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Abstract
This work investigates financial volatility cascades generated by SARS-CoV-2 related news
using concepts developed in the field of seismology.We analyze the impact of socio-economic
and political announcements, as well as of financial stimulus disclosures, on the reference
stock markets of the United States, United Kingdom, Spain, France, Germany and Italy. We
quantifymarket efficiency in processing SARS-CoV-2 related news bymeans of the observed
Omori power-law exponents and we relate these empirical regularities to investors’ behavior
through the lens of a stylized Agent-Based financial market model. The analysis reveals that
financial markets may underreact to the announcements by taking a finite time to re-adjust
prices, thus moving against the efficient market hypothesis. We observe that this empirical
regularity can be related to the speculative behavior ofmarket participants, whosewillingness
to switch toward better performing investment strategies, as well as their degree of reactivity
to price trend or mispricing, can induce long-lasting volatility cascades.
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1 Introduction

As the spread of the novel coronavirus (SARS-CoV-2) is causing a significant economic and
financial burden in most countries of the world, financial economists, credit rating companies
and country risk experts have scrambled to rearrange their assessments in the light of the
unprecedented geo-economic challenges posed by the healthcare crisis.

OnMonday 24th February 2020, the Dow Jones Industrial Average and FTSE 100 indices
dropped more than 3%, as the SARS-CoV-2 outbreak spread worsened substantially outside
China over the previous weekend. This came after the benchmark market indices sharply
decreased in continental Europe following steep declines across Asia. The DAX, CAC40 and
IBEX35 fell by about 4% and the FTSE-MIB tumbled by over 5%. On February 27th, the US
stock market indices, including the NASDAQ-100, the S&P 500 Index and the Dow Jones,
posted their sharpest falls since 2008, with the Dow Jones falling 1.191 points, its largest one-
day drop since the 2008 financial crisis. Following a second week of turbulence, on March
6th, most of the stock markets worldwide closed down, while the yields on 10-year and 30-
year U.S. Treasury securities fell to new record lows under 0.7% and 1.26% respectively. To
face the epidemic impact, central banks and governments on the two sides of theAtlantic have
reacted with massive recovery plans. The US Federal Reserve lowered its benchmark rate
purchasing bonds on both the primary and secondary markets, also reactivating its currency-
swap lines with other central banks, while the European Central Bank abandoned its rules for
limiting sovereign and corporate bond purchases, launching a Pandemic Emergency Purchase
Program, among other measures.

Against this background, such a financial disruption motivates our study on the volatility
dynamics induced by SARS-CoV-2 related news on the major financial markets in Europe
and US, during the period ranging from January to April 2020, as we deem this period
refers to an unprecedented and unique stage in the history of financial markets. SARS-CoV-2
is, in fact, an exclusive event in terms of its global reach as a pandemic. While the exact
global economic and financial consequences are not yet completely definite, financial mar-
kets have already responded with dramatic movements. The 2020 coronavirus stock turmoil
which began on February 2020 and ended on April constituted a major and sudden crisis
hitting stock markets globally. To show how timely intervention from political authorities
impacted on stock indices through stimulus announcements, we focus on some relevant
market-capitalized indices as illustrative examples and, among them, we select indices refer-
ring to economies heavily affected by the first wave of the pandemics outbreak. For instance,
UK, Spain, France, Germany and Italy account formore than 65%of the total cases registered
in Europe according to the WHO report1 of April 20th, while in the same period the United
States, with 723,605 confirmed cases, were already the most hardly hit country worldwide.2

For these reasons, we present and discuss the application of our proposed framework on a
parsimonious list comprising the aforementioned countries, which is instrumental to analyze
heterogeneous responses of SARS-CoV-2 related news across different financial markets of
relevant economies.

Specifically, our work analyzes the impact of socio-economic and political news, as well
as of financial stimulus disclosures, on the volatility of the reference stock markets of the
UnitedStates (S&P500), theUnitedKingdom (FTSE100), Spain (IBEX35), France (CAC40),

1 https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200420-sitrep-91-covid-19.
pdf?sfvrsn=fcf0670b_4.
2 Even if China has been the first country hit by the pandemic, it has not been selected due to the scarcity of
news and difficulty in acquiring political and economical announcements.
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Germany (DAX) and Italy (FTSE-MIB). We select major events related to the evolution of
the epidemic between January 2020, when the first cases manifested, and the end of April
2020, thus including all the lockdown and mobility restriction measures, the announcements
of economic aid packages (both from single countries and of supranational authorities), and
the lockdown lifting decisions (see Appendix, Tables 1, 2, for details on SARS-CoV-2 related
news). These events highlight the importance of considering the different types of policies
that have been worldwide announced to cope with the unprecedented shocks that hit most of
the economies and financial markets around the world (see Cheng et al. 2020).

To investigate the effects of pandemic related news on financial volatility, we employ
concepts developed in the field of seismology (seeOmori 1894;Utsu 1961), deriving parallels
between energy dissipation and information cascades. Omori law was originally proposed
by F. Omori over a century ago and, since then, it has been recognized as one of the empirical
laws in seismology. Generally speaking, it states that the frequency of after-shocks decays
decreases in time approximately by the reciprocal of time following the main shock. Utsu
(1961) showed that the decay rate of after-shocks was somewhat faster than that suggested
by the original Omori formula.

