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Abstract
World Health Organization (WHO) stated COVID-19 as a pandemic in March 2020. Since
then, 26,795,847 cases have been reported worldwide, and 878,963 lost their lives due to the
illness by September 3, 2020. Prediction of the COVID-19 pandemic will enable policymak-
ers to optimize the use of healthcare system capacity and resource allocation to minimize the
fatality rate. In this research, we design a novel hybrid reinforcement learning-based algo-
rithm capable of solving complex optimization problems. We apply our algorithm to several
well-known benchmarks and show that the proposed methodology provides quality solutions
for most complex benchmarks. Besides, we show the dominance of the offered method over
state-of-the-art methods through several measures. Moreover, to demonstrate the suggested
method’s efficiency in optimizing real-world problems, we implement our approach to the
most recent data from Quebec, Canada, to predict the COVID-19 outbreak. Our algorithm,
combined with the most recent mathematical model for COVID-19 pandemic prediction,
accurately reflected the future trend of the pandemic with a mean square error of 6.29E−06.
Furthermore, we generate several scenarios for deepening our insight into pandemic growth.
We determine essential factors and deliver various managerial insights to help policymakers
making decisions regarding future social measures.
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1 Introduction

Researchers use optimization in nearly every study area. Optimization remains a fundamental
challenge in science and engineering, primarily because of the difficulty of real-world prob-
lems and the limitations of traditional methods. Randomization Search Algorithms (RSAs)
are among the most flexible and most efficient methodologies to solve complicated prob-
lems. These algorithms are mostly polynomial-time algorithms and have significantly lower
computational complexity. As one of the most commonly used RSAs, metaheuristics are
algorithms that are inspired by natural phenomena to perform optimization. Metaheuristics
perform very well in exploring the feasible region and evade local optimum using effective
movement processes.

Healthcare science is one of the top research areas in which metaheuristics have been
widely applied to. Using these algorithms, scientists can optimize healthcare systems signif-
icantly in terms of several objectives, including minimizing cost, waiting time, service time,
delivery time, andmaximizing reliability or customer satisfaction. InDecember 2019, a novel
strain of coronavirus called SARS-Cov-2 discovered in China. The virus causes COVID-19,
a severe respiratory disease. Regardless of primary measures applied by the government of
China, the disease spread quickly to many countries leading to 26,795,847 infected cases and
878,963 deaths. Currently, there are no effective medications and vaccines for the disease.
However, the effectiveness of some treatment options is under study via clinical trials (Health
Canada 2020; WHO 2020). Although most people with mild COVID-19 symptoms recover
independently, some other people with severe and critical symptoms need hospitalization in
wards and Intensive Care Units (Public Health Authority of Canada 2020). However, due
to the limited capacity of the healthcare system, it is impossible to admit all the patients in
hospitals.

Efficient modeling and prediction of the COVID-19 pandemic will meaningfully aid
the officials and healthcare experts in making decisions to stop the spread of the disease.
Besides, by forecasting the upcoming trend of the epidemic, we can also optimally allocate
resources to hospitals that will avoid equipment shortages and save patients’ lives. Prediction
of the COVID-19’s trend is challenging because of its uncertain nature and complication.
Recently, scientists have provided a novel model to simulate the COVID-19 pandemic called
SIDARTHE and was initially offered in research by Giordano et al. (2020) published in
Nature Medicine. The researchers highlighted the efficiency of the proposed formulation in
modeling the pandemic growth. Nevertheless, they emphasized that solving the presented set
of differential equations is difficult because of the exceptional characteristics of the model.

In the current research, we offer a novel searchmethodology that will solvemany complex
optimization problems very efficiently in a short time. Our algorithm simultaneously benefits
from the advantages of machine learning (ML) and evolutionary computation (EC). In our
research,wepropose a hybrid algorithm that involves a reinforcement learning (RL) technique
as the main engine and several ECs as updating operators. The learning process achieved by
the RL method accelerates the algorithm and enables us to resolve complicated large-scale
problems.Theprocedure utilizes several operators to enhance the exploration and exploitation
capabilities of the algorithm. These features help the proposed process to sidestep local
optimum while exploiting the solution space intelligently. We implement the algorithm on
several well-known recently developed benchmarks to show its efficiency in solving such
complex problems. Moreover, we highlighted significant differences in the performance of
the method comparing to other methodologies using robust statistical tests.
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Furthermore,weuse the proposed algorithm tomodel andpredict theCOVID-19pandemic
inQuebec, Canada, that has themost cases ofCOVID-19 in the country.Our results accurately
predict the peak in the number of infected cases of COVID-19 in the province. The outcomes
also determine the peak of the number of cases that develop life-threatening symptoms that
will require hospitalization. We also perform complex sensitivity analyses to portray future
scenarios that enable us to provide detailed information to policymakers and healthcare
professionals. In our study, we also measure the effectiveness of implementing measures
such as social distancing and partial lockdown on pandemic growth.

The rest of the current study is prepared as follows: In Sect. 2, we deliver a comprehensive
review of existing research on the topic. In Sect. 3, we offer a novel algorithm to resolvemany
complex problems usingRL andEC. In Sect. 4, we apply our algorithm to several well-known
benchmark functions. We assess the performance of the suggested approach and compare
its efficiency to state-of-the-art methods. In Sect. 5, we implement our method to model
and predict the COVID-19 pandemic in Quebec, Canada. In Sect. 6, we perform sensitivity
analyses and provide valuable managerial insights to fight the COVID-19 pandemic. In
Sect. 7, we conclude the paper.

