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Abstract
Finite horizon periodic review backlog models are considered in this paper for an inventory
system that remanufactures two types of cores: buyback cores and normal cores. Returns
of used products as buyback cores are modelled to depend on past demands and past sales.
We derive an optimal inventory policy for the model in which returns are forecast to depend
on past demands, and analyze properties of the optimal cost and optimal policy we derived.
As the structure of the optimal inventory policy for the model in which returns are forecast
from past sales is unlikely to be tractable, we instead consider a feasible inventory policy
with a nice structure for this model. We investigate how close this policy is to optimality and
find that in the worst case, the difference in system costs between the feasible policy and the
optimal inventory policy is bounded by a constant that is dependent only on cost parameters,
mean demands and a discount factor, and is independent of the planning horizon and initial
inventories. We also perform numerical experiments to study the difference between system
costs under the feasible policy and those under the optimal policy.
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1 Introduction

Remanufacturing, an advanced form of recycling, has become an increasing concern for com-
panies as sustainability gains importance. The remanufacturing process to restore a collection
of cores1 to excellent condition consists of procedures that may involve advanced technol-
ogy. Such procedures include disassembly, cleaning, testing, parts replacement/repairs, and
reassembly operations. Examples of remanufactured products are engines, photocopiers,
toner cartridges, and the like.

The remanufacturing industry is large, comprising of many market sectors and providing
significant economic, environmental, and societal benefits (Akçali and Çetinkaya 2011).
For some manufacturers, such as Eaton Corporation, backed by Roadranger support (http://
www.roadranger.com/rr/Aftermarket/CoreBuyback/index.htm) , products sold to and used
by consumers are actively sought back for remanufacturing. Such returned products are called
buyback cores. Financial incentives are often used to encourage returns of these products for
remanufacturing or traditional recycling. On the other hand, consumers also often return
products that are more significantly worn out or are even damaged. We call those normal
cores. A normal core is distinguished from a buyback core in that the normal core has
a lower yield than the buyback core does. After undergoing the remanufacturing process,
remanufactured products, which then are in good as new condition, can be sold to consumers.
A remanufactured product and a manufactured product are treated as indistinguishable.

In this paper, we consider an inventory system that remanufactures returned products, and
inwhich products returned as buyback cores aremodelled to depend on past demands and past
sales. We propose periodic review finite horizon backlog models for the system.We consider
two types of cores in our models: buyback cores, which the remanufacturer purchases at a
cost, and normal cores, which are likely to be damaged and returned by consumers. The
remanufacturing cost for a buyback core is lower than that for a normal core because a
buyback core is in better condition than a normal core is. Products are not manufactured
from raw materials in our models, so all serviceable products come from remanufacturing.
We consider a situation that is commonly encountered in practice, in which buyback cores
are collected for products sold in the immediately previous period and earlier, and products
sold too long ago, say, before a certain time, are not entitled for returns. That is, products
can only be returned as buyback cores within a certain period of time after they are sold.
For example, the remanufacturing facilities at Caterpillar Singapore (http://www.caterpillar.
com) carry out a practice whereby there is an entitlement period during which sold products
can be returned, and products beyond the entitlement period are not eligible for return. To
be more specific, when an end-customer buys a remanufactured product from a Caterpillar
dealer, he pays a price (composed of the actual selling price of the product and a deposit)
that is the same as the price he would pay for a new product. The customer is also given an
entitlement period of eight months during which he can return a used product to the dealer,
and can get back part of his deposit, at an amount depending on the condition of the returned
product. The exact percentage of the deposit that he can get back depends on the quality of
the returned product, ranging from “full” to “partial” to “none”.

A major assumption of many papers on managing dynamic remanufacturing inventory
systems is that product returns and demands/sales across different periods are independent.
This assumption can be justified when the product is widely spread out in the market or when
a common component/material is recovered from different products (e.g., remanufacturing
of consumer electronics); see Tao and Zhou (2014). Nevertheless, one can imagine that a

1 Products at the end of their lives.
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Fig. 1 Pearson’s R against Lag X

correlation between demands/sales and returns is likely to exist in many remanufacturing
systems. If a characteristic can be identified and used to forecast returns as part of man-
aging a dynamic remanufacturing inventory system, it can potentially reduce system costs
through better deployment of returned products. We provide empirical evidence to show the
dependence of product returns on past sales in a remanufacturing system.

In Sect. 3, we introduce a way to forecast returns of buyback cores that depends on
past demands and sales. By introducing a way to model returns that are forecast from past
demands and sales, we study inventory policies on the resulting models. We first derive
a simple, explicit remanufacturing and disposal policy2 for our backlog model in which
returns are forecast from past demands. We show how that policy is affected by changes in
the forecasting of returns when those changes are caused by changes in past demands. Then,
we consider a model in which returns are forecast from past sales, and we study a feasible
inventory policy for that model that is based on the optimal policy for the earlier model. We
analyze how different this feasible policy is from the optimal policy in terms of system costs,
and we also provide numerical evidence that suggests that the difference tends to be small.

1.1 Data analysis

We describe and analyze a data set from a remanufacturing-based company with an interna-
tional presence, in order to illustrate the dependence of returns on past sales and the returns
policy offered to customers. This builds the basis for us to consider incorporating core returns
that are forecast from past demands/sales into an inventory model. The data set covers infor-
mation on the sales and returns of seven different core types from two of the company’s
distribution centers, for the period January 2010 to January 2014. The company offers a
returns policy that allows customers to return their cores within eight months. In our dataset,
a total of 3084 sales transactions occurred, out of which 2447 cores were returned to the
company. Of the remaining cores that were not returned, 232 had been purchased within
eight months of the data being retrieved and were considered to be active cores. The other
405 observations were cores that were not returned and were considered to be attrition cores.

To examine the relationship between the number of returns in the current month and the
sales figures from previous months, also known as lagged sales, we define Lag X sales as
the relationship between returns and the sales quantity X months ago.

2 The policy has a structure similar to that in which returns are independent of past demands, as found in
Zhou et al. (2011).
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In Fig. 1, we have picked one of the seven core types and we show the correlation between
the monthly buyback cores and their respective monthly lagged sales, including the upper
and lower limit of the 95% level of confidence. In the figure, the y-axis refers to the Pearson’s
R (also known as the Pearson correlation coefficient), and the x-axis records the lagged
sales, Lag X , against which the return data were measured. The figure shows that, with
a 95% confidence level, returns are positively correlated to the sales X months ago for
X = 0, 1, 2, . . . , 8, but the existence of such a correlation is not clear for X = 9 or 10. This
observation is interesting because the company offers a returns policy of eight months. The
figure shows that the returns policy set by a company can indeed affect the return time of cores.
The other six core types also display similar patterns. This observation shows the potential of
using returns that are forecast from past demands/sales in managing a remanufacturing-based
system.

2 Literature review

The literature on closed-loop supply chains is vast. Akçali and Çetinkaya (2011) presented a
review of the subject that includes a comprehensive list of references. Recently, Souza (2013)
provided a review of the literature and a tutorial on closed-loop supply chains, in which
he discussed a wide range of topics that include results on a base model with underlying
assumptions, comments on extensions, and potential research areas. Among Souza’s various
topics, he discussed end-of-use returns with remanufacturing.

The literature on the study of remanufacturing-based inventory system includes papers by
de Brito and van der Laan (2009), DeCroix (2006), DeCroix and Zipkin (2005), Guo et al.
(2014), Simpson (1978), van der Laan and Salomon (1997), and van der Laan and Teunter
(2006).Amajor assumption of these papers is that product returns and demands fromdifferent
periods are independent. On the other hand, a case studied inBayiz and Tang (2004) described
correlated demand and return processes of a company that sells thermoluminescent badges
and then in subsequent periods collects them back for refurbishment. The number of badges
returned in a particular period is forecast using a linear combination of historical demands
for the badge. By using actual data, Bayiz and Tang (2004) found that the forecast was rather
accurate, with an average error of 24%. Works on stochastic and correlated demands and
returns are rather limited due to the subject’s complexity. In Zhou et al. (2011) (also see Li
et al. 2009), the authors studied product returns for a periodic review finite horizon inventory
model with backlogged demand. Those authors considered K types of core, with different
conditions of returned cores, ranging from slightly used to significantly damaged, that can be
remanufactured. The system also has a manufacturing capability. Zhou et al. (2011) offered
an optimal policy for deciding the optimal quantity of serviceable products to be made
available to consumers, and the optimal quantity of each type of core to remanufacture and
to dispose of in each period, whereas in Li et al. (2009), the authors did not provide an
optimal policy. The methodology used was stochastic dynamic programming. In the main
model in Zhou et al. (2011), the authors assumed that product returns and previous demands
are independent. Zhou et al. (2011) then briefly considered the dependence of returns on
past sales in an extension to their main model. That dependence was in terms of a Markov
process, and to model the case in which just old enough products can be returned, the authors
considered only returns of products sold at least τ periods previously. The authors postulated
the optimal policy for the extension in Theorem 5 of their paper. The dependence of returns
that are forecast from past demands/sales in our paper complements that of Zhou et al. (2011),
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in that we consider the case whereby the current returns are dependent only on immediate
past demands/sales, and products that were sold too long ago are not eligible for returns. In
the previous subsection, we provided an analysis of a data set from a remanufacturing system
to motivate our assumption.