In the present work, we quantify market efficiency in processing SARS-CoV-2 related
news by means of the estimated Omori power-law exponents and we relate these empirical
regularities to investors’ behavior through the lens of a stylized Agent-Based financial market
model. This approach turns out to be very suitable for examining the nonlinear dynamics that
takes place among the interacting players populating a financial market, and that cannot be
grasped by only considering aggregate variables, such as asset prices or returns. Thus, one has
to look into the detailed interactions among the market’s participants of an unstable financial
systems. In so doing, we can link what is observed at macro-level with a precise description
of the micro-level relationships, at the origin of the propagation of financial instability. We
remark that a similar viewpoint has been adopted by Gao and Hu (2014) who examined the
income structures of different sectors in a selected economy with an “anatomical approach”
and showed that the losses can be modeled by an Omori law distribution, suggesting that
instability propagates from the crisis initiating sector to other sectors. The commonconclusion
that can be drawn from our similar macro-to-micro approach is that aggregated variables are
not always capable to grasp the dynamics generated bymarket players in unstable economies,
and thus the inclusion of micro and behavioral features bears relevance for the explanation
of the volatility behavior that follows major shocks related to an extreme event, such as the
SARS-CoV-2 pandemic.

More in detail, we aim at recognizing whether external news related to the epidemic
evolution could induce significant “after-shocks” (as well as “pre-shocks”) effects in the
system, by producing dynamic relaxation in the volatility behavior, in line with the cascade
effect of energy propagationwhich follows an earthquake (see, e.g., Lillo andMantegna 2003;
Weber et al. 2007; Petersen et al. 2010a, b). Then, we provide a behavioral interpretation of
the financial consequences generated by the SARS-CoV-2 pandemic by relating the observed
market dynamics with agents’ investment attitudes.

We introduce a stylized Agent-Based model where market participants might generate
volatility patterns, comparable to those of the observed market indices, by adjusting their
investment strategies in face of external shocks. The dynamics of the model is driven by the
trading behavior of heterogeneous speculators whose choice of a trading rule is endogenous
and depends on the performance of the selected strategy and on the market momentum. The
model considers a scenario in which a market-maker adjusts the asset price to the market
excess demand generated by agents’ orders that are, in turn, set according to a technical
or a fundamental trading rule. Agents update their strategy selection over time according
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to an evolutionary mechanism. The proportions of agents employing a given trading rule
evolve according to a fitness measure, which is function of the past performance of each
strategy (see e.g. Hommes 2002). The higher the fitness of a strategy is, the more market
participantswill adopt it. Thanks to the presence of the evolutionary selection between trading
rules, we observe that periods of either turbulent or calm market dynamics may emerge and
alternate. Within this framework, agents’ reactivity in adjusting orders to the price trend or
to actual mispricing (e.g., due to news or announcements) plays a crucial role in reproducing
the observed volatility patterns and the related Omori exponents, offering a theoretically
support for the empirical dynamics based on the micro-behavior of market participants. The
adoption of a stylized Agent-Based framework turns out to be relevant for the understanding
of investors behavior at a micro-level reacting to different policy scenarios implemented at
a macro-level, and to address the emerging challenges that are rapidly engulfing businesses
affected by the pandemic. Thus, on the one hand, the choice of the seismologic approach is
motivated by the fact that in the period following a large market crash, markets show long-
lasting activities, which follow the Omori law. On the other hand, the long-lasting dynamics
observed in the course of stock prices is often due to the interacting behavior of markets’
participants that can herd towards a common strategy and that lead the price to deviate from
its fundamental value. This feature may cause crashes, and thus volatility outbursts, to be
locally self-enforcing or dissipating.

The remainder of the paper is organized as follows. Section 2 contains a literature review
related to the study of market volatility cascades and empirical regularities occurring after
a financial crash. Section 3 presents the evidence of Omori relationship in the dataset we
analyze. Section 4 provides an explanation of the empirical facts through the formalization
and simulation of an Agent-Based model. Section 5 concludes.

2 Literature review

Perturbations in asset prices induced by exogenous shocks are widely studied by economists,
mathematicians, and physicists (see, e.g., Fama 1965; Ding et al. 1993; Mandelbrot 1997;
Mantegna and Stanley 1999), with particular emphasis on the market dynamics generated by
extreme events (see e.g. Danielsson et al. 2012; Adelfio et al. 2020). It is well recognized that
several aspects play a key role in financial systems, such as the behavior of heterogeneous
interacting agents and the non-equilibrium behavior in the processes that generate financial
dynamics, as shown for instance in Spelta et al. (2020a, 2021) and Avdjiev et al. (2019).
In this context, the Omori law, which describes the non-stationary phase observed after an
earthquake, turns out to be instrumental for describing the dynamics of a financial system
when it is pushed far away from its equilibrium state by the occurrence of an extreme event.
In seismology, the occurrence of an earthquake main shock increases the likelihood of other
subsequent after-shocks. Similarly, in the financial context, the occurrence of an exogenous
shock on an asset price or return may increase the likelihood of other shocks. In particular,
several papers (see, e.g., Lillo and Mantegna 2003, 2004; Petersen et al. 2010a, b; Selçuk
2004; Selçuk and Gençay 2006) have shown that a power-law tail describes quite well the
dynamics of market volatility after a major financial shock. Based on statistical regularities
of volatility cascades triggered by exogenous events, economists have employed the Omori
law to study financial markets’ after-shocks dissipation.

Sornette et al. (1996) investigated the volatility dynamics of the S&P 500 index before
and after the Black Monday of October 19th, 1987. They found that the implied market
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volatility after the crash has a power-law log-periodic decay rate behavior. Similarly, Lillo
and Mantegna (2003, 2004) analyzed the decaying rate of volatility of the NYSE around the
Black Monday crash and found that the number of volatility spikes above a certain threshold
follows a power-lawwhich is equivalent to themodifiedOmori law, as also reported in Siokis
(2012b) who found that the distribution of market volatility before and after stock market
crashes has a power-law relaxation consistent with the Omori law.