2 Survey on research conducted

The core idea behind most EC algorithms is to follow a swarm intelligence that is inspired by
animal behavior and natural phenomenon (Khalilpourazari and Pasandideh 2019). Mirjalili
and Lewis (2016) categorized metaheuristics into four main groups: evolutionary algorithms
(EAs), physics-based algorithms (PAs), swarmalgorithms (SAs), andmachine learning-based
algorithms (MLAs). EAs imitate the evolution procedure in nature to solve complexproblems.
PAs utilize laws of physics that enable this family of algorithms to handle complicated
problems.On the other hand, SAs simulate the swarmbehavior ofmany individuals in a group.
Also, MLAs use artificial intelligence and machine learning to enhance the performance of
the previous families of algorithms in terms of exploration and exploitation. Table 1 provides
some of the most advanced algorithms on metaheuristics developed in recent years.

Many researchers used these algorithms to solve complex optimization problems in differ-
ent fields (Hoursan et al. 2020; Tirkolaee et al. 2020a, b; Sangaiah et al. 2020; Lotfi et al. 2018,
2019, 2020; Zare Mehrjerdi and Lotfi 2019; Khalilpourazari et al. 2020c; Hashemi Doulabi
et al. 2020a, b). Defined by the no free lunch (NFL) theorem, we can logically prove that
no single method performs optimally in resolving all problems (Adam et al. 2019; Wolpert
and Macready 1997). Any metaheuristic algorithm may perform well in some benchmarks
but weak in others. This theorem makes this field of study highly interesting for researchers
searching for an algorithm that performs promising in many benchmarks. In our algorithm,
we consider several ECs and operators and let an RL method decide which algorithm to use
to relocate each element. Besides, learning during the optimization process will significantly
reduce the computational burden and improve the quality of the results. The learning process
accelerates the algorithm due to the fact that using the learning process over iterations, the
algorithm adapts its operators to perform the best for each problem.

Moreover, we consider a proper framework to maintain a decent equilibrium between
exploration and exploitation of the feasible region over generations of the algorithm to avoid
local optima. We show the efficiency of our algorithm on the most complex benchmarks in
the literature. Besides, we apply the suggested algorithm to predict the COVID-19 pandemic
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in Quebec, Canada. Our outcomes express that the designed algorithm robustly predicts the
future trends of the pandemic.

3 Algorithm development

Metaheuristics work based on randomization. By randomization, we mean that these algo-
rithms use random stepsizes while updating each particle’s position in the solution space.
Metaheuristics use unique operators and strategies to update the position of each particle
(solution). The efficiency of these operators and algorithms significantly depends on the
solution space of the problem. For instance, some algorithms follow a direct updating pro-
cedure, such as water cycle algorithm (WCA), while some other encircle the best solution
to update the position of a given particle, such as Grey–Wolf optimizer (GWO). Each of
these operators and moving strategies has unique advantages that enable the algorithms to
perform well in optimizing specific problems. Therefore, developing new algorithms that
could efficiently solve a higher number of optimization problems is essential.

In this study, we use several operators (moving strategies) from various algorithms to
update the particles’ position in the solution space. For updating each particle, we have to
choose an operator from the given set of operators. Determining the best strategy and the
most efficient operator for any given optimization problem is computationally challenging.
Therefore, we use a reinforcement learning method that learns and optimizes the choice of
operators during the optimization process to achieve optimal performance. In the following,
we first describe all the features of the offered algorithm, and then we define the algorithm
in a unique structure.

3.1 Q-learning

Reinforcement learning (RL) that approximates dynamic programming, and neuro-dynamic
programming, is a type of machine learning which determines the best actions in a specific
environment to maximize a reward (Bertsekas 2019). One of the main features of reinforce-
ment learning is that the agent receives a reward or punishment after executing an action.
The RL continues to interact with the environment to achieve the optimal policy via trial and
error.

The Q-Learning is one of the most efficient reinforcement learning algorithms that deter-
mine an optimal policy by evaluating taken actions using the environment. Q-learning is a
way to optimize solutions in aMarkov decision process (MDP) problem (Akhtar and Farrukh
2017). The Q-learning algorithm aims to maximize the anticipated reward by determining
the optimal state-action pairs. The algorithm uses a Q(s, a) table where st is the state and
at is the action at time step t, and Q is the cumulative reward matrix. The algorithm updates
the components of the Q-table Q(s, a) iteratively using Eq. (1).

Q(t+1)(st , at ) � Qt (st , at ) + εt (rt + γmax(Qt (st+1, at+1)) − Qt (st , at )), (1)

In Eq. (1), εt denotes the learning rate parameter and rt is the obtained reward/punishment
from the current action. Besides, the expression γ is the scaling factor. One of the main
challenges in designing an efficient Q-learning algorithm is in determining the importance of
the information gained throughout interactions with the environment. For instance, assigning
a value close to 1 to the learning rate parameter means that we consider higher importance for
the recent information gained. To optimize the value of the learning rate parameter throughout
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iterations, we use an adaptive methodology that uses Eq. (2) to intelligently tune the learning
rate parameter to explore and exploit the search region (Zamli et al. 2018).

εt � 1 − 0.9
t

MT
, (2)

In Eq. (2), t is the iteration index, and MT is the maximum generation. In this research,
we consider a reward value of 1 if the current action improves the solution quality of the
particle; otherwise, we consider a punishment value of − 1. Based on the given illustrations,
we present the Pseudo-code of the Q-learning in Algorithm 1.