Tao and Zhou (2014) recently considered a single product, periodic-review inventory
system with remanufacturable returned products, while assuming that demands and returns
followgeneral stochastic processes andmaybe correlated. Those authors provided an efficient
approximation algorithm, based on cost-balancing techniques, to computemanufacturing and
remanufacturing quantities in each period, and they showed that the expected costs under
that remanufacturing balancing policy was at most twice the optimal cost. In our paper,
considering the fact that it is usually harder to obtain demand data than sales data, in addition
to the model in which returns depend on past demands as considered in Tao and Zhou (2014),
we develop amodel in which returns depends on past sales.Wewill formulate the twomodels
we consider in our paper in Sect. 3.

Kiesmüller and van der Laan (2001) considered a discrete-time system in which product
returns in a period depend explicitly on the demand that existed some periods ago. Those
authors assumed that returned products are directly added to the serviceable inventory, and
that manufacturing follows a base-stock policy. We consider a different model setting from
theirs, motivated by our empirical study. Among various results, Kiesmüller and van der
Laan (2001) showed numerically that the dependence on past demands has a positive effect
on optimal cost, compared with a situation in which product returns are independent of
previous demands.

Models with returns that are dependent on past sales are considered in Kelle and Silver
(1989b), Ketzenberg et al. (2006), Khawan et al. (2007), Toktay et al. (2000), and Hsueh
(2011). Kelle and Silver (1989b) modelled the dependence of returns on sales by specifying
deterministic probabilities for a sold product to be returned in the next period, the period
after that and so on [also see Goh and Varaprasad (1986), and Kelle and Silver 1989a].
The dependence on past sales in our paper is different from theirs however, and coincides
when the maximum returns period for our model is 1 or under certain assumptions about
parameters of our model (see Remark 1). Kelle and Silver (1989b) reduced their stochastic
inventory model to a deterministic, dynamic lot-sizing problem for which there are known
solution methods. In our paper, we use stochastic dynamic programming in our analysis of
inventory models. Ketzenberg et al. (2006) focused on the value of information in a closed-
loop supply chain. In their paper, dependence of returns on past sales followed that of Kelle
and Silver (1989b), and was simplified in such a way that a sold product could only be
returned in the next period with a certain probability, or not at all. That approach is similar
to the way we forecast returns when returns in the current period are dependent only on
the immediately previous sales. Khawan et al. (2007) considered an inventory system with
warranty returns. They did not explicitly specify in their paper how returns are dependent on
past sales. Toktay et al. (2000) considered a closed queueing network in their paper, wherein
returns were modelled to depend on sales through an unknown return probability and delay
distribution. Their dependence of returns on past sales was similar to that in Kelle and Silver
(1989b). Instead of a deterministic probability for a sold product to be returned in a future
period, as in Kelle and Silver (1989b), however, Toktay et al. (2000) considered the product
of the probability that the product will be returned and a discrete delay density. Hsueh (2011)
considered an inventory systemwithmanufacturing and remanufacturing, taking into account
different demand and return rates in different phases of the product life cycle. Those demand
and return rates were normally distributed, with a different mean for each different phase of
the product life cycle. In addition, the mean of the demand rate and that of the return rate
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were related. Hsueh provided formulae for the optimal production lot size, reorder point, and
safety stock of the product for each phase of the product life cycle. Unlike Hsueh’s (2011)
model, ours does not assume a particular distribution for demands and returns. Relevant
literature on inventory models with remanufacturing, in which optimal policies are studied,
includes Zhou and Yu (2011), Gong and Chao (2013), and Tao et al. (2012). In those papers,
product returns and previous demands are independent.

Jia et al. (2016) explored a remanufacturing periodic review finite horizon inventory
system with lost sales. They considered a switching mechanism whereby in the first half of
the planning horizon, a pushmode for remanufacturing is employed to satisfy demands, while
in the second half of the planning horizon, a pull mode for remanufacturing is employed to
satisfy demands. Their paper provided an optimal policy for the switching strategy, which
possesses a simple, multi-dimensional base-stock structure. However, the sequence of events
in Jia et al. (2016) is different from that in this paper. In our paper, we make remanufacturing
decisions before products are returned in the current period [just as is the case in the model
of Zhou et al. (2011)], whereas in Jia et al. (2016), remanufacturing decisions are made after
products are returned in the current period. Both situations can arise in practice.

Another stream of research on correlated demand and returns focuses on how to forecast
returns by using appropriate statistical methods (e.g., Clottey et al. 2012; Toktay et al. 2004).
The impacts of information, inventory decisions, pricing, and the use of awarranty onproduct-
returns management have also been studied (e.g., Jing and Huang 2013; Koppius et al. 2004;
Pourakbar et al. 2014; van der Laan and de Brito 2009; Xie andYe 2016; Ye et al. 2013).More
recently, Ovchinnikov et al. (2014) provided a data-driven assessment of the economic and
environmental aspects of remanufacturing for product and service firms, and they presented
an analytical model and a behavioral study that together incorporate demand cannibalization
frommultiple customer segments across a firm’s product line. Ovchinnikov, et al. showed that
remanufacturing frequently aligns firms’ economic and environmental goals by increasing
profits and decreasing total environmental impact.

Our paper considers data-driven models, and it provides analytical results for those mod-
els that potentially can be used to analyze the impact of information on product inventory
management with returns. In the next section, we shall describe our backlog models.

3 Remanufacturingmodels: returns forecast from past demands and
past sales

In this section, we describe our periodic review3 finite horizon inventory models, with one
model forecasting returns from past demands (Model A), and the other model forecasting
returns from past sales (Model B). The second model is more realistic as sales data is usually
easier to obtain than demand data, whereas with the first model, we are able to obtain a nice
structure for its optimal inventory policy. Using results derived from the first model, we then
analyze the second model.

Two types of cores are considered in these models: buyback cores and normal cores.
Buyback cores have better quality and usability than normal cores do. A characteristic of a
buyback core is that its yield (i.e., its percentage of reusable parts) is higher than that of a
normal core. On the other hand, a normal core has greater variety in its quality and usability.
Unsatisfied demand is backlogged in our models, and we forecast returns of buyback cores

3 Papers that consider continuous review inventory model include Katehakis et al. (2015) and Shi et al. (2014).
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from past demands in one model and from past sales in the second model. Returns and past
demands/sales are not related in the case of normal cores.

We show in this section that the optimal policies for our models can be found by solving
dynamic programs. We observe that our forecasts of returns for buyback cores affect the
optimal policy only through past demands/sales, even though returns of those cores are
modelled to depend on other (random) factors as well.

We now proceed to describing our backlog models by first defining the cost parameters
used in those models. We have

h = unit holding cost for serviceable products per period.
p = unit penalty cost for serviceable products per period.

By serviceable products, we mean products that are ready to be sold to consumers.

b = unit purchasing price of buyback cores.

A buyback core is purchased back from a consumer at cost b. Such a core is usually usable,
but has suffered wear and tear due to usage. It is in better condition than a normal core is.

c = unit purchasing price of normal cores.

A normal core can be purchased from a consumer at cost c. The value of c is much smaller
than the value of b, because a normal core is usually in worse condition than a buyback core
is. For the sake of simplicity, we set c = 0.

r0 = unit remanufacturing cost of buyback cores.
r1 = unit remanufacturing cost of normal cores.

Let r0 < r1. This relationship between r0 and r1 reflects that a buyback core is in a better
condition than a normal core.

s0 = unit stocking cost of buyback cores.
s1 = unit stocking cost of normal cores.

Let s1 ≤ s0 ≤ h.

u = unit disposal cost of normal cores.

We assume in this paper that only normal cores can be disposed of, and that buyback cores
are either stocked or remanufactured. This assumption is reasonable because buyback cores
are usually in better condition than normal cores are.

Note that we consider a finite horizon in this paper, where N is the number of periods in
the planning horizon. In our models, only products that are purchased at the most K periods
before the current period, and up to the immediately previous period, are considered for
returns as buyback cores. Hence, K is the maximum period for returns.