Selçuk (2004), employing stock market data from Argentina, Brazil, Hong Kong, Indone-
sia, Korea, Mexico, Philippines, Singapore, Taiwan and Turkey, is the first attempt which
characterizes financial volatility after crashes in emerging stock markets through the Omori
law. Other works, such as Selçuk and Gençay (2006), Weber et al. (2007) and Mu and Zhou
(2008) applied the same technique to intraday data of several stock market indices, e.g. the
Dow Jones and the Shanghai Stock Exchange Composite. In particular, Selçuk and Gençay
(2006) analyzed the dynamics of Dow Jones Industrial Average (DJIA) during the period
fromSeptember 19th, 1994 toOctober 16th, 2002. In this sample period two shocks occurred,
one on October 8th, 1998 when the DJIA went down by 2.9%within 5 min without the trades
being suspended, and another on January 3rd, 2001 when the DJIA went up by 2.6% in 5 min
without the trades being suspended, the latter being the largest positive shock within the sam-
ple period. They concluded that the return and volatility distribution changed non-linearly
and that in fact can be characterized by the Omori law.Weber et al. (2007) studied return time
series during the after-shock periods in three different data sets. The first one contains the
Black Monday crash, and also a smaller crash that happened on September 11th, 1986. The
second covers Trade & Quotes of the year 1997 and focuses on the crash that happened on
October 27th, 1997, while the third studies the 1 min return series of General Electric stock
in the three months after 11 September 2001. Overall, they noticed that smaller sub-crashes
were present and each of them also follow theOmori’s process, but on a smaller scale. Mu and
Zhou (2008) examined the volatility dynamics of the Shanghai Stock Exchange Composite
(SSEC) after large volatility shocks and found that for the SSEC the decay rate parameter
was often higher than 1, implying a faster pace of convergence towards the normal state.
Finally, Petersen et al. (2010a) investigated whether the FED announcements about interest
rate changes may generate volatility outbursts that decay as a power-law, analogously to the
Omori law, Petersen et al. (2010b), by studying the dynamics of the 531 most traded US
stocks before and after 219 shocks, found a similar power-law behavior but for the rate of
pre-shocks, while Siokis (2012a) applied the Omori law to study foreshocks and aftershocks
related to the dynamics of the exchange rate market during the South-Asia crisis of 1997.
Differently from these works, our analysis covers a much larger number of events and of
different nature (being these related to political, financial or medical announcements) that hit
different financial markets in the world. This allows us to compare how competing markets
reacted when absorbing different types of shocks, and, eventually, it also helps us to under-
stand how these markets were able to anticipate the occurrence of external and sudden news
related to the pandemic evolution.

3 The Omori law

To study the market volatility dynamics around the date Ts of external shocks induced by
SARS-CoV-2 related news, we analyze the rate of decay of large volatility fluctuations during
10 trading days following (and preceding) the day of each announcement.
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3.1 Methodology

We compute the market volatility Vi (t) following previous researches that deal with similar
topics (see, e.g., Weber et al. 2007; Petersen et al. 2010a, b; Nowak et al. 2011) as:3

Vi (t) = | log(Pi (t)) − log(Pi (t − 1))| (1)

The binary volatility time series ni (t) for each market i , is calculated as:

ni (t) =
{
1, Vi (t) ≥ qi
0, Vi (t) < qi

where the thresholdq is defined as the value of the 85-th percentile of the volatility distribution
of market i . This approach allows us to study the number of times volatility series exceeds a
given threshold value. This investigation is analogous to the investigation of the number of
after-shock earthquakes measured at time t after the main earthquake. Nonetheless, in order
to provide robustness to our approach, in the Appendix we perform a sensitivity analysis
employing different thresholds. Moreover, as shown by Lillo and Mantegna (2003), the
power-law behavior of volatility decay is observed only for large thresholds. Hence, the
Omori Law is valid only for large values of the q employed to determine the exponent.

We describe the response of different financial markets to the SARS-CoV-2 related
announcements deriving a parallelism between the energy relaxation of after-shocks follow-
ing the main earthquake, described by the Omori law (Omori 1894), and markets’ volatility
cascade dynamics induced by external news. The Omori law states that the number of after-
shock earthquakes per unit time, measured at time t , decays as a power-law. Analogously,
the rate N (t) of large volatility events following a single perturbation at time Ts is defined
as:

Ni (|t − Ts |) ∼ |t − Ts |−βNi (2)

where the parameter βNi represents the Omori power-law exponent, and

Ni (t) = 1

J

J∑
j=1

ni, j (t)

is the average rate of high volatility occurrences produced by all the J events in the i-th
financial market, with j referring to the single SARS-CoV-2 related announcement. We
remark that averaging across different event dates allows for better statistical regression. To
estimate the power-law relationship between large volatility fluctuations and displacement
time, we focus on �i (|t − Ts |), which represents the cumulative number of events above the
threshold q at time t , namely:

�i (|t − Ts |) =
∫ t

Ts
Ni (|t ′ − Ts |)dt ′ ∝ |t − Ts |1−βNi (3)

In order to compare the market dynamics before (Pre) and after (A f t) the occurrence of
external events, we investigate separately volatility patterns around Ts . This means to dis-
criminate between N Pre

i (t |t < Ts) and N Af t
i (t |t > Ts). We define the displaced time as

3 We would like to point out that Lillo and Mantegna (2003, 2004) demonstrate how, after a market crash,
the volatility is represented by a stochastic process characterized by a power-law decay rate. Therefore,
autoregressive models, such as GARCH models, are less able to describe the observed behavior since these
models are characterized by an exponential decay.
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Fig. 1 Volatility patterns for the selected market indices along with event dates. Column bars represent, for
each country, the daily volatility of the reference index, computed as the absolute value of the returns derived
from closure prices. The dashed black lines identify the dates of the relevant events, which mainly impacted
the course of the national stock markets

τ = |t − Ts |, then we employ a linear OLS fit on a log-log scale to estimate the Omori
power-law exponents βPre

Ni
and β

A f t
Ni

.