Algorithm 1: Pseudo Code for the Q-Learning Algorithm

1: input states, actions, gamma, and initial Q(s, a) table;

2: randomly select an initial state;

3: while stopping criteria not met do

4: select the best action from the Q-table;

5: execute the action and get a reward/punishment;

6: determine the max Q-value for the next state;

7: update a(t);

8: update the Q-table;

9: update the current state, s(t) � s(t + 1);

10: end

11: return the Q-table;

In this research, we consider several efficient operators from different algorithms and let
the Q-learning algorithm determine the best action throughout the optimization process to
modify the location of each particle in the feasible space. In the following subsections, we
present the operators in detail.

3.2 Grey–Wolf optimizer

Similar to other swarm intelligence-based systems, GWO initially generates a set of primary
solutions. Then, it sorts the solutions regarding their fitness and considers the three best
solutions as the dominant wolves (alpha, beta, and delta). The following equations imitate
the encircling behavior of the grey wolves around prey:

�D �
∣
∣
∣ �C �X p(t) − �X(t)

∣
∣
∣, (3)

X̄(t + 1) � �X p(t) − �A �D, (4)

In Eqs. (3) and (4), t represents the iteration index and �A and �C characterize location
vectors of target and other grey wolves. �X p(t) and �X(t) are the position of the prey and grey
wolf, respectively. These coefficients are calculated as follows:

�A � 2a1�r1 − a1 (5)

�C � 2�r2, (6)

In Eqs. (5) and (6), a1 decreases over iterations from 2 to 0 and �r1 and �r2 are random
numbers. After encircling the prey, the wolves start the hunting process. To mathematically
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Fig. 1 Hunting behavior in GWO

express themovements of greywolves in the hunting process, we consider that the alpha, beta,
and delta have superior knowledge of the probable position of the target (possible optimal
solution of the problem). In this framework, the following formulas are recommended to
mimic the hunting process (Khalilpourazari et al. 2020a):

�Dα �
∣
∣
∣ �C1 �Xα − �X

∣
∣
∣, �Dβ �

∣
∣
∣ �C2 �Xβ − �X

∣
∣
∣, �Dδ �

∣
∣
∣ �C3 �Xδ − �X

∣
∣
∣, (7)

X̄1 � �Xα − �A1 �Dα, X̄2 � �Xβ − �A2 �Dβ, X̄3 � �Xδ − �A3 �Dδ, (8)

X̄(t + 1) � �X1 + �X2 + �X3

3
(9)

Figure 1 depicts a graphical interpretation of the hunting action in 2D space.

3.3 Sine–cosine algorithm

SCA is a newly developed search procedure that mimics the sine and cosine like movements
in the feasible space to modify the elements using Eq. (10):

Xt+1
i �

{

Xt
i + r1 × sin(r2) × ∣

∣r3Pt
i − Xt

i

∣
∣, r4 < 0.5

Xt
i + r1 × cos(r2) × ∣

∣r3Pt
i − Xt

i

∣
∣, r4 ≥ 0.5

(10)

In Eq. (10), Xt
i is the present location Pt

i is the location of the best particle and r1, r2, r3 are
random numbers in (0,1]. Throughout iterations, r1 displays the movement path, r2 controls
the moving distance, r3 guarantees a suitable equilibrium among underline or deemphasize
the desalination, and r4 selects a sine or cosine measure for updating procedure. Figure 2
shows the movement behavior of the sine and cosine actions.

SCA uses sine and cosine movements intelligently to evade local optima. In addition to
adjusting the particles’ movements during the solution process, SCA reduces the value of r1
parameter using the below formula to sustain a proper equilibrium between exploration and
exploitation as follows:

r1 � a2 − t
a2
T

(11)

In Eq. (11), t displays present repetition,a2 is a constant, and T is the maximum generation.
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Fig. 2 Updating procedure in SCA

Fig. 3 The spiral fly path of the moths around the flame

3.4 Moth-flame optimization

Like most of the optimization paradigms, MFO initiates the optimization by creating random
solutions. Then, it mimics the spiral flying actions of the moths around light sources using a
logarithmic spiral function as follows:

I P X+1
i �

∣
∣
∣Fi − I P X

i

∣
∣
∣ebt cos(2π t) + Fi , (12)

In Eq. (12), t is a constant in [− 1, 1], and b is a constant for determining the form of
the logarithmic spiral. Fi is the flame (the best solution), I P X

i is the moth, and
∣
∣Fi − I P X

i

∣
∣

calculates the distance between the moth and flame. Figure 3 shows the spiral movement
around the flame.

In order to maintain a suitable balance among its exploration and exploitation, the MFO
algorithm reduces the search radius using the following equations (Khalilpourazari et al.
2019; Mohammadi and Khalilpourazari 2017):

a3 � −1 + t

( −1

MT

)

(13)

t t � (a3 − 1) × rand + 1 (14)

In Eqs. (13) and (14), t displays present repetition, and MT is the maximum generation.

123

Annals of Operations Research (2022) 312:1261–1305 1269



Fig. 4 Updating procedure in WCA

3.5 Particle swarm optimization

Particle swarm optimization (PSO) is one of the most efficient procedures for optimization,
and it performs promising in solving many complex problems. PSO is a population-based
algorithm that uses Eq. (15) to update the location of a given particle in the solution space:

xi (t + 1) � xi (t) + vi (t + 1) (15)

In Eq. (15), xi (t) presents the current location of the particle and vi (t + 1) determines
the velocity of the particle. vi vector is the main component of the updating operator that is
calculated as follows:

vi (t + 1) � ωvi (t) + C1r1(pi (t) − xi (t)) + C2r2(G(t) − xi (t)) (16)

In Eq. (16), r1, r2 are random numbers in (0, 1], C1,C2 are coefficients, pi (t) is the best
solution found by the same solution so far, and G(t) is the best solution attained so far.

