (2020) high-
light the research opportunities for coordinating a decentralized SC. In this paper, firstly, 
a literature review of SC modeling using decentralized strategies from different aspects is 
focused on and, subsequently, the research gaps in this field are presented.

Modeling a decentralized SC is not a new research topic, with many researchers focus-
ing on how to ensure the coordination or alignment of different members in a chain that 
are not fully controlled under a single authority. Some considered different problem sce-
narios with specific assumptions and developed models that addressed those problems 
using different solution techniques. Lee and Whang (1999) proposed some performance 
measurement schemes as incentives for alignment across a two-echelon decentralized 
SC to improve its effectiveness. They assumed that the final distribution of demand was 
known to all, with a central headquarters performing demand forecasting for each echelon. 
A significant number of studies of decentralized SC modeling used hierarchical top-down 
approaches to coordinate its members have been conducted. In them, the optimized deci-
sions of each decentralized stage were considered separately and then coordinated accord-
ing to the SC’s hierarchical configuration. Larbi et al. (2012) proposed such a coordination 
mechanism for decentralized members to exchange values among themselves by formulat-
ing sub-problems between consecutive stages. Nagurney et al. (2002) developed a model 
for a decentralized SC network consisting of multiple manufacturers and multiple retail-
ers serving a consumer’s market demand and analyzed some qualitative properties of their 
equilibrium model. They assumed that the manufacturers’ shipments to retailers had to be 
equal to the retailers’ shipments accepted from the manufacturers at the equilibrium with 
complete information-sharing among the entities. However, in real scenarios, a decen-
tralized SC network neither follows full solution exchanges among the entities according 
to a hierarchical structure nor shares all the information with them as every member is 
self-interested.

Some researchers proposed models for both centralized and decentralized decision-
making processes to conduct comparative analyses; for example, Selim et al. (2008) devel-
oped a collaborative planning model for a three-stage SC and analyzed the results for both 
centralized and decentralized structures using a fuzzy GP approach that incorporated the 
DMs’ imprecise levels of aspiration for achieving their goals. Francis Leung (2010) and 
Duan and Warren Liao (2013) implemented models for analyzing centralized and decen-
tralized SC structures assuming that each firm had complete information about the others. 
As expected, most studies concluded that a centralized SC was more theoretically effective 
than a decentralized one but the latter was more practical in the real world.

Apart from hierarchical approaches with mechanisms for changing solutions among 
stages, numerous researchers used a bi-level programming problem (BLPP) or Stackelberg 
game to model decentralized SC scenarios while assuming that different stages were lead-
ers or followers; for instance, Yu et  al. (2009a, 2009b) considered the manufacturer the 
leader and the retailer the follower in a manufacturer–retailer system. In contrast, some 
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researchers considered the retailer as the leader and the manufacturer or supplier as a fol-
lower (Taleizadeh et  al., 2016) while others studied both situations (Sarkar et  al., 2016; 
Wang et al., 2017). Calvete et al. (2011) proposed a bi-level model assuming the distributor 
as the leader and the manufacturer as the follower and developed an optimization approach 
using an ant colony to solve the model. Naimi Sadigh et al. (2012) analyzed both manu-
facturer–leader and retailer–leader situations using a Stackelberg game. These studies 
considered mainly two-stage SCs with manufacturer–distributor, manufacturer–retailer or 
distributor–retailer components in which one stage acted as the leader and the other the 
follower which created a problem of choosing leaders and followers. Moreover, consider-
ing one party as the leader or more powerful in a Stackelberg game policy may create inef-
ficiency in a decentralized operation (JemaÏ & Karaesmen, 2007). Therefore, although a 
BLPP is widely used in decentralized SC planning, assuming a specific stage as the leader 
or follower deviates from the specific objective of our paper, that is, considering each SC 
member as independent and equally powerful.

Also, not many researchers considered multiple SC stages in decentralized planning 
although a few studied three or four-stage SCs by applying a BLPP method while most 
assumed that the followers in a two-stage process were the leaders in the next two stages 
(Taleizadeh & Noori-daryan, 2014). Mokhlesian and Zegordi (2014) and Yugang et  al. 
(2006) considered the manufacturer the leader and several retailers as followers whereas 
some others studied equilibrium models of multiple suppliers and a single retailer (Gal-
lego & Talebian, 2013) or multiple retailers and a single warehouse (Ben Abdelaziz & 
Mejri, 2016). Ezimadu (2020) presented a multi-level hierarchical (Stackelberg) game with 
the manufacturer as the channel leader and the distributor and retailer as the first and sec-
ond followers, respectively, thereby obtaining an equilibrium solution through a backward 
induction procedure. However, this type of sequential or iterative solution methodology for 
multi-stage SC planning does not suit the above mentioned problem environment.

To handle competitiveness among decentralized SC stages, some researchers combined 
a Stackelberg game policy with a Nash game approach (Ang et al., 2012; SeyedEsfahani 
et  al., 2011; Yang & Bialas, 2007). Similarly, Taleizadeh and Noori-daryan (2014) and 
Yue and You (2014) considered three-echelon SCs consisting of supplier–producer–retail-
ers and suppliers–manufacturer–customers, respectively, to be optimized as a decentralized 
SC network using a Stackelberg–Nash equilibrium approach. However, assuming a leader 
or follower in any SC stage does not always represent the actual scenario of a decentral-
ized structure. In particular, due to the independent planning and autonomous nature of SC 
members, they rarely follow an unequal power distribution as is assumed in the literature. 
Moreover, this assumption becomes more complex in the case of a multi-stage SC.

An important characteristic of a real-world SC is the unavailability of its complete 
information. This is obvious in the case of decentralized SC planning in which each stage 
focuses on optimizing its own strategy while full information-sharing is often costly or 
not possible due to competitiveness. This issue has been addressed by a few researchers. 
Chen (2003) discussed different models developed by various researchers with independ-
ent firms having asymmetric information, mainly for a two-stage decentralized SC (manu-
facturer–retailer or supplier–manufacturer) network. This book chapter highlighted the 
different forms of incentives and trading rules among such SC partners and pointed out 
the importance of future research in this area. Cao and Chen (2006) implemented a bi-
level model for a decentralized scenario in which a primary company (upper-level) oper-
ated with complete information of some secondary plants’ (lower-level) operations and 
solved it after transforming it into an equivalent single-level one. Later, Jung et al. (2008) 
developed a planning model for a decentralized SC that consisted of a manufacturer and 
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third-party logistics provider considering minimum information exchange among the mem-
bers. They designed a communication approach in which agents transferred limited busi-
ness information to their partners (supply quantity available from the manufacturer and 
supply quantity requested by each logistics provider). Although a single-level centralized 
approach is more profitable as it has complete information about an individual member in 
the chain, a bi-level model is more practical for a decentralized resource allocation prob-
lem, as suggested by Yeh et al. (2014). Geng et al. (2010) analyzed five different scenarios 
of information-sharing for a decentralized SC control system consisting of single-distrib-
utor, multiple-retailer systems and compared the results with a centralized control policy. 
A dynamic mutual adjustment-based heuristic for coordinating a SC network with non-
strategic information flows among independent partners was proposed by Taghipour and 
Frayret (2013). Muzaffar et  al. (2017) designed a production-commitment contract for a 
manufacturer–retailer SC under imperfect information scenarios. However, all these stud-
ies were limited to two-stage SC scenarios, not multi-stage ones. In a recent study, Haque 
et al. (2020b) proposed a bi-level model for a non-cooperative multi-stage SC but assumed 
upstream members as more powerful than downstream ones.

