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Abstract
Investigating the co-movements between crude oil futures helps to understand the integration
of the globalmarkets. This paper focuses on Shanghai crude oil futures (INE) and study its co-
movements with the international benchmarks ofWTI andBrent crude oil futures in intra-day
day and night trading sessions. A complex network model framework is proposed to analyse
the intra-day co-movement patterns labelled by a functional data clustering approach on
intra-day return curves. Our findings indicate INE is more integrated with the global market
during the night session, but it shows a regional fractional effect during the day session.
Based on the revealed dynamics of co-movement patterns, we further design a pairs trading
strategy between INE crude oil futures and the international benchmarks. The simulation
results show that the pairs trading strategy can be promisingly profitable, even during market
turmoil phases.

Keywords INE Crude oil futures · WTI and Brent · Intra-day co-movement patterns ·
Complex network model · Pairs trading

JEL Classification C12 · C52 · G11 · G15

1 Introduction

Since the financial crisis of 2008, the pricing pattern in the international crude oil market has
become more complex and sometimes impenetrable. A more volatile and less predictable
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market is partly due to the aftermath of the crisis and partly due to the dramatic changes in the
global markets. For example, the shale gas revolution brought the U.S. energy independence,
which has greatly changed the global oil trade network. Since 2014, the price war led by
Saudi Arabia and OPEC drove oil prices to a level lower than the crisis period. Pressures from
climate change have made the energy transition more urgent. As more countries committed
carbon-neutral, replacing traditional fossil fuel energy with renewables will be faster. The
transition process will inevitably press international crude oil markets further. In addition,
geopolitical risks cannot be ignored when we investigate the global crude oil markets. Brexit,
the US-China trade war, the anti-globalization, and the COVID-19 pandemic are disturbing
forces that shake the foundation of the current crude oil system and bring new changes to the
global energy landscape.

An important topic in studying crude oil futures markets is whether worldwide comprise
an integrated global market or regional fractional markets. The impetus behind this is that
markets-based rules have gradually driven the asset pricing of crude oil futures. Studying the
co-movements and the lead-lag effect between different markets also provides a theoretical
basis for global investors who participate in spread trading and risk hedging in crude oil
futures markets. In the global crude oil trading system, China nowadays plays an increasingly
important role since it has become the world’s largest crude oil importer. It is non-negligible
to consider the effect of crude oil prices in China on the global crude oil pricing system,
given the fact that the demand of emerging markets is a significant factor since 2003 (Li and
Lin 2011). As a result, this motivates studies of co-movements between China’s market and
the international crude oil markets.

Prior to 2018, most studies in this field concentrated on analyzing the co-movement or
spillover effect between the Chinese spot market and the international crude oil futures
markets. In general, significant co-movement characteristics were empirically evidenced. Li
and Leung (2011) found that China was actively engaged in the world oil market and formed
a cointegrated relationship with major international crude oil futures. Jia et al. (2015) applied
multivariate dynamic correlation models to test the dynamic co-movement between Chinese
Daqing spot prices and three crude oil futures, including Brent, Dubai, and Minas. Their
results suggested a global integration of crude oil markets. Zhang (2019) also investigated
the integration between Chinese Daqing crude oil spot and WTI crude oil futures and found
a significant spillover effect in returns and volatilities.

On March 26, 2018, crude oil futures were officially listed on the Shanghai International
Energy Exchange (INE), which instantly received extensive attention from global traders
(Ji and Zhang 2019). This market then experienced rapid development during the following
three years, such that Shanghai crude oil futures exceeded Oman crude oil futures in terms
of the trading volume. Today, they are the most frequently traded crude oil futures in Asia
and has become the world’s third-largest crude oil futures trading product after WTI and
Brent. In 2020, this growing trend did not be halted in the presence of the outbreak of the
COVID-19 pandemic. Instead, because of the demand for safe-haven hedging from other
sectors, the volume of INE crude oil futures has achieved extensive growth during the pan-
demic. In June 2020, the average daily trading volume reached 300,000 transactions, and the
average daily open interest exceeded 150,000, carrying out a threefold and fourfold increase
from the beginning of the year, respectively. Besides, INE crude oil futures were initially
more actively traded during night trading sessions because more information was revealed
in Western trading hours. In contrast, the current trading volume during daily trading ses-
sions has increased in proportion from 25% in 2018 to 50% in 2020. On some trading days,
the liquidity during Asian main trading hours has exceeded that of Brent crude oil futures,
indicating that INE is progressively dominating investors in Asian trading hours.
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The integration between WTI and Brent has been extensively studied. Overall, these two
futures show strong co-movements, although the discussions about their dynamic relation-
ships are still controversial. On the one hand, some evidence of a long-run relationship among
these two crude oil futures was identified, see, Hammoudeh et al. (2008), AlMadi and Zhang
(2011), and Narayan et al. (2011). Also, Klein (2018) verified that OPEC meetings could
increase the correlation between WTI and Brent in the short run, while WTI shows price
leadership over Brent in spot and futures. On the other hand, some recent studies claimed
that the US shale oil supply shock had broken the long-run relationship between WTI and
Brent. Ji and Fan (2015) found a new structural break in the relationship between regional
crude oil prices, which could be attributed to the decoupling of WTI from other crude oils
since 2010. In addition, the authors concluded that WTI was a price setter before 2010, while
Brent has become a leading role since 2011. Chen et al. (2015) identified the same breakpoint
and stated that WTI had appeared to trade at a sizeable discount against Brent in recent years.
Such a spread implies arbitrage and hedging opportunities, also see Caporin et al. (2019).