3.6 Water cycle algorithm

Water cycle algorithm (WCA) is one of the best algorithms for solving complex problems.
WCA is a population-based nature-inspired metaheuristic that mimics the flow of streams to
rivers and sea to perform optimization.

xi+1current � xicurrent + C
(

xibest_sol − xicurrent
)

(17)

In Eq. (17), C is a random value. We used the updating operator on the WCA as one of
the means to update the location of a given particle in the feasible space. Figure 4 represents
the updating procedure in WCA.

3.7 Gaussian walks and Lévy flight

In this subsection, we use the leading operators of the stochastic fractal search (SFS) offered
by Salimi (2015). SFS utilizes an important scientific property called “fractal”. Fractals are
complicated geometric shapes that generally have a “fractional dimension,” resulting in self-
similarity. SFS follows diffusion limited aggregation (DLA), which is an efficient technique
to create fractals. To simulate the DLA, we use the Gaussian walk and Lévy flight. Figure 5
presents a fractal shape produced through the DLA scheme.

We use the following equation to simulate the diffusion process in the DLA method.

xqi � xi + β × Gaussian(|BP|, σ ) − (

ε × BP − ε′ × xi
)

, (18)

In Eq. (18), q describes the number of new solutions created through the diffusion of each
particle, σ is the standard deviation of the Gaussian walk, and BP is the best solution. Also,
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Fig. 5 A fractal produced through the DLA method

xqi denotes new particles produced via diffusion process and xi is the i th solution. Besides,
ε′ and ε are randomly generated numbers in (0, 1]. Element σ is defined using the below
formula (Khalilpourazari et al. 2020b):

σ �
∣
∣
∣
∣

log(g)

g
× (Pi − BP)

∣
∣
∣
∣
, (19)

where log(g)
g decreases the length of Gaussian jumps over iterations. Element g is the iteration

number and Pi is the current position of the particle.
In order to enhance exploration and randomness in the population, we also apply a Lévy

flight based updating procedure to the particle under consideration as follows:

Xi
new � Xi

c + Xi
c ⊗ Levy(D) f or i � 1, . . . ,m (20)

The expression Xi
new is the new location and Xi

c is the current location of the particle,
respectively. We calculate the Lévy flight using Eq. (13).

Levy(x) � 0.01 × σ × r1

|r2|
1
β

, (21)

where r1and r2 are random numbers. In Eq. (13) σ is obtained as follows:

σ �
⎛

⎜
⎝

Γ (1 + β) sin
(

πβ
2

)

Γ
(
1+β
2

)

β2

(
β−1
2

)

⎞

⎟
⎠

1
β

. (22)

3.8 The developed hybrid Q-learning based algorithm

In this section, we propose a novel Hybrid Q-learning based algorithm (HQLA) to solve
complicated optimization problems. The idea behind this algorithm is to design a solution
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methodology that is capable of solving complicated problems by adapting its operators to any
solution space. We designed an optimization procedure that can benefit from the advantages
of several algorithms. The process can use any movement strategy based on each updating
operator. However, a reinforcement learning based algorithm (Q-learning) selects the best
action in each iteration for each particle. When optimization begins, the algorithm performs
several random actions to evaluate the efficiency of each type of operator. As the iterations
continue, Q-learning learns how to employ different actions to achieve the best possible
solution. For each action, we consider a reward equal to 1 if the current operators improve
the solution quality; Otherwise, the algorithm assigns a punishment value of− 1 to the action.
The Pseudo-code of the algorithm is available in Algorithm 2.

Algorithm 2: Pseudo Code for the HQLA

1. input parameters of the algorithm;
2. create a set of randomly generated solutions;
3. while stopping criteria not met
4. check for infeasibility of the particles;
5. bring infeasible particles to the feasible solution space;
6. sort the solutions based on their fitness value;
7. for each particle
8. if it is the first iteration
9. select a random action;
10. else
11. select the action using the Q-table;
12. end
13. if the action is GWO
14. use GWO operators to update the position of the particle;
15. else if the action is SFS
16. use SFS operators to update the position of the particle;
17. else if the action is WCA
18. use WCA operators to update the position of the particle;
19. else if the action is PSO
20. use PSO operators to update the position of the particle;
21. else if the action is MFO
22. use MFO operators to update the position of the particle;
23. else if the action is SCA
24. use SCA operators to update the position of the particle;
25. end
26. check for infeasibility of the particle;
27. bring infeasible particle to the feasible solution space;
28. calculate the objective function value of the particle;
29. determine the reward/punishment value;
30. determine the max Q-value for the next state;
31. update a(t);
32. update the Q-table;
33. update the current state, s(t) � s(t + 1);
34. end
35. end
36. return the best solution

4 Results and discussion

Metaheuristics are approximation algorithms that are based on randomized movements.
Therefore, their performance may differ from one problem to another. Thus, to show the
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efficiency of a metaheuristic algorithm, we should apply them to many benchmark functions.
For this purpose, we use 29 benchmarks, includingUnimodal, multimodal, fixed dimensional
multimodal, and hybrid composite functions that are among the most complex benchmarks
in the literature. For more details regarding these benchmarks, see “Appendix 1”.

We compare our algorithm to state-of-the-art methods, including Crow Search Algo-
rithm (CSA), Artificial Bee Colony (ABC), Cuckoo Search (CS), Genetic Algorithm (GA),
Moth-Flame optimization (MFO), Gravitational Search Algorithm (GSA), and Dragonfly
Algorithm (DA). In order to solve the benchmark functions, we considered 15,000 Number
of Function Evaluations (NFEs) to perform a reasonable assessment. Besides, to draw a reli-
able conclusion, we apply each algorithm on each benchmark 30 times, and report mean,
standard deviation, worst and best results. Table 2 provides more details about the values of
the main parameters of the algorithms.

