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Abstract
This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, 
MOPSO and NSGA-II)-based solution methods for designing a sustainable three-eche-
lon distribution network. The distribution network employs a bi-objective location-rout-
ing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary 
optimisation commercial platform,  modeFRONTIER®, is adopted to utilise the solution 
methods. The proposed Design of Experiment (DoE)-guided solution methods are of two 
phased that solve the NP-hard model to attain minimal total costs and total  CO2 emission 
from transportation. Convergence of the optimisers are tested and compared. Ranking of 
the realistic results are examined using Pareto frontiers and the Technique for Order Prefer-
ence by Similarity to Ideal Solution approach, followed by determination of the optimal 
transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics 
network is considered to validate the solution methods. The results obtained through the 
proposed methods provide information on open/closed distribution centres (DCs), vehicle 
routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, 
and number of trucks required in each route to transport the products. It is found that the 
DoE-guided NSGA-II optimiser based solution is more efficient when compared with the 
DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-
objective NP-hard three-echelon sustainable model. This efficient solution method enable 
managers to structure the physical distribution network on the demand side of a logistics 
network, minimising total cost and total  CO2 emission from transportation while satisfying 
all operational constraints.
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1 Introduction

Location routing models are typical logistics problems which are generally complex NP-
hard combinatorial optimisation problems (Karp 1972; Nagy and Salhi 2007; Marinakis 
and Marinaki 2008; Yu et  al. 2010). The three-echelon multi-objective location routing 
problems are NP-hard (Karp 1972; Perl 1983; Perl and Daskin 1985; Daskin et al. 2005; 
Nagy and Salhi 2007; Marinakis and Marinaki 2008; Hassanzadeh et al. 2009; Yu et al. 
2010; Hamidi et al. 2012; Validi et al. 2020). This is because they combine two different 
conflicting-in-nature problems, viz. facility location problems, and vehicle routing prob-
lems (Karp 1972; Daskin et al. 2005). The computational effort required for the solution 
of such problems grows exponentially with increasing problem size (Erdoğan and Miller-
Hooks 2012).

Meta-heuristics are often used to solve these kind of models as a unique solution does 
not exist for such models. The solution method requires a division of the problem into 
inter-linked components, viz. facility location, allocation of consumers to facilities, and 
vehicle routing (Hassanzadeh et al. 2009). This leads to the introduction of multiple phase 
solutions with specific algorithms (Perl 1983; Wu et al. 2002).

The sustainable three-echelon bi-objective AHP-integrated 0–1 mixed integer location-
routing model reported in Validi et al. (2020) (see “Appendix A”) is NP-hard in nature. The 
model facilitates allocation of distribution centres (DCs) to plants and retailers to DCs. It 
further facilitates routing of vehicles from plants to DCs, DCs to retailers and retailers to 
retailers. The model identifies open and closed facilities and the optimised routing pattern 
throughout the logistics network while minimising  CO2 emissions from transportation and 
total transportation costs considering disparate operational constraints.

In this article, three solution methods are proposed and compared employing two 
Design of Experiment (DoE)-guided genetic algorithm (GA)-based optimisers, viz. 
MOGA-II (Multi-Objective Genetic Algorithm of kind II) (Quagliarella et  al. 1998) and 
NSGA-II (Non-dominated Sorted Genetic Algorithm-II) (Deb et al. 2000), and a particle 
swarm (PS)-based optimiser, viz. MOPSO (Multiple Objective Particle Swarm Optimisa-
tion) (Alvarez-Benitez et  al. 2005) in an effort to find the most efficient meta-heuristics 
based solution method to solve the sustainable three-echelon bi-objective location-routing 
problem (BO-LRP) introduced in Validi et al. (2020).

1.1  Research contribution

This research contributes to the body of knowledge by providing two-phase solution meth-
ods employing the three prominent optimisers for an integrated bi-objective three-echelon 
sustainable distribution model and comparing the results obtained from them. Additionally, 
it investigates the efficacy of the three solution methods. In these solution methods the 
DoE is coupled to the meta-heuristic optimisers to ensure that optimal feasible results are 
obtained. The DoE connects the main three-echelon problem to the optimisers by generat-
ing an initial population sets for the optimisers, filtering out based on poor design criteria.

To the best of the authors’ knowledge, an evaluation of the DoE-guided meta-heuristic 
based two-phase solution methods for multi-objective three-echelon sustainable distribu-
tion model has not been reported in the literature. To bridge this knowledge gap, this arti-
cle considers the bi-objective three-echelon sustainable distribution model of Validi et al. 
(2020) and contributes to the current body of the literature by:
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(a) proposing three DoE-guided two-phase meta-heuristics based solution methods, using 
the  modeFRONTIER® commercial platform, for solving the above mentioned NP-hard 
model, and

(b) comparing the efficacy of the DoE-guided two-phase disparate meta-heuristic based 
solution methods to obtain the best stable solution space.

The decision-makers’ (DMs’) priorities are reflected in comparing and ranking the set 
of Pareto efficient realistic optimum results by integrating a compensatory multi-criteria 
decision analysis method, viz. Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS).

The remainder of this paper is structured as follows. Section  2 provides a brief sur-
vey of literature on sustainable distribution network model and meta-heuristic based solu-
tion methods. Section  3 outlines the sustainable three-echelon logistics model, problem 
statement and relevant data sets. Section  4 explains the DoE-guided two-phase solution 
methods. Section 5 provides the results and a detailed analysis of these results. Section 6 
provides the structure of the optimal routes obtained through the three methods indicat-
ing logistical scenarios. Finally, Sect. 7 concludes the paper with an implication to future 
research.

2  Literature review

The extant literature on sustainable supply chain (SC) distribution network design is cat-
egorised into models and their solution approaches using meta-heuristics. The following 
sections briefly review articles on these two categories.

2.1  Sustainable distribution network models

A distribution network on the demand side of a logistics network facilitates manufactur-
ers in delivering products to their consumers through a number of logistics intermediar-
ies. Distribution networks tend to be dominated by transportation means that primarily 
use fossil fuel. As a result, a significant focus for sustainable distribution network studies 
has been on minimising fuel consumption and reducing carbon footprint. The design of 
the transportation network plays a pivotal role in achieving this goal. The extant literature 
introduces different models to address this need. For example, two and three echelon sus-
tainable distribution network models are introduced in Validi et al. (2014a, b, 2015, 2020). 
Wang et al. (2011) report a multi-objective sustainable SC network model that minimises 
total cost and  CO2 emission. Daryanto et al. (2019) propose a three-echelon SC model that 
reduces carbon emission through optimising the number of deliveries and delivery size. 
Chaabane et al. (2012) propose a sustainable SC using a mixed-integer linear programming 
that provides some underpinning of optimal SC strategies. Zhang et  al. (2017) report a 
multi-criteria optimisation model and propose a bio-inspired algorithm to design a sustain-
able supply chain (SC) network. Varsei and Polyakovskiy (2017) propose a multi-objective 
mixed-integer programing model to design a sustainable SC. Some comprehensive review 
articles are reported in this fast growing subject area. For example, a review on sustainable 
SC network design models, solution approaches and applications is found in Eskandarpour 
et al. (2015). Brandenburg and Rebs (2015) present a literature review and provide seven 
modelling guidelines to facilitate model-based SC research.
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2.2  Meta‑heuristic based solution methods

A review of the available literature reveals that the three echelon LRPs are computation-
ally NP-hard. LRPs combine facility location and vehicle routing problems. These are two 
conflicting problems that contribute to the hardness of NP-hard problems. Other charac-
teristics, such as the number of objective functions, the integer variables, problem size and 
inclusion of substantially factors add significantly to the complexity and difficulty of find-
ing a solution space. Due to the lack of unique solutions to these LPRs, heuristics, meta-
heurists and hyper-heuristics, in multi-phase solution methods, are used to find a feasible 
solution space. Multi-phase solution methods usually break down the problem into individ-
ual components forming two or three connected problems to be solved (Karp 1972; Golden 
and Skiscim 1986; Tuzun and Burke 1999; Prins et al. 2007; Bräysy et al. 2009; Prins et al. 
2009; Caballero et al. 2007; Hassanzadeh et al. 2009; Daskin et al. 2005; Yu et al. 2010; 
Validi et al. 2020; Dai et al. 2019).