More recently, as a new market participant, INE crude oil futures receive trendy attention
to study its co-movements and regional fractional effect with the global benchmark crude
oil futures. The existed works mainly focused on the pricing rule and market efficiency of
INE as a single market (Ji and Zhang 2019; Li et al. 2020; Yang et al. 2019; Wang et al.
2019). Only a few works have been done to study the dynamic co-movements between INE
and international crude oil futures to the best of our knowledge. Palao et al. (2020) applied
a multiple regression model to examine the impact of INE on WTI and Brent. The findings
showed that INE exhibited limited influence on the intentionalmarket. In amore related study,
Huang and Huang (2020) asserted weak and unstable co-movements between WTI, Brent,
and China’s crude oil futures by using daily closing prices. Their results revealed market
co-movement patterns in both short-run and long-run, providing implications to regulators
and investors.

However, the informative high-frequency data so far has not been studied. The intra-day
information is particularly of interest in this study because it contains additional trading
information and allows us to investigate the co-movements between crude oil futures in
day and night trading sessions separately. Segmenting intra-day trading hours into day and
night trading sessions is a regulatory rule of INE crude oil futures. As a consequence, it
is likely to have differently behaved investors in these two trading sessions (Ji and Zhang
2019). Hence, dissecting the intra-day co-movements between INE and the representative
international crude oil futures is a question worthy of study.

In this paper, we consider intra-day return curves of INE,WTI, and Brent crude oil futures.
The data is collected at a five-minute frequency from March 26, 2018, to April 30, 2020. By
smoothing the discrete data into intra-day return curves, we classify the intra-day movement
patterns into three categories, “Rise", “Decrease", and “Sidewalk" through a functional data
clustering approach. The labelled intra-day co-movement patterns allow us to set up complex
network models to depict the dynamic interrelationships among these three crude oil futures.
According to the empirical results, INE shows more integrated co-movements with WTI and
Brent crude oil futures during the night trading session; INE behaves more like a regional
fractionalmarket to the intentionalmarkets during the day trading session. The results indicate
that investors in China’s crude oil futures market are more inclined to be affected by global
macroscopic news during WTI and Brent’s active trading hours. Besides, by splitting the
sample into sub-samples of a market normal phase and a COVID-19 pandemic phase, we
notice that INE shows fewer co-movements with the international under the local market
regulations during the market turmoil, providing implications to investors for hedging risks.
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To study the dynamic intra-day co-movement patterns, this paper applies complex network
models embedded with a functional data analysis to tackle the high-frequency information.
Conventionally, realised and range-based measurements are usually used to study data in
a high-frequency environment. Such econometric methods calibrate the objective variance
or covariance estimators by incorporating intra-day information, but intra-day movement
patterns can be omitted. Instead, we smooth the discrete high-frequency data into func-
tional intra-day curves. This is a more rational treatment because (1) functional intra-day
curves effectively preserve the intra-day movement patterns; (2) intra-day price or return
data observed on a very fine grid are intrinsically forming a continuous functional curve. We
refer to the recent papers by Kearney and Shang (2020) and Rice et al. (2020a) on functional
data analysis applications in finance.

The contributions of this paper can be summarized three-fold. First, our results com-
plement the findings of Huang and Huang (2020), who claimed that INE shows fewer
co-movements with WTI and Brent. We recognize that market regulations lead to a rela-
tively segmented day-night market for INE crude oil futures, and our empirical results show
that co-movements between INE and the other two benchmarks can be strong during the night
trading sessions. In addition, the distinctive regional difference during the day trading session
generates hedging opportunities for domestic and international investors. Second, based on
intra-day co-movements dynamics, we implement a pairs trading strategy between INE and
international benchmarks. The simulation results indicate a profitable trading strategy, even
during the market crisis. This is useful for investors and also provide further implications to
regulators in studying the regional effect. Third, we propose a methodological framework
to investigate the dynamics of intra-day co-movements in financial markets. The framework
can be applied to study co-movements in other financial markets and potentially useful for
setting up more complicated trading strategies.

The remainder of the paper is structured as follows. Section 2 describes the dataset and the
main methodology, including a functional data clustering approach and a complex network
model method. Section 3 summarises the empirical results. In Sect. 4, based on the intra-day
co-movement patterns, we design a pairs trading strategy between WTI, Brent, and INE,
and their performances are assessed under both market normal and the COVID-19 pandemic
phases. Section 5 concludes and provides policy implications.

2 Data andmethodology

This section first introduces the intra-day crude oil futures dataset and then outlines a complex
network analysis framework to study the intra-day co-movement patterns between China’s
and international crude oil futures.