In thefirst step,we assess the performanceof theHQLAonunimodal benchmarks (F1–F7).
Figure 6 depicts a 2D representation of these benchmark functions.

Unimodal benchmarks do not have several local optima and are considered to assess the
exploration ability of metaheuristic algorithms. This set of test suites are difficult to solve
since the algorithms should first locate the global optima approximately and then perform
exploitation to provide the best approximation of the location of the global optima. Table 3
provides detailed information on the performance of the algorithms in unimodal benchmarks.
Based on the results of Table 3, we observe that the HQLA performs the best in most of the
benchmarks. In F1–F5 and F7, the HQLA outperforms all other algorithms by obtaining the
best possible solution for all benchmarks. In F6, HQLA ranks third in providing the best
solution for this benchmark. Besides, HQLA provides the lowest standard deviation that
shows very low variability in the performance of this algorithm. Moreover, considering the
boxplot of the results of Table 3 present in Fig. 7a–c, it becomes apparent that HQLA has
the lowest and narrowest boxplot among the algorithms.

Furthermore, Fig. 8a–c, that present the convergence plots of the methods, disclose that
the HQLA can maintain a perfect balance among exploration and exploitation of the solution
space. In Fig. 8a–c, we observe that the HQLA can continually improve the best solution
attained in each iteration by choosing the best operator to explore the solution space. The
learning process in HQLA enables the algorithm to determine the best operator to change the
location of the particles in the solution region by evaluating the efficiency of each updating
mechanism. Based on these observations, we conclude that HQLA is a reliable technique for
this family of benchmark functions.

The second and third family of the benchmarks are multimodal and fixed-dimension mul-
timodal benchmarks. These benchmarks contain several local optima that make the solution
process a complicated task. To perform well in solving these benchmark functions, the algo-
rithms should maintain an excellent balance among exploration and exploitation. This will
help the algorithms avoid local optimum. Figures 9 and 10 shows a schematic view of these
benchmark functions in 2D.

We provide detailed information on the performance of the algorithms on solving multi-
modal and fixed-dimension multimodal benchmarks in Tables 4 and 5.

Based on the results, we observe that in F8–F12, F14, and F16–F23 (14 out of 16)
benchmark functions, theHQLAoutperforms other algorithms considering average, standard
deviation, best and worst values over 30 repetitions. In some of these benchmarks, such as F9
and F11, the standard deviation of the results provided by HQLA is zero. In these benchmark
functions, the HQLA achieves global optima in all the repetitions. These results indicate
that HQLA is a robust and reliable algorithm in solving complex optimization problems.
HQLA is able to choose between several operators that enable the algorithms to explore
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Fig. 6 2D representation of F1–F7

and exploit the resolution region intelligently. The learning process in the HQLA helps the
algorithm evaluate the efficiency of the operators and discover the most efficient operator
(action) for any problem. Besides, Fig. 8a–c depict the perfect balance among exploration
and exploitation in the performance of the HQLA throughout iterations. Moreover, in F13
and F15, the HQLA ranked second among all algorithms, which shows its high capability
in solving optimization problems. Furthermore, Fig. 7a–c, disclose that the boxplot of the
outcomes of the HQLA is narrower and lower than any other algorithm that highlights the
superiority of the proposed methodology over existing approaches.

The last family of the benchmark functions is hybrid composite benchmarks that are the
most challenging (Liang et al. 2005). Figure 11 presents a graphical representation of these
benchmark functions in 2D.

Computational results of solving this family of benchmark functions using each algorithm
are available in Table 6. Considering the results, we observe that the HQLA provides the best
results and outperforms other algorithms in solving hybrid benchmarks. Table 6 shows that the
HQLA obtained the lowest average, standard deviation, and best values for these benchmark
functions while maintaining the lowest worst value. Besides, Fig. 13 approves this statement
by showing that the boxplot of the HQLA is narrower and lower than any other algorithms.
Moreover, Fig. 12 shows that the HQLA adjusts exploration and exploitation by intelligently
choosing the best operators in each iteration. Based on Fig. 12, we observe that the HQLA
can improve the best solution consistently throughout iterations.
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Fig. 7 aBoxplot of the results in F1–F9benchmarks.bBoxplot of the results in F10–F18benchmarks. cBoxplot
of the results in F19–F23 benchmarks

Although we showed that the HQLA outperforms other state-of-the-art methods in terms
of solution performance, we apply Friedman’s test, which is a powerful statistical test, to
show the statistical superiority of our algorithm to other methods. Table 7 presents the results
of Friedman’s test. Based on the outcomes, the average rank of the HQLA is 3.036207,
which is far smaller than that of other algorithms. Therefore, from a statistical point of view,
HQLA performs significantly better than all other algorithms. We note that we perform the
Friedman’s test at a 95 percent confidence level.