Examples on the use of meta-heuristics in conventional LRPs are abundant. This 
includes the use of particle swarm (PS) optimisation (Liu et  al. 2012), Tabu search 
(Aboytes-Ojeda et al. 2020; Russell et al. 2008), simulated annealing (Aboytes-Ojeda et al. 
2020; Stenger et  al. 2012), greedy randomised adaptive search procedure (Nguyen et  al. 
2012), variable neighbourhood search algorithms (Derbel et al. 2011), ant colony optimisa-
tion (Ting and Chen 2013), honey bees mating optimisation (Marinakis et al. 2008), and 
artificial bee colony (Crawford et al. 2017). The use of GAs in LRPs are reported in Zhou 
and Liu (2007), Marinakis and Marinaki (2008), Jin et  al. (2010), and Karaoglan et  al. 
(2012). Some variants of GAs are also reported in the LRP literature (Ghezavati and Beigi 
2016; Hwang 2002; Zhou and Liu 2007; Marinakis et al. 2008; Jin et al. 2010; Hajipour 
et  al. 2016). Hamidi et  al. (2012) attempt to model a four-layer and multi-product LRP 
system.

One of the major challenges in designing an evolutionary-based meta-heuristic solution 
method is the details of its design, in particular parameter setting (Hoos 2011; Barbosa and 
Senne 2017). A range of methods from more conventional approaches with low-mutation 
rates to uniform crossover choices and experimental designs have been introduced and 
adopted in practice (Eiben and Smit 2011). Existing parameter setting methods start with 
generating different settings of parameters and then evaluate them by testing and compar-
ing their performances (Castelli et  al. 2012). Huang et  al. (2020) categorise the existing 
parameter setting methods into three main groups: (i) simple generate-evaluate methods: 
consisting of a generation step for configuring parameters followed by an evaluation phase 
(ii) iterative generate-evaluate methods: which create the parameters and improve them 
gradually in a repeating process, and (iii) high-level generate-evaluate methods: consisting 
of a sophisticated group of methods that quickly generate an ‘elite’ group of parameters 
and then carefully select the best of them. The main advantage of the latter methods is in 
adopting a search algorithm instead of applying a random method in the generating phase 
and then instead of evaluating, selecting the best set of parameters amongst the generated 
set. Design of Experiments (DoE) belongs to this third group of parameter setting methods.

2.3  Research gaps

A review of the literature reveals that a growing number of attempts have been made to for-
mulate two or three echelon logistics/distribution network models. Consequently, a variety 
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of meta-heuristics based solution methods have been developed and adopted for solving the 
existing and new NP-hard models. Yet, to date the extant literature has not reported: (i) a 
DoE-guided two-phase meta-heuristic solution methods capable of solving an integrated 
bi-objective AHP-integrated sustainable three-echelon distribution model, and (ii) a com-
parative study on the efficacy of DoE-guided two-phase meta-heuristic solution methods.

3  The model and preliminaries

The sustainable three-echelon bi-objective AHP-integrated 0–1 mixed integer sustainable 
distribution network model introduced in Validi et  al. (2020), which serves the demand-
side of the logistics network, is considered. The summarised model is presented in “Appen-
dix A”. A summary of the main details of the model are presented in Fig. 1.

The model allocates DCs to the plants and retailers to DCs. The model seeks to iden-
tify open and closed facilities and the optimised routing pattern throughout the transporta-
tion network while minimising  CO2 emissions from transportation and total transportation 
costs. Two sustainable components are present in the model: (i) a sustainable objective 
function and (ii) an AHP-integrated sustainable constraint. The model considers 10 opera-
tional constraints in total. Integer decision variables define open/close plants and DCs. The 

A bi-objective AHP-integrated three-echelon sustainable location-routing model

Features: Capacitated; Bi-objective; Single commodity; Multi-stop route; AHP-integrated mixed-integer 
0-1 combinatorial optimisation model 

Objective Function One:
Minimising the total CO2 emission 

- from transporting products in between the three echelons 

Objective Function Two:
Minimising a sum of costs:

- Total fixed cost of operating plants and DCs
- Total variable cost of covering the capacity of DCs at plants and the demand of retailers at DCs
- Total cost of delivering products in each route throughout the network

Subject to:
Constraints:

1. Each demand node on one route
2. Limits the length of each route
3. Assigns each route to one facility 
4. Any route entering a node must exit the same node
5. A route can operate out of only one facility 
6. Defines the flow into a facility from the supply points (in terms of demand)
7. Restricts throughput at each facility to the maximum allowed at that site and links the flow 
variables and facility location variables
8. If path leaves customer node and facility , then customer i must be assigned to 
facility j
9. AHP-integrated constraint (sustainability constraint), considering the DMs’ priorities

Integer constraints
Non-negativity constraints 

k K∈ i I∈ j J∈

Fig. 1  The details of the model
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decision variables also define all real feasible routes from plants to DCs, DCs to retail-
ers and routes connecting retailers to retailers. The parameters in the model represent the 
amount of  CO2 emission in each real feasible route from plants to DCs, DCs to retailers, 
and among retailers. The costs of serving DCs from plants, retailers from DCs and retailers 
from other retailers are defined by parameters in the model.

3.1  Problem statement and data set

A dairy processing industry’s three-echelon logistics network, operating in the east of 
Ireland, is considered to test the model using the proposed solution methods. This logis-
tics network has two milk processing plants, six DCs and supplies twenty-two retailers 
(Table 20). The geographical locations of the facilities and retailers enable the model to 
measure the traversed distances, costs of transportation and the associated  CO2 emission. 
The fixed costs associated with the processing plants and DCs are illustrated in Tables 21 
and 22. These costs refer to the total fixed costs of operating each facility in a cycle time 
of 2–3 days. The variable cost at each DC is provided in Table 22. The variable cost is 
assumed to be the cost that each plant or DC should bear in order to meet the demand of 
the consumer. Variable cost at each plant is illustrated in Table 21. Table 23 depicts the 
capacity of each DC.

Average demand at each retailer is estimated as 2/3 of the total population at the geo-
graphical location of the retailer. Heavy duty vehicles are considered for deliveries through-
out the network. These vehicles are refrigerated. In Ireland, like other countries, different 
speed limits are set depending on the nature of the roads. In order to avoid cumbersome 
computational process an average speed on the road is assumed. Table 24 represents the 
stipulated speed limits according to the “Road Traffic Act 2004” and the corresponding 
average speeds are assumed for the purpose of the model.

Diesel fuelled fully loaded vehicles are considered. The fuel efficiency is considered as 
0.35 based on the report of the UK’s Department of Energy and Climate Change (2010) 
and Nylund and Erkkilä (2005). Guidelines to DEFRA’s (2008) greenhouse gas conversion 
factors aid in calculating the  CO2 emission from the diesel vehicles.

The cost of serving each of the routes from the plants to the DCs and from the DCs to 
the retailers is the sum of fuel costs and driver’s wage. This cost considers the fuel cost and 
driver’s wage. The average cost of diesel in Ireland as €1.53/l and the average wage of a 
heavy-duty vehicle driver in Ireland as €11.50/h.

The speed of the vehicle affects the cost of serving the route. Each route includes a 
combination of different types of roads, e.g., motorways, national primary and secondary 
routes, regional routes and local roads. Therefore, average speed in each path is considered.

The  CO2 emission from a diesel vehicle (in kg) is determined using the information 
presented in Table 25. Table 1 shows the  CO2 emission from the burnt fuel for travelling 
between the plants and the DCs using the designated routes and corresponding cost of 
serving each route.

In a similar manner, the  CO2 emission during transportation of the products between 
the DCs and retailers and corresponding costs of serving each route between the DCs and 
retailers are computed. The  CO2 emission during transportation of the products among the 
retailers is also calculated. In addition, the cost of serving each route among retailers are 
determined.

The AHP-integrated constraint of the model considers the DMs’ priorities in terms 
of vehicle types. Three different types of vehicle are considered for transportation of the 
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products for illustrative purpose. The vehicles have different levels of  CO2 emission and 
costs. Table 26 illustrates the truck types based on these two attributes. The DMs are asked 
to compare the vehicles using Saaty’s nine-point scale (Saaty 1977, 1994).

The weight matrix (Table 27) is determined using the pair-wise comparison matrix of 
AHP. The boundary values (i.e. lowest and highest) of  CO2 emission are found considering 
the average round off values of the  CO2 emission during transportation and costs of serving 
the routes (Table 28).