2.1 Intra-day crude oil futures dataset

The dataset used in this study is composed of INE, WTI, and Brent crude oil futures intra-
day price data at a five-minute frequency, collected fromWIND and Thomson Reuters Eikon
databases. The time series price data is formed by using the front-month futures contracts for
all three assets. The sample starts when INE first listed its contracts until the recent outbreak
(i.e., the first surge phase) of the COVID-19 pandemic, ranging between March 26, 2018,
and April 30, 2020.
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Fig. 1 CIDR curves for INE over the day trading session

Because INE crude oil futures are traded under specific regulatory rules, we tailor our
sample for the main context analysis from the following two aspects. First, INE crude oil
futures only trade on weekdays in separate day trading sessions (9:00 a.m.–11:30 a.m. and
1:30 p.m.–3:00 p.m.) and night trading sessions (9:00 p.m.–2:30 a.m.). To ensure that the
consistent information flow is used, we consider two continuous trading sessions: day (9:00
a.m.–3:00 p.m.) and night (9:00 p.m.–2:30 a.m.) for all three crude oil futures according
to their local trading times. Second, due to the concern of the catastrophic effect of the
COVID-19 pandemic, INE suppressed its night trading session from January 22 to May
6, 2020. Therefore, we truncate our sample until January 22, 2020, for a market normal
phase analysis. The trading information between January 22 and April 30, 2020, is used for
robustness check analysis over the COVID-19 pandemic in Sect. 4.2.

In both sub-samples, we obtain two intra-day price curves from day and night trading
sessions on each trading day by smoothing high-frequency discrete price data into functional
curves through B-spline functions (Ramsay and Silverman 2007). We denote the price curve
as Pi (t), for 1 ≤ i ≤ N and t ∈ [0, 1], where N is the sample size and t is the intra-day
standardised index. As functional data objects, the price curves are assumed to be random
sequences in L2[0, 1] Hilbert space with sample-path on [0, 1]. For a stationary transforma-
tion, we use the cumulative intra-day log return curves (CIDR) yi (t) as discussed inKokoszka
et al. (2017), formulated as,

yi (t) = 100 × (log Pi (t) − log Pi (0)), 1 ≤ i ≤ N , t ∈ [0, 1], (1)

where Pi (0) is the opening price on day i . There are other versions of intra-day return curves;
see, Kokoszka et al. (2017) and Rice et al. (2020b). We choose the CIDR curve because its
smoothness naturally serves to a functional data analysis modelling. More importantly, the
CIDR curves can be classified based on the well-preserved intra-day movements, enhancing
our understanding of the evolutions of intra-day returns for crude oil futures. In a visual
example, Fig. 1 displays the trajectory of INE’s CIDR curves over the day trading sessions
from March 2018 to January 2020.

Table 1 provides a statistical summary of the returns, where Panel A documents the prop-
erties of discrete intra-day returns. The results indicate an inverse day-night effect between
INE and the international benchmarks. INE gains negative averaged returns and large fluc-
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tuations during the night trading session, while WTI and Brent obtain positive and smaller
counterparts, respectively. Panel B shows the properties of the CIDR curves by applying
recently developed hypothesis tests in functional time series analysis, including the station-
ary test (H0: stationary curve, Horváth et al. 2014), the normality test (H0: Gaussian-typed
curve, Górecki et al. 2018), the autocorrelation test (H0: uncorrelated but a heteroscedastic
curve, Kokoszka et al. 2017) and the conditional heteroscedasticity test (H0: independent
curve, Rice et al. 2020b). The autocorrelation and heteroscedasticity are examined with max-
imal lag H up to 20. We find that the CIDR curves drawn from crude oil future markets, like
other typical financial asset returns, are stationary, non-normal, uncorrelated, and conditional
heteroscedastic.

2.2 Methodology

We now introduce a complex network analysis framework embedded with a functional data
clustering approach. Complex network analysis has been successfully applied to many fields,
including economics and finance. This method provides a topological structure to depict the
dynamic relationship between objects, which tallies with the interests of many financial
research topics. For example, Gai and Kapadia (2010) designed a financial network model
to study the contagion effect in the equity market. Zhu et al. (2018) segmented the co-
movement patterns of equity indexes into positive, none, and negative categories and built
a complex network model to investigate financial contagions (also see Wang et al. 2016).
The popularity of the complex network model protrudes its flexibility as the objects can
be numeric variables or symbolic characters. Thus, in order to investigate the intra-day
dynamics of crude oil returns, we first classify the intra-day return curves into categories
according to their movement patterns and then build complex network models to explore the
interrelationships.