3.2 Empirical evidence of Omori relationship

We first analyze the volatility patterns of each reference stock index around the dates of
SARS-CoV-2 related news. Figure 1 shows the volatility dynamics of the selected financial
indices along with the dates of the selected SARS-CoV-2 related events, highlighted by the
black dashed lines. The volatility patterns show correlated behaviors (see Appendix, Fig. 5)
with a lower bound of 0.689, which represents the Pearson correlation coefficient between the
S&P500 and the FTSE-MIB, and an upper bound of 0.9562 betweenCAC40 andDAX.More-
over, Fig. 1 emphasizes howmost of the SARS-CoV-2 news refers to a specific interval around
mid-March, in which most of the governments announced lockdown policies and consequent
economic interventions. Notice also that the volatility series peak on March 11th, when the
SARS-CoV-2 has been recognized as a pandemic by the World Health Organization (WHO
2020).Moreover, for sake of comparison, in theAppendixwe report the analysis related to the
impact and persistence volatility shocks induced by SARS-CoV-2 related news on the gov-
ernment bond market of the selected countries. The inclusion of country’s 1-Year bond yield
allows us to determine which countries are the most efficient in incorporating SARS-CoV-2
shocks by characterizing their pre-shock and after-shock dynamics. From Fig. 6, notice that
equity and bond markets react dissimilarly to major SARS-CoV-2 news. The equity indices
volatility series show peaks on March 11th, whereas bond yields react to a greater extent to
macroeconomic announcements such as the EU decision on the financial aid package worth
750 bln Euros to mitigate the damage of the coronavirus outbreak on the economy (March
23), and the IMF negative World Economic Outlook, released on April 14 (see IMF 2020).
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Fig. 2 Average distribution of large volatility occurrences and Omori exponents. The upper panel reports the
log-log plot of the average cumulative distribution of large volatility movements around the days of SARS-
CoV-2 related announcements. Colored lines refer to the different financial markets while the black line
corresponds to the SVD approximation of the aggregate volatility rates for the selected countries, labelled as
WORLD in the figure’s legend. The legend provides the values of the Omori exponents for both pre-shocks
and after-shocks. The lower panel shows the cumulative distributions of the pooled pre-shock and after-shock
Omori exponents. In particular, the red color is used to identify the empirical CDF of the pre-shock exponents,
while the blue color is associated with the after-shock distribution. (Color figure online)

To study the aggregate equity financial system reaction to the SARS-CoV-2 announce-
ments, we approximate the market volatility through the first left-singular vector U obtained
by the Singular Value Decomposition (SVD) of the volatility matrix V = [V1, . . . , Vi ] ≈
U�W. We then proceed by studying the rate of occurrence of large fluctuations in such
vector. The SVD proxy of the aggregate market volatility shows a peak located on March
11th and displays local maxima around the declaration of the Italian lockdown (March 8th)
and the G7 finance ministers meeting of March 24th (see Appendix, Fig. 7).

Figure 2 describes the role played by SARS-CoV-2 announcements in generating large
fluctuations in the considered financial indices, quantifying the volatility decay over time both
before and after a market shock. In particular, the upper panel displays the average empirical
cumulative distribution (CDF) of large volatilitymovements before and after themain SARS-
CoV-2 announcements, together with the values of the Omori exponents for each market
index, and for the SVD approximation of the aggregate volatility rate (indicated as WORLD
in the figure’s legend). To determine the Omori power-law exponents and the corresponding
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confidence intervals, we employ a linear fit on a log-log scale.4 TheOmori exponents can then
be used to evaluate how markets react to SARS-CoV-2 related announcements. In particular,
after the occurrence of a shock, large values of the Omori exponents indicate faster relaxation
times, suggesting that the volatility generated by the announcements is rapidly reabsorbed
by the market. On the contrary, low values of the Omori exponents stand for long-lasting
effects on the volatility patterns, meaning that markets slowly return to their equilibrium state
after perturbations induced by the SARS-CoV-2 announcements. Symmetrically, largeOmori
exponents can also be present in the pre-shock phase, meaning that a shock induces a sudden
volatility jump near the date of the event, while low values of the exponents suggesting that
the news are early discounted.

The considered financial markets present heterogeneous values of the Omori exponents.
In particular, Italy, Spain and, to a lesser extent France, show the largest exponents, reflecting
that the shocks effects are perceived shortly before the announcements and are absorbed in
a timely manner. These countries refer to geographical areas which were first impacted by
the SARS-CoV-2 contagion, and whose financial indices turned out to be more sensitive to
SARS-CoV-2 related news. Conversely, Germany shows low Omori exponents, reflecting a
more persistent impact of the SARS-CoV-2 news on its reference financial market, especially
in the after-shock phase. Finally, the US and UK stock indices feature a mixed behavior:
their volatility builds up slowly during the pre-shock, as for Germany, but then it is quickly
reabsorbed in the after-shock phase, similarly to Spain. Moreover, the pre-shock Omori
exponent computed on the left-singular vector of the SVD approximation of volatility matrix
is larger than that of the corresponding after-shock, meaning that large volatility movements
are absorbed more slowly.

Finally, the lower panel of Fig. 2 reports the empirical CDF of the Omori exponents
computed by pooling together all the SARS-CoV-2 announcements for both the pre-shock
and after-shock cases. The after-shock empirical CDF of βN exhibits larger values, with
respect to the pre-shock distribution. Moreover, the two-sample Kolmogorov-Smirnov test
rejects the null hypothesis that data refer to populations with the same distribution, with a
p-value of about 10−5. Hence, larger values of β A f t , with respect to βPre confirm that the
response time after Ts is shorter than the activation time leading to Ts .