4  Solution approach

The three echelon bi-objective combinatorial optimisation location routing model is NP-
hard. A two-phased solution method is designed to find the feasible solution area for the 
model. This solution method divides the main model into two interlinked problems consid-
ering different elements of the model.  modeFRONTIER® have been selected as the main 
solution platform for executing the solution method.  modeFRONTIER® is a multi-disci-
plinary and multi-objective software developed by ESTECO SpA and is chosen to solve 
the LRP model.  modeFRONTIER® is a multi-criteria decision-analysis optimisation and 
design environment. This platform consists of a variety of evolutionary based algorithms 
and a Design of Experiment (DoE)-guided solution approach (ESTECO 2020). DoE con-
nects the evolutionary-based meta-heuristics to the optimisation model by generating an 
initial population. A variety of distributions and designs are considered in the main DoE 
search algorithm to generate sets of parameters and then the best set of parameters are 
selected as the initial set of parameters. The details of the DoE in each of the proposed 
solution methods are explained in Sect. 4.1.

4.1  Proposed solution methods

The sustainable three-echelon bi-objective distribution network model is solved in two 
phases, viz. Phase-I and Phase-II. Based on the outcome of Phase-I, Phase-II is modified 
and then solved. The final results are obtained when both phases are complete. The process 
of solving the model and analysing results in the two-phase method is illustrated in Fig. 2.

Table 1  CO2 emission estimations and costs of serving each path by heavy duty vehicles from each plant to 
each DC. Adopted from Validi (2014)

Plant DC I Drogheda II Ballitore

CO2 emission from 
fuel burnt (kg)

Cost of serving 
route (€)

CO2 emission from 
fuel burnt (kg)

Cost of serv-
ing route (€)

a. Dundalk 33.63 23.68 108.11 77.70
b. Drogheda 1.85 1.84 108.11 77.70
c. Dublin City 48.42 34.09 55.25 40.62
d. Tullamore 101.64 74.72 57.75 47.84
e. Bray 68.93 48.53 65.97 48.50
f. Waterford 202.36 142.46 97.02 68.30
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As indicated in Fig. 2, Phase-I of the solution method deals with facility and routing 
decisions between plants, DCs and retailers. Once the open and closed DCs are determined, 
in Phase-II, the remaining retailers are served through the retailers served in Phase-I.

The Design of Experiment (DoE) embedded in  modeFRONTIER® is introduced to 
the solution method, through the solution platform. It improves the optimisation process 

Two phased DoE-guided solution method
Initial population table: generated by DoE
Optimisers: Multi-objective GA-based: MOGA-II, NSGA-II

Multi-objective PS-based: MOSPSO
Execution platform: modeFRONTIER®

Phase I 
Scope: ‘locating facilities’ & ‘routing 
vehicles’ within the network from plants to 
DCs and DCs to retailers 

Design of the model in Phase II:
Objective function I:

Min CO2 emission form transporting      
between plants & DCs

Objective function II:
Min total cost of operating plants &
DCs  and serving routes

Subject to:
All operational constraints:
Non-negativity constraints
Integer constraints 

Results of Phase I:
- Facility Location decision:

• Open / closed DCs
- Vehicle routing decisions:

• Optimised vehicle routes 
connecting plants to DCs
• Optimised vehicle routes 
connecting open DCs to retailers

Phase II
Scope: ‘locating Facilities’ & ‘routing vehicles’
within the network from plants to DCs and DCs 
to retailers 

Inputs from Phase I:
- Facility location decision:

• Open / closed DCs
- Vehicle routing decisions:

• Optimised vehicle routes connecting 
plants to DCs
• Optimised vehicle routes connecting 
open DCs to retailers

As served retailers do not supply products,
the routes connecting them to open DCs from 
Phase-I are considered in Phase-II.

Design of the model in Phase II:
Objective function I:

Min CO2 emission form transporting 
between DCs  and retailers

Objective function II:
Min total cost of operating DCs &
retailers and serving routes

Subject to:
Tailored operational constraints:
Non-negativity constraints
Integer constraints

Results of Phase II:
- Vehicle routing decisions:

• Optimised distribution routes to un-
served retailers through the served ones 

Results 
Low cost, low emission optimised:

• Facility location decision:
o Open / closed DCs

• Vehicle routing decisions:
o Optimised vehicle routes connecting plants to DCs
o Optimised vehicle routes connecting open DCs to retailers
o Optimised vehicle routes connecting retailers to retailers

Link 
between 

Phase I &
Phase II:

• Results from Phase-I:
Open DCs, served 
retailers

• Tailored constraints  
in Phase II based on 
Results from Phase I 

Analysis of Results

Outcomes

Fig. 2  The scope and the relationship between the two phases of the solution methods



429Annals of Operations Research (2021) 296:421–469 

1 3

by connecting the optimisation model to the selected optimisers. DoE considers a com-
bination of designs and distributions to search for the best set of parameters. Design 
of experiment sequence, Random design, Sobol sequence, Uniform Latin hypercube, 
Incremental space filler, and Constraint satisfaction design are the search algorithms 
used. A population of 50 have been selected by the DoE process to enhance the perfor-
mance of the meta-heuristics and consequently improve the optimisation process. The 
details of the designs are presented in Table 2.

Amongst many different combinations of designs tested, this combination of designs 
proved to be the most efficient for the three-echelon sustainable distribution model. The 
same initial population has been used for all three optimisers.

Two GA-based optimisers, viz. MOGA-II and NSGA-II, and one PS-based optimiser, 
viz. MOPSO, are considered in solving the sustainable three-echelon distribution net-
work problem. The chosen optimisers have disparate requirements and distinctive speci-
fications. Therefore, they have different set up details (Table 3).

Based on experimentation and analysis of convergence characteristics and the num-
ber of realistic results for each of the three optimisers, the final number of generations 
has been set to 250 for the MOGA-II and MOSPSO optimisers and to 50 for the NSGA-
II optimiser. 250 generations for the MOGA-II and MOSPSO optimisers, generates a 
larger feasible solution area with clear convergence within this limit. Convergence for 
the NSGA-II optimiser has been seen to occur much faster and through experimenta-
tion NSGA-II was found to converge in 50 generations. After the 50th generation the 
optimiser doesn’t improve the results any further. For this reason, the number of genera-
tions in NSGA-II is set to 50 generations, as to run to 250 generations was surplus to 
requirements.

Table 2  DoE guided initial 
population

Number of designs Set up details

10 Design of experiment sequence
10 Random
10 Sobol
10 Uniform Latin hypercube
9 Incremental space filler
1 Constraint satisfaction design

Table 3  Set up details of the three optimisers

MOGA-II NSGA-II MOPSO

Number of generations: 250
Initial population: 50
Probability of crossover: 0.5
Type of crossover: Directional
Probability of mutation: 0.1
Type of mutation: DNA string
DNA string mutation ratio: 0.05
Elitism: Enabled
Random generator seed: 1

Number of generations: 50
Initial population: 50
Crossover probability: 0.9
Mutation probability for real-coded vec-

tors: 1.0
Mutation probability for binary strings: 

1.0
Distribution index for real-coded crosso-

ver: 20.0
Distribution index for real-coded muta-

tion: 20.0

Number of generations: 250
Initial population: 50
Turbulence: 0.2
Random generator seed: 1
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5  Results and analyses

The three optimisers have been tested with the same data set using  modeFRONTIER®, a 
multi-disciplinary optimisation platform. Obtained results from Phase I and Phase II are 
further analysed and final outcomes of the model are presented. The analysis process is 
illustrated in Fig. 3.

modeFRONTIER® is the main platform for implementing the solution methods and per-
forming Analysis of Variance (ANOVA). The main advantages of the embedded ANOVA 
in  modeFRONTIER® are: (i) its direct access to the feasible solution space and the results 
obtained from the three optimisers simultaneously, and (ii) the test results are part of the 
DoE that guide the solution methods. Using the optimisation platform, the initial results 
obtained through the solution methods are refined, and a set of realistic results are identi-
fied. In the process of refining results, unrealistic and identical results are eliminated. Unre-
alistic results are those that don’t show any improvement when compared to the previous 
generations and those that are operationally unrealistic. This is followed by a performance 
study on each optimiser. Next, ANOVA test is performed to compare means of multiple 
groups for the optimised data. A set of results are selected for further analysis. Pareto 

Refining results 
Eliminating unrealistic and identical results to find the set of realistic results

Analysis of the results

ANOVA test 
Comparing the means of two or more groups of realistic results 

Selected results 
Selecting top 20 result, within each set of realistic results, for further analysis 

Pareto efficiency
Checking the Pareto efficiency of selected results 

TOPSIS
Considering the priorities of DMs to rank the selected results 

Outcomes

Geographical maps
Geographically mapping the ranked selected results

Scenario Analysis 
Analysing the effect of opening closed routes on the value of objective functions 

Fig. 3  Analysis process
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efficiency is examined on the selected results. Finally, the selected results are ranked using 
TOPSIS (Hwang and Yoon 1981). TOPSIS, a multi-criteria decision-making method, 
has been considered for ranking data due to its compensatory nature. This compensatory 
method defines weight and normalises scores for each criterion by selecting an alterna-
tive (‘results’ here) with the shortest distance from the ideal and the farthest distance the 
non-ideal result (Zavadskas et  al. 2006; Yoon and Hwang 1995). When compared with 
non-compensatory methods, the compensatory capability of TOPSIS provides realistically 
well-balanced trade-offs between criteria (Asgharpour 1998), which work very well in 
ranking the selected results of this bi-objective three-echelon LRP model considering the 
DMs’ priorities.