The intra-day movement classification is completed by using a functional data clustering
approach proposed in Bouveyron et al. (2015). One can refer to Sugar and James (2003) and
Bouveyron and Jacques (2011) for other relevant methods. We apply a functional mixture
model-based approach—the FunFEM algorithm (Bouveyron et al. 2015), because it is more
effective to fit spike-like financial data and allows for the visualisation of the clustered groups.
To describe this approach, we consider a set of known basis functions {ψ1(t), . . . , ψp(t)},
t ∈ [0, 1]. In functional data analysis, the CIDR curves yi (t) can be approximated as:

yi (t) =
p∑

j=1

γ jψ j (t),

where the loading coefficient � = {γ1, . . . , γp} is a random vector on R
p . Our goal is to

classify yi (t) into M homogeneous groups using a discriminate functional model. For the
model construction, we assume the latent random variable gm ∈ {g1, . . . , gM } to aid the
group identification of y(t). Under the rules, the model obtains gm = 1 if y(t) belongs to
the mth group; otherwise, it is valued 0. Hence, based on the estimator of gi,m , we identify
the group index for each CIDR curve yi (t). We also assume that the most discriminative
subspace in the M groups is spanned over d known basis functions {φ1, . . . , φd}, for d < M
and d < p. Projecting yi (t) onto {φ j}, j ∈ [1, d] bases, we get the random functional
loadings � = {λ1, . . . , λd} ∈ R

d . The following linear transformation then connects the
basis functions ψ j , 1 ≤ j ≤ p and φ j , 1 ≤ j ≤ m,

� = U� + ε,
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where U is a p × d coefficient matrix, and ε ∈ R
p is an independent noise term. We further

assume that conditional on gm ,� is multivariate Gaussian distributed:�|gm ∼ N (μm, 	m),

where μm and 	m are the mean and the covariance matrix of the mth group, respectively.
In terms of the noise term, a multivariate Gaussian density ε ∼ N (0, 
) is assumed such
that the covariance matrix �m = cov([U , V ]��|gm) = [U , V ]�	m[U , V ] is expressed as
follows:

�m =

⎡

⎢⎢⎢⎣

	m 0

0

β 0
. . .

0 β

⎤

⎥⎥⎥⎦ ,

where 	m represents the variance of yi (t) categorized into the mth group, and β is the
variance of the noise term.

As indicated by Bouveyron et al. (2015), twelve discriminative functional models can be
formed throughdifferent constraints on�m .AFunFEMalgorithmwith three steps then solves
these discriminative functional models: (1) assuming posterior probabilities to unknown
group functions; (2) applying the EM algorithm to solve the model given a known group
functions assumed in step (1); (3) updating the posterior probabilities and iterating steps (1)
and (2) until a criterion is reached. The optimal discriminative model is then selected through
the penalised criteria discussed in Birgé and Massart (2007) and then provides advice on
the data clustering. For more technical details about the FunFEM algorithm, we refer to
Bouveyron et al. (2015).

The crude oil futures CIDR curves thus can be clustered into three movement patterns
– “Rise" (r), “Sidewalk" (d), and “Decrease" (d) via the above method. We now construct
complex network models on the clustered intra-day return curves. The networks are used to
study the intra-day dynamics of a single asset or the co-movement between multiple assets.
We, therefore, define the intra-day mode of crude oil futures in two forms: (1) {Day-pattern,
Night-pattern}, (2) {INE pattern, benchmark pattern}. The former depicts a single asset’s
intra-day return movement pattern. For example, suppose the day and night trading sessions
were “Rise" and “Sidewalk" for INE on the day (i), we label a pattern “rs" on the day (i).
The latter describes the co-movement dynamics between INE and the benchmark crude oil
futures. In this form, the “rs" represents that the CIDR curves are categorized as “Rise" and
“Sidewalk" for INE and benchmark crude oil futures on the day (i), respectively.

Following Gai and Kapadia (2010), we consider a network structure with K = 9 nodes,
which are the permutations of two elements between three patterns: “r", “s" and “d". The
network nodes represent different intra-day modes, and the edges between nodes indicate
the direction and weight of the indicated transformation. To understand the properties of the
networks, we concentrate on three measures that capture key features of the structure: degree,
betweenness, and closeness centralities. The degree centrality depicts howmany connections
one node has, consisting of an in-degree and out-degree in a directional network, representing
incoming and outgoing connections to a node. In the formula, for node u, u ∈ [1, 9], the
degree Du measures the total number of connections cu,v by:

Du =
Ju,in∑

v

cu,v +
Ju,out∑

v

cu,v,

where Ju,in and Ju,out are the number of neighbours of node u in terms of incoming and
outgoing directions, respectively. The degree indicates which nodes are the most frequent in
the network structure.
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Betweenness centrality identifies the transition ability of node u, measuring the number
of the shortest paths from all nodes to others that pass through the node u. To formulate it,
we denote the betweenness of node u by Bu as follows:

Bu =
K∑

v

K∑

k

gv,k(u)

gv,k
,

where gv,k(u) is the number of the shortest paths that pass through node u. Therefore, the
node with a higher betweenness plays a more important mediating role in the network.

The third measurement is closeness centrality, which is defined as the distance from a
node to all other nodes in the network. Specifically, in node u, its closeness Cu is the sum of
the shortest distances between node u and all others, given as follows,

Cu =
Ku∑

v=1

du,v, Ku ≤ K,

where du,v is the shortest distance between node u and v, andKu is the total number of nodes
that connects with node u.