Moreover, as Fig. 9 in Appendix suggests, the bond yield series show an even more
heterogeneous behaviour of the Omori exponents across countries. The magnitude of the
pre-shock exponents is relatively high in Spain and, again to a lesser extent, in France if
compared to the after-shock values. This suggests that the bond markets exhibit sudden
volatility jumps just prior the news, which are then slowly reabsorbed. UK shows a similar
behaviour only for the pre-shock phase. Interestingly, we also find a negative aftershock
Omori exponent, although statistically significant only for the Italian and German bond
volatility in the after-shock. This can be interpreted as a dominance of after-shocks further
away from main-shocks over the volatility cascade around the event date. It is worth noting
that, overall, bond yields exhibit lower Omori exponents than those observed for the equity
indices: this suggests that the bond market is less efficient at incorporating SARS-CoV-2
related shocks. When considering bond yields, the difference between β A f t , and βPre is
less prominent. This indicates that in the bond markets volatility induced by SARS-CoV-
2 announcements is more persistent than that of equity markets, which instead react more
timely to such exogenous shocks. This empirical outcome is in line with the studies on cross-
market financial shock transmission, which find that volatility shocks in the equity markets

4 We have employed 10-base logarithm scale for analogy with seismology. Indeed, the number of after-
shocks after an earthquake has been demonstrate to be linearly dependent on displacement time when plotted
in 10-base logarithm scale (Omori 1894).
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are absorbed much more quickly than those in the bond markets (see, e.g., Tian and Hamori
2016).

We also report, in Fig. 10 of the Appendix, the Omori exponents related to each single
SARS-CoV-2 announcement for both the pre-shock and after-shock cases, computed on the
SVD representation of the aggregate volatility.We observe the presence of negative values for
some βPre, due to national lockdown declarations and ascribed to the market anticipation of
these events. We also find negative values of β A f t associated with announcements related to
the first detected cases in Italy and to the approval of financial aid packages by the European
Council: both these events turned out to contain a large amount of inherent surprise. Finally,
Fig. 11 of the Appendix reports the sensitivity analysis of the Omori exponents computed
by varying the parameter q . Notice that, by decreasing the threshold value, we increase the
number of observations in the binary series associated with a high volatility, potentially lead-
ing to an overlapping of effects related to more events that contribute to volatility outbursts.
This could translate in a switch in the sign of the Omori exponents since the CDF of the
binary volatility would display a local maximum which is not attained in correspondence of
the date of a precise event. This confounding effect can be ruled out by selecting a suitable
higher threshold.

4 Explaining the empirical evidence through agent-basedmodeling

The aim of this Section is to show how the dynamical interplay between agents’ behavior
and stock price realizations is able to reproduce the observed empirical regularities of the
considered financial indices. The activity of heterogeneous speculators is key to understand
the observed market dynamics since the adjustment of their investment strategies in face of
external shocks may generate long-lasting volatility patterns.

4.1 Model building blocks

In recent years, Agent-Based models have brought a substantial progress in various areas of
economic research (for surveys see, e.g., Tesfatsion and Judd 2006; Hens and Schenk-Hoppé
2009), especially in financial contexts for their capability of improving the understanding
of the dynamics of financial markets (see Day and Huang 1990; Chiarella 1992; Lux 1995;
Brock and Hommes 1998; LeBaron et al. 1999; Hommes and Wagener 2009; Bovi and
Cerqueti 2016, among others). The dynamics of Agent-Based financial market models is
driven by the trading behavior of heterogeneous speculators who follow trading strategies
based on technical and fundamental analysis.

The model we propose (see, e.g., Lengnick and Wohltmann 2013; Westerhoff and Franke
2013) is not intended to quantitatively replicate the Omori exponents empirically observed,
but rather to qualitatively show how market participants’ behavior could amplify and make
persistent the volatility induced by the shocks. Since our main focus is on the financial effects
of the SARS-CoV-2 announcements on the markets, we keep the Agent-Based framework
as simple as possible to avoid confounding effects.
The model setup considers a market maker, who quotes an asset price with respect to the
market excess demand, and heterogeneous speculators that determine their orders following
a technical or a fundamental trading rule. According to the technical trading rule, prices
move in trends and buying (selling) actions are suggested when prices increase (decrease).
The fundamental trading rule predicts that the asset price will return towards its fundamental
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value. In undervalued markets, fundamental trading rules recommend buying while in over-
valued markets they propose selling. Agents select one of the two trading strategies in each
time period on the basis of an evolutionary mechanism which considers the past strategies
performances (see Brock and Hommes 1997; Brock and Hommes 1998).

The details of the model are outlined as follows. The market maker collects all individual
orders from trading agents and changes the price with respect to the resulting excess demand
(see, e.g., Chiarella and He 2003; Hommes et al. 2005; Lengnick and Wohltmann 2013;
Schmitt and Westerhoff 2017a; Ascari et al. 2018 for examples of models where the asset
price is set according to the same price rule):

Pt+1 = Pt + a(Wc
t D

c
t + W f

t D f
t ) + εt (4)

The variable P denotes the logarithm of the stock price, Dc
t and D f

t represent the orders

generated by chartists (c) and fundamentalists ( f ) respectively, Wc
t and W f

t stand for the
proportion of agents using these strategies, while a is a positive reaction parameter which
we set equal to 1 without loss of generality. The noise term εt is i.i.d. normally distributed
with zero mean and standard deviation σ , and represents an exogenous shock affecting price
dynamics.

Chartists expect that the direction of the last observed price trend is going to persist, while
fundamentalists expect that a fraction of the actual mispricing is corrected during the next
period. Assuming that the demand generated by each type of investors depends positively on
the expected price development, leads to:

Dc
t = l(Pt − Pt−1)

D f
t = g(F − Pt )

(5)

where g, l are positive reaction parameters while F is the fundamental value. The fractions
of agents using the two different investment strategies are not fixed over time. Agents con-
tinuously evaluate the strategies according to their past performance. The better a strategy
performs relative to the other, the more likely agents will employ it. Thus, the fraction of
agents that adopts strategy k = {c, f } is given by the discrete choice model (see, e.g., Manski
and McFadden 1981):

Wk
t = exp(eAk

t )

exp(eAc
t ) + exp(eA f

t )
(6)

where Ak
t is the attractiveness of the kth strategy, which depends on its most recent perfor-

mance as well as from its past attractiveness. This is formalized as:

Ak
t = (exp(Pt ) − exp(Pt−1))D

k
t−2 + d Ak

t−1. (7)

The memory parameter 0 ≤ d ≤ 1 defines the strength with which agents discount past
strategy performances. The positive parameter emeasures the intensity of choice. The higher
(lower) e, the greater (lesser) the fraction of agents that will employ the strategy with the
highest attractiveness. This switching mechanism is based on agents’ behavior: if the rela-
tive attractiveness of the fundamentalist strategy over the chartist one increases, the market
share of chartists decreases and the market share of fundamentalists increases. In this sense,
speculators exhibit a kind of learning behavior.