5.1  Phase‑I results

A statistical summary on the feasible results offered by the three optimisers, are presented 
in Table 4. These statistical summaries assist in analysing: (a) the total results table which 
consists of all feasible results obtained by each optimiser, (b) the refined realistic results 
table which consists of realistic and non-identical results, and (c) the selected results table 
which consists of selected results from the three lowest sets of feasible results from the 
Bubble plots.

The minimum value for both  CO2 emissions and costs is obtained by NSGA-II in 50 
generations (Table 4). This does not necessarily yield a minimum value for the total costs. 
Figures 4, 5 and 6 illustrate the feasible real solution space for MOGA-II, MOPSO, and 
NSGA-II respectively. Each bubble in these figures represents a realistic result. In these 
plots, the colour and diameter of bubbles are representatives for values of the objective 
functions where the bubble size represents costs and the colour represents  CO2 emission. 
Colours range from dark blue to red, and lowest to highest value of the objective function 
respectively. The diameters of the bubbles range from small to large and lowest to highest 

Table 4  Statistical summary of the results from the three optimisers for Phase-I

Results Number of real feasible 
results (alternatives)

CO2 emission value 
(kg) (objective func-
tion I)

Costs value (€) (objective 
function II)

Min Max Min Max

MOGA-II (Validi et al. 2020)
Total results 12,500 26,689 63,164 2,487,644 2,671,661
Refined realistic results 412 26,689 45,179 2,487,644 2,671,149
Selected results 20 26,689 37,613 2,487,644 2,594,149
MOPSO
Total results 12,500 25,687 61,188 2,487,052 2,674,237
Refined realistic results 528 25,687 40,550 2,487,052 2,501,195
Selected results 20 25,687 46,663 2,487,052 2,588,256
NSGA-II
Total results 2500 21,669 49,578 2,480,034 2,516,631
Refined realistic results 184 21,699 38,253 2,480,034 2,501,134
Selected results 20 21,699 27,445 2,480,034 2,487887
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values of the objective function respectively. The selected results are presented in Figs. 4, 5 
and 6 by their result ID number in bright green circles around the bubble.

5.1.1  Performance study of the optimisers in Phase‑I

The performance of the optimisers regarding their convergence is investigated through con-
vergence plots. Figures 7, 8 and 9 present the convergence plots for MOGA-II, MOPSO 
and NSGA-II respectively with regard to the objective functions.

All optimisers converge in a steady manner. The convergence of all of these evo-
lutionary optimisers is studied and compared based on their final results. The initial 
population set is generated by DoE for these evolutionary optimisers. This DoE-guided 

Selected results 
highlighted in green
colour, with their ID
numbers

Fig. 4  Feasible real solution space w.r.t. costs and  CO2 emission for MOGA-II optimiser

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 5  Feasible real solution space w.r.t. costs and  CO2 emission for MOPSO optimiser
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initial population is kept the same for all three optimisers. It is observed that NSGA-II 
stabilises after 50 generations with a steady flat line after the 50th generation while the 
MOGA-II and MOPSO optimisers are converging in 250 generations. DoE is adopted 
to enhance the performance of the optimisers hence it can be concluded that NSGA-II 

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 6  Feasible real solution space w.r.t. costs and  CO2 emission for NSGA-II optimiser

Fig. 7  Convergence of MOGA-II w.r.t. objective functions

Fig. 8  Convergence of MOPSO w.r.t. objective functions
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is performing more efficiently after the adoption of DoE compared to MOGA-II and 
MOPSO.

5.1.2  ANOVA for Phase‑I

One-way ANOVA is performed for both the total  CO2 emissions and total costs of trans-
portation to compare the means of multiple groups for the optimised data. Tables 5 and 6 

Fig. 9  Convergence of NSGA-II w.r.t. objective functions

Table 5  ANOVA for  CO2 emission on the all results

Optimiser Source of variation SS Df MS F-ratio p-value

MOGA-II Between groups 6.1885E11 1.9900E2 3.1098E9 1.6694E1 0.035
Within groups 4.2846E11 2.3000E3 1.8629E8 – –
Total 1.0473E12 2.4990E3

NSGA-II Between groups 1.0984E10 5.4000E1 2.0341E8 1.2356E1 0.088
Within groups 4.0249E10 2.4450E3 1.6462E7 – –
Total 5.1233E10 2.4990E3

MOPSO Between groups 7.7922E10 2.5400E2 3.0678E8 1.4877E2 0.095
Within groups 2.5250E10 1.2245E4 2.0621E6 – –
Total 1.0317E11 1.2499E4

Table 6  ANOVA for costs on the all results

Optimiser Source of variation SS Df MS F-ratio p-value

MOGA-II Between groups 6.5794E10 1.9900E2 3.3062E8 7.2896E1 0.058
Within groups 1.0432E10 2.3000E3 4.5355E6 – –
Total 7.6226E10 2.4990E3

NSGA-II Between groups 1.0875E10 5.4000E1 2.0139E8 4.6771E0 0.158
Within groups 1.0528E11 2.4450E3 4.3059E7 – –
Total 1.1615E11 2.4990E3

MOPSO Between groups 1.8805E12 2.5400E2 7.4035E9 3.8102E1 0.029
Within groups 2.3793E12 1.2245E4 1.9431E8 – –
Total 4.2598E12 1.2499E4
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illustrate the ANOVA results for the three optimisers with respect to  CO2 emissions and 
costs respectively.

The most important assumption requested by ANOVA is that the standard deviations 
within each group are the same. It is found that Hartley and Bartlett’s tests are both true. 
These two statistical tests verify that the standard deviations within each group is the same, 
therefore the most important assumption requested by ANOVA is valid. It is noted that as 
the F-ratio increases, the p value decreases.

5.1.3  Selection of Phase‑I results

Within the feasible solution space, unrealistic and identical results are eliminated to iden-
tify the refined realistic results. A set of 20 results from the refined realistic results are 
selected for further analysis. The first three shades of blue in Figs. 4, 5 and 6 represent the 
lowest three sets of values for the objective functions. Therefore, the selected results, with 
respect to the objective function values, are chosen from these three sets of results. A low 
value for one objective function may not necessarily yield a low value for the other objec-
tive function and vice versa. The realistic results are shown within the feasible solution 
space in Figs. 10, 11 and 12 for MOGA-II, MOSPO, and NSGA-II respectively.

The values for objective functions offered by optimisers are presented with reference to 
the result ID of results. The selected results are highlighted in bright green. In the selection 
of the three-echelon BO-LRP results, DMs’ priorities are considered. Therefore, in each set 
of the selected results at least one result represents extreme decision-making events.

Selected results are ranked in order to prioritise the optimised results. The ranking pro-
cess is explained in the following section.

5.1.4  Ranking selected results from Phase‑I

The selected sets of 20 results from MOGA-II, MOPSO and NSGA-II are ranked using 
TOPSIS. Ranking is performed to prioritise the best results for different DMs. Nine weight 
matrices are defined for TOPSIS. Each matrix represents a type of DM. The DMs select 
relevant weights from Saaty’s nine-point scale (1977, 1994). DMs have been asked to pri-
oritise options of transportation based on two criteria viz.,  CO2 emission and cost, thereby 
introducing flexibility in the decision-making process. The decision-makers’ priorities 
for  CO2 emission and cost of these matrices are as follows: w1 = (0.1, 0.9), w2 = (0.2, 0.8), 
w3 = (0.3, 0.7), w4 = (0.4, 0.6), w5 = (0.5, 0.5), w6 = (0.6, 0.4), w7 = (0.7, 0.3), w8 = (0.8, 0.2) 
and w9 = (0.9, 0.1). We consider the weight matrix of w5 as it has equal importance on  CO2 
emission and cost. The first three ranked results by TOPSIS using the weight matrix w5 for 
the optimisers are presented in Table 7.

As shown in Table 7, the best result with regard to objective function values is offered 
by NSGA-II. MOPSO is in the second best and MOGA-II the third optimiser.