We found a wide variety of approaches for solving decentralized SC planning problems 
based on specific scenarios and assumptions that used different types of traditional and 
exact optimization techniques. Also, different types of heuristics and metaheuristics have 
been developed by researchers to solve models. Mokhlesian and Zegordi (2014) applied 
a hybrid model of a genetic algorithm (GA) and local search methods to handle a multi-
divisional BLPP for a network with one manufacturer (leader) and multiple retailers (fol-
lowers). Recently, Luo et al. (2019) used a PSO-based computational algorithm to solve 
a multiple manufacturers–distributors decentralized SC problem using the BLPP concept. 
Some researchers used combinations of two or more heuristics to optimize networks; for 
example, Kuo and Han (2011) used BLPP to solve SC distribution-related problems and 
developed three different algorithms using a hybrid of GA and particle swarm optimization 
(PSO) techniques while assuming the distributor as leader and manufacturer as a follower. 
Their analysis showed that using hybrid methods was better than using only one algorithm. 
Similarly, a bi-level PSO (BPSO) algorithm was proposed by Ma and Wang (2013) for 
a two-stage SC with a manufacturer (leader) and retailer (follower). Calvete et al. (2014) 
applied a hybrid evolutionary algorithm to solve a bi-level model that combined distribu-
tion and manufacturing decisions while following a hierarchical decentralized decision-
making process. Table 1 summarizes the most recent literature focusing on different types 
of modeling approaches for decentralized SC planning.

2.1  Research gaps and contributions

After reviewing the relevant literature, in this paper, the following research gaps can be 
highlighted:

 i. It is noted that most approaches that explored decentralized SCs generally considered 
specific assumptions and problem environments, such as game theory or BLPP tech-
niques. They assumed that, in a chain, anyone stage is a leader that makes its deci-
sions first while the other member(s) act as follower(s) that determine their decisions 
afterward. However, this type of problem environment may not be appropriate for 
many real-world SC scenarios in which each stage acts independently without being 
dominated by other(s).
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 ii. A significant number of studies found a solution-exchanging mechanism among a 
chain’s entities according to its hierarchical structure using the output from one stage 
as input to another. However, obtaining optimal solutions through this approach is 
not suitable for a complete decentralized SC scenario as the stages make their own 
decisions independently without relying on those of others.

 iii. Most research on decentralized SC planning considered a two-stage SC network, not 
a usual multi-echelon one. Some studies that involved a multi-stage SC used some 
iterative solution mechanisms.

 iv. Although also found in the literature are different contracts used as coordination 
mechanisms among individual entities, they were applied mainly for a two-stage SC, 
not a multi-stage one.

Therefore, to the best of our knowledge, the models found in the literature considered 
mainly full information-sharing among entities and/or unequal power among mem-
bers which is not a true representation of many current decentralized SC networks. This 
assumption of a mismatch in power also hinders strategies for achieving individual objec-
tives. To overcome these limitations, in this paper, a quantitative approach for modeling 
a serial decentralized SC structure, in which different independent entities (manufacturer, 
distributor, retailer, etc.) are considered equally powerful and their objectives optimization 
simultaneously, is presented. Also, a multi-period mathematical model that combines some 
coordinated planning and independent decision-making processes using two-phase plan-
ning and GP approaches is developed.

3  Problem description

In this paper, a three-stage SC network consisting of a single manufacturer, single distribu-
tor and single retailer is considered. Each independent stage has a different multi-period 
planning schedule according to its individual objectives given its forecast downstream 
demand. In this problem, the manufacturer produces products and develops its inventory 
of finished goods at the end of time t , the distributor receives products from the upstream 
manufacturer to fulfill its downstream forecast demand at time t and the retailer receives 
products from its upstream distributor at time t and serves end-customers. In this study, 
the transportation cost, which is composed of the transport’s capacity-level-dependent 
fixed cost and quantity-dependent variable one, is considered inbound for the distributor 
and retailer. The per unit variable transportation costs (truck fuel, direct labor, packaging, 
etc.) fluctuate with the volume while the fixed ones (rent, registration, etc.) do not change 
for a particular transportation level over a specific time. Moreover, if a distributed quan-
tity reaches a specific amount, the per unit variable transportation costs start to decrease 
non–linearly with the quantity while the lead time is considered negligible. Figure 1 pre-
sents a typical interaction among the members of such a multi-stage decentralized SC 
network.

3.1  Assumptions of the study

In this study, we make the following assumptions.
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 i. The manufacturer, distributor and retailer make individual plans to maximize their 
own profits.

 ii. Some centralized controls are maintained by a central authority or virtually among 
the stages to ensure overall coordination.

 iii. A single product is considered.
 iv. The planning horizon is finite.
 v. All parameters are considered as deterministic values.
 vi. No safety stock is taken into account.

As is usual in practice, each member of a decentralized SC makes its decisions separately 
to maximize its own profit. However, it is assumed that some central planning will be con-
ducted by a central authority (a separate independent body) or through virtual cooperation 
among the members to synchronize the independent stages. This model is developed for a 
single product, the planning horizon is assumed to be a finite period and, as demand and all 
other related parameters are set as deterministic fixed values, so safety stock is not consid-
ered here.

3.2  Notations in study

The following notations are used to formulate the mathematical model.