The variables in these models are:
x0,n = inventory level of serviceable products at the beginning of the nth period.
x1,n = aggregate inventory level of serviceable products and buyback cores at the beginning
of the nth period.
x2,n = aggregate inventory level of serviceable products, buyback cores and normal cores at
the beginning of the nth period.

xn = (x0,n, x1,n, x2,n), x0,n ≤ x1,n ≤ x2,n .
y0,n = inventory level of serviceable products in the nth period after remanufacturing, but
before demand and returns occur.
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y1,n = aggregate inventory level of serviceable products and buyback cores in the nth period
after remanufacturing, but before demand and returns occur.
y2,n = aggregate inventory level of serviceable products, buyback cores and normal cores in
the nth period after remanufacturing and disposal, but before demand and returns occur.
yn = (y0,n, y1,n, y2,n), y0,n ≤ y1,n ≤ y2,n .

The variables given above are aggregated. We can easily obtain actual inventories from
these variables. As an example, x1,n − x0,n is the number of units of buyback cores on-hand
at the beginning of the nth period.
w1,n = quantity of buyback cores remanufactured in the nth period.
w2,n = quantity of normal cores remanufactured in the nth period.
wn = (w1,n, w2,n).

Randomness in the models comes from the following:

Dn = consumer demand for serviceable products in the nth period, n = 1, . . . , N .

Dn is a continuous nonnegative random variable with probability density function
fDn (ξ), ξ ≥ 0, and realization dn , n = 1, . . . , N . Also, we denote μDn to be the finite
mean of Dn .
R j
n = ∑k(n)

i=1 σn,i z
j
n−i + εn = quantity of products returned as buyback cores in the nth

period, n = 2, . . . , N , j = A, B. Let R j
1 = 0, j = A, B.

Here k(n) =
{
n − 1 if n ≤ K
K if n ≥ K + 1

.

We have

zAn−i := dn−i ,

zBn−i := max{min{dn−i , y0,n−i }, 0}
are the respective realized demand and realized sales i previous period away from the current
period, that is, the (n − i)th period. Note that σn,i , i = 1, . . . , k(n), are random variables
taking values between 0 and1. The returns distribution is therefore not determined byprevious
demand/sales in a deterministic manner, but in a random way, due to σn,i

4 which is random
and a random noise term εn .5 R j

n represents the return’s forecasting of buyback cores and is
modelled to depend explicitly on past demands/sales. It is clear that this return’s forecasting
in the nth period is dependent on the immediate previous demand/sales, up to demand/sales
k(n) previous periods away. When j = A, returns are forecast to depend on past demands,
which make analysis possible. We also consider the more realistic situation when returns are
forecast to depend on past sales when j = B.

In the literature (for example, Kelle and Silver 1989b; Toktay et al. 2000), return’s fore-
casting is modelled in a “forward” manner whereby given a product sold, the probability it
is returned in the next period, the period after next, etc., are identified. In our case, we model
return’s forecasting in a “backward” manner whereby returns are modelled in the current
period in terms of demands/sales in previous periods.
Bn = quantity of products returned as normal cores in the nth period, n = 1, . . . , N .

Bn is a continuous nonnegative random variable with realization bn , n = 1, . . . , N .
Dn, Bn, εn, σn,i , 1 ≤ i ≤ k(n), may be correlated in the nth period, but they are indepen-

dent across different periods. This assumption is needed to formulate the inventory problems
as dynamic programs as discussed later in the section.

4 We represent the random σn,i and the realization of σn,i by the same notation.
5 We represent the random εn and the realization of εn by the same notation.
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Remark 1 If we view σn,i z
j
n−i as the number of units of products returned as buyback cores

in the nth period from demand/sales of these products i period earlier (which is z jn−i ), then
σn,i , 1 ≤ i ≤ k(n), are unlikely to be independent across periods since we must have

σn−i+1,1 + · · · + σn,i + · · · + σn−i+K ,K ≤ 1.

However, we still have independence across periods if σn,i , 1 ≤ i ≤ k(n), 2 ≤ n ≤ N ,
are fixed numbers. Also, when K = 1, the above independence assumption across different
periods can be enforced with this interpretation of σn,i z

j
n−i . Furthermore, when K = 1 and

if σn,1zBn−1 is binomially distributed with probability of success = p0 and number of trials
= zBn−1, and εn ≡ 0, then our return’s forecasting model is the same as that of Ketzenberg
et al. (2006) whereby a sold product can only be returned in the next period with probability
p0 or not at all.

The sequence of events for our models follows that of Zhou et al. (2011). At the beginning
of each period, the remanufacturer decides how many units of buyback and normal cores to
remanufacture. Then, the remanufacturer decides howmany units of normal cores to dispose.
Next, consumer demands and product returns are realized, and unsatisfied demands are fully
backlogged. Finally, all costs are calculated. All lead times are assumed to be zero.

From now onwards, it is understood that the demand Dn in the i th period can also be
written as Z A

i with realized demand denoted by di or zAi . On the other hand, Z B
i stands for

the sales in the i th period, that is,

Z B
i = max{min{Di , y0,i }, 0}, (1)

with realized sales in the i th period denoted by zBi .

We have the following straightforward observation on Z j
i :

Proposition 1 We have 0 ≤ Z B
i ≤ Z A

i for all 1 ≤ i ≤ N.

Wenowwrite down the expected cost, due to holding/stocking, remanufacturing, disposal,
purchasing and penalty, in the nth period, given z jn−i , 1 ≤ i ≤ k(n), j = A, B, as

Un(xn, yn,wn, z
j
n−k(n), . . . , z

j
n−1)

= s0(y1,n − y0,n + E(R j
n )) + s1(y2,n − y1,n + E(Bn)) + r0w1,n + r1w2,n

+ u(x2,n − x1,n − y2,n + y1,n − w2,n)

+ bE(R j
n ) + hE(y0,n − Dn)

+ + pE(Dn − y0,n)
+.

We use the same notation for the expected cost in the nth period for when returns are forecast
from past demands and when returns are forecast from past sales.

Note that in the above expected cost expression,

• s0(y1,n − y0,n + E(R j
n )) + s1(y2,n − y1,n + E(Bn)) = total stocking cost of cores in the

nth period.
• r0w1,n + r1w2,n = total remanufacturing cost of cores in the nth period.
• x2,n − x1,n − y2,n + y1,n −w2,n = number of units of normal cores disposed of in the nth

period, and hence, u(x2,n − x1,n − y2,n + y1,n − w2,n) = total disposal cost of normal
cores in the nth period.

• bE(R j
n ) = expected total cost to purchase buyback cores in the nth period.

• hE(y0,n − Dn)
+ = expected holding cost of serviceable products in the nth period.
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• pE(Dn − y0,n)+ = expected penalty cost of serviceable products in the nth period.

Let us eliminate some variables to obtain a cost expression with fewer variables. We have
for 1 ≤ n ≤ N , ( yn,wn) is constrained to satisfy

y0,n ≤ y1,n ≤ y2,n,
0 ≤ w1,n = x1,n − x0,n − y1,n + y0,n,
0 ≤ w2,n ≤ x2,n − x1,n − y2,n + y1,n,
w1,n + w2,n = y0,n − x0,n,

Solving for w1,n and w2,n above in terms of y0,n, y1,n and y2,n , we have

w1,n = x1,n − x0,n − y1,n + y0,n
w2,n = y1,n − x1,n .

(2)

Therefore, by eliminatingwn, the expected cost in the nth period given z
j
n−i , 1 ≤ i ≤ k(n),

can be rewritten as

Un(xn, yn, z
j
n−k(n), . . . , z

j
n−1)

= −r0x0,n − (r1 − r0)x1,n + ux2,n + (r0 − s0)y0,n + (r1 − r0 + s0 − s1)y1,n

+ (s1 − u)y2,n + (s0 + b)E(R j
n ) + s1E(Bn) + hE(y0,n − Dn)

+ + pE(Dn − y0,n)
+,(3)

where R j
n =∑k(n)

i=1 σn,i z
j
n−i + εn , j = A, B.

Before we continue, we let K = 1 from now onwards, that is, we consider returns
only from products purchased in the immediate previous period. Hence, we assume that
the maximum returns period for products returned as buyback cores is 1. As discussed in
Remark 1, having K = 1 will enable our interpretation of σn,1zBn−1 as returns of buyback
cores from sales in the previous period to holdwithout violating the independence assumption
on σn,1 across periods. Results derived in this paper for K = 1 are applicable for K ≥ 2,
with the understanding that this independence assumption holds, such as when σn,i is a fixed
number for all 1 ≤ i ≤ k(n), 2 ≤ n ≤ N .