5.1.5  Pareto efficiency for Phase‑I

Pareto efficiency is examined to evaluate the performance of the optimisers. The 20 
selected results obtained from MOGA-II, MOPSO and NSGA-II optimisers are separately 
examined with regard to their Pareto efficiency and presented in Figs. 13, 14 and 15.
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As is evident from Figs.  13, 14 and 15 the selected results from MOGA-II and 
NSGA-II optimisers follow the Pareto optimality and are strongly efficient. MOSPO 
shows a reasonably strong Pareto efficiency on the selected results. In the selection 
process of results, extreme decision-making events are considered as well. Therefore, 
a small number of results representing these events exist in each selected results table. 
These results do not affect the Pareto efficiency of the selected results as they do not 

(a) History plot on CO2 emission w.r.t. IDs

Selected results 
highlighted in green
colour, with their 
ID numbers

(b) History plot on costs w.r.t. IDs

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 10  History of solution space w.r.t.  CO2 emission and costs for MOGA-II optimiser
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represent the most common decision-making events. None of the results placed outside 
the Pareto frontier is ranked by TOPSIS in the first three ranked results.

5.2  Phase‑II results

The first three ranked results obtained in Phase-I using weight matrix w5 (Table  7) is 
used as a basis for implementing Phase-II. The three optimisers MOGA-II, MOPSO, and 
NSGA-II used in Phase-I are used to implement the model in Phase-II. In order to analyse 
the results obtained from Phase-II: (i) results are refined and a set of realistic results are 
identified, (ii) a performance study is conducted on each optimiser, (iii) Analysis of Vari-
ance (ANOVA) test is performed to compare means of multiple groups for the optimised 

(b) History plot on costs w.r.t. IDs

Selected results 
highlighted in green
colour, with their 
ID numbers

(a) History plot on CO2 emission w.r.t. IDs

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 11  History of solution space w.r.t.  CO2 emission and costs for MOPSO optimiser
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(a) History plot on CO2 emission w.r.t. IDs

Selected results 
highlighted in green
colour, with their 
ID numbers

(b) History plot on costs w.r.t. IDs

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 12  History of solution space w.r.t.  CO2 emission and costs for NSGA-II optimiser
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data, (iv) a set of results are selected for further analysis, (v) selected results are ranked 
using TOPSIS, and finally (vi) Pareto efficiency is examined on the selected results.

5.2.1  Refinement of Phase‑II results in feasible real solution space

All results from the MOGA-II, NSGA-II, and MOPSO optimisers in Phase-II are feasible 
and real. A statistical summary of these results is illustrated in Table 8. These results assist 
in analysing: (a) the total results table consisting of all feasible real results obtained from 
the optimisers, (b) the refined realistic results table consisting of realistic and non-identical 
results, and (c) the selected results table consisting of selected results from the three lowest 
sets of feasible results.

Table 7  First three ranked results 
using the weight matrix w

5

Rank CO2 emission (kg) Cost (€)

MOGA-II (Validi 
et al. 2020)

1 26,689 2,487,644
2 27,358 2,509,288
3 29,354 2,507,950

MOPSO 1 25,687 2,487,052
2 26,689 2,487,644
3 27,835 2,488,202

NSGA-II 1 21699 2,480,736
2 21,755 2,480,034
3 22,150 2,480,116

Fig. 13  Pareto frontier for selected results for MOGA-II (Validi et al. 2020)
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As presented in Table  8, the minimum value for both  CO2 emissions and costs is 
obtained by NSGA-II in 50 generations. This does not necessarily yield a minimum value 
for the total costs.

MOGA-II, NSGA-II and MOPSO generate real feasible solutions spaces in Phase-II. 
Figure 16, 17 and 18 depict the realistic results within the feasible solution space for the 
optimisers in Phase-II. In these figures, colour and diameter of bubbles represent the val-
ues of both the objective functions. Selected results are highlighted by their IDs in bright 

Fig. 14  Pareto frontier for selected results for MOPSO

Fig. 15  Pareto frontier for selected results for NSGA-II
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green. Bubble size represents costs while colour represents the  CO2 emission. Colours 
range from dark blue to red, lowest to highest value of the objective function respectively. 
The diameter of bubbles ranges from small to large, lowest to highest value of the objective 
function respectively.

5.2.2  Performance study on optimisers in Phase‑II

The performance of the optimisers regarding their convergence is studied comparatively 
through plots presented in Figs. 19, 20 and 21 illustrate the convergence plots for MOGA-
II, MOPSO and NSGA-II, with respect to the objective functions.

Table 8  Statistical summary of the results obtained in Phase-II w.r.t. the optimisers

Type of results on optimisers Number of real feasible 
results (alternatives)

CO2 emission value 
(kg) (objective func-
tion I)

Costs value (€) 
(objective func-
tion II)

Min Max Min Max

MOGA-II
Total results table 12,500 988 3622 701 2515
Refined realistic results table 399 988 1778 701 1245
Selected results table 20 988 1514 701 1031
MOPSO
Total results table 12,500 1423 4057 690 2504
Refined realistic results table 422 1423 2213 690 1234
Selected results table 20 1423 1980 690 1001
NSGA-II
Total results table 2500 1950 4590 1224 3046
Refined realistic results table 300 1950 3225 1224 2010
Selected results table 20 1950 2671 1224 1723

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 16  Feasible real solution space w.r.t. costs and  CO2 emission for MOGA-II optimiser
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Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 17  Feasible real solution space w.r.t. costs and  CO2 emission for MOPSO optimiser

Selected results 
highlighted in green
colour, with their ID 
numbers

Fig. 18  Feasible real solution space w.r.t. costs and  CO2 emission for NSGA-II optimiser

Fig. 19  Convergence of MOGA-II w.r.t. objective functions
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It is evident from plots ‘a’ and ‘b’ of Figs. 19, 20 and 21 that all the optimisers are con-
verging in a steady manner similar to Phase-I. MOGA-II and MOPSO optimisers converge 
in 250 generations while NSGA-II in 50 generations.

5.2.3  ANOVA for Phase‑II

The means of multiple groups of the optimised data are compared through one-way 
ANOVA with respect to the objective functions. These comparisons are presented in 
Tables 9 and 10.

Fig. 20  Convergence of MOPSO w.r.t. objective functions

Fig. 21  Convergence of NSGA-II w.r.t. objective functions

Table 9  ANOVA for  CO2 emission on the all results

Optimiser Source of variation SS Df MS F-ratio p-value

MOGA-II Between groups 4.0428E8 1.9800E2 2.0418E6 1.1066E2 0.0000E0
Within groups 4.2456E7 2.3010E3 1.8451E – –
Total 4.4673E8 2.4990E3

NSGA-II Between groups 7.5800E7 5.0000E0 1.5160E7 1.1056E3 0.0227
Within groups 3.4197E7 2.4940E3 1.3712E4 – –
Total 1.1000E8 2.4990E3

MOPSO Between groups 1.1126E8 5.4000E1 2.0603E6 6.0362E1 0.0199
Within groups 8.5162E7 2.4950E3 3.4133E4 – –
Total 1.9642E8 2.5490E3
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The most important assumption in ANOVA is that the standard deviations within each 
group are the same. Hartley and Bartlett’s tests are true in this case. These two statisti-
cal tests verify that the standard deviations within each group are the same, which means 
that the assumption of ANOVA is valid. It is also noted that as the F-ratio increases, the 
p-value decreases. The p-values of the ANOVA table for  CO2 emission and costs (Tables 9 
and 10) in MOGA-II optimiser are zero. This suggests that there are significant differences 
between the groups. At least one sample mean is significantly different from the other sam-
ple means.

5.2.4  Selection of results in Phase‑II

After eliminating the un-realistic and identical results from the feasible solutions space, the 
refined realistic results are considered for further analysis. The analysis process performed 
in Phase-I to select results is adapted here. Figures 22, 23 and 24 exhibit the bubble plots 
on selected results for MOGA-II, MOSPO and NSGA-II respectively.

Table 10  ANOVA for costs on the all results

Optimiser Source of variation SS Df MS F-ratio p-value

MOGA-II Between groups 1.9883E8 1.9800E2 1.0042E6 1.1161E2 0.0000E0
Within groups 2.0702E7 2.3010E3 8.9969E3 – –
Total 2.1953E8 2.4990E3

NSGA-II Between groups 1.5379E8 5.0000E0 3.0758E7 1.0925E3 0.0923
Within groups 7.0213E7 2.4940E3 2.8153E4 – –
Total 2.2400E8 2.4990E3

MOPSO Between groups 5.5239E7 5.4000E1 1.0229E6 6.0178E1 0.09871
Within groups 4.2411E7 2.4950E3 1.6999E4 – –
Total 9.7650E7 2.5490E3

Fig. 22  Bubble plot for  CO2 emission and costs of selected results w.r.t. MOGA-II optimiser
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5.2.5  Ranking selected results from Phase‑II

Similar to the process of ranking results in Phase-I, selected results from Phase-II are 
ranked. The first three ranked results by TOPSIS using weight matrix w5 for all three opti-
misers are presented in Table 11.