3.2.1  Parameters

Dmt  Forecast demand of manufacturer at time t (units)
Ddt  Forecast demand of distributor at time t (units)
Drt  Forecast demand of retailer at time t (units)
CSLtotal  Total SC customer service level (%)
CSLm  Customer service level for manufacturer (%)
CSLd  Customer service level for distributor (%)
CSLr  Customer service level for retailer (%)
Cp  Production cost per unit ($/unit)
m  Mark-up of selling price ( m > 1)
Sm = m ∗ Cp  Manufacturer-to-distributor selling price ($/unit)

CustomersRetailerDistributorManufacturer

Ym Yd Yr

Xd Xr Dr

Xm

Product Supply / Distribution

Product Ordering

Fig. 1  Decentralized SC
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Sd = m ∗ Sm  Distributor-to-retailer selling price ($/unit)
Sr = m ∗ Sd  Retailer-to-customer selling price ($/unit)
Pmmax  Production capacity of manufacturer (units)
Am  Set-up cost for manufacturer per set-up ($/set-up)
Ad  Ordering cost for distributor per order ($/order)
Ar  Ordering cost for retailer per order ($/order)
Om  Plant operating and maintenance costs for manufacturer ($)
Ch  Unit material handling cost for distributor ($/unit)
hm  Unit inventory holding cost for manufacturer ($/unit/time)
hd  Unit inventory holding cost for distributor ($/unit/time)
hr  Unit inventory holding cost for retailer ($/unit/time)
Hmmax  Inventory storage capacity of manufacturer (units)
Hdmax  Inventory storage capacity of distributor (units)
Hrmax  Inventory storage capacity of retailer (units)
Invm(t−1)  Manufacturer’s beginning inventory at time t (units)
Invd(t−1)  Distributor’s beginning inventory at time t (units)
Invr(t−1)  Retailer’s beginning inventory at time t (units)
L  Stock-out cost per unit for retailer ($/unit/time)
FTCd  Fixed transportation cost from manufacturer to distributor ($)
FTCr  Fixed transportation cost from distributor to retailer ($)
UTCd  Variable transportation cost from manufacturer to distributor ($/unit)
UTCr  Variable transportation cost from distributor to retailer ($/unit)
TCLd  Transportation capacity from manufacturer to distributor (units)
TCLr  Transportation capacity from distributor to retailer (units)
t  Discrete time period ( t = 1, 2,… .T)

3.2.2  Decision variables

Y ′mt  Coordinated distribution quantity from manufacturer to distributor during time t 
(units)

X′mt  Coordinated production amount for manufacturer during time t (units)
Ymt  Manufacturer’s required supply quantity to distributor during time t (units)
Xmt  Manufacturer’s required production amount during time t (units)
Invmt  Manufacturer’s ending inventory during time t (units)
Y ′dt  Coordinated distribution quantity from distributor to retailer during time t (units)
X′dt  Coordinated procurement amount for distributor during time t (units)
Ydt  Distributor’s required supply quantity to retailer during time t (units)
Xdt  Distributor to manufacturer product ordering amount during time t (units)
Invdt  Distributor’s ending inventory during time t (units)
Y ′rt  Coordinated distribution quantity from retailer to final customer during time t 

(units)
X′rt  Coordinated procurement amount for retailer during time t (units)
Yrt  Retailer’s required sales quantity to final customer during time t (units)
Xrt  Retailer to distributor’s product-ordering amount during time t (units)
Invrt  Retailer’s ending inventory during time t (units)
LQt  Shortage quantity for retailer during time t (units)
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4  Model formulation

In this section, our mathematical model for a decentralized SC network in two phases is pre-
sented. In the first-phase, a mathematical model, in which some centralized decisions of a total 
SC are proposed to ensure that there are some coordination mechanisms through the chain, 
is developed. In the other, some mathematical models for each independent stage are imple-
mented as decentralized decision-making processes. Some decisions, such as the coordinated 
distribution quantities in each stage, are considered first-phase decision variables to ensure 
total SC coordination and some others, such as the production or order quantities required, 
ending inventory and shortage quantity, are second-phase ones.

4.1  First‑phase: coordination planning model

In the first-phase planning model, a centralized decision-making approach for ensuring overall 
SC coordination is developed by taking as an objective function of minimization of the total 
SC demand–supply gap between successive entities. Thereby, minimization of the deviations 
between the coordinated production (or procurement) quantities of the downstream stage and 
coordinated distribution quantities of the upstream one using some minimum information (i.e., 
demand and capacity) of each stage is achieved and, accordingly, the objective function is

(1)

total SC demand−supply gap = Min Zu

Min Zu =

√√√√ T∑
t=1

(
Y �mt − X�dt

)2
+

T∑
t=1

(
Y �dt − X�rt

)2

(2)
subject to the constraints

X�mt ≤ Pmmax; ∀t
[
Manufacturer’s production capacity

]

(3)X�mt ≥ Y �mt; ∀t [Demand satisfaction for manufacturer]

(4)X�dt ≤ TCLd; ∀t
[
Maximum receiving capacity for distributor

]

(5)X�dt ≥ Y �dt; ∀t [Demand satisfaction for distributor]

(6)X�rt ≤ TCLr; ∀t
[
Maximum receiving capacity for retailer

]

(7)X�rt ≥ Y �rt; ∀t [Demand satisfaction for retailer]

(8)Y �rt ≤ Drt; ∀t [Maximum sales for retailer]

(9)
Y �mt + Y �dt + Y �rt

Dmt + Ddt + Drt
≥ CSLtotal; ∀t [Minimum total SC CSL]
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where Eqs. (2) to (8) express the maximum production and receiving capacities, and fore-
cast demands of each stage, Eq. (9) shows that the ratio between the total expected sales 
quantity and forecast demand should be greater than or equal to a specified minimum total 
SC customer service level (CSL) which will ensure overall SC efficiency and Eq.  (10) 
applies to the non-negative decision variables.

4.2  Second‑phase: independent planning models

In the second-phase planning stage, every member of a decentralized SC sets its objectives 
according to its own strategies.

4.2.1  Manufacturer’s strategy

The manufacturer tries to maximize its own profit while considering its related costs. In 
this research, to optimize its strategy, its production, plant operation, set-up and inventory 
holding costs are considered. The production cost is found by multiplying the production 
quantity by the unit production cost. The plant operating costs (utility, maintenance, etc.) 
are assumed as a fixed cost over a fixed period. The set-up cost is computed as the number 
of set-ups during a period multiplied by the cost per set-up. The holding cost is determined 
by multiplying the ending inventory by the per unit holding cost. The sales revenue is the 
result of multiplying the quantities sold by the manufacturer’s unit selling price. Therefore, 
as the manufacturer’s objective function can be formulated as

(10)X�mt,X
�dt,X

�rt, Y
�mt, Y

�dt, Y
�rt ≥ 0 [Decision variable constraints]

manufacturer’s profits = sales revenue

− (production cost + plant operating cost + set-up cost + inventory holding cost),

(11)

Max Zm = (TRm − TCm)

=

[(
T∑
t=1

Ymt ∗ Sm

)
−

(
T∑
t=1

Xmt ∗ Cp +

T∑
t=1

Om +

T∑
t=1

Ymt

Xmt

∗ Am +

T∑
t=1

Invmt ∗ hm

)]

(12)
subject to the constraints

Ymt

Dmt

≥ CSLm; ∀t [Demand satisfaction]

(13)Xmt ≤ Pmmax; ∀t
[
Maximum production capacity

]

(14)Invmt = Invm(t−1) + Xmt − Ymt; ∀t
[
Ending inventory

]

(15)Invmt ≤ Hmmax; ∀t
[
Inventory holding capacity

]

(16)Ymt ≤ Dmt; ∀t [Maximum sales]
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Equation  (12) shows that the manufacturer’s supply must be greater than or equal to 
the required CSL of its demand ( CSLm ), Eq. (13) is the manufacturer’s maximum produc-
tion capacity and Eq.  (14) ensures a material balance. The inventory holding capacity is 
represented in Eq. (15), Eq. (16) limits the manufacturer’s maximum number of sales and 
Eq. (17) applies to the non-negative decision variables.