Now, a policy π j = (π
j
1 , . . . , π

j
N ) for our model, with returns forecasted from past

demands when j = A and returns forecasted from past sales when j = B, is such that
π

j
1 (x1) = y1, π

j
2 (x2, z

j
1, b1) = y2 and for 3 ≤ n ≤ N , π

j
n (xn, z

j
n−1, bn−1, σ2,1, . . . ,

σn−1,1, ε2, . . . , εn−1) = yn, where yn is constrained to satisfy

y0,n ≤ y1,n ≤ y2,n,
y1,n − x1,n ≤ y0,n − x0,n,
y2,n ≤ x2,n,
y1,n ≥ x1,n,

for 1 ≤ n ≤ N . Note that here z jn−1 stands for (z j1, . . . , z
j
n−1) and bn−1 stands for

(b1, . . . , bn−1).
For a given policy π j = (π

j
1 , . . . , π

j
N ) and 1 ≤ n ≤ N , the expected total cost from the

nth period to the N th period given (xn, z
j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) is

Vπ j ,n(xn, z
j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1)

= Un(xn, yn, z
j
n−1) + αEDn ,Bn ,σn,1,εnUn+1(xn+1, yn+1, Z

j
n )

+
N∑

i=n+2

αi−n EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1), (4)
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where

x0,n+1 = y0,n − Dn,

x1,n+1 = y1,n − Dn + R j
n ,

x2,n+1 = y2,n − Dn + R j
n + Bn,

with R j
n = σn,1z

j
n−1 + εn , and for n + 2 ≤ i ≤ N ,

x0,i = y0,i−1 − Di−1,

x1,i = y1,i−1 − Di−1 + R j
i−1,

x2,i = y2,i−1 − Di−1 + R j
i−1 + Bi−1,

with R j
i−1 = σi−1,1Z

j
i−2 + εi−1, where Z j

i−2 stands for the demand in the (i − 2)th period
when j = A, and sales in the (i − 2)th period, defined by (1), when j = B. In (4),
yi = π

j
i (xi , z

j
i−1, bi−1, σ2,1, . . . , σi−1,1, ε2, . . . , εi−1) for n ≤ i ≤ N , j = A, B. We omit

the superscript j from xi = (x0,i , x1,i , x2,i ), n + 1 ≤ i ≤ N , and yi = (y0,i , y1,i , y2,i ),
n ≤ i ≤ N above.

Following Bertsekas (2005), an optimal policy π j ,∗ is a policy that minimizes the above
expected cost from the 1st period to the N th period over all feasible policies π j , that is,

Vπ j ,∗(x1) = min
π j

Vπ j ,1(x1),

while the optimal cost V ∗
j (x1) is such that

V ∗
j (x1) = min

π j
Vπ j ,1(x1), (5)

j = A, B. Here, π A,∗ is the optimal policy for Model A, while π B,∗ is the optimal policy
for Model B.

The optimal policy π j ,∗ can be found using dynamic programming technique, by solving
a dynamic program as follows:

Define V j
1 (x1) to be the following minimization problem

min
y1

{
U 1(x1, y1) + αED1,B1(V

j
2 (x2, Z

j
1 ))
}

(6)

subject to

y0,1 ≤ y1,1 ≤ y2,1,
y1,1 − x1,1 ≤ y0,1 − x0,1,
y2,1 ≤ x2,1,
y1,1 ≥ x1,1,

(7)

where x2 = (x0,2, x1,2, x2,2) in the 2nd period is given by

x0,2 = y0,1 − D1,

x1,2 = y1,1 − D1,

x2,2 = y2,1 − D1 + B1.

Let y j ,∗
1 (x1) be an optimal solution to (6) subject to constraints (7).
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For 2 ≤ n ≤ N , given Z j
n−1 = z jn−1, we define V

j
n (xn, z

j
n−1) to be

min
yn

{
Un(xn, yn, z

j
n−1) + αEDn ,Bn ,σn,1,εn (V

j
n+1(xn+1, Z

j
n ))
}

(8)

subject to

y0,n ≤ y1,n ≤ y2,n,
y1,n − x1,n ≤ y0,n − x0,n,
y2,n ≤ x2,n,
y1,n ≥ x1,n,

(9)

where xn+1 = (x0,n+1, x1,n+1, x2,n+1) in the (n + 1)th period is given by

x0,n+1 = y0,n − Dn,

x1,n+1 = y1,n − Dn + R j
n ,

x2,n+1 = y2,n − Dn + R j
n + Bn,

with R j
n = σn,1z

j
n−1 + εn .

Let y j ,∗
n (xn, z

j
n−1) be an optimal solution to (8) subject to constraints (9).

Define V j
N+1(xN+1, z

j
N ) to be identically equal to zero.

V j
1 (x1), V

j
n (xn, z

j
n−1), 2 ≤ n ≤ N , defined above, constitute a dynamic program, with

boundary condition V j
N+1(xN+1, z

j
N ) ≡ 0, for j = A, B.

Note that in general V A
1 (x1), V B

1 (x1) and V A
n (xn, zAn−1), V

B
n (xn, zBn−1), 2 ≤ n ≤ N − 1,

are different due to the different way inwhich Z j
i is defined for j = A and j = B, 1 ≤ i ≤ N ,

although it is easy to observe from (8) subject to constraints (9) and V j
N+1(xN+1, z

j
N ) ≡ 0

that V A
N (xN , zN−1) = V B

N (xN , zN−1) for all zN−1 ≥ 0.
Using our dynamic programming formulations, we have the following proposition:

Proposition 2 For every initial state x1 and j = A, B, we have V ∗
j (x1) = V j

1 (x1). Also,

π
j,∗
1 (x1) = y j ,∗

1 (x1), π
j,∗
2 (x2, z

j
1, b1) = y j ,∗

2 (x2, z
j
1),

and for 3 ≤ n ≤ N,

π
j,∗
n (xn, z

j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) = y j ,∗

n (xn, z
j
n−1),

where y j ,∗
1 (x1), y

j,∗
n (xn, z

j
n−1), 2 ≤ n ≤ N, are obtained by solving the above dynamic

program for each j = A, B.

By the above proposition, to find the optimal policy π j ,∗, we only need to find y j,∗
1 (x1)

and y j,∗
n (xn, z

j
n−1), 2 ≤ n ≤ N .

We know that return’s forecasting of buyback cores is defined by past demands/sales
and some random factors. We see from the above proposition that the effect the return’s
forecasting has on the optimal policy for the two models is only through past demands for
Model A and past sales for Model B.

In Sect. 4, we provide a nice structure for the optimal inventory policy for Model A, the
model where returns are forecast from past demands. Based on our results in the section,
in Sect. 5, we propose a feasible policy for Model B, the model where returns are forecast
from past sales, and analyze the extent to which this feasible policy is close to optimality. In
Sect. 5.1, we provide numerical results.
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4 An optimal inventory policy for Model A

Weproceed in this section to state the explicit form of the optimal policyπ A,∗ for our backlog
model,Model A,whichwe formulate in Sect. 3, when returns are forecast from past demands.
In each period, this policy can be described neatly in terms of optimal control parameters
that are not dependent on inventories at the beginning of the period.

Theorem 1 For 2 ≤ n ≤ N, given xn and demand realization Z A
n−1 = zAn−1, there

exist optimal control parameters ξ0,n, ξ1,n(zAn−1), η2,n(z
A
n−1), with ξ1,n(zAn−1) ≤ ξ0,n and

ξ1,n(zAn−1) ≤ η2,n(zAn−1), such that
Remanufacturing:

• If ξ0,n ≤ x0,n, we do not remanufacture in the nth period, and stock all buyback and
normal cores for the next period.

• If x0,n < ξ0,n ≤ x1,n, we remanufacture up to ξ0,n using only buyback cores without
using any normal cores in the nth period, and stock the remaining x1,n − ξ0,n buyback
cores for the next period.

• If ξ1,n(zAn−1) ≤ x1,n < ξ0,n, we remanufacture all available buyback cores without using
any normal cores in the nth period.

• If x1,n < ξ1,n(zAn−1) ≤ x2,n, we remanufacture up to ξ1,n(zAn−1) using all available
buyback cores and additional normal cores in the nth period.

• If x0,n ≤ x1,n ≤ x2,n < ξ1,n(zAn−1) ≤ ξ0,n, we remanufacture all available buyback
cores and normal cores in the nth period.

and
Disposal:

• If η2,n(zAn−1) ≤ x1,n ≤ x2,n, we dispose all available normal cores in the nth period.
• If x1,n < η2,n(zAn−1) ≤ x2,n, we dispose x2,n −η2,n(zAn−1) normal cores in the nth period.
• If x1,n ≤ x2,n < η2,n(zAn−1), we do not dispose any normal cores in the nth period.

Similar rules apply when n = 1, using optimal control parameters ξ0,1, ξ1,1 and η2,1, given
x1.

The above rules for n = 1 and 2 ≤ n ≤ N constitute the optimal policy π A,∗ for our
backlog model when returns are forecast from past demands.

In Theorem 1, we describe a simply stated optimal policy for our model. Observe from the
theorem that the policy is essentially a “remanufacture-up-to” and “dispose-down-to” policy
with remanufacturing and disposal levels characterized by optimal control parameters that
depend on past demand and do not depend on initial inventories in each period.

In the next subsection, we describe how we obtain the policy by solving a minimization
problem (11) subject to constraints (12) (given in the subsection).