The baseline parameter values employed for the simulations are set according to Lengnick
and Wohltmann (2013) as: l = 0.5, g = 0.5, e = 100, F = 0, a = 1 and d = 0.5. Moreover
ε ∼ N (0, 0.15).
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Fig. 3 Price dynamics, volatility distributions and Omori exponents of the time series generated by the Agent-
Based financial model. The upper left panel shows, in black, the price dynamics generated by a representative
run of the heterogeneous agents model. Green bars refer to the related volatility, while dashed lines locate
external shocks identified by extreme values of the noise term component in the price law of motion. The
lower left panel reports the evolution of agents’ fraction adopting a chartist (blue) or a fundamentalist (orange)
investment strategy. In the right panel, red and blue circles show, in log-log coordinates, the pre-shock and
after-shock cumulative volatility distribution related to each model run, around the occurrence of the identified
shocks. The black dashed line represents the average cumulative volatility distribution. The legend reports the
values of the corresponding Omori exponents for both pre-shock and after-shock. (Color figure online)

4.2 Agent-based simulations

As an illustrative example of stock price dynamics generated by the model, we report, in the
upper left panel of Fig. 3, the price series resulting from a representative run, together with
the corresponding volatility. The plot shows, in black, the price dynamics, while color bars
refer to the related volatility. Moreover, the dashed lines identify the occurrence of extreme
values of the noise term component and allows us to compute the volatility cumulative
distribution both before and after such shock occurrences together with the related Omori
exponents. Notice that the price law of motion in Eq. 4 is influenced at each time t by a
random realization of the noise term εt , which reflects the impact of external events. To
select the time occurrence of the most relevant shocks in the model (which can play the
same role of the SARS-CoV-2 announcements), we consider the realization of ε that lies
above the 85-th percentile of the shock distribution. The lower left panel of Fig. 3 relates the
price pattern to the evolution of the fractions of chartists (blue) and fundamentalists (orange)
which populate the market. During periods in which technical traders dominate the market,
high volatility patterns and bubbles may emerge. However, fundamental analysis becomes
increasingly attractive as bubbles grow. If speculators switch from technical to fundamental
analysis, then volatility decreases and prices gradually retreat towards their fundamental
values.

Figure 3, right panel, shows the simulated CDF of large volatility occurrences along with
the Omori exponents for both the pre-shock and after-shock. We run 1000 simulations of
the model generating price time series of 200 points. For each realization, we identify the
occurrence of extreme shocks and, around suchpoints,we compute the empiricalCDFof large
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Fig. 4 Omori exponents sensitivity to the model behavioral parameters. Upper panels report the pre-shock
(left) and after-shock (right) Omori exponents on varying the market agents reactivity parameters, l and g, and
the intensity of choice e. The color-bar maps colors into numerical values of Omori exponents. The lower panel
displays the increasing relationship between the chartists reactivity parameter l and the difference between the
pre-shock and after-shock exponents. The red dashed line represents the linear fitting whose slope parameter
is reported in the annotation. (Color figure online)

volatility movements, as for the empirical series. Red and blue dots identify the cumulative
distribution of each run, while the black dotted lines represent the average empirical CDFs,
whose Omori exponents are reported in the box legend. The simulated volatility distribution
displays a power-law behavior in line with the observed volatility, and the related Omori
exponents have the same magnitude of those associated with the real financial indices.

4.3 Sensitivity analysis

OurAgent-Basedmodel allowsus to investigate how theOmori exponents varywith respect to
changes in agents’ investment attitudes, thus providing a behavioral rationale of the observed
volatility dynamics. Sincemarket participants can switch between trading strategies aswell as
respond to price changes with a different degree of reactivity, we investigate how such invest-
ment attitude produces dynamic relaxation in the volatility behavior in linewith that occurring
around SARS-CoV-2 related announcements. In particular, agents’ switching behavior is
related to the intensity of the choice parameter e (see Brock and Hommes 1998), while
chartists and fundamentalists reactivity to price changes are captured by the parameters l and
g, respectively. We thus perform a sensitivity analysis by running the model on a 3D grid of
3000 points in the space [50, 150]×[0.1, 0.7]×[0.1, 0.7] corresponding to the parameters e,
l and g, respectively, and recording, for each simulation, the values of the Omori exponents.

Figure 4 reports the sensitivity analysis with respect to the model behavioral parameters.
The left panel refers to the pre-shock case, while the right panel is associated with the after-
shock case. The Omori exponents decrease (cold colors) as long as the intensity of choice
e increases, since agent willingness to switch toward better performing strategies generates
long-lasting price fluctuations. In the opposite case, when the intensity of choice parameter is
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relatively low, agents almost evenly distribute among strategies disregarding the performance
measures. Thus, the occurrence of an exogenous shock induces a volatility outburst that is
rapidly absorbed by the market since there is not a dominant trading strategy followed by
the majority of the players. The absence of a continuous switching only leads to a temporary
market perturbation. In addition, if agents’ reactivity parameters, l and g, are relatively weak,
an exogenous shock hitting the market does not significantly alter agents’ demands and thus
price realizations. In other words, again, the price is mostly influenced only at impact by the
shock and displays a sudden volatility outburst which is rapidly reabsorbed. On the contrary,
an increasing reactivity to price trend or to mispricing induces the emergence of marked and
long-lasting bull and bearmarket phases through the asset demands, which create pronounced
volatility patterns slowly decaying over time.