5.2.6  Pareto efficiency in Phase‑II

The 20 selected results obtained from MOGA-II, MOPSO, and NSGA-II optimisers are 
separately examined with regard to their Pareto efficiency. Pareto frontiers are presented in 
Figs. 25, 26 and 27.

Fig. 23  Bubble Plot for  CO2 emission and costs of selected results w.r.t. MOPSO optimiser

Fig. 24  Bubble Plot for  CO2 emission and costs of selected results w.r.t. NSGA-II optimiser
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As evident from Figs. 25, 26 and 27 selected results from MOGA-II and NSGA-II opti-
misers follow the Pareto optimality and are strongly efficient. In MOPSO three results 
are not strongly Pareto efficient. These results represent extreme decision-making events. 
Therefore, they don’t affect the efficiency of the results in MOPSO.

6  Optimal three‑echelon distribution network

The final result from the three-echelon BO-LRP is the combined outcome from Phase-I 
and Phase-II. These results concern facility and vehicle-routing decisions on the demand 
side of the three-echelon logistics network in the east of Ireland.

Table 11  First three ranked results w.r.t optimisers using weight matrix w
5

Rank <ID> Open routes CO2 
emission 
(kg)

Cost (€)

MOGA-II 1 12,498 O608, O1613, O1714, O1415 988 701
2 8959 O608, O1613, 01714, O1315 1036 722
3 11,637 O408, 01613, 01714, 01415 1058 755

MOPSO 1 11,647 O0608, O0416, O1018, O1817, O1314, O1415 1423 1000
2 11,872 O0608, O1018, O1817, O1514, O1315 1445 690
3 6162 O0408, O0616, O1018, O1817, O1314, O1415 1452 919

NSGA-II 1 2415 O0103, O0408, O1718, O0719, O0920 1950 1423
2 2199 O0301, O0102, O0605, O0608, O1011, O1413, O1416, 

O2022
2445 1224

3 2364 O0506, O01, O1110, O0816, O1817, O0920, O1914 2241 1536

Fig. 25  Pareto frontier on of selected results w.r.t. MOGA-II (Validi et al. 2020)
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6.1  Final results

The sustainable three-echelon bi-objective distribution network results offer an optimal 
facility location and vehicle-routing decision. With regard to facility location decisions, 
optimum open and closed DCs are offered in each result. With respect to vehicle-routing 
decisions: (i) optimum routes connecting plants to DCs, DCs to retailers and connec-
tion in between retailers, (ii) type of vehicle and (iii) the number of heavy good vehi-
cles (HGVs) required for transporting products in each route are offered. Table 12 illus-
trates the ‘facility location’, ‘type of truck’ and the ‘routing pattern’ for the disparate 
optimisers.

Fig. 26  Pareto frontier on selected result w.r.t. MOPSO

Fig. 27  Pareto frontier on selected results w.r.t. NSGA-II
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NSGA-II offers the best results for the three-echelon BO-LRP in two inter-linked phases 
(Table 12). NSGA-II converges and offers the best results in 50 generations while MOGA-
II and MOPSO converge in 250 generations.

With regard to vehicle-routing decisions, the quantity transported in each open route and 
the numbers of HGVs required for transporting the defined load of product are presented 
in Tables 13, 14 and 15 with respect to the MOGA-II, MOPSO and NAGA-II first ranked 

Table 12  Final result of the sustainable three-echelon BO-LRP for disparate optimisers

Phase one Phase two Final  CO2 
emission 
(kg)

Final costs (€)

Open routes Trans-
portation 
option

Open routes Trans-
portation 
option

MOGA-II
Processing Plant I routed 

to:
DC 2, 3
Processing Plant II 

routed to:
DC 1, 4, 5, 6
Open DCs: 3, 5
DC 3 serving retailers:
2,3,4,5,6,7,11,13,18,21
DC 5 serving retailers:
1,9,10, 12, 

16,17,19,20,22

T2 Retailer 6 to retailer 8
Retailer 16 to retailer 13
Retailer 17 to retailer 14
Retailer 14 to retailer 15

T2 27,677 2,488,345

MOPSO
Processing Plant I routed 

to:
DC 2, 3
Processing Plant II 

routed to:
DC 1, 4, 5, 6
Open DCs: 3 and 5
DC 3 serving retailers:
1, 3, 4, 5, 6, 7, 19, 21, 22
DC 5 serving retailers:
2, 9, 10, 11, 12, 13, 20

T3 Retailer 6 to retailer 8
Retailer 4 to retailer 16
Retailer 10 to retailer 18
Retailer 18 to retailer 17
Retailer 13 to retailer 14
Retailer 14 to retailer 15

T3 27,110 2,488,052

NSGA-II
Processing Plant I routed 

to:
DC 1, 2, 3
Processing Plant II 

routed to:
DC 4, 5, 6
Open DCs: 2 and 5
DC 2 serving retailers:
1, 2, 5, 7, 10, 13, 15, 16, 

21, 22
DC 5 serving retailers:
4, 6, 9, 11, 12, 14, 17

T2 Retailer 1 to retailer 3
Retailer 4 to retailer 8
Retailer 17 to retailer 18
Retailer 7 to retailer 19
Retailer 9 to retailer 20

T3 24,144 2,481,960
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results. The performance of the optimisers in Phase-I and Phase-II shows that NSGA-II is 
very efficient in solving the bi-objective NP-hard three-echelon sustainable LRP.

A schematic presentation of the final results obtained from MOGA-II, MOPSO and 
NSGA-II are illustrated in Fig. 28a–c.

Table 13  Quantities and the number of vehicles in each open route for MOGA-II final result

Open routes Quantity shipped Number 
of vehi-
cles

Plants to DCs Plant I
 DC 2 800,000 67
 DC 3 1,000,000 67
 DC 4 1,000,000 67

Plant II
 DC 1 1,000,000 54
 DC 5 700,000 47
 DC 6 1,000,000 67

DCs to retailers DC 3
 Retailer 2 25,000 2
 Retailer 3 19,000 2
 Retailer 4 9000 1
 Retailer 5 14,000 1
 Retailer 6 14,500 + 9000 2
 Retailer 7 10,000 1
 Retailer 11 7000 1
 Retailer 18 7000 1
 Retailer 21 182,000 13

DC 5
 Retailer 1 25,000 2
 Retailer 9 21,000 2
 Retailer 10 9000 1
 Retailer 12 11,000 1
 Retailer 16 16,000 + 12,000 2
 Retailer 17 13,000 + 35,000 + 7000 4
 Retailer 19 350,000 24
 Retailer 20 138,000 10
 Retailer 22 177,000 12

Retailers connections Retailer 6 to retailer 8
Retailer 16 to retailer 13
Retailer 17 to retailer 14 to retailer 15

Total  CO2 emission (kg) 26,689 + 988 = 27,677
Total costs (€) 2,487,644 + 701 = 2,488,345
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6.2  Scenario analysis with final results

Disparate scenario analysis on the first ranked results obtained from the three optimisers is 
presented in Tables 16, 17 and 18.

Tables 16, 17 and 18 are examples of the guidance available to DMs for locating the fea-
sible and realistic optimal distribution routes, considering the trade-offs with respect to the 
objective functions, if a closed route is forcibly opened.

Table 14  Quantities and the number of vehicles in each open route for MOPSO final result

Open routes Quantity shipped Number 
of vehi-
cles

Plants to DCs Plant I
 DC 2 1,000,000 67
 DC 3 1,000,000 67

Plant II
 DC 1 800,000 54
 DC 4 1,000,000 67
 DC 5 700,000 47
 DC 6 1,000,000 67

DC 3
DCs to retailers  Retailer 1 25,000 2

 Retailer 3 19,000 2
 Retailer 4 9000 + 16,000 3
 Retailer 5 14,000 1
 Retailer 6 14,500 + 9000 2
 Retailer 7 10,000 1
 Retailer 19 350,000 24
 Retailer 21 182,000 13
 Retailer 22 177,000 12

DC 5
 Retailer 2 25,000 2
 Retailer 9 21,000 2
 Retailer 10 9000 + 7000 + 13,000 3
 Retailer 11 7000 1
 Retailer 13 12,000 + 35,000 + 7000 4
 Retailer 20 138,000 10

Retailers’ connections Retailer 6 to retailer 8
Retailer 4 to retailer 16
Retailer 10 to retailer 18
Retailer 18 to retailer 17
Retailer 13 to retailer 14
Retailer 14 to retailer 15

Total  CO2 emission (kg) 25,687 + 1423 = 27,110
Total costs (€) 2,487,052 + 1000 = 2,488,052
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7  Conclusions

Three two-phase solution methods are proposed and employed as the sustainable three-ech-
elon bi-objective distribution network model is constrained to a considerable degree and 
impossible to solve in single phase. Three-echelon LRPs deal with two types of decisions 
in designing the logistics networks, viz. facility location and vehicle routing decisions. 