3 Empirical results of complex networkmodels

3.1 The clustering of CIDR curves

This section conducts complex network analyses and studies the intra-day dynamic (co-
)movements of crude oil futures. Based on the FunFEM algorithm, the CIDR curves are
clustered into “r", “s" and “d" modes, revealing their intra-day movement patterns. Figure 2
displays the clustered CIDR curves of INE, WTI, and Brent crude oil futures in both day
and night trading sessions. In accordance with the findings shown in Table 1, we find a
day-night reversal effect. INE’s returns from the day trading sessions lack trading activity
and exhibit less variation, which is similar to the behaviour of WTI and Brent from the
night trading sessions. Conversely, INE’s returns become more fluctuated during the night
trading session, roughly mimicking WTI and Brent’s movement patterns during their day
trading sessions. This result meets our expectation because WTI and Brent crude oil futures
are more active during their day trading sessions, and investors from the Shanghai futures
exchange during the night trading session mainly follow the information conveyed from the
international benchmarks. We explain this result with the characteristic that China’s crude
oil futures market lacks international investors, given the market access barriers discussed in
Huang and Huang (2020).

Besides, we compute the proportions of three modes for each of crude oil futures. Figure 3
illustrates the portions of “Rise", “Sidewalk" and “Decrease" intra-day movement patterns
over the day and night trading sessions in the entire sample for INE, WTI, and Brent crude
oil futures. From the figure, we observe that for all three assets, around one-half of the CIDR
curves fall into a pattern of “Sidewalk" intra-day movement, and the “Rise" and “Decrease"
intra-day movement patterns roughly share the remaining portions equally. Comparatively,
WTI and Brent behave similarly in all three intra-day movement patterns in both day and
night trading sessions. INE is more likely to present a “Sidewalk" pattern in the day trading
sessions, but it is inclined to show directional patterns in the night trading sessions. This
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Fig. 3 Proportions of intra-day movement status on INE, WTI and Brent crude oils. The sub-figures in the
first and second rows represent day and night trading sessions

result confirms that INE retains market follower’s role to theWTI and Brent crude oil futures
during the night trading sessions.

3.2 Complex networks analysis

We then investigate the interrelationships between the nodes labelled by clustered intra-day
modes with the complex network analysis. Let us first focus on the single asset crude oil
futures. The network nodes are formed as intra-day movement modes {Day-pattern, Night-
pattern}. Figure 4 displays three complex networks built for INE, WTI, and Brent crude
oil futures, respectively. In the network models, the nodes with larger scales imply higher
degrees, and a thicker directional edge indicates more weight on such transformations, that
is, a more frequent transformation from one node to another.

By combining with Table 2, we can see that the intra-day dynamic pattern “ss” accounts
for the largest degree for all three crude oil futures. Table 3 documents the transition edges
and shows that the pattern “ss” will most likely still be followed by “ss” on the next day. The
second-largest degreed node is slightly divergent between INE and benchmarks, resulting
in the pattern “sr” for INE and the pattern “ds” for WTI and Brent, but both are often
followed by the pattern “ss". The degree of remaining nodes is mixing, and the weights of
corresponding edges are not particularly dominated. Regarding the measure of betweenness,
the pattern “rs” wins first place for INE, while the largest betweenness node for WTI and
Brent is “ss”. This implies that different from the international benchmarks whose central
intra-day movement patterns are likely to be the same during day and night trading sessions,
INE is likely to be varied. The node with the second-largest betweenness is more divergent
among all three futures, appearing the pattern “rd” for INE, and the patterns “sr” and “dr”
for WTI and Brent, respectively. Lastly, to compare the measure of closeness, we find that
the largest closeness node is the pattern “dd” for INE and Brent, and the pattern “sd” for
WTI. Similar to the betweenness, the second-largest closeness node becomesmore disparate,
giving the pattern “dd” for INE, “sd” and “dd” for WTI and Brent, respectively. The mixing
results on the exposed intra-day movement structures indicate that, although INE shows
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Fig. 4 Complex networks built on intra-day dynamic modes of INE, WTI and Brent crude oil

some integration with WTI and Brent, it still shows some regional market segmentations.
This regional segmentation motivates us further to study the co-movements between INE
and WTI and Brent.

As discussed in Sect. 2.2, the network models with the nodes taking the form of {INE
pattern, benchmark pattern} were constructed to analyse the dynamics of intra-day co-
movements. In order to study their co-movements between day and night trading sessions,
we build the networks separately toward these two trading sessions. Figure 5 shows virtual
plots of the complex network between INE and the international benchmarks in the day and
night trading sessions, respectively. In all networks, we find that the three largest degree
nodes are the patterns “ss", “rr" and “dd", and it is also noticeable that the nodes of divergent
patterns “rd" and “dr" are very rare with the smallest degrees. These results indicate a gen-
eral trend of co-movements in the global crude oil futures market. Nonetheless, to compare
the complex networks between day and night sessions, it is notable that the co-movement
nodes are dominated during night sessions, while these nodes are less dominated in the day
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Table 3 Weights of the top five edges of INE, WTI and Brent complex networks with all values measured in
percentages