5 Multi-criteria parameter estimation and curve fitting

Quebec is one of Canada’s provinces that is dealing with the COVID-19 epidemic triggered
by the SARS-CoV-2 virus. The province has been reported the most COVI-19 cases that
account for more than 63,713 confirmed cases of COVID-19 and 5770 death cases by the
disease. On April 29, 2020, Quebec hospitals announced that the healthcare system capacity
could not respond to the influx of the COVID-19 patients to the hospitals (Weeks and Tu
Thanh 2020; The Globe and Mail n.d.). On June 28, 2020, Montreal’s Emergency Rooms
(ERs) reported near capacity status due to limited resources (Fahmy and Ross 2020; CTV
News. n.d.). These highlight the need for a methodology that could accurately predict the
future trend of the pandemic in the province that enables the policymakers to optimize the
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Fig. 7 continued

resource allocation to avoid loss of lives, as many scientists declared that resource shortages
such as ventilator shortages are the difference between life and death for patients (Kliff et al.
020; The New York Time. n.d.). Developing new methodologies to predict pandemic growth
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Fig. 8 a Convergence plot of the algorithms. b Convergence plot of the algorithms. c Convergence plot of the
algorithms

is essential to optimize resource allocation and determine the optimal time to implement
lockdown measures. On the other hand, we could optimize resource allocation for life-
threatening cases admitted to ICUs and reduce the disease’s fatality rate.

In this section, we use the most recent and accurate model called SIDARTHE, presented
by Giordano et al. (2020) published in Nature Medicine. The scientists showed that using the
model, we could predict the future trend of the pandemic accurately. However, the solution
to the problem is a cumbersome task. For more information on the SIDARTHE model, see
“Appendix 2”. In this research, we used the SIDARTHE model and applied it to real data
from Quebec, Canada. In order to solve the model, we utilize HQLA. Figure 14 shows the
convergence plot of HQLA throughout iterations. We divided the period (from January 25,
2020 (day 1) to July 19, 2020 (day 176)) into six stages as follows in which the Quebec
government applied specific restrictions to control the pandemic:

• Stage 1 (from January 25, 2020, to March 15, 2020)
• Stage 2 (from March 15 to March 24)
• Stage 3 (from March 24 to March 28)
• Stage 4 (from March 28 to April 2)
• Stage 5 (from April 2 to April 13)
• Stage 6 (after April 13)

We note that we considered the sum of mean square errors as the objective function value
for our model, and its optimal value for our case study is 6.29E−06. Based on the outcomes,
we observe that the HQLA can solve the problem very efficiently. Table 8 shows detailed
statistics about the optimized factors of the model. Now that the results of Table 8 are the
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Fig. 8 continued

output of the optimization process and solving the SIDARTHE model for Quebec data using
HQLA.

In the following, we compared our results with actual data from Quebec to validate our
results. Figure 15 shows the predicted and actual data fromQuebec. In Fig. 15, we accurately
predict the number of infected cases, recovered cases, and cumulative diagnosed cases. Based
on the outcomes, we conclude that the HQLA is an efficient solution methodology for the
problem.
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Fig. 9 2D representation of F8–F13

Fig. 10 2D representation of F14–F18

As mentioned earlier, we separated the planning horizon into six phases in which the
Quebec government announced detailed limitations to control the epidemic. The first case of
COVID-19 was detected in Quebec, Canada, on February 27, 2020 (Lapierre 2020). In the
first phase, the transmission rate was considered low. Based on our results, we observe that
the transmission rates were low at the first stage, and the reproduction rate was R0 � 1.0998.
Quebec province first announced a state of emergency on March 12, 2020. We consider
March 15, 2020, to March 24, 2020, as the second phase of the pandemic due to a drastic
increase in the number of cases. On March 15, the Quebec government ordered the closure
of all recreational and entertainment facilities (Gouvernement Du Québec 2020).

Following the quick progress in the number of infected cases, on March 27, Montreal
declared a local state of emergency, and the Quebec government ordered the closure of all
universities and schools. Besides, On March 20, the province banned indoor gatherings. In
the second phase of the pandemic, our study estimates a reproduction rate of R0 � 3.8028
for Quebec province. From March 24, 2020, to March 28, 2020, Quebec received more
COVID-19 test kits enabling the healthcare authorities to perform more tests and determine
the infected cases. In this phase, we approximate the reproduction rate equal to R0 � 4.6096.

From March 28, 2020, to April 2, 2020, strict actions were taken by the government
decreased the reproduction rate to R0 � 1.1193. The reproduction rate dropped over the
next period to R0 � 1.0248 from April 2, 2020, to April 13, 2020. After April 13, 2020,
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Fig. 11 Two-dimension view of the hybrid composite functions

Fig. 12 Convergence plots for algorithms in solving composite problems

the reproduction rate was considered to be R0 � 0.7782. In order to present the progress of
the pandemic in the next few months, we extended our prediction to the next 365 days, as is
shown in Fig. 16a, b.

Based on our results, considering the current social distancing and limitations, we will
experience a significant decrease in the number of cases in the next few months if and only
if strict measures such as partial lockdown remain in place for the next few months.
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Fig. 13 Boxplot of the results in composite benchmarks

6 Sensitivity analyses andmanagerial insights

In the previous section, we reflected the pandemic growth over the next few months, consid-
ering the current partial lockdown and closure measures. However, in May 2020, the Quebec
government ordered a gradual reopening of the businesses. Consequently, it is vital to dis-
cover how the reopening of the businesses will impact forthcoming circumstances. In this
section, we examine the consequence of variation in transmission rates on the progress of
the pandemic. Therefore, we augmented the parameters α, β, γ , δ, and ε and explore their
impact on the number of infected, recovered, cumulative diagnosed, and death cases. We
portray the outcomes in Figs. 17, 18, 19 and 20. The outcomes prove that the parameter α has
a substantial effect on the pandemic growth, and increasing this parameter increases the num-
ber of infected, recovered, cumulative diagnosed, and death cases. Besides, increasing β, γ ,

and δ increases the number of infected, recovered, cumulative diagnosed, and death cases.
Moreover, increasing the parameter ε remarkably reduces the number of infected, recovered,
cumulative diagnosed, and death cases. Therefore, to decrease the spread of the virus and
stop the pandemic, we need to reduce the transmission rate of the infection by applying
significant social distancing and behavioral measures while increasing the detection rate of
asymptomatic cases.