In the following, we describe properties of the optimal cost and the optimal policy that
we derived. Structural properties of optimal policies are often investigated in the literature,
and can be found for example in Puranam and Katehakis (2014). First, it is interesting to
investigate how returns forecasted from past demands affect the optimal policy for Model A.
For n = 1, it is clear that optimal control parameters for our optimal policy are independent
of past demands. For 2 ≤ n ≤ N , the following theorem describes how optimal control
parameters ξ1,n(zAn−1), η2,n(z

A
n−1) vary with zAn−1.

Theorem 2 For 2 ≤ n ≤ N − 1, ξ1,n(zAn−1), η2,n(z
A
n−1) are nonincreasing in zAn−1. When

n = N, ξ1,n(zAn−1), η2,n(z
A
n−1) are not dependent on zAn−1.
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In our model, we consider returns forecast of buyback cores, and return’s forecasting
is based on past demand for serviceable products (zAn−1 = dn−1). The larger/smaller the
value of dn−1, the forecast is for larger/smaller number of buyback cores to be returned. As
dn−1 increases, ξ0,n is unchanged while ξ1,n(dn−1) and η2,n(dn−1) are nonincreasing (by
Theorem 2). We see from Theorem 1 that as a result, in the current period, if the forecast
is an increase in buyback core returns (as there is an increase in past realized demands),
we are more unlikely to remanufacture normal cores and instead dispose of them, while the
remanufacturing decision on buyback cores is not changed.

Next, we observe the following property of ξ0,n and the optimal cost V A
1 (x1):

Theorem 3 V A
1 (x1) is decreasing in x0,1 for x0,1 < ξ0,1. Furthermore, for 1 ≤ n ≤ N, if

Dn is identically distributed, we have ξ0,N ≤ ξ0,n.

It is clear from the above theorem that to keep system cost down over the planning horizon,
the initial inventory of serviceable products x0,1 cannot be too small, in particular, it should
not be smaller than ξ0,1. Furthermore, by the above theorem, we know that the optimal control
parameter ξ0,n is greater than or equal to ξ0,N for 1 ≤ n ≤ N . A natural question to ask is
whether we have monotonicity of ξ0,n in n. The following example illustrates that this is not
possible in general:

Example 1 Let α = 1, D ≡ d = positive constant, N = 3, σn,1 ≡ 1
2 , εn ≡ 0, Bn ≡ 5, with

cost parameters satisfying h = p, 2s1 < u, r0 − s0 > p, r0 < 2s0 and r1 − 2s1 > 2h. We
have ξ0,1 = d, ξ0,2 = 2d and ξ0,3 = −∞.

The above example shows the non-monotonicity of ξ0,n in n.

4.1 Verification of Theorem 1

In this subsection, we proceed in an abstract manner, analyzing a minimization problem
that is an abstraction of the optimality equation in our dynamic programming formulation in
Sect. 3. We obtain results by analyzing this minimization problem, and these results enable
us to arrive at the optimal policy for our backlog model, Model A, in Theorem 1.

First, we abstract the expected one period cost functionUn(xn, yn, z
A
n−1) by the function

C( y, z), which is defined to be

C( y, z) = (r0 − s0)y0 + (r1 − r0 + s0 − s1)y1 + (s1 − u)y2 + βz

+ hE(y0 − D)+ + pE(D − y0)
+, (10)

where y = (y0, y1, y2), β is a given constant and D is a continuous nonnegative random
variable.

It is easy to see that C( y, z) is a continuously differentiable convex function of ( y, z) and
is additively separable in ( y, z).

We consider the following minimization problem, which is an abstraction of our dynamic
program in Sect. 3:

K (x, z) = min
y

{C( y, z) + αK ( y, z)} (11)

subject to

y0 ≤ y1 ≤ y2,
y1 − x1 ≤ y0 − x0,
y2 ≤ x2,
y1 ≥ x1.

(12)
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Here x = (x0, x1, x2), x0 ≤ x1 ≤ x2, z ∈ �+.
K ( y, z) represents the term EDn ,Bn ,σn,1,εn (V

A
n+1(xn+1, Z A

n )) in the dynamic program
((8) subject to constraints (9)) that we use to find the policy for our model, Model
A. We list below essential properties that K ( y, z) is assumed to satisfy. These prop-
erties reflect the term EDn ,Bn ,σn,1,εn (V

A
n+1(xn+1, Z A

n )) it represents, and is satisfied by
EDn ,Bn ,σn,1,εn (V

A
n+1(xn+1, Z A

n )) as shown in the proof of Theorem 1.
The properties that K ( y, z) satisfies are as follows:

1. K ( y, z) is a continuously differentiable convex function of ( y, z).
2. K ( y, z) is additively separable in y = (y0, y1, y2), that is, K ( y, z) = K0(y0, z) +

K1(y1, z) + K2(y2, z), for some function Ki (yi , z), i = 0, 1, 2.
3. K ( y, z) is additively separable in y0 and z, that is, K ( y, z) can be written as the sum of

two functions K̂0(y0, y1, y2) and K̂1(z, y1, y2).
4. K ( y, z) is such that

∂K

∂ y1
( y, z) ≥ −(r1 − r0) ∀ ( y, z).

Properties 2 and 3 imply that K ( y, z) can be written as ˆ̂K0(y0) + ˆ̂K1(y1, z) + ˆ̂K2(y2, z).
With the above, we then obtain in Theorem 4 (given below) the optimal solution to the

minimization problem (11) subject to constraints (12). Theorem 4 allows us to obtain the
explicit form of the optimal policy π A,∗ for our model in Theorem 1.

Let us denote the objective functionC( y, z)+αK ( y, z) in the minimization problem (11)
subject to constraints (12) by �( y, z) for convenience.

Remark 2 Besides convexity and continuous differentiability,�( y, z) is additively separable
in y, and is also additively separable in y0, z, as these properties hold forC( y, z) and K ( y, z).
Hence,�( y, z) = �0(y0)+�1(y1, z)+�2(y2, z), where�i (·), i = 0, 1, 2, are continuously
differentiable convex functions of their respective variables.

By Property 4, r0 < r1 and s1 ≤ s0, we have ∂�
∂ y1

( y, z) > 0, therefore�( y, z) is increasing
in y1.

Following Zhou et al. (2011), let

ξ0(z) ∈ argminy0�(y0, y1, y2, z),

ξ1(z) ∈ argminy0�(y0, y0, y2, z),

η2(z) ∈ argminy2�(y0, y1, y2, z). (13)

The above parameters will be used to solve the minimization problem (11) subject to
constraints (12). They are then used to define the optimal control parameters for our optimal
policy π A,∗. By Remark 2, we see that ξ0(z) is not dependent on z. Hence, we write ξ0 for
ξ0(z) from now onwards. Note that the way we prove that ξ0, ξ1(z) and η2(z) are optimal
control parameters, which is the result of Theorem 4 that leads to Theorem 1, is not identical
to that in Zhou et al. (2011). We rely on the Karush-Kuhn-Tucker (KKT) conditions to prove
this.

Parameters ξ0, ξ1(z) andη2(z) do not depend on y0, y1 or y2 due to the additive separability
of �( y, d) in y. They may be equal to +∞ or −∞ though.

Observe that ξ1(z) ≤ ξ0, since by definition of ξ0, ξ1(z), we have�(ξ1(z), ξ1(z), y2, z) ≤
�(ξ0, ξ0, y2, z) ≤ �(ξ1(z), ξ0, y2, z). The result then follows by the increasing property of
�( y, z) in y1, by Remark 2.
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Note that there is no clear relationship between ξ1(z) and η2(z). If η2(z) < ξ1(z), then
redefine η2(z) and ξ1(z) to be equal and belong to argminy0�(y0, y0, y0, z). The following
proposition shows that in this case, we still have ξ1(z) ≤ ξ0.

Proposition 3 Suppose ξ
p
1 (z) and η

p
2 (z) defined by

ξ
p
1 (z) ∈ argminy0�(y0, y0, y2, z),

η
p
2 (z) ∈ argminy2�(y0, y1, y2, z),

is such that η
p
2 (z) < ξ

p
1 (z). Then ξ1(z) ∈ argminy0�(y0, y0, y0, z) has the property that

ξ1(z) ≤ ξ0, where ξ0 is given by the first inclusion in (13).

Proof We prove by contradiction by assuming that ξ0 < ξ1(z).
First note that ξ

p
1 (z) ≤ ξ0. Then, we have η

p
2 (z) < ξ

p
1 (z) ≤ ξ0 < ξ1(z). Hence, by

definition of η
p
2 (z) and the convexity of �2(·, z), we obtain �2(ξ0, z) ≤ �2(ξ1(z), z).