Rank INE WTI Brent

Edges Weight Edges Weights Edges Weights

1 ss → ss 8.56 ss → ss 9.27 ss → ss 10.17

2 ss → sr 6.48 ds → ss 5.30 ss → rs 4.76

3 sr → ss 4.40 ss → rs 5.08 rs → ss 4.11

4 rs → ss 3.70 ss → ds 4.86 ss → ds 3.90

5 sd → ss 3.47 ds → ds 3.97 ds → ss 3.46

Fig. 5 Complex networks built on intra-day co-movement modes of pair-wise crude oil futures between INE
andWTI/Brent. The sub- figures in the first row represent networks in day trading sessions, and the sub-figures
in the second row represent networks in the night trading session

network models. Once again, these findings confirm that the co-movements between INE
and the global crude oil futures market become weak during the day trading sessions.

Additionally, the directional edges connect the nodes and reveal the transformation from a
pattern to another, and the weights of edges measure the frequency of these transformations.
An immediate application from this is that we can calculate the transition probability and
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predict co-movement patterns. Inspired by Liu et al. (2017), we utilise the networks and
calculated the transition probabilities between all nodes over the sample period. Using the
transition matrices shown in Table 4, we get the probabilities of the next day’s co-movement
patterns between INE andWTI or Brent. It should be noted that these probabilities are highly
sample-driven as the sample length and market status can be crucial factors in determining
the accuracy of transition probability. Given that INE is still a young market and lacks plenty
of historical data, some biases can be present. However, based on the truth that oil prices
have a long memory characteristic supported by previous literature, we believe the transit
probability estimators will be stable if more observations are included. The current sample
retains some similarities on the transition probabilities between INE and two international
leaders, which yields a correlation coefficient of 0.72 between INE-WTI (day) and INE-
Brent (day) and 0.76 between INE-WTI (night) and INE-Brent (night). The relatively steady
co-movement dynamics implies that we can take advantage of some regular transformation
channels to hedge the trading risks between INE and international benchmarks.

4 Pairs trading strategy of crude oil futures

Despite the fact that INE is a new player in the global crude oil futures market, it has drawn
increasing attention in terms of exploring trading opportunities. This section designs a pairs
trading strategy based on intra-day co-movement dynamics indicated by the complex network
models.

4.1 The pairs trading strategy and its performance

The previous section computed the day-by-day transition probabilities of intra-day co-
movement patterns, which allow us to predict the co-movement pattern between INE and
the international benchmarks. Thus, we allocate long positions between INE and other crude
oil futures under a unit budget constraint. The following demonstrates the trading strategy
with an example composed of INE andWTI, and the case of INE and Brent is essentially the
same.

Assuming that the intra-day co-movement pattern can be precisely predicted from a transit
probability P, we generate three trading signals: “Buy INE", “BuyWTI", and “Equal weights
for INE and WTI". The signal “Equal weights for INE and WTI" would be considered if
the predicted co-movement between INE and WTI were concordant, i.e., {“ss", “rr", “dd"}.
On the contrary, the signal “Buy INE" or “Buy WTI" would be identified if we predicted a
divergent co-movement between INE andWTI. The following chart shows how to determine
the trading signals based on the forecasting of divergent co-movement patterns. We take the
first row in the left-hand side panel as an example. When the predicted co-movement pattern
was “rs", with the meaning that INE andWTI are respectively to show “Rise" and “Sidewalk"
patterns on the day (i + 1), we assign a trading signal “Buy INE" at the end of the day (i)
simply because INE outperforms under the prediction.

Buy INE

⎧
⎨

⎩

INE Rise, WTI Sidewalk (rs)
INE Rise, WTI Decrease (rd)
INE Sidewalk, WTI Decrease (sd)

, Buy WTI

⎧
⎨

⎩

INE Decrease, WTI Sidewalk (ds)
INE Decrease, WTI Rise (dr)
INE Sidewalk, WTI Rise (sr)

In practice, it is infeasible to predict a certain intra-day co-movement pattern under the
transit probability matrix P. Instead, it yields different possible co-movement patterns, which
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Fig. 6 Trading signals on INE andWTI crude oil futures, with orange, grey, and ivory shaded intervals standing
for “Buy INE", “Buy WTI" and “Equal weights"

suggests the weights allocated to three trading signals: wi+1,EW , wi+1,I N E , and wi+1,WT I ,
with the constraint (wi+1,EW + wi+1,I N E + wi+1,WT I ) = 1. Consequently, the return of
trading strategy yPTi+1 can be computed as follows:

yPTi+1 = (yINEi+1 /2 + yWTI
i+1 /2) × wi+1,EW + yINEi+1 × wi+1,I N E + yWTI

i+1 × wi+1,WT I ,

(2)

where yINEi+1 and yWTI
i+1 are the realisation of closing returns on day (i + 1). The transit

probability matrix must be estimated from the historical data. Thus, we use P̂ as shown in
Table 4. The pairs trading rule now can be summarised as:

Algorithm 1: Pairs trading strategy of crude oil futures

Input: Co-movement pattern on day (i), yINEi (t), yWTI
i (t), P̂.