Based on our results, we observe that from day 250, we will see an increase in the number
of infected cases from October 1, 2020, in Quebec by limiting the lockdown measures.
Therefore, starting October 1, 2020, Quebec will experience a significant increase in the
number of infected cases.

7 Conclusion

COVID-19 is a severe health threat, and the condition is growing every day. Therefore,
presenting new procedures to model and predict the COVID-19 pandemic is vital. Prediction
of theCOVID-19 pandemicwill enable policymakers to optimize the use of healthcare system
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Table 7 Results of the Friedman’s test

HQLA CSA ABC DA CS MFO GSA GA

F1 1.033333 4.233333 7.233333 7.266667 4.9 3.033333 2.033333 6.266667

F2 1 4.1 6.966667 7.9 5.3 2.633333 2.7 5.4

F3 1 2.8 7.933333 6.166667 3.933333 2.433333 5.133333 6.6

F4 1.1 3.833333 8 5.966667 5.2 3.433333 2.1 6.366667

F5 2.133333 3.666667 7.1 6.833333 2.8 4.466667 4.033333 4.966667

F6 3.366667 3.966667 7.233333 7.3 4.766667 2 1 6.366667

F7 1 2.833333 7.966667 6.4 6.1 4.333333 4.533333 2.833333

F8 3.266667 6.6 2.8 5.733333 4.166667 3.833333 8 1.6

F9 1 4.833333 4.333333 7.466667 6.166667 6.9 3.3 2

F10 2.25 6.666667 7.8 3.066667 5.533333 2.25 5.233333 3.2

F11 1.016667 3.8 6.666667 5.983333 2.866667 4.733333 7.633333 3.3

F12 2.933333 5.2 6.033333 7.566667 6.533333 2.333333 1.2 4.2

F13 2.933333 4.3 7.066667 7.933333 5.433333 2.633333 1 4.7

F14 5.333333 2.533333 6.7 3.216667 2.766667 3.2 7.966667 4.283333

F15 2.233333 1 5.3 6.4 3.066667 4.9 7.666667 5.433333

F16 7.6 3.45 7.266667 3.883333 3.45 3.45 3.45 3.45

F17 6.9 2.816667 7.9 3.3 5.166667 2.816667 2.816667 4.283333

F18 6.9 4.233333 8 3.916667 3.416667 2.166667 4.466667 2.9

F19 6.466667 2.533333 5.233333 6.666667 2.533333 2.533333 2.533333 7.5

F20 5.366667 2.3 4.833333 6.166667 3.133333 6.516667 1.05 6.633333

F21 4.633333 2.566667 6 4.133333 3.566667 4.8 3.566667 6.733333

F22 4.95 2.866667 6.7 5.233333 4.466667 3.283333 1.566667 6.933333

F23 5.833333 2.4 7.166667 5.5 4.333333 3.166667 1.766667 5.833333

F24 1.2 4.5 5 5.9 2.6 4.9 7.1 4.8

F25 1.6 4 5.6 5.4 4.1 5 6.1 4.2

F26 1.5 3.9 5.4 5.6 2.5 4.2 7 5.9

F27 1.4 3.4 5.9 6.1 2.6 4.7 6.1 5.8

F28 1.1 4.8 4.9 5.5 2.6 5.5 6.2 5.4

F29 1 3.5 5.5 6.4 2.6 5.2 5.6 6.2

Average 3.036207 3.711494 6.363218 5.824138 4.02069 3.839655 4.236207 4.968391

capacity and resource allocation to minimize the fatality rate. In this research, we design a
new hybrid reinforcement learning-based algorithm capable of solving complex optimization
problems. We applied our algorithm to several well-known benchmarks and show that the
presented methodology provides high-quality solutions for the most complex problems in
the literature. Besides, we showed the superiority of the offered method to state-of-the-art
methods through several measures.

Moreover, to demonstrate the efficiency of the proposed methodology in optimizing real-
world problems, we implemented our approach to themost recent data fromQuebec, Canada,
to predict the COVID-19 outbreak. Our algorithm, combined with the most recent mathe-
matical model for COVID-19 pandemic prediction, accurately reflected the future trend of
the pandemic. Furthermore, we analyzed several scenarios for deepening our insight into
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Fig. 14 Performance of HQLA in solving the SIDARTHE problem

Table 8 Results of fitting the model to real-data for Quebec

Parameters Stages

January
25–March
15

Mar 15–Mar
24

Mar 24–Mar
28

Mar 28–Apr
2

Apr 2–Apr
13

After Apr 13

α 0.11807 0.421243 0.421243 0.08988 0.088024 0.088024
β 0.002927 0.000752 0.000752 0.000233 0.000233 0.000233
δ 0.002927 0.000752 0.000752 0.000233 0.000233 0.000233
γ 0.055155 0.208933 0.208933 0.071847 0.031887 0.031887
ε 0.039123 0.039123 0.013056 0.013056 0.013056 0.042366
ζ 0.084829 0.084829 0.084829 0.021848 0.021848 0.02182
η 0.084829 0.084829 0.084829 0.021848 0.021848 0.02182
θ 0.108995 0.108995 0.108995 0.108995 0.108995 0.108995
λ 0.02434 0.02434 0.02434 0.056476 0.056476 0.056476
κ 0.013091 0.013091 0.013091 0.017058 0.017058 0.017181
ξ 0.013091 0.013091 0.013091 0.017058 0.017058 0.017181
ρ 0.02434 0.02434 0.02434 0.017058 0.017058 0.017181
σ 0.013091 0.013091 0.013091 0.017058 0.017058 0.000218
μ 0.003922 0.003922 0.003922 0.00269 0.00269 0.00269
υ 0.031303 0.031303 0.031303 0.028218 0.028218 0.028218
τ 0.009446 0.009446 0.009446 0.009446 0.009446 0.009446

pandemic growth. We determined essential factors and delivered various managerial insights
to help policymakers making decisions regarding future social measures.