Finally, the lower panel of Fig. 4 presents intuitions on the economic mechanism which is
at the ground of the asymmetry of the pre-shock and after-shock Omori exponents observed
in the real data. This asymmetry can be associated to the different degree of agents’ reactivity.
In particular, to qualitatively reproduce such stylized fact, we keep the parameter g fixed at
0.1, while we vary the chartists reactivity l form 0.1 to 0.7 generating 150 linearly distributed
points in this space. For each parameter configuration,we run themodel 1000 times. Each gray
point represents the difference between the pre-shock and after-shock exponents generated by
one run of the model, while the dashed red line identifies the linear fit with the corresponding
slope reported in the inset.We observe a positive relationship between the chartists’ reactivity
parameter l and the difference between the Omori exponents βPre

Ni
− β

A f t
Ni

. As long as the
value of l increases, the after-shock induced volatility slower dissipates in the market. In fact,
the volatility spike generated by the shock leads chartists to overreact to the price change at
impact, making the asset price to deviate from its fundamental value. For this reason, some
agents will start to believe that the price level is no longer sustainable and, therefore, they
switch to the fundamental strategy. As a consequence, prices gradually retreat towards their
fundamental values. Nonetheless, this condition reduces the attractiveness of the fundamental
strategy leading directly to a new wave of chartism dominance. Whilst there is a permanent
ongoing competition between the two trading rules, agents’ behavior is thus responsible for
the long-lasting market volatility and longmemory effects (see, e.g., Leal et al. 2016; Schmitt
and Westerhoff 2017b).

5 Concluding remarks

OnMonday 24th February 2020, stock indices plunged in response to the SARS-CoV-2 out-
break, which has been spreading all over the world. The day after, financial markets remained
wavy, reflecting hope that the economic fallout might be manageable. These markets’ move-
ments mirror the uncertainty that prevails and persists on financial agents’ beliefs. Among
economists, this ongoing situation more closely resembles the result of a natural disaster
than a traditional economic recession (see Baker et al. 2020; Bram and Deitz 2020). Mattia
Morandi, spokesman for Italy’s Ministry of Culture and Tourism, told The New York Times
that this market phase “is seen as on par with an earthquake, a situation of emergency”. The
economic contingency suddenly developed, in fact, as a consequence of a fast-moving global
pandemic reflecting into large volatility movements in financial markets.

The SARS-CoV-2 pandemic has caused a worldwide financial distress and its impact
on economic systems has proven to be heterogeneous and pervasive (see, e.g., Baker et al.
2020; Bonaccorsi et al. 2020; Spelta et al. 2020b; IMF 2020; McKee and Stuckler 2020;

123



Annals of Operations Research (2023) 330:639–664 653

OECD 2020). In this work, we have proposed to assess the market impact of SARS-CoV-2
announcements through the Omori law by quantifying the rate of occurrence of large volatil-
ity movements deriving parallels between energy dissipation, as observed for earthquakes,
and financial fluctuations. We have analysed data from 6 different financial systems in a
multivariate perspective, differently from what has been usually done in literature, with the
exception of Selçuk (2004) that focused on emerging markets. The joint consideration of
several markets has allowed us to compare different responses and, therefore, better under-
stand market reactions to extreme events. This, in turn, can reveal insights for the economic
outlook, for the evaluation of effectiveness of containment efforts and for the related recovery
patterns.

Not unlike an earthquake, themarket response to the SARS-CoV-2 news generates volatil-
ity rates that decay over time as a power-law, here interpreted as market inefficiency in
processing the flow of information. In particular, financial markets have shown a different
degree of reaction to the events that hit their respective country, being them either surprised
or able to early discount the effect of the related news. Besides quantifying the after-shock
market response, we have also uncovered the presence of quantifiable pre-shocks effects.
We have observed that countries earlier impacted by the SARS-CoV-2 contagion feature
the largest exponents, reflecting that the effects of shocks are perceived shortly before the
announcements and are rapidly absorbed. On the contrary, more capitalized financial indices,
such as DAX, FTSE100 and the S&P500, respond weakly to the shocks generated by the
SARS-CoV-2 announcements. Hence, if one can observe part of the dataset, then by fitting
the data by the Omori law with estimated parameters, it is possible to predict how long the
relaxation will take and how large effects it will bring under the hypothesis of power-law
relaxation. Thus, such information would be useful to plan a recovery and investments into
the financial markets. Our results are also of potential interest for traders which operate on
a short time scale. Indeed, the statistical regularity found for the different financial mar-
kets, before and after a market shock, could be used for hedging purposes, since the Omori
response dynamics provides a time window over which after-shocks can be expected. In
general, rare extreme events such as market crashes constitute a substantial risk for investors.
Due to the scaling properties of the Omori law, it is possible to analyze the statistics of
the consequent volatility cascades for different thresholds by studying the behavior of the
consequent occurring fluctuations.

In the second part of our work, through a stylized Agent-Based model we have shown how
agents’ behavior could amplify the market dynamics induced by the shocks, generating long-
lasting volatility patterns. The willingness of speculators to switch toward better performing
investment strategies, as well as their reactivity to the price trend, are key to understand the
observed market underreaction (see Barberis et al. 1998). This finding implies that markets
take a finite time to re-adjust prices following announcements and relate the market response,
quantified by the Omori exponents, to the change in the agents’ expectations before and after
the shocks.

Overall, our analysis not only bears relevance for the application of the seismologic
approach to extreme events that hit different financial markets, but it also contains a fur-
ther element that has not been considered before in the literature, namely the understanding
of how the markets’ response depend on the behaviour of financial traders. On one hand,
the choice of the seismologic approach is coherent with the fact that, after a large market
crash, markets show long-lasting activities in line with the Omori law. On the other hand,
the long-lasting price dynamics may be due to the interacting behavior of market’s partic-
ipants that can herd towards a common strategy and that lead the price to deviate from its
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fundamental value. This feature may cause crashes, and thus volatility outbursts, to be locally
self-enforcing or dissipating.