Now, by definition of ξ1(z),

�(ξ1(z), ξ1(z), ξ1(z), z) ≤ �(ξ0, ξ0, ξ0, z). (14)

Observe that �(ξ0, ξ0, ξ0, z) ≤ �(ξ0, ξ0, ξ1(z), z) holds, since �2(ξ0, z) ≤ �2(ξ1(z), z).
Therefore, from (14), we have

�(ξ1(z), ξ1(z), ξ1(z), z) ≤ �(ξ0, ξ0, ξ1(z), z). (15)

If ξ1(z) ≤ ξ
p
1 (z), then ξ1(z) ≤ ξ0, as ξ

p
1 (z) ≤ ξ0. This is a contradiction to our assumption.

If ξ
p
1 (z) < ξ1(z), then, by ξ

p
1 (z) ≤ ξ0, the convexity of � in the first two variables, the

definition of ξ
p
1 (z) and (15), we have ξ1(z) ≤ ξ0, which is again a contradiction to our

assumption.
Hence, we have the required result. 
�
Remark 3 In the case η

p
2 (z) < ξ

p
1 (z), and η2(z) and ξ1(z) are defined by ξ1(z) = η2(z) ∈

argminy0 �(y0, y0, y0, z), then it is easy to check that ηp
2 (z) ≤ ξ1(z) = η2(z) ≤ ξ

p
1 (z).

In any case, we have

ξ1(z) ≤ ξ0, (16)

ξ1(z) ≤ η2(z). (17)

Note that the way we define the above parameters that eventually give rise to the optimal
policy π A,∗ for our backlog model when returns are forecast from past demands is similar to
that in Zhou et al. (2011). These parameters are used in Theorem 4 to define optimal solution
to the minimization problem (11) subject to constraints (12). Theorem 4 is proved by using
the KKT conditions.

ξ0 and ξ1(z) may be thought of as “remanufacture-up-to” parameters, while η2(z) is
the “dispose-down-to” parameter. Depending on the values of x0, x1, x2, the system may
remanufacture up to ξ1(z) or ξ0. Similarly, depending on the value of x0, x1, x2, some of the
normal cores may be disposed such that the aggregate inventory level of serviceable products,
buyback and normal cores is down to the level η2(z).

Let us define ξ−1(z) = ∞. This definition is needed in the statement of Theorem 4 below,
where we provide an optimal solution to the minimization problem (11) subject to constraints
(12).

123



Annals of Operations Research (2020) 288:137–180 153

Theorem 4 Given x = (x0, x1, x2), x0 ≤ x1 ≤ x2, it either satisfies ξm(z) ≤ xm ≤ ξm−1(z)
or xm ≤ ξm(z) ≤ xm+1 for some m = 0 or 1. If not, then x0 ≤ x1 ≤ x2 ≤ ξ1(z) ≤ ξ0(z).
Here, we denote ξ0 by ξ0(z).

Let (y∗
0 (x, z), y∗

1 (x, z), y∗
2 (x, z)) be as defined below:

1. i. If m = 0, let y∗
0 (x, z) = max{x0, ξ0}, y∗

1 (x, z) = x1.
ii. If m = 1, let y∗

0 (x, z) = y∗
1 (x, z) = max{x1, ξ1(z)}.

iii. Otherwise, let y∗
0 (x, z) = y∗

1 (x, z) = x2.
2. Let y∗

2 (x, z) = max{x1,min{x2, η2(z)}}.
Then (y∗

0 (x, z), y∗
1 (x, z), y∗

2 (x, z)) defined above is an optimal solution to (11) subject to
constraints (12).

The above theorem is proved by verifying that the defined (y∗
0 (x, z), y∗

1 (x, z), y∗
2 (x, z))

satisfies the KKT conditions for (11) subject to constraints (12). This is done by exhausting
all the different scenarios in which x0, x1, x2, ξ0, ξ1(z), η2(z) can be arranged. Satisfying the
KKT conditions is necessary and sufficient for optimality, since the minimization problem
is a convex program and the Slater’s condition holds true trivially.

We can alternatively express the policy in Theorem 1 in terms of yA,∗
1 (x1) and

yA,∗
n (xn, zAn−1), 2 ≤ n ≤ N , which have similar expressions as (y∗

0 (x, z), y∗
1 (x, z), y∗

2 (x, z))
in the above theorem.

We end this subsection with the following two propositions on K (x, z), which are needed
when Theorem 4 is applied in the proof by induction to show Theorem 1.

Proposition 4 K (x, z) is a convex function of (x, z), where x = (x0, x1, x2), x0 ≤ x1 ≤ x2
and z ∈ �+. As a consequence, K (x, z) is continuously differentiable a.e. on {(x, z) ; x0 ≤
x1 ≤ x2, z ∈ �+}.
Proof Consider the following set

C := {(x, z, v) = (x0, x1, x2, z, v); x0 ≤ x1 ≤ x2, z ∈ �+, ∃ y = (y0, y1, y2) such that

y0 ≤ y1 ≤ y2, y1 − x1 ≤ y0 − x0, y2 ≤ x2, y1 ≥ x1,

v ≥ C( y, z) + αK ( y, z)}.
It is easy to show thatC is a convex set in�5, sinceC( y, z) and K ( y, z) are convex functions of
( y, z). Therefore, by Theorem 5.3 of Rockafellar (1970), f (x, z) = inf{v ; (x, z, v) ∈ C} is a
convex functionof (x, z). Since f (x, z) = K (x, z),we thenhave K (x, z) is a convex function
of (x, z). The consequence in the proposition follows from Theorem 25.5 of Rockafellar
(1970). 
�
Proposition 5 K (x, z) is additively separable in x and is also additively separable in x0, z.
Hence, K (x, z) = K 0(x0)+K 1(x1, z)+K 2(x2, z), for some function K 0(x0), K i (xi , z), i =
1, 2. Also, ∂K

∂x1
(x, z) ≥ 0, where it is defined.

The idea behind the proof of the above proposition is to use Theorem 4 to express K (x, z)
explicitly in terms of expressions that are defined to be K 0(x0), Ki (xi , z), i = 1, 2.

5 A feasible inventory policy for Model B

As Z B
n in (6) subject to constraints (7), and (8) subject to constraints (9), where j = B,

are given by (1), it is unlikely that yB,∗
1 (x1) and yB,∗

n (xn, zBn−1), 2 ≤ n ≤ N , that express
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the optimal policy π B,∗ have easily tractable structures. Given that we have obtained a nice
structure for the optimal policy for Model A in Sect. 4, we can use this policy as a feasible
policy for Model B by defining the feasible policy π = (π1, . . . , π N ) in the following way:
Letπ1(x1) := yA,∗

1 (x1),π2(x2, zB1 , b1) := yA,∗
2 (x2, zB1 ), and for 3 ≤ n ≤ N ,πn(xn, zBn−1,

bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) := yA,∗
n (xn, zBn−1).

It is clear that π defined in the above way is a feasible policy for Model B, the model
where returns are forecast from past sales. Hence,

V B
1 (x1) ≤ Vπ ,1(x1),

V B
n (xn, zBn−1) ≤ Vπ ,n(xn, z

B
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1), 2 ≤ n ≤ N .

A natural question to ask is how close the feasible policy is to optimality. An attempt
to answer this question is to compare the system cost under this feasible policy with the
optimal system cost. This is what we proceed to achieve. We do this by using what we
know so far - the structure of the optimal policy π A,∗ for Model A. We use it to analyze
V A
n (xn, zn−1), 2 ≤ n ≤ N .
In what follows, we write zn−1 without a superscript to indicate that we are not attaching

any meaning to this variable as past demand or sales, but merely treating it as a generic
nonnegative variable.

Let us impose the following conditions on our cost parameters:

Corollary 1 (a) r1 ≤ u + p.
(b) r0 ≤ s0 + p.
(c) r1 ≤ s1 + p.
(d) u ≤ h + r1.

These conditions are reasonable conditions for the model. The first three conditions
encourage remanufacturing, the only way to have enough serviceable products to satisfy
demand, to avoid backlog, while the last condition discourages remanufacturing of normal
cores in favor of disposal when there is no demand for serviceable products to avoid stocking
excess serviceable products obtained from remanufacturing. These conditions are needed to
prove the following proposition:

Proposition 6 We have, for 2 ≤ n ≤ N,

• −r0 ≤ ∂V A
n

∂x0,n
(xn, zn−1) ≤ (1 + · · · + αN−n)(−s0 + h).

• r0 − r1 ≤ ∂V A
n

∂x1,n
(xn, zn−1) ≤ s0 −min{s1, u} + (α + · · · + αN−n)(s0 + u −min{s1, u}).

• r1 − (1 + · · · + αN−n)p ≤ ∂V A
n

∂x2,n
(xn, zn−1) ≤ u.

wherever the partial derivatives are defined.

Note that without Condition 1, we can also obtain a similar result as Proposition 6, but
the analysis to obtain the result will be more complicated.