Output: ŷPTi+1
Step 1. Predict the intra-day co-movement pattern on day (i + 1) by using a known transit probability
matrix P̂;
Step 2. get the trading signals and assign weights to “Buy INE", “Buy WTI", and “Equal weights for
INE and WTI";

Step 3. obtain trading return yPTi+1 according to Equation (2).

Figure 6 provides an example to illustrate how the trading strategywork over day and night
trading sessions in five days. If an interval is shaded with “orange" or “grey", we position
“Buy INE" or “Buy WTI"; otherwise, we trade with “Equal weights". The figure shows
rational positioning weights on INE andWTI, given the fact that their co-movement patterns
are precisely predicted. For example, on August 28, 2019, the position of “Buy INE” in the
day session seems to be a wise decision given that the realisations of INE’s returns rise and
WTI’s returns fall.

To evaluate the trading performance, we denote PTI s f (intra-day co-movements forecast-
ing) as the portfolio using the sample transition probability P̂. In addition, we consider a
frictionless case that the intra-day co-movement patterns are precisely predicted without any
bias from the sample, i.e., in-sample simulation, denoted byPTOra (oracle). Three benchmark
assets are used, including INE, WTI or Brent, and an equal-weight portfolio (Ewgt).
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Table 5 reports the annual return, Sharp ratio, and a maximum drawdown of the assets
returns.A three-monthT-bill rate is deployed as the risk-free rate in theSharp ratio calculation.
In specific, the portfolio PTI s f always outperforms the benchmarks over both day and night
trading sessions, producing higher Sharp ratios and much lower maximum drawdown during
the day trading session. Even though its performance becomes weaker when we pairs trade
INE and Brent, the findings remain robust. Second, the portfolio PTOra gains much higher
Sharp ratios in all scenarios, which implies a potentially high profit if amore precise transition
probability is used. Third, compared with day trading session, except for PTOra , all other
portfolios perform clumsily during the night trading sessions. This is not too surprising as
the hedging opportunities are lacking given more integrated night trading sessions, and also,
the high violation in the night session leads to a difficult forecasting task. Nonetheless, PTI s f

still hedges some risks compared with benchmarks. Figure 7 plots the cumulative returns in
the case of trading INE and WTI in day sessions. The coloured signals are used as the same
as in Fig. 6. Consistently, the portfolio PTI s f generally outperform the benchmarks, and the
cumulative returns of PTOra rockets during the sample period benefit from the assumption
that accurate transition probabilities are applied.

Furthermore, to explore the underlying regularities, we compute the Sharpe ratio of port-
folio returns classified by intra-day co-movement patterns. Table 6 displays the Sharpe ratios
of PTI s f and PTOra’ returns categorisedwith nine types of co-movement patterns. According
to the results, the portfolio PTI s f is more likely to be profitable in the day trading sessions if
the co-movement patterns were “ss”, “rs”, “dd”, “sd”, and “rd”. In contrast, only the pattern
“ds” consistently delivers positive profit in night trading sessions. In addition, the portfolio
PTOra obtains positive profits under most intra-day co-movement patterns with only a few
exceptions, including “rs", “dd", “sd" and “dr" in the night trading sessions. These findings
confirm that the intra-day co-movements between INE andWTI or Brent have founded some
repeatable regularities, which can be used to understand the dynamic co-movements and
guide investments in the future global crude oil futures market.

4.2 Pairs trade crude oil futures during the COVID-19 pandemic

Lastly, we apply the pairs trading strategy during the period of the COVID-19 pandemic.
The pandemic phase deserves a differential treatment considering the sharp slumps of global
crude oil prices, and splitting sub-samples can account for potential structural breaks. For
the pandemic effect on commodity and equity markets, we refer to Ji et al. (2020) and Zhang
et al. (2020). Moreover, the INE’s regulators suspended the night trading session during the
first outbreak of the pandemic in order to avoid a catastrophic spillover effect from the global
crude oil market. Despite the regulation, Yang et al. (2020) indicated a sharp increase in the
risk spillover between Chinese and international crude oil futures, and similar findings are
also evidenced by Lu et al. (2020). Under a context of high-risk fluctuations and strict market
regulation, below we evaluate the robustness of pairs trading strategy based on the intra-day
co-movement patterns over day trading sessions from January 2 to April 30, 2020.

Using the same methodology, we cluster the CIDR curves from the pandemic sub-sample
into three categories: “s”, “r” and “d”, which are used to construct {INE pattern, benchmark
pattern}-type nodes for building complex networks. Correspondingly, we obtain the COVID-
19 sample-driven transit probability matrix in Table 4, advising the portfolio weights in the
pairs trading strategy. Table 7 reports the annual return, Sharpe ratio, and a maximum draw-
down of the portfolios. Overall, the performances are consistent. The portfolio PTI s f does
not experience a dramatic loss compared with the benchmarks, albeit it is less profitable than
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Fig. 7 The cumulative returns of INE andWTI crude oil futures and their pairs trading strategies in day trading
sessions