4.2.2  Distributor’s strategy

Like the manufacturer, the distributor tries to maximize its profit while considering its 
related costs. In this study, the product purchase, product ordering, inventory holding, 
material handling and transportation costs are considered. The product purchase cost is the 
ordering quantity multiplied by the per unit selling price (from manufacturer to distributor) 
and the ordering one is calculated similarly to the manufacturer’s set-up cost. The material 
handling cost (labor, equipment, etc.) is determined by multiplying the ordering quantity 
by the unit material handling cost and overall transportation one by summing the fixed 
transportation costs and non-linear variable ones (the ordering quantity multiplied by the 
unit variable transportation cost). The sales revenue and inventory holding cost are cal-
culated similarly to those of the manufacturer. Therefore, as the distributor’s profit can be 
formulated as

(17)Xmt, Ymt, Invmt ≥ 0 [Variable constraints]

distributor’s profits = sales revenue

− (product purchase cost + product ordering cost

+inventory holding cost +material handling cost + transportation cost),

(18)

Max Zd =
(
TR

d
− TC

d

)

=

[(
T∑
t=1

Yd
t
∗ Sd

)
−

(
T∑
t=1

Xd
t
∗ Sm +

T∑
t=1

Yd
t

Xd
t

∗ A
d

+

T∑
t=1

Invd
t
∗ hd +

T∑
t=1

Xd
t
∗ Ch +

(
T∑
t=1

(FTC
d
+ UTC

d

(
Xd

t

)
∗ Xd

t
)

))]

(19)
subject to the constraints

Ydt

Ddt
≥ CSLd; ∀t [Demand satisfaction]

(20)Invdt = Invd(t−1) + Xdt − Ydt; ∀t [Ending inventory]

(21)Invdt ≤ Hdmax; ∀t
[
Inventory holding capacity

]

(22)Xdt ≤ TCLd; ∀t
[
Maximum receivable quantity

]

(23)Ydt ≤ Ddt; ∀t [Maximum sales]
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Equation (19) shows that the distributor’s supply amount must be greater than or equal to 
the required CSL of its demand ( CSLd ) and a material balance is ensured by Eq. (20). The 
inventory holding capacity is represented in Eqs. (21) and (22) denotes the distributor’s max-
imum allowable quantity that can be received during each period. Equation  (23) limits the 
maximum number of sales for the distributor and Eq. (24) applies to the non-negative decision 
variables.

4.2.3  Retailer’s strategy

Similar to the manufacturer and distributor, the retailer also tries to maximize its profit while 
considering its related costs which, in this study, are the product purchase, product ordering, 
inventory holding, shortage and transportation ones. The sales revenue and product order-
ing and inventory holding costs are calculated similarly to those of the manufacturer, and the 
product purchase and transportation ones similar to those of the distributor. The shortage cost 
is the product of the total shortage quantities over a period and the unit stock-out cost which 
must be fulfilled in the next time period, where the per unit shortage cost ( L ) is assumed to be 
a non-linear function of a stock-out or shortage quantity ( LQt ), with a larger one leading to a 
proportionally greater shortage cost, i.e., the slope of the shortage function gradually increases 
with increases in the shortage quantity (Mirzapour Al-e-hashem et al., 2013).

Therefore, as the retailer’s profit can be formulated as

(24)Xdt, Ydt, Invdt ≥ 0; [Decision variable constraints]

retailer’s profits = sales revenue

−(product purchase cost + product ordering cost

+inventory holding cost + shortage cost + transportation cost),

(25)

Max Zr =
(
TR

r
− TC

r

)

=

[(
T∑
t=1

Yr
t
∗ Sr

)
−

(
T∑
t=1

Xr
t
∗ Sd +

T∑
t=1

Y
rt

X
rt

∗ A
r
+

T∑
t=1

Invr
t
∗ hr

+

T∑
t=1

L
(
LQ

t

)
∗ LQ

t
+

T∑
t=1

(
FTC

r
+ UTC

r

(
Xr

t

)
∗ Xr

t

))]

(26)
subject to the constraints

Yrt

Drt
≥ CSLr; ∀t [Demand satisfaction]

(27)Invrt = Invr(t−1) + Xrt − Yrt; ∀t
[
Ending inventory

]
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Equation (26) shows that the retailer’s supply must be greater than or equal to the CSL 
of its demand ( CSLr ). A material balance is ensured through Eq.  (27), where a positive 
inventory represents the ending inventory amount or excess stock and a negative one the 
shortage or stock-out quantity for period t . Equation  (28) represents the inventory hold-
ing capacity and Eq. (29) the retailer’s maximum allowable quantity that can be received 
during each period. Equation (30) limits the maximum sales for the retailer and Eq. (31) 
applies to the non-negative decision variables.

4.3  Non‑linear transport cost function

As previously discussed, this research considers a non-linear variable transport cost func-
tion with the amount of quantity purchased in a specific time period. We assume that, if a 
shipped quantity reaches a certain amount, the per unit variable transportation cost starts 
to decrease and then increases after a specific quantity following a non-linear relationship 
with the quantity; for example, the relationship between the unit variable cost for transport-
ing the quantity purchased from the manufacturer to the distributor is formulated as

4.4  Non‑linear shortage cost function

In this study, the shortage cost function is considered a non-linear function of the shortage 
quantity which enables a DM to reduce the stock-out as much as possible. Therefore, as 
increasing the stock-out quantity causes increased shortage costs, the slope of the shortage 
or penalty function gradually increases with increases in the shortage quantity (Mirzapour 
Al-e-hashem et  al., 2013). The relationship between the shortage or lost sales costs and 
shortage quantity is formulated as

(28)

If, Invrt ≥ 0, inventory holding cost =

T∑
t=1

Invrt ∗ hr,

Else shortage cost =

T∑
t=1

L
(
LQt

)
∗ LQt;LQt =

||Invrt||
Invrt ≤ Hrmax; ∀t

[
Inventory holding capacity

]

(29)Xrt ≤ TCLr; ∀t
[
Maximum receivable quantity

]

(30)Yrt ≤ Drt; ∀t [Maximum sales]

(31)Xrt, Yrt ≥ 0; [Decision variable constraints]

(32)UTCd
�
Xdt

�⎧⎪⎨⎪⎩

= UTC1 if Xd1 ≤ Xdt < Xd2
= UTC2 if Xd2 ≤ Xdt < Xd3
= UTCi if Xdi ≤ Xdt < Xdi+1
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5  Solution approach

In this research, the developed model is a two-phase planning problem in which the coor-
dination planning problem is a linear programming and the individual planning are non-
linear programming problems. We consider independent planning of each stage as well as 
coordinated planning of the total SC network. To solve the complete model, a combined 
solution approach using a GP technique is proposed, as discussed below.