Table 15  Quantities and the number of vehicles in each open route for NSGA-II final result

Open routes Quantity shipped Number 
of vehi-
cles

Plants to DCs Plant I
 DC 1 1,000,000 54
 DC 2 800,000 67
 DC 3 1,000,000 67

Plant II 1,000,000 67
 DC 4
 DC 5 700,000 47
 DC 6 1,000,000 67

DCs to retailers DC 2 25,000 + 19,000 3
 Retailer 1
 Retailer 2 25,000 2
 Retailer 5 14,000 1
 Retailer 7 10,000 + 350,000 24
 Retailer 10 9000 1
 Retailer 13 12,000 1
 Retailer 15 7000 1
 Retailer 16 16,000
 Retailer 21 182,000 13
 Retailer 22 177,000 12

DC 5 9000 + 9000 2
 Retailer 4
 Retailer 6 14,500 1
 Retailer 9 21,000 + 138,000 11
 Retailer 11 7000 1
 Retailer 12 11,000 1
 Retailer 14 35,000 3
 Retailer 17 13,000 +7000 2
 Retailer 1 to retailer 3
 Retailer 4 to Retailer 8
 Retailer 17 to retailer 18
 Retailer 7 to retailer 19
 Retailer 9 to retailer 20

Total  CO2 emission (kg) 21,699 + 2445 = 24,144
Total costs (€) 2,480,736 + 1224 = 2,481,960
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Fig. 28  Schematic presentation of the final results obtained from MOGA-II, MOPSO and NSGA-II
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Table 16  Scenario analysis for 
the final result of MOGA-II

All routes CO2 emission if route 
opens

Costs 
if route 
opens

Processing plants to DCs
Plant I
 DC 1 1836 1296
 DC 2 – –
 DC 3 – –
 DC 4 – –
 DC 5 2585 1927
 DC 6 4422 3216

Plant II
 DC 1 – –
 DC 2 6834 5025
 DC 3 13,534 9514
 DC 4 7236 5226
 DC 5 – –
 DC 6 – –

DCs to retailers
DC 3
 Retailer 1 92 56
 Retailer 2 – –
 Retailer 3 – –
 Retailer 4 – –
 Retailer 5 – –
 Retailer 6 – –
 Retailer 7 – –
 Retailer 8 87 61
 Retailer 9 40 28
 Retailer 10 65 48
 Retailer 11 – –
 Retailer 12 28 21
 Retailer 13 164 115
 Retailer 14 435 291
 Retailer 15 163 105
 Retailer 16 226 142
 Retailer 17 121 72
 Retailer 18 – –
 Retailer 19 48 48
 Retailer 20 130 100
 Retailer 21 – –
 Retailer 22 228 168

DC 5
 Retailer 1 – –
 Retailer 2 216 152
 Retailer 3 140 98
 Retailer 4 108 79
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These two decisions are dealt with in two phases to arrive at a final solution. Phase-I con-
siders facility location decision regarding opening and closing DCs and vehicle routing 
decision regarding routing patterns for connecting plants to DCs and connecting open DCs 
to retailers. Phase-II is executed based on the results obtained from Phase-I. Phase-II deals 
with vehicle routing decisions by way of finding the optimum routing patterns for connect-
ing retailers.

The open DCs and the routes connecting them to the served retailers from Phase-I are 
included in Phase-II. The objective function and constraint elements relating to open DCs 
and routes connecting them to retailers from Phase-I are considered in Phase-II. This is 
the link for connecting the two phases in order to reach to final optimal result(s) for the 
three-echelon BO-LRP. Two GA-based and one PS-based meta-heuristic optimisers have 
performed efficiently in reaching an optimum result for the BO-LRP model.

The solution methods to the three-echelon sustainable distribution network model are 
DoE-guided. The optimisers have been set with the same parameter values as possible 
to compare their performances in solving the three-echelon BO-LRP. An experimentally 
generated initial population for the optimisers by DoE is proven to be efficient in offering 
the optimum set of results for the optimisation model. The convergence of the optimisers 
is examined with regard to the objective functions for each optimiser. One way ANOVA 
is performed for all results obtained from each optimiser for the objective functions. The 
Hartley and Bartlett’s statistics tests verify that the standard deviations within each group 
is the same. Based on the statistical selection criteria a set of results are identified and con-
sequently ranked by TOPSIS. Pareto efficiency of the selected results is studied. Selected 
results from all the three optimisers are proved to be strongly Pareto efficient.

Table 16  (continued) All routes CO2 emission if route 
opens

Costs 
if route 
opens

 Retailer 5 44 26
 Retailer 6 56 37
 Retailer 7 34 24
 Retailer 8 96 68
 Retailer 9 – –
 Retailer 10 – –
 Retailer 11 40 33
 Retailer 12 – –
 Retailer 13 173 122
 Retailer 14 501 354
 Retailer 15 157 115
 Retailer 16 – –
 Retailer 17 – –
 Retailer 18 90 55
 Retailer 19 – –
 Retailer 20 – –
 Retailer 21 336 204
 Retailer 22 – –
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Table 17  Scenario analysis for 
the final result of MOPSO

All routes CO2 emission if route 
opens

Costs 
if route 
opens

Processing plants to DCs
Plant I
 DC 1 1836 1296
 DC 2 – –
 DC 3 – –
 DC 4 7236 5226
 DC 5 2585 1927
 DC 6 4422 3216

Plant II
 DC 1 – –
 DC 2 6834 5025
 DC 3 13,534 9514
 DC 4 – –
 DC 5 – –
 DC 6 – –

DCs to retailers
DC 3
 Retailer 1 – –
 Retailer 2 150 106
 Retailer 3 – –
 Retailer 4 – –
 Retailer 5 – –
 Retailer 6 – –
 Retailer 7 – –
 Retailer 8 87 61
 Retailer 9 40 28
 Retailer 10 65 48
 Retailer 11 48 58
 Retailer 12 28 21
 Retailer 13 164 115
 Retailer 14 435 291
 Retailer 15 163 105
 Retailer 16 226 142
 Retailer 17 121 72
 Retailer 18 109 80
 Retailer 19 – –
 Retailer 20 130 100
 Retailer 21 – –
 Retailer 22 – –

DC 5
 Retailer 1 136 96
 Retailer 2 – –
 Retailer 3 140 98
 Retailer 4 108 79
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The final results are obtained through the execution of two interconnected phases. The 
final results of the model consist of (i) information on the open/close DCs, (ii) the vehicle 
routing patterns connecting the plants to DCs, (iii) the vehicle routing patterns connect-
ing the open DCs to the retailers, (iv) the vehicle routing patterns connecting the retailers 
to retailers, and (v) the number of trucks required in each route to transport the products. 
By obtaining the above optimal setting, the physical distribution network on the demand 
side of the SC network can be structured with the main aim of minimising the total cost 
and minimising the total  CO2 emitted from transportation while satisfying the operational 
constraints.

Scenario analysis is performed on the final results. This scenario analysis provides guid-
ance to DMs when a closed route is forcibly opened. Various scenarios depict the amount 
of  CO2 emitted and the total costs from a closed route if forced to be open. This provides 
support for SC network resilience.

Future research may focus on the use of meta-heuristics and assessment of their efficien-
cies in solving an NP-hard model with uncertainties using the DoE-guided two-phase solu-
tion method. Further, solution of the NP-hard sustainable distribution network model using 
hyper heuristic is another area of research to be focused in future.