themarket normal phase.We attribute this to the sample estimator bias of transit probabilities.
With precise transit probabilities, the portfolio PTOra gains promising performance with a
high Sharpe ratio and low maximum drawdown. Figure 8 displays the portfolios’ cumulative
returns related to INE andWTI, and they generally show consistent performance. Besides, we
observe that the trading signals are increasingly changeable during market turmoil, reflecting
that the co-movement patterns between INE and the international benchmarks are more vari-
ant during the crisis. This is a result mainly due to the segmented local regulations, further
enhancing the regional market fractional effect. Similar patterns are also shown in Fig. 7
given elusive trading signals during the second half of 2018, which can be driven by a series
of events affecting the oil price, such as the Iranian sanctions. Following the market normal
sample analysis, we also calculate the Sharpe ratios of the portfolio returns classified by
intra-day co-movement patterns. Table 8 shows that the pairs trading strategies are more
likely to be profitable when the co-movement modes are “ss”, “rr”, “rs”, “dd” and “sd”. This
result is consistent with the previous findings and indicates a robust performance of the pairs
trading strategy during the market crash.

Identifying some market fractional effect during the market turmoil period is, to some
extent, unexpected but interesting. The typical thought would be an increasing integration
under such a severe global shock, which may occur due to the rapid spread of investor
panic. A closer look at the pandemic may reveal the reasons for this finding. First, the
outbreak of COVID-19 has a clear chronological order. While the epidemic started the first
in China, it was suppressed quickly by the efforts of the Chinese government. Unfortunately,
the large-scale spreads carry on hitting Europe and the U.S., creating clear differences across
markets. Second, the cross-market segmentationmay also due to differences inmarket trading
mechanisms. In the INE market, investors have a strong expectation for a bottom price of
oil and thus willing to hold long positions when prices are low, whereas the same support
does not exist for the international benchmarks. Pessimistic investors can drive the price to
a much lower level.
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Fig. 8 The cumulative returns of INE and WTI crude oil futures and their pairs trading strategies during the
COVID-19 pandemic

5 Conclusion

In this paper, we focused on the dynamic intra-day co-movements between China’s INE
crude oil futures and the international benchmark WTI and Brent crude oil futures. Based on
a five-minute frequency dataset from March 2018 to April 2020, a functional data clustering
approach was applied to categorize intra-day return curves into three intra-day movement
groups—“Rise", “Decrease", and “Sidewalk".We then constructed complex network models
to investigate the interrelationships and co-movements of the intra-daymovement patterns for
both a single market and three markets as a system. The main finding is two-fold. First, INE
behaves disparately in its co-movements with WTI and Brent over the day (9:00 a.m.–11:30
a.m. and 1:30 p.m.–3:00 p.m.) and night (9:00 p.m.–2:30 a.m.) trading sessions. In particular,
the co-movements between INE and the international benchmarks are weak during the day
trading session, displaying the feature of the regional fractional market, while INE becomes
more like a follower to WTI and Brent during the night trading sessions. Second, under
the local market regulations, INE’s regional market fractional effect is enhanced during the
market turmoil period, making this market less integrated with the global crude oil futures
market. Besides, as an application of the main results, we simulated a pairs trading strategy
of INE and international benchmarks to explore hedging opportunities for investors. We
showed that benefit from a regional fractional effect, our trading strategy is profitable during
day trading sessions even under a market turmoil phase suffered from the recent COVID-19
pandemic. It is also profitable during night trading sessions if the intra-day co-movement
patterns are more precisely predicted.

Our findings provide implications to policymakers to understand the impact of current
regulations and make the response to global crude oil market shocks. With the increasing
marketization and maturity of China’s crude oil futures, its price behaviour will be gradually
synchronized with the international price. The drastic price fluctuation and risk transmission
in the international crude oil market will inevitably increase the investment risk and market
instability of the domestic crude oil futures market. Investors need to adopt a more cautious
and prudent investment attitude, pay more attention to the information dynamics of the
international market, and establish the INE-benchmark linked risk monitoring model to deal
with the impact of international input risk. The regulators inChina should continue to improve
and optimize the crude oil futures tradingmechanism, deeply understandmarket participants’
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needs, establish an industry database and information release mechanism, and provide a
trading reference for domestic and international crude oil futures participants. By constantly
improving the market system and trading mechanism, market access and risk supervision
system, and cooperating with RMB’s internationalization strategy, the international influence
of China’s crude oil futures will be improved. Additionally, due to the differences in the
design of crude oil futures contract systems at home and abroad, there may be a mismatch
of the inner and outer layers to a certain extent. Therefore, China should promote its crude
oil futures’ trading effectiveness in the future, taking into account the controllable risk and
market liquidity.

Futurework should concentrate on analyse further the characteristics of dynamic volatility
spillover effect between domestic and foreign crude oil futures markets, explore the dynamic
risk contagion mechanism, and try to carry out the research on dynamic portfolio hedg-
ing. Also, calibrating the estimator of transit probability matrix for intra-day co-movement
patterns can be crucial when more INE observations become available, and studying the
co-movements between WTI, Brent, and INE under the effect of U.S. energy independence
is also of interest.
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