GP technique is one of the most powerful, multi-objective decision-making approaches 
in which the objective is to minimize unwanted deviations between the actual achievement 
of goals and their aspirational levels or target goals (Choudhary & Shankar, 2014). We use 
a weighted GP method in which a specific weight is applied to each deviational variable 
based on its level of importance, with a goal or target value assigned to each objective of 
the second-phase problem and a numerical weight ( w1 , w2 , w3 , … wn ) imposed by the DM 
to achieve those goals. In our proposed planning model, as no stage is considered superior 
to any other, the same weight is used ( wm = wd = wr ) for each stage and the combined 
model is

(33)L
�
LQt

�⎧⎪⎨⎪⎩

= L1 if LQ1 ≤ LQt < LQ2

= L2 if LQ2 ≤ LQt < LQ3

= Li if LQi ≤ LQt < LQi+1

(34)Min Z = wm ∗ d−
m
+ wd ∗ d−

d
+ wr ∗ d−

r

(35)

subject to the constraints(
T∑
t=1

Y �mt ∗ Sm

)
−

(
T∑
t=1

Xmt ∗ Cp +

T∑
t=1

Ymt

Xmt

∗ Am +

T∑
t=1

Om +

T∑
t=1

Invmt ∗ hm

)

+ d−
m
− d+

m
= Target by Manufacturer

(36)

((
T∑
t=1

Y
�
d
t
∗ Sd

)
−

(
T∑
t=1

Xd
t
∗ Sm +

T∑
t=1

Yd
t

Xd
t

∗ A
d
+

T∑
t=1

Invd
t
∗ hd

+

T∑
t=1

Xd
t
∗ Ch +

(
T∑
t=1

(FTC
d
+ UTC

d

(
Xd

t

)
∗ Xd

t
)

)))

+ d
−
d
− d

+
d
= Target by Distributor

(37)

(
T∑
t=1

Y
�
r
t
∗ Sr

)
−

(
T∑
t=1

Xr
t
∗ Sd +

T∑
t=1

Y
rt

X
rt

∗ A
r
+

T∑
t=1

Invr
t
∗ hr

+

T∑
t=1

L
(
LQ

t

)
∗ LQ

t
+

T∑
t=1

(
FTC

r
+ UTC

r

(
Xr

t

)
∗ Xr

t

))

+ d
−
r
− d

+
r
= Target by Retailer
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In this combined GP model, Eqs. (35) to (37) convert the objective function equations 
of each SC stage in the model in the second-phase to achieve a target or goal value set by 
the members, with the deviational variables d− and d+ representing how far the solution 
deviates from each goal or target in terms of under- and over-achievement, respectively. 
Equation (38) shows the non-negativity of the deviational variables and Eq. (39) includes 
the constraints stated earlier in the second-phase model.

5.1  Solution methodology

In this research, a new approach for solving the problems under consideration is proposed. 
It is innovative as it passes solutions obtained from the first-phase and individual second-
phase problems to the combined model based on GP to determine the values of the final 
decision variables. In this sub-section, its method for solving the proposed two-phase plan-
ning model is described.

Step 1 Solve the first-phase optimization problem
This proposed solution approach begins by solving the first-phase optimization prob-

lem to obtain the values of its decision variables using Eqs. (1) to (10), i.e., coordinated 
distribution quantities of the members to their downstream ones ( Y ′mt , Y ′dt , Y ′rt).

Step 2 Solve individual second-phase problems
In parallel with step 1, the individual second-phase problems of the SC members 

(maximizing the profits of the manufacturer, distributor and retailer) are solved to 
achieve the goal or target values, which are set according to the objective function val-
ues of the members, using Eqs. (11) to (17), (18) to (24) and (25) to (31).

Step 3 Solve the combined model
After completing steps 1 and 2, the combined model is solved to obtain feasible val-

ues of the decision variables ( Xmt , Xdt , Xrt, Invmt, Invdt, Invrt, LQt ) using Eqs.  (34) to 
(39). The values obtained in steps 1 and 2 are used to set the required sales quantities 
( Ymt , Ydt , Yrt ) as equal to the coordinated distribution quantities ( Y ′mt , Y ′dt , Y ′rt ) and 
the target or goal values of each member as the objective function values of each stage’s 
profit maximization problem.

The overall solution approach for our developed model is illustrated in Fig. 2.

6  Experimentation and results discussion

In this section, our developed model is analyzed using the optimization software of both 
LINDO and MATLAB R2019b on an Intel Core i7 processor with 16.00 GB RAM and 
a 3.40 GHz CPU.

(38)d−
m,
d−
d
, d−

r
≥ 0 d+

m,
d+
d
, d+

r
≥ 0

(39)
Constraints∕Equations (13)−(15), (17), (20) to (22), (24), (27) to (29) and (31).
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6.1  Numerical data

For experimentation purposes, to validate the model, some hypothetical data ranges are 
considered. As, in real-world cases, production and distribution plans are generally influ-
enced by demand, the production capacity of the manufacturer and procurement ones of the 
distributor and retailer for each period are taken as the upper limits of the forecast demand 
for each stage assuming that capacity is greater than demand. The forecast demands of 
different data sets for each stage are presented in Table 2 and other production-ordering 
and cost-related data for each stage in Tables  3, 4, 5 and 6. In this numerical analysis, 
three different data sets for capacity- and cost-related parameters for each stage are used to 
adequately validate the model.

Fig. 2  Flowchart of the solution 
approach Start

Solve first phase co-
ordination problem

Solve proposed combined model

End

Solve individual 
second phase 

problems

Use objective function 
values as target or goal 

values

Get first phase
decision 

variables values

Get second 
phase decision 

variables values

Table 2  Forecast demand for 
each stage

Demand Data set Period t  (month)

1 2 3 4 5 6

Retailer Drt (units) 1 280 200 220 230 200 210
2 250 230 270 210 220 200
3 260 280 230 250 200 220

Distributor Ddt (units) 1 380 300 320 330 300 310
2 350 330 370 310 320 300
3 360 380 330 350 300 320

Manufacturer Dmt (units) 1 480 400 420 430 400 410
2 450 430 470 410 420 400
3 460 480 430 450 400 420
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Also, three demand data sets using the following data ranges for a retailer’s end-cus-
tomer demand with a discrete uniform distribution for the abovementioned problem are 
considered. As discussed in Li (2010), the end customer demand does not always carry 
forward up through the decentralized chain as original demand, but they appear as evolved 
demand, where orders are often successively passed to the upstream entities which are 
termed as popular “demand evolution”. However, as there are hypothetical demand data for 
each stage are considered in this paper, for simplicity, the forecast demands for upstream 
stages are calculated as fixed amounts ( �d for distributor and �m for manufacturer) increased 
from their downstream stages, as it is assumed that demand or ordering quantities increase 
when moving upward to a decentralized SC as end-customer demand data are not com-
monly shared accurately through such a chain.