Our results showed that the transmission rate caused by the interaction of a susceptible case
with an asymptomatic case has the most significant effect on future trends. Increasing this
parameter can significantly increase the number of infected, recovered, cumulative diagnosed,
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Fig. 15 Prediction versus data using HQLA. Non-diagnosed asymptomatic (ND AS), diagnosed asymp-
tomatic (D AS), non-diagnosed symptomatic (ND S), diagnosed symptomatic (DS), and diagnosed with
life-threatening symptoms (D IC)

and death cases. Besides, increasing the transmission rate due to contact of a susceptible case
with a diagnosed, ailing, and recognized case increases the number of infected, recovered,
cumulative diagnosed, and death cases. Moreover, increasing the parameter ε remarkably
reduces the number of infected, recovered, cumulative diagnosed, and death cases. Therefore,
to decrease the spread of the virus and stop the pandemic, we need to reduce the transmission
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Fig. 16 a Prediction of future cases using SIDARTHE and HQLA. b Prediction of future cases using
SIDARTHE and HQLA. Non-diagnosed asymptomatic (ND AS), diagnosed asymptomatic (D AS), non-
diagnosed symptomatic (ND S), diagnosed symptomatic (DS), and diagnosed with life-threatening symptoms
(D IC)
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Fig. 17 Future scenarios of the infected cases in Quebec

Fig. 18 Future scenarios of the cumulative diagnosed cases in Quebec
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Fig. 19 Future scenarios of the recovered cases in Quebec

Fig. 20 Future scenarios of the recovered cases in Quebec
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rate of the infection by applying significant social distancing and behavioral measures while
increasing the detection rate of asymptomatic cases.

As future research, from a mathematical modeling viewpoint, it would be worthwhile
to consider stochasticity in the proposed model (Belen et al. 2011; Özmen et al. 2011;
Weber et al. 2011). Besides, it would be interesting to use the proposed model to plan
for resource management during the pandemic to decrease the fatality rate by increasing
the healthcare system capacity. Based on the predictions, healthcare managers can plan
for testing kit allocation to test centers. Also, it would be worthwhile to consider the age,
medical condition, and gender of the infected cases in themodel from amodeling perspective.
Moreover, it would also be interesting to use the proposed model to plan for managing
healthcare resources such as personal protective equipment (PPE) and ventilators during the
pandemic.
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Appendix 2

In this appendix, we describe the SIDARTHEmodel proposed by Giordano et al. (2020). The
model considers eight states for people, including Susceptible, Infected, Diagnosed, Ailing,
Recognized, Threatened, Healed, Extinct. The model reflects cases in different situations,
including symptomatic, asymptomatic, detected, undetected, and life-threatening symptoms
that required ICU admission. The suggested model includes eight ordinary differential equa-
tions to show the progress of the pandemic over time. We use the following notations, as in
Table A2, to present the model.

Based on the notations mentioned above, Giordano et al. (2020) presented the following
model.

Ṡ(t) � −S(t)(α I (t) + βD(t) + γ A(t) + δR(t)) (23)

İ (t) � S(t)(α I (t) + βD(t) + γ A(t) + δR(t)) − (ε + ζ + λ)I (t) (24)

Table A2 Sets, parameters, and state variables of the model

Indices
t State index

Parameters

α Transmission rate due to contact of a susceptible case with an infected case

β Transmission rate due to contact of a susceptible case with a diagnosed case

δ Transmission rate due to contact of a susceptible case with an ailing case

γ Transmission rate due to contact of a susceptible case with a recognized case

2 The rate of detecting asymptomatic cases

ζ The probability that an infected case is aware of being infected

η The probability that an infected case is unaware of being infected

θ The detection rate of symptomatic cases
λ, κ, ξ, ρ, σ The recovery rate of the five categories of infected cases

μ The probability that an undetected/detected infected case shows life-threatening symptoms

υ The probability that a detected infected case develops life-threatening symptoms

τ Mortality rate

State variables

S(t) The fraction of susceptible (not infected) cases in the population

I(t) The fraction of infected (infected and undetected cases without symptoms) cases in the
population

D(t) Fraction of diagnosed (infected and detected cases without symptoms) cases in the
population

A(t) The fraction of ailing (infected and undetected cases with symptoms) cases in the
population

R(t) The fraction of recognized (infected and detected cases with symptoms) cases in the
population

T (t) The fraction of threatened (infected detected cases that developed life-threatening
symptoms) cases in the population

H(t) The fraction of recovered cases in the population

E(t) The fraction of death cases in the population
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Ḋ(t) � ε I (t) − (η + ρ)D(t) (25)

Ȧ(t) � ζ I (t) − (θ + μ + κ)A(t) (26)

Ṙ(t) � ηD(t) + θ A(t) − (ν + ξ)R(t) (27)

Ṫ (t) � μA(t) + νR(t) − (σ + τ)T (t) (28)

Ḣ(t) � λI (t) + ρD(t) + κA(t) + ξ R(t) + σT (t) (29)

Ė(t) � τT (t) (30)
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