The above proposition is proved by induction using the structure of the optimal policy in
Theorem 1 (see also Theorem 4) and the definitions of ξ0, ξ1,n(zn−1), η2,n(zn−1) as found in
(13) and in Proposition 3. Also, the following holds:
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Proposition 7 We have, for 2 ≤ n ≤ N,

∂V A
n

∂zn−1
(xn, zn−1)

= E(σn,1)

[

s0 + b + αEDn ,Bn ,σn,1,εn

((
∂V A

n+1

∂x1,n+1
+ ∂V A

n+1

∂x2,n+1

)

(xA,∗
n+1, Dn)

)]

,

wherever the partial derivatives are defined.

Using Propositions 6 and 7, we are ready to find an upper bound for the difference between
the optimal cost V B

1 (x1) and the cost under our feasible policy Vπ ,1(x1). Before we do this,
we need the following two propositions which follows from the above two propositions:

Proposition 8 We have, for 2 ≤ n ≤ N,

Vπ,n(xn, zn−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) − V A
n (xn, zn−1)

≤ α(1 + · · · + αN−n)max{α((1 + · · · + αN−n−2)p − r0) − s0 − b, 0}μn,

where μn = max{μDn , . . . , μDN−1}, 2 ≤ n ≤ N − 1, and μN = 0. Consequently,

Vπ ,1(x1) − V A
1 (x1)

≤ α(1 + · · · + αN−1)max{α((1 + · · · + αN−3)p − r0) − s0 − b, 0}μ1,

where μ1 = max{μD1 , . . . , μDN−1}.
Proposition 9 We have, for 2 ≤ n ≤ N,

V A
n (xn, zn−1) − V B

n (xn, zn−1)

≤ α(1 + · · · + αN−n)(s0 + b + α(1 + · · · + αN−n−2)(s0 + u − min{s1, u}))μn,

where μn = max{μDn , . . . , μDN−1}, 2 ≤ n ≤ N − 1, and μN = 0. Consequently,

V A
1 (x1) − V B

1 (x1)

≤ α(1 + · · · + αN−1)(s0 + b + α(1 + · · · + αN−3)(s0 + u − min{s1, u}))μ1,

where μ1 = max{μD1 , . . . , μDN−1}.
We have the following lemma which follows from the above two propositions:

Lemma 1 We have, for 0 < α < 1,

• If Vπ ,1(x1) ≤ V A
1 (x1), then

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

)

.

• If V A
1 (x1) ≤ V B

1 (x1), then

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ αμ1

1 − α
max

{

α

(
p

1 − α
− r0

)

− s0 − b, 0

}

.

• Otherwise,

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

+ max

{

α

(
p

1 − α
− r0

)

− s0 − b, 0

})

.
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here μ1 = max{μD1 , . . . , μDN−1}.
Proof Note that V B

1 (x1) ≤ Vπ ,1(x1). Hence, depending on how V A
1 (x1) compares with

V B
1 (x1) and Vπ ,1(x1), we have the following situations:

• If Vπ,1(x1) ≤ V A
1 (x1), then

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ V A

1 (x1) − V B
1 (x1).

• If V A
1 (x1) ≤ V B

1 (x1), then

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ Vπ ,1(x1) − V A

1 (x1).

• Otherwise,

0 ≤ Vπ ,1(x1) − V B
1 (x1) = (Vπ ,1(x1) − V A

1 (x1)) + (V A
1 (x1) − V B

1 (x1)).

The required results then follow by applying Propositions 8 and 9, and noting that

1 + · · · + αk ≤ 1

1 − α
,

for all k ≥ 0. 
�
We note the following:

Proposition 10 For 0 < α < 1, if p ≤ (1− α)(r0 + (s0 + b)/α), then Vπ,1(x1) ≤ V A
1 (x1).

We now have the main result of this section:

Theorem 5 For 0 < α < 1,

• If p ≤ (1 − α)(r0 + (s0 + b)/α), then

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

)

.

• Otherwise,

0 ≤ Vπ ,1(x1) − V B
1 (x1) ≤ α2μ1

1 − α

(
1

1 − α
(s0 + u + p − min{s1, u}) − r0

)

.

here μ1 = max{μD1 , . . . , μDN−1}.
Proof Observe that when p ≤ (1−α)(r0 + (s0 +b)/α), then by Proposition 10, Vπ,1(x1) ≤
V A
1 (x1), the result then follows from Lemma 1. On the other hand, when p > (1− α)(r0 +

(s0 + b)/α), then

α

(
p

1 − α
− r0

)

− s0 − b > 0,

and the result also follows from Lemma 1. 
�
Observe from the above theorem that when the discount factor α is small, we can approx-

imate the optimal policy π B,∗ by the feasible policy π well, as the upper bounds tend to zero
as α approaches zero.We also observe from the theorem that the difference between Vπ,1(x1)
and V B

1 (x1) is bounded above by constants that are independent of the planning horizon and
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initial inventories, but only dependent on cost parameters r0, s0, s1, b, p, u, discount factor
α and mean demands μDi , 1 ≤ i ≤ N − 1.

It is not surprising that the constants depend on s0, b and r0, since we are comparing
with the feasible policy π , which is related to Model A, to obtain the above bounds and
the difference between Model A and Model B is the way in which returns of buyback cores
are forecast, and s0, b and r0 are cost parameters related to buyback cores. On the other
hand, the only effect normal cores has on the above bounds is through s1 and u. The unit
penalty cost, p, only appears in a bound when it is large enough, in particular, larger than
(1− α)(r0 + (s0 + b)/α). It can be imagined that when the initial inventories of serviceable
products, buyback cores and normal cores are low, the difference between Z A

n and Z B
n is

likely to get larger and larger as n increases resulting in more penalty cost being incurred
for Model B compared to Model A. This is so because the number of units of buyback cores
returned for the former gets smaller compared to that for the latter. Hence, since the upper
bound for the difference Vπ ,1(x1)− V B

1 (x1) is obtained by comparing Model A with Model
B, when p is large, it appears in the upper bound. This reflects the difference in penalty costs
between the two models when inventories are low. The unit holding cost, h, does not play a
role in these constants since when there are more serviceable products than demand, then Z A

n
is equal to Z B

n , and there is no difference between Model A and Model B in the nth period.

5.1 Numerical study

In our numerical experiments, we investigate the difference in costs, Vπ ,1(x1)−V B
1 (x1), by

varying initial inventories (at the start of the planning horizon) and parameters of our models.
Note that the upper bounds for Vπ,1(x1)−V B

1 (x1) given in Theorem 5 are worst case and we
expect that the actual differences to be smaller than these upper bounds. This is substantiated
by the numerical results we obtained which are given below.

To be realistic, in our numerical experiments, we set the length of the planning horizon,
N , to be 6, with a set of numerical experiments having N from 3 to 15 in increment of 3.
Because of the curse of dimensionality when solving dynamic programs, our experiments
are such that the dynamic program for Model A and Model B (both presented in Sect. 3) are
solved only for 3 periods, instead of the whole planning horizon with length N , which can
be greater than 3.

To implement our models with dynamic programs being solved only for 3 periods even
though the length of the planning horizon can be greater than 3, in the 1st period, we solve
the dynamic program with length 3 for Model A and Model B to obtain the number of units
of serviceable products to remanufacture from buyback or normal cores and the number of
units of normal cores to dispose of. Also, for the same realized demand, we obtain the initial
inventories of serviceable products, buyback cores and normal cores at the beginning of the
2nd period under the feasible policy π (which is related to Model A), and the optimal policy
π B,∗ (which is related to Model B). The expected costs in the 1st period under the two
policies are also computed for the same realized demand in the 1st period. We then solve the
dynamic program for Model A and Model B again, but now for n = 2, to obtain the number
of units of serviceable products to remanufacture from buyback or normal cores and number
of units of normal cores to dispose of. The initial inventories for the 3rd period are then
updated for the same realized demand, but different realized returns of buyback cores, which
depends on the serviceable products available in the 1st period under the feasible policy π

(which is related to Model A) and the optimal policy π B,∗ (which is related to Model B).
The expected cost in the 2nd period under the feasible policy π and under the optimal policy
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Table 1 Effect of different initial inventories on average system costs under the feasible and optimal policies
(h = 1.0, p = 2.0, α = 0.5, N = 6)

x0,1 x1,1 x2,1 V̂π ,1 V̂ B
1 Difference = V̂π ,1 − V̂ B

1
Difference

V̂ B
1

× 100%

0 5 10 48.41 48.41 0.00 0.00

5 10 15 49.09 48.35 0.74 1.53

10 15 20 50.77 50.62 0.15 0.29

15 20 25 53.91 53.86 0.05 0.09

20 25 30 61.65 61.68 −0.03a −0.05

5 5 10 43.85 43.79 0.06 0.14

5 10 15 48.70 48.07 0.63 1.31

5 15 20 55.67 55.63 0.04 0.07

5 20 25 63.96 63.91 0.05 0.08

5 10 10 43.11 43.06 0.05 0.12

5 10 15 49.01 48.53 0.48 0.99

5 10 20 53.75 53.27 0.48 0.90

aThe difference is negative, which should not be the case. A reason for this is because the computation of
costs is by the “sample path” approach

π B,∗ are also computed for the same realized 2nd period demand. N is always a multiple
of 3 in our numerical experiments. If N is larger than 3, then at the 4th period, we solve
the dynamic program for Model A and Model B again, for a horizon of length 3, treating
the different inventories we obtained at the end of the 3rd period, after taking into account
realized demand and returns of cores, as initial inventories for each dynamic program. We
continue in this way if N is larger than 6. For each policy, the total expected cost for the
whole planning horizon N is the sum of appropriately discounted expected single period
cost, given by (3).