Table 4  Data range for distributor

Parameter Data set 1 Data set 2 Data set 3

Customer service level (%) CSLd = 95 CSLd = 93 CSLd = 96
Set-up or ordering cost ($/set-up) Ad = 60 80 100
Material handling cost ($/unit) Ch = 2.5 3 3.3
Inventory holding cost ($/unit/time) hd = 1.3 1.8 2.5
Fixed transportation cost ($) FTCd = 100 120 130
Inventory capacity (units) Hd = 100 Hd = 80 Hd = 120
Beginning inventory (units) Invd

0
 = 40 Invd

0
 = 30 Invd

0
 = 20

Transportation capacity (units) TCLd = 400 TCLd = 350 TCLd = 450

Table 5  Data range for retailer

Parameter Data set 1 Data set 2 Data set 3

Customer service level (%) CSLr = 95 CSLr = 98 CSLr = 97
Setup or ordering cost ($/setup) Ar = 40 60 80
Inventory holding cost ($/unit/time) hr = 2 2.2 3
Fixed transportation cost ($) FTCr = 50 70 80
Inventory capacity (units) Hr = 50 Hr = 60 Hr = 40
Beginning inventory (units) Invr

0
 = 0 Invr

0
 = 10 Invr

0
 = 20

Transportation capacity (units) TCLr = 300 TCLr = 350 TCLr = 280

Table 3  Data range for manufacturer

Parameter Data set 1 Data set 2 Data set 3

Customer service level (%) CSLm = 95 CSLm = 90 CSLm = 98
Production cost ($/unit) Cp = 40 Cp = 60 Cp = 80
Set-up or ordering cost ($/set-up) Am = 100 120 150
Operating and maintenance cost ($) Om = 200 230 250
Inventory holding cost ($/unit/time) hm = 1.2 1.5 2
Inventory capacity (units) Hm = 50 Hm = 40 Hm = 60
Production capacity (units) Pmmax = 500 Pmmax = 450 Pmmax = 550
Beginning inventory (units) Invm

0
 = 20 Invm

0
 = 10 Invm

0
 = 30
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Therefore, we consider:

Retailer’s demand range, Drt = [200, 300];
Distributor’s demand, Ddt = Drt + �d ; and
Manufacturer’s demand, Dmt = Ddt + �m;
where �d = �m = 100.

Also, there are different CSLs in each data set to vary the experiments; for example, in 
data set 1, the CSL s in the planning models of total SC coordination and individual stages 
are the same whereas, in data sets 2 and 3, they are different.

Let t = 1, 2, 3, 4, 5, 6 month; m = 1.5.

6.2  Discussion of results

The results obtained by our developed model using the three data sets described above are 
analyzed in this sub-section. For this purpose, solutions from two different methods are 
considered using both LINDO and MATLAB software, with the popular function ‘fmin-
con’ (Castillo-Villar et al., 2012) used to analyze the results in MATLAB.

Firstly, the coordinated distribution quantities ( Y ′mt , Y ′dt , Y ′rt ) of each SC stage 
obtained from the first-phase optimization problem mentioned in step 1 (Sect.  5.1) are 
shown in Table 7.

Then, the second-phase individual problems are calculated to obtain their stage profits 
to set the target or goal values for use in the combined model, as stated in step 2, with the 
detailed results obtained by optimizing each stage presented in “Appendix 1” (Tables 12, 
13 and 14). It can be seen that the maximum profits of the stages obtained from different 
methods are slightly different for the manufacturer, distributor and retailer. The target or 
goal values in the combined model are set by rounding up the objective function (profit) 
values of each method to the next integer.

After step 3, the outputs from the first-phase optimization planning problem shown in 
Table 8 are used in the combined model to obtain the best feasible values of the decision 
variables while considering the specified target or goal profits achieved in step 2. Tables 8, 
9 and 10 show the final feasible values obtained from the developed model for three differ-
ent data sets using different methods.

Tables  8, 9 and 10 show the model’s decision variables (production or ordering 
quantities, inventories or shortage amounts) of different stages that satisfy the mini-
mum total SC gap between the production (or ordering) and receiving quantities of the 
stages, as determined in the first-phase optimization problem, to ensure better coordi-
nation among the decentralized stages. From this analysis of results, although it can be 
seen that the highest actual profits are obtained using the MATLAB ‘fmincon’ function 
for each SC stage in all the data sets, this results in more inventories for some stages 
than those obtained using LINDO. Also, it is clear that using MATLAB, the actual 
profits are close to the target one with low deviational variables. Different methods are 
used to analyze the results so that a DM can choose its most suitable solutions.

CSLtotal = 95% (data set 1), 90% (data set 2), 96% (data set 3)
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6.3  Comparisons of results

To compare our proposed model, a single-phase approach, in which all the stages of 
the SC are considered a centralized SC, are analyzed, and its objective function is

subject to Eqs. (12) to (17), (19) to (24) and (26) to (31).
The above centralized single-phase model is solved using the data (data set 1) con-

sidered in the proposed model with LINDO optimization software on an Intel Core i7 
processor with 16.00 GB RAM and a 3.40 GHz CPU. “Appendix 2” shows the results 
in detail (Table 15).