Table 17  (continued) All routes CO2 emission if route 
opens

Costs 
if route 
opens

 Retailer 5 44 26
 Retailer 6 56 37
 Retailer 7 34 24
 Retailer 8 96 68
 Retailer 9 – –
 Retailer 10 – –
 Retailer 11 – –
 Retailer 12 – –
 Retailer 13 – –
 Retailer 14 501 354
 Retailer 15 157 115
 Retailer 16 246 120
 Retailer 17 102 78
 Retailer 18 90 55
 Retailer 19 480 336
 Retailer 20 – –
 Retailer 21 494 377
 Retailer 22 336 204
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Table 18  Scenario analysis for 
the final result of NSGA-II

All routes CO2 emission if route 
opens

Costs 
if route 
opens

Processing plants to DCs
Plant I
 DC 1 – –
 DC 2 – –
 DC 3 – –
 DC 4 7236 5226
 DC 5 2585 1927
 DC 6 4422 3216

Plant II
 DC 1 108 108
 DC 2 6834 5025
 DC 3 13,534 9514
 DC 4 – –
 DC 5 – –
 DC 6 – –

DCs to retailers
DC 2
 Retailer 1 – –
 Retailer 2 – –
 Retailer 3 48 40
 Retailer 4 72 44
 Retailer 5 – –
 Retailer 6 83 61
 Retailer 7 – –
 Retailer 8 132 93
 Retailer 9 136 96
 Retailer 10 – –
 Retailer 11 112 79
 Retailer 12 76 54
 Retailer 13 – –
 Retailer 14 606 429
 Retailer 15 – –
 Retailer 16 – –
 Retailer 17 182 128
 Retailer 18 137 125
 Retailer 19 1104 672
 Retailer 20 580 410
 Retailer 21 – –
 Retailer 22 – –

DC 5
 Retailer 1 136 96
 Retailer 2 216 152
 Retailer 3 140 98
 Retailer 4 – –
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Appendix A

See Table 19.

Table 18  (continued) All routes CO2 emission if route 
opens

Costs 
if route 
opens

 Retailer 5 44 26
 Retailer 6 – –
 Retailer 7 34 24
 Retailer 8 96 68
 Retailer 9 4 4
 Retailer 10 47 34
 Retailer 11 – –
 Retailer 12 – –
 Retailer 13 173 122
 Retailer 14 501 354
 Retailer 15 157 115
 Retailer 16 246 120
 Retailer 17 – –
 Retailer 18 90 55
 Retailer 19 480 336
 Retailer 20 90 70
 Retailer 21 494 377
 Retailer 22 336 204
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A. 1: The three‑echelon bi‑objective integer 0–1 AHP‑integrated location‑routing 
model

Subject to:

minimise
∑

s∈S

∑

j∈J

∑

tn∈T

∑

k∈K

ptnksjVsjtnk
+
∑

j∈J

∑

i∈I

∑

tn∈T

∑

k∈K

ptnkjiLjitnk +
∑

i∈I

∑

i�∈I

∑

tn∈T

∑

k∈K

ptnkii�Oii�tnk

minimise

[

∑

s∈S

fsFs +
∑

j∈J

fjEj

]

+

[

∑

s∈S

vsFs +
∑

j∈J

vjEj

]

+

[

∑

s∈S

∑

j∈J

∑

tn∈T

∑

k∈K

ctnksjVsjtnk
+
∑

j∈J

∑

i∈I

∑

tn∈T

∑

k∈K

ctnkjiLjitnk +
∑

i∈I

∑

i�∈I

∑

tn∈T

∑

k∈K

ctnkii�Oii�tnk

]

∑

j∈J

∑

tn∈T

∑

k∈K

Vsjtnk
= 1∀s ∈ S,

∑

i∈I

∑

tn∈T

∑

k∈K

Ljitnk = 1∀j ∈ J and
∑

i�∈I

∑

tn∈T

∑

k∈K

Oii�tnk
= 1, ∀i ∈ I

∑

s∈S

∑

j∈J

Vsjtnk
≥ 1 ∀k ∈ K, ∀tn ∈ T

∑

j∈J

∑

i∈I

Ljitnk ≥ 1 ∀k ∈ K, ∀tn ∈ T

∑

i∈I

∑

i�∈I

Oii�tnk
≥ 1, ∀k ∈ K, ∀tn ∈ T

∑

j∈J

∑

i∈I

Ljitnk −
∑

i∈I

∑

j∈J

Lijtnk = 0, ∀k ∈ K, ∀tn ∈ T

∑

i∈I

∑

i�∈I

Oii�tnk
−
∑

i�∈I

∑

i∈I

Oi�itnk
= 0, ∀k ∈ K, ∀tn ∈ T

∑

s∈S

∑

j∈J

Vsjtnk
≤ 1, ∀k ∈ K, ∀tn ∈ T

∑

j∈J

∑

i∈I

Ljitnk ≤ 1, ∀k ∈ K

∑

i∈I

∑

i�∈I

Oii�tnk
≤ 1, ∀k ∈ K, ∀tn ∈ T

∑

s∈S

Qsj −
∑

j∈J

rjEj = 0 , ∀j ∈ J

∑

j∈J

Qji −
∑

i∈I

riEj = 0 , ∀i ∈ I
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Appendix B

See Tables 20, 21, 22, 23, 24, 25, 26, 27 and 28.

∑

s∈S

Qsj − rjFs ≤ 0, ∀j ∈ J

∑

j∈J

Qji − riEj ≤ 0,∀i ∈ I

∑

j∈J

Ljit
n
k +

∑

i∈I

Oii�tnk
− Yj ≤ 0, ∀i� ∈ I, ∀j ∈ J, ∀k ∈ K, ∀tn ∈ T

∑

j∈J

rj

∑

s∈S

Vsjtnk
≤ �k, ∀k ∈ K, ∀tn ∈ T

∑

i∈I

ri

∑

j∈J

Ljitnk ≤ �k, ∀k ∈ K, ∀tn ∈ T

∑

i�∈I

ri�
∑

i∈I

Oii�tnk
≤ �k, ∀k ∈ K, ∀tn ∈ T

Sm

(

∑

m∈M

∑

n∈N

wmnTn

)

≤ Bm

Vsjtnk
=

{

1, if vehicle k ∈ K& tn ∈ T goes directly from plant s ∈ S to DC j ∈ J

0, if not

Ljitnk =

{

1, if vehicle k ∈ K& tn ∈ T goes directly from DC j ∈ J to retailer i ∈ I

0, if not

Oii�tnk
=

{

1, if vehicle k ∈ K& tn ∈ T goes directly from retailer i ∈ I to retailer i� ∈ I

0, if not

Ej =

{

1, if DC j ∈ J is open

0, if not

Fs =

{

1, if plant s ∈ S is open

0, if not

Tn =

{

1, if vehicle/truck tn ∈ Tn is selected to transport the products

0, if not
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Table 20  Locations of the plants, DCs and retailers (Validi et al. 2020; Validi 2014)

SC elements Geographical locations

Plants (2 numbers) Drogheda, Ballitore
Distribution centres (6 numbers) Dundalk, Drogheda, Dublin City, Tullamore, Bray, Waterford
Customers (22 numbers) Drogheda, Dundalk, Navan, Tullamore, Naas, Newbridge, 

Leixlip, Port Laoise, Bray, Arklow, Wicklow, Greystones, 
Clonmel, Waterford, Tramore, Kilkenny, Wexford, Ennos-
corthy, Dublin City, Dun Laogharie/Rathdawn, Fingal, 
South Dublin

Table 21  Costs for operating 
plants (Validi et al. 2020; Validi 
2014)

Plants

Plant-I (Drogheda) Plant-II 
(Balli-
tore)

Fixed costs (€) 1500 2000
Variable costs per unit (vs) (€) 0.20 0.24

Table 22  Costs for distribution centres (Validi et al. 2020; Validi 2014)

Distribution centres (DCs)

DC a Dundalk DC b 
Drogheda

DC c 
Dublin 
City

DC d Tul-
lamore

DC e Bray DC f Waterford

Fixed costs (€) 200 250 250 250 100 250
Variable costs 

per unit (€) 
(vj)

0.02 0.03 0.03 0.03 0.01 0.04
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Table 24  Speed limits and average speeds of the vehicles (Validi et al. 2014a, b, 2015, 2020; Validi 2014)

Type of road Speed limits in km/h (as per 
Road Traffic Act 2004)

Average speeds (km/h)

Motorway 120 100
National primary and secondary routes 

(dual carriageways included)
100 80

Regional and local roads 80 50
Built up areas (town and city) 50 30

Table 23  Capacity of the 
distribution centres (Validi et al. 
2020; Validi 2014)

DCs Capacity (unit)

a. Dundalk 800,000
b. Drogheda 1,000,000
c. Dublin City 1,000,000
d. Tullamore 1,000,000
e. Bray 700,000
f. Waterford 1,000,000
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