In conclusion, we can state that in a context characterized by complex behaviors due to the
financial crises generated by the SARS-CoV-2 pandemic, addressing short-term shocks in the
financial system will not be enough to face acute market risks derived from SARS-CoV-2.
A further level of analysis can thus be required. The adoption of a stylized Agent-Based
framework turns out to be relevant for the understanding of investors behavior at a micro-
level reacting to different policy scenarios implemented at a macro-level, and to undertake
the emerging challenges that are rapidly engulfing businesses affected by the pandemic.
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Table 1 SARS-CoV-2 related events for USA, Germany and France

United States

20/01/2020 First confirmed case

29/02/2020 First reported death

11/03/2020 The World Health Organization’s Director-General declares that SARS-CoV-2 can
be characterized as a pandemic

13/03/2020 Approval of an aid economic package for workers and individuals

16/03/2020 Trump issues guidelines to avoid social gatherings and to restrict discretionary
travels

22/03/2020 Trump announces the approval of Washington emergency declaration

24/03/2020 The White House and Senate leaders of both parties announced agreement of a §2
trillion measure to aid workers,

businesses and the healthcare system

06/04/2020 The Federal Reserve announces it will support banks that lend to small businesses

14/04/2020 The International Monetary Fund estimates global GPD to decline of about 3%

15/04/2020 Trump announces guidelines on reopening the US economy

Germany

25/02/2020 First confirmed cases in the Baden-Württemberg region

09/03/2020 First reported death

10/03/2020 Merkel announces up to 70% of Germany could become infected
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Table 1 continued

11/03/2020 Merkel announces liquidity support for companies

The World Health Organization’s Director-General declares that SARS-CoV-2 can
be characterized as a pandemic

17/03/2020 The health threat switches from moderate to high

23/03/2020 The government decides on a financial aid package of 750 billion

24/03/2020 The European Commission approves, under the Temporary Framework, a German
scheme to support companies

G7 finance ministers and central bank governors meeting, pledging to do “whatever
is necessary” to help their

economies recover from the coronavirus

01/04/2020 Social distancing measures are extended until April 19th

09/04/2020 The ministers of Finances of the Eurozone countries agreed to a 500 billions aid,
including the possibility of using

the European Stability Mechanism

14/04/2020 The International Monetary Fund estimates global GPD to decline of about 3%

23/04/2020 The European Council approves a financial aid package worth 540 billions

30/04/2020 The European Central Bank announces new pandemic emergency longer-term
refinancing operations

France

24/01/2020 First confirmed case

14/02/2020 First reported death

10/03/2020 Introduction of mobility and activities restrictions

11/03/2020 The World Health Organization’s Director-General declares that SARS-CoV-2 can
be characterized as a pandemic

16/03/2020 Announcement of national lockdown

17/03/2020 The French Finance Minister Le Maire announces a 45 billions aid package for
small businesses and other hard-hit sectors

24/03/2020 The European Commission approves, under Article 107(3)(b), three French State aid
schemes

G7 finance ministers and central bank governors meeting, pledging to do “whatever
is necessary” to help their

Economies recover from the coronavirus

14/04/2020 The International Monetary Fund estimates global GPD to decline of about 3%

23/04/2020 The European Council approves a financial aid package worth 540 billions

28/04/2020 The Prime Minister reveals plans to ease SARS-CoV-2 lockdown measures

30/04/2020 The European Central Bank announces new pandemic emergency longer-term
refinancing operations
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Fig. 5 Financial indices volatility correlation. The figure shows the pairwise Pearson correlation coefficients
among the volatility series of the considered financial indices. Darker colors correspond to higher correlated
pairs. (Color figure online)

Fig. 6 Volatility patterns for selected bond yields along with the events dates. Column bars represent, for each
country, the daily volatility of the reference bond yields (lower panel). The dashed black lines identify the
dates of the relevant events, which mainly impacted the course of the national bond markets
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Fig. 7 SVD proxy of the aggregate volatility for the selected countries. The black solid line proxies the
aggregate volatility dynamics obtained through the SVD of the volatility matrix V = [V1, . . . , Vi ] ≈ U�W.
Colored bars refer to the daily volatility of the different market indices while dashed colored lines identify the
days of SARS-CoV-2 related events in each country. Colors are associated to the different markets according
to the legend. (Color figure online)

Fig. 8 Volatility distributions. The figure reports the volatility distributions for the reference financial markets
highlighting with red dashed bars the 85th percentiles taken as a reference for identifying the threshold for
high volatility movements. (Color figure online)
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Fig. 9 Average distribution of large volatility occurrences and Omori exponents for the bond markets. The
upper panel report the log-log plot of the average cumulative distribution of large volatility movements around
the days of SARS-CoV-2 related announcements. The legend provides the values of the Omori exponents for
both pre-shocks and after-shocks. The lower panels show the cumulative distributions of the pooled pre-shock
and after-shock Omori exponents. In particular, the red color is used to identify the empirical CDF of the
pre-shock exponents, while the blue color is associated with the after-shock distribution. (Color figure online)

Fig. 10 Omori exponents for each single SARS-CoV-2 event computed on SVD proxied volatility. The figure
shows the Omori exponents related to the cumulative aggregate volatility distribution around the single dates
of SARS-CoV-2 related news. The upper panel refers to the pre-shock case while the lower panel displays the
exponents for the after-shock case
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Fig. 11 Omori exponents for different thresholds of the volatility distribution. The figure shows the Omori
exponents related to the cumulative aggregate volatility distribution and computed by varying the parameter
q, which is the percentile of the volatility distribution used for defining the binary volatility series
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