(40)

max total SC profit = revenue from customer at retailer end−total SC cost

=

(
T∑
t=1

Yrt ∗ Sr

)
−

T∑
t=1

(
TCm + TCd + TCr

)

=

(
T∑
t=1

Yrt ∗ Sr

)
−

(
T∑
t=1

Xmt ∗ Cp +

T∑
t=1

Ymt

Xmt

∗ Am +

T∑
t=1

Om +

T∑
t=1

Invmt ∗ hm

)

+

(
T∑
t=1

Xdt ∗ Sm +

T∑
t=1

Ydt

Xdt
∗ Ad +

T∑
t=1

Invdt ∗ hd +

T∑
t=1

Xdt ∗ Ch +

(
T∑
t=1

(FTCd + UTCd

(
Xdt

)
∗ Xdt)

))

+

(
T∑
t=1

Xrt ∗ Sd +

T∑
t=1

Yrt

Xrt

∗ Ar +

T∑
t=1

Invrt ∗ hr +

T∑
t=1

L
(
LQt

)
∗ LQt +

T∑
t=1

(
FTCr + UTCr

(
Xrt

)
∗ Xrt

))

Table 7  First-phase planning values

Data set Solution approach Period Manufacturer Distributor Retailer

LINDO MATLAB LINDO MATLAB LINDO MATLAB

1 Objective function 73.21 (LINDO); 73.21 (MATLAB)
Y ′mt/Y ′dt/Y ′rt 1 451 451 351 352 280 280

2 400 355 300 300 200 200
3 400 392 300 300 220 220
4 405 405 305 305 230 230
5 400 355 300 300 200 200
6 400 374 300 300 210 210

2 Objective function 841 (LINDO); 841 (MATLAB)
Y ′mt/Y ′dt/Y ′rt 1 350 350 350 346 250 249

2 350 332 311 330 230 229
3 379 379 350 350 270 270
4 350 315 280 313 210 210
5 350 323 295 322 220 220
6 305 306 305 305 200 200

3 Objective function 3783 (LINDO); 2544 (MATLAB)
Y ′mt/Y ′dt/Y ′rt 1 473 464 303 294 260 250

2 492 444 322 280 280 229
3 450 483 270 313 230 270
4 464 403 294 280 250 210
5 450 422 214 280 200 220
6 450 384 252 280 220 200
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Table  11 shows a comparison of our developed model and a traditional single-
phase centralized one for the specific problem environment mentioned in this research 
which indicates that the manufacturer’s profit is greater but those of the distributor 
and retailer slightly lower. Our model also yields a minor increase in ordering quan-
tities to meet each stage’s actual demand and far fewer inventories for the total SC 
which will ultimately reduce costs. It is noticeable that, although centralized control is 
more effective for maximizing the overall SC profit, it may not provide the maximum 
one for each stage. The values of the decision variables obtained from each approach 
are placed in the objective function equation to calculate the profits of the individual 
stages. As shown in Table 11, the total SC profit is higher in the single-phase model 
because of centralized planning which is unrealistic in decentralized scenarios. Con-
sequently, it can be stated that our model can feasibly generate maximum achievable 
profits for a decentralized SC with equally powerful independent entities as well as 
ensure overall network coordination.

7  Sensitivity analysis

In this section, an analysis of some important parameters that can affect the devel-
oped model is presented. Changes in the profit of each SC stage are achieved using our 
model are compared, with the SC CSLs ( CSLtotal = CSLm = CSLd = CSLr ), the maxi-
mum production capacity of the manufacturer ( Pmmax ), procurement limit of the dis-
tributor ( TCLd ) and procurement limit of the retailer ( TCLr ) analyzed. Only one variable 
changes in each analysis, as stated in Sect. 6.1 (data set 1). In Fig. 3, it can be seen that 
the profit increases with increasing CSL s for the manufacturer and distributor but, for 
the retailer, decreases slightly at first and then increases with a higher CSL.

A SC’s profit also changes with a change in the maximum production capacity of 
the manufacturer. Different production capacity values are used, starting with the maxi-
mum demand for the manufacturer (data set 1) and then raised gradually. As shown 
in Fig. 4, the profit for each stage increases up to Pmmax = 500 and then decreases at 
Pmmax = 510 after which it again increases but only for the manufacturer.

The effects of the procurement limit of the distributor ( TCLd ) and retailer ( TCLr ) in 
different SC stages are also studied. In Fig. 5, it is clear that the manufacturer’s profit 
increases with an increase in the TCLd but decreases for the distributor and is not con-
sistent for the retailer. In contrast, the profits for the manufacturer and retailer slightly 
decrease with increases in the TCLr but increases for the distributor, as shown in Fig. 6.

It is notable that, as SC members are closely interrelated with each other, they are 
affected by the parameters or decisions taken by any stage, not necessarily only their own. 
Therefore, as changing the production capacity or procurement limit by any stage affects 
the profits of other stages, SC managers should be very careful to select the values of the 
different parameters in their planning process that obtain the best possible feasible solu-
tions for a decentralized network.
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8  Managerial implications

In many SC environments, the entities are not necessarily part of a single organization. 
For example, the manufacturer may belong to one organization, the wholesaler may belong 
to another and so on. Considering this scenario, this paper addresses the problem of 
decentralized SC operational planning which is a common and practical decision-making 
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Fig. 3  SC’s individual stage profits with different CSLs
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scenario in the real-world business environment. Moreover, the recent COVID-19 pan-
demic has forced many businesses to be decentralized to effectively operate their func-
tions and thus has proved the necessity of proper SC planning (Chowdhury et al., 2021). 
In a decentralized structure, each member focuses on its own strategies and objectives to 
maximize, mostly ignoring other members of the chain, which often results in poor SC per-
formances. Hence, appropriate planning can help SC managers to overcome this situation 
significantly. To do this, we propose a new central body or entity to decide a coordinate 
material flow among all the entities in the SC. So, this paper tries to develop a mathemati-
cal model considering the independent and equally powerful member of such a decentral-
ized network using a two-phase planning approach, where some coordination mechanisms 
are proposed at first-phase optimization problem to be conducted by a central authority, 
and some other individual optimization problems are developed for each independent 
stage. This type of innovative planning approach can easily be implemented for a multi-
stage decentralized SC network if each member of the chain is agreed on sharing necessary 
information (demand–supply related) to the central authority to ensure overall chain coor-
dination. Though the proposed planning methodology is new in the SC planning context, 
they are widely used in the electrical market (Zaman et al., 2017), garments buying houses 
(Jackson & Shaw, 2001) and so on where a central authority conducts some coordinating 
activities for the whole system. Moreover, the model developed in this paper can also be 
implemented for any number of SC stages that are serially connected in the chain.

Our numerical analyses provide some useful insights to the SC managers. For example, 
we analyzed three different data sets varying demand and other planning related parameters 
for each stage, to validate the model with a broader range of data sets. The result analy-
ses provide an idea about how the values of different decision parameters may affect the 
model output results. The result comparison section may make practitioners more confi-
dent about the relative benefits of using our proposed two-phase planning model for a com-
plete decentralized structure over a centralized single-phase planning approach. In addi-
tion, the sensitivity analyses presented in this paper may help the decision-maker to select 
values of some important SC parameters. As an instance, from our analysis, it is seen that 
as the profit increases with increasing CSL s for the manufacturer and distributor but, for the 
retailer, it decreases slightly at first and then increases with a higher CSL , so the SC man-
agers should be careful to select their CSL level for maximum profit attainment. Similarly, 
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managers should be careful to fix their production or procurement capacity limits as they 
affect not only a stage’s own profit but also others, as shown in our analysis. In summary, 
the numerical analyses presented in this paper justify the validity of the developed model 
to address the specific SC problem environment and provide a useful guideline to the prac-
tical SC managers to make their planning strategies profitably.

9  Conclusion and future works

In this paper, the development of unique mathematical modeling with a proposed planning 
approach for a multi-echelon multi-period decentralized SC consisting of a single manu-
facturer, single distributor, and single retailer with different objectives was described. This 
study aimed to ensure overall SC coordination for a decentralized scenario with independ-
ent, equally powerful stages and the maximum achievable profit for each of its members. 
Therefore, we developed a model that combined centralized and decentralized decision-
making approaches with two-phase planning procedures. It was formulated as a non-lin-
ear optimization problem in which the mechanism of the entire SC synchronization was 
considered as a centralized first-phase optimization problem and the individual optimiza-
tion problems (profit maximizations) of each of the independent stages are considered as 
second-phase ones. A new solution approach using a well-known GP technique to solve 
our model to achieve the maximum individual profit planned by each stage was applied. 
Several numerical analyses were performed using both LINDO and MATLAB optimiza-
tion software and the results obtained compared with those of a single-phase centralized 
SC model which is the usual approach for SC optimization. They implied that our model 
ensured feasible solutions for a decentralized SC structure more logically than a single-
phase centralized approach while considering individual profit maximization and overall 
SC coordination. We conducted a sensitivity analysis of some key parameters of the devel-
oped model which could help managers as it offers them a useful quantitative approach for 
making better feasible and effective decisions in their planning processes to ensure over-
all SC coordination while realistically maintaining individual profit maximization with 
restricted information-sharing throughout the chain.

However, several future research directions can be drawn from the study. More practical 
situations that extend the model could be considered in the future; for example, further SC 
costs could be incorporated in each stage by fluctuating the parameters while multiple enti-
ties could be included in each stage and multiple objectives and/or different real-life uncer-
tainties considered. The model can also be solved using different metaheuristic approaches 
like genetic algorithm, particle swarm optimization, red deer algorithm, social engineering 
optimizer (Fathollahi-Fard et al., 2020), etc. to compare the results with our developed heu-
ristic for solving large scale SC network. We believe that our proposal of using a central 
body for coordinating material flow in decentralized SC environments will be useful for 
many researchers and practitioners, and hence they will also extend this research by con-
sidering more practical aspects in their organizations.
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Appendix 1

See Tables 12, 13 and 14.

Table 12  Individual solutions obtained for independent planning—data set 1

Period Manufacturer Distributor Retailer

LINDO fmincon LINDO fmincon LINDO fmincon

Profit 49,796 53,770 33,647 50,407 51,318 53,059
Ymt/Ydt/Yrt 1 480 480 380 380 280 280

2 400 400 300 300 200 200
3 420 420 320 320 220 220
4 430 430 330 330 230 230
5 400 400 300 300 200 200
6 410 410 310 310 210 210

Xmt/Xdt/Xrt 1 460 460 400 340 300 280
2 400 380 300 260 200 200
3 420 400 300 280 200 220
4 430 410 300 290 240 230
5 400 380 300 260 200 200
6 410 390 300 270 200 210

Invmt/Invdt/Invrt/LQt 1 0 4.88e−08 60 2.72e−08 20 − 2.04e−05
2 0 4.89e−08 60 2.72e−08 20 − 8.43e−07
3 0 4.88e−08 40 2.72e−08 0 − 1.56e−06
4 0 4.88e−08 10 2.72e−08 10 8.42e−09
5 0 4.89e−08 10 2.72e−08 10 8.30e−08
6 0 4.88e−08 0 2.7e−08 1 − 2.07e−06
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Table 13  Individual solutions obtained for independent planning—data set 2

Period Manufacturer Distributor Retailer

LINDO fmincon LINDO fmincon LINDO fmincon

Profit 75,867 78,583 50,959 71,652 79,386 87,943
Ymt/Ydt/Yrt 1 450 450 329 350 250 250

2 430 430 307 330 230 230
3 470 460 344 370 270 270
4 410 410 300 310 210 210
5 420 420 300 320 220 220
6 400 400 300 300 200 200

Xmt/Xdt/Xrt 1 440 440 300 320 270 240
2 450 420 350 300 200 220
3 450 450 300 340 300 260
4 410 400 300 280 200 200
5 420 410 300 290 200 210
6 400 390 300 270 200 190

Invmt/Invdt/Invrt/LQt 1 0 6.38E−08 1 3.44E−08 30 − 2.85E−09
2 20 6.58E−08 44 3.46E−08 − 5.00E−05 − 8.15E−07
3 0 4.27E−08 0 3.44E−08 30 − 4.11E−08
4 0 6.83E−08 0 3.39E−08 20 − 2.56E−08
5 0 6.45E−08 0 3.47E−08 − 4.00E−07 2.54E−09
6 0 4.17E−08 0 3.48E−08 − 2.00E−05 − 2.74E−08
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Table 14  Individual solutions obtained for independent planning—data set 3

Period Manufacturer Distributor Retailer

LINDO fmincon LINDO fmincon Lindo fmincon

Profit 105,590 117,534 71,786 90,646.24 104,030 130,395
Ymt/Ydt/Yrt 1 460 460 360 360 250 260

2 480 480 380 380 230 280
3 430 430 330 330 270 230
4 450 450 350 350 210 250
5 400 400 300 300 220 200
6 420 420 320 320 200 220

Xmt/Xdt/Xrt 1 430 430 450 340 260 240
2 480 450 300 360 200 260
3 430 400 300 310 280 210
4 450 420 370 330 200 230
5 400 370 300 280 220 180
6 420 390 300 300 200 200

Invmt/Invdt/Invrt/LQt 1 0 6.70E−08 110 2.04E−08 30 − 7.10E−10
2 0 4.12E−08 30 2.05E−08 1 − 5.15E−09
3 0 1.00E−07 0 2.04E−08 1E+01 − 2.29E−08
4 0 7.64E−08 20 2.04E−08 − 1 − 4.48E−09
5 0 4.71E−08 20 2.03E−08 0 − 5.01E−08
6 0 2.32E−07 0 2.03E−08 − 4E−09 − 4.08E−08
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Appendix 2

See Table 15.

Table 15  Solutions obtained 
from centralized approach

Period Manufacturer Distributor Retailer

Objective function − 179,399.5
Ymt/Ydt/Yrt 1 456 361 280

2 380 285 200
3 399 304 220
4 409 314 230
5 380 285 200
6 390 295 200

Total 2414 1844 1330
Xmt/Xdt/Xrt 1 436 324 330

2 380 300 200
3 399 300 200
4 409 300 200
5 380 285 200
6 390 295 200

Total 2394 1804 1330
Invmt/Invdt/Invrt/LQt 1 0 3 50

2 0 18 50
3 0 14 30
4 0 0 0
5 0 0 0
6 0 0 − 1

Total 0 35 129
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