We consider integral inventories and demands in our numerical study. For each policy,
the programs are run R times, and we obtain the average system cost under each policy
(V̂π ,1 and V̂ B

1 ) by summing the total system cost obtained in each run, as described in the
last paragraph, and then divide by R, where R is taken to be 100. The rounded uniform
distribution UR(0, 15), a discrete probability distribution, is considered for Dn . We let the
maximum returns period K be 1, and in our dynamic programs, σn,1 is such that σn,1z

j
n−1 is

binomially distributed with probability of success p0 and number of trials z jn−1, j = A, B.
We let εn ≡ 0. Hence, we consider the situation when a product is either returned with
probability p0 in the next period or not at all.

In all our numerical experiments, we set b = 1.0, r0 = 1.0, r1 = 1.0, s0 = 1.0, s1 = 1.0,
u = 1.0, p0 = 0.8 and Bn ≡ 5. Our numerical results show that the percentage difference
V̂π ,1−V̂ B

1

V̂ B
1

× 100 is not greater than 3.50%, with only two instances beyond 3.00%.

Table 1 shows how V̂π ,1 − V̂ B
1 varies with changes in the initial inventories of serviceable

products, buyback cores and normal cores.We see from the table that there is no set pattern to
how the difference varies with changes in x0,1, x1,1, x2,1. The maximum value for V̂π,1− V̂ B

1
in the table is 0.74, which is much lesser than the predicted upper bound
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Table 2 Effect of different length of planning horizon on average system costs under the feasible and optimal
policies (x0,1 = 5, x1,1 = 10, x2,1 = 15, h = 1.0, p = 2.0, α = 0.5)

N V̂π ,1 V̂ B
1 Difference = V̂π ,1 − V̂ B

1
Difference

V̂ B
1

× 100%

3 42.05 41.73 0.32 0.77

6 48.83 48.24 0.59 1.22

9 49.39 48.90 0.49 1.00

12 49.95 49.37 0.58 1.17

15 49.28 48.77 0.51 1.05

Table 3 Effect of different discount factor on average system costs under the feasible and optimal policies
(x0,1 = 5, x1,1 = 10, x2,1 = 15, h = 1.0, p = 2.0, N = 6)

α V̂π ,1 V̂ B
1 Difference = V̂π ,1 − V̂ B

1
Difference

V̂ B
1

× 100%

0.1 23.48 23.47 0.01 0.04

0.2 27.45 27.42 0.03 0.11

0.3 32.79 32.68 0.11 0.34

0.4 39.26 39.05 0.21 0.54

0.5 48.76 48.20 0.56 1.16

0.6 61.48 60.45 1.03 1.70

0.7 79.30 77.69 1.61 2.07

0.8 102.95 99.81 3.14 3.15

0.9 132.69 128.20 4.49 3.50

αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

)

≈ 22.5,

which holds for all values of (x0,1, x1,1, x2,1) in the table.
As shown in Table 2, the difference V̂π,1− V̂ B

1 does not vary verymuch as the length of the
planning horizon N increases. In Theorem 5, the upper bounds provided are also independent
of N .

In line with Theorem 5, we see from Table 3 that the difference in V̂π,1 and V̂ B
1 increases

with increase in the value of the discount factor, α, although, the actual difference is smaller
than the upper bounds provided in the theorem. For example, when α = 0.2, we have the
theoretical upper bound, as given by Theorem 5, of

αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

)

≈ 4.22

and we have

theoretical upper bound

V̂ B
1

× 100 ≈ 15.39%,

while

V̂π,1 − V̂ B
1

V̂ B
1

× 100 = 0.11%.
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Table 4 Effect of different unit penalty cost on average system costs under the feasible and optimal policies
(x0,1 = 5, x1,1 = 10, x2,1 = 15, h = 1.0, α = 0.5, N = 6)

p V̂π ,1 V̂ B
1 Difference = V̂π ,1 − V̂ B

1
Difference

V̂ B
1

× 100%

1.0 44.75 44.10 0.65 1.47

1.5 47.36 46.94 0.42 0.89

2.0 49.31 48.74 0.57 1.17

2.5 50.49 50.14 0.35 0.70

3.0 51.33 51.09 0.24 0.47

3.5 51.35 51.17 0.18 0.35

4.0 52.81 52.68 0.13 0.25

When α = 0.8, we have the theoretical upper bound,6 as given by Theorem 5, of

αμ1

1 − α

(

s0 + b + α

1 − α
(s0 + u − min{s1, u})

)

≈ 180.00

and we have

theoretical upper bound

V̂ B
1

× 100 ≈ 180.34%,

while

V̂π ,1 − V̂ B
1

V̂ B
1

× 100 = 3.15%.

In Table 4, we see that as the unit penalty cost p increases from 1.0 to 4.0, the difference
V̂π ,1 − V̂ B

1 decreases steadily from 0.65 to 0.13, except for an increase when p increases
from 1.5 to 2.0. However, from Theorem 5, we expect the difference to increase with p, since
the upper bound in the theorem increases with p. A reason for the increase in upper bound
with p in the theorem is because the upper bound is obtained by considering Models A and
B, and returns of buyback cores for Model A are dependent on past demands, while returns
of buyback cores for Model B are dependent on past sales, which can be low when there
are insufficient serviceable products. Remanufacturing is therefore unaffected for Model A,
while there may be fewer buyback cores to remanufacture to serviceable products for Model
B, due to low past sales, to satisfy current demand. In the worst case, this difference in penalty
costs, due to unsatisfied demand, becomes apparent as p becomes large, leading to an upper
bound for Vπ ,1(x1)−V B

1 (x1) that depends on and increases with p. This effect is not present
when we are computing V̂π ,1 and V̂ B

1 , because returns of buyback cores under policies π

and π B,∗ now both depend on past sales, and also as p increases, both policies become more
similar to each other and act to remanufacture any available cores to serviceable products to
satisfy demand.

In Table 5, we observe that the dependence of V̂π,1 − V̂ B
1 on unit holding cost h is not

apparent, which is in line with the independence of the upper bounds in Theorem 5 on h.
We end this subsection by investigating whether the “myopic” policy is good enough as

an approximation to the feasible policy π in deciding the number of units of buyback and
normal cores to remanufacture and the number of units of normal cores to dispose in each

6 The bound is expected to get larger and larger as α approaches 1.
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Table 5 Effect of different unit holding cost on average system costs under the feasible and optimal policies
(x0,1 = 5, x1,1 = 10, x2,1 = 15, p = 2.0, α = 0.5, N = 6)

h V̂π ,1 V̂ B
1 Difference = V̂π ,1 − V̂ B

1
Difference

V̂ B
1

× 100%

0.5 44.70 44.51 0.19 0.43

1.0 49.09 48.53 0.56 1.15

1.5 51.09 50.73 0.36 0.71

2.0 52.64 52.36 0.28 0.53

2.5 54.57 54.19 0.38 0.70

3.0 56.07 55.54 0.53 0.95

3.5 56.98 56.42 0.56 0.99

4.0 57.63 57.20 0.43 0.75

Table 6 Effect of different initial inventories on average system costs under the “myopic” and feasible policies
(h = 1.0, p = 2.0, α = 0.5, N = 6)

x0,1 x1,1 x2,1 V̂1 V̂π ,1 Difference = V̂1 − V̂π ,1
Difference

V̂π ,1
× 100%

0 5 10 49.38 48.41 0.97 2.00

5 10 15 52.64 49.09 3.55 7.23

10 15 20 57.56 50.77 6.79 13.37

15 20 25 63.32 53.91 9.41 17.46

20 25 30 70.44 61.65 8.79 14.26

5 5 10 43.68 43.85 − 0.17 − 0.39

5 10 15 52.57 48.70 3.87 7.95

5 15 20 62.20 55.67 6.53 11.73

5 20 25 72.14 63.96 8.18 12.79

5 10 10 44.78 43.11 1.67 3.87

5 10 15 52.74 49.01 3.73 7.61

5 10 20 62.20 53.75 8.45 15.72

period. It has been shown in the literature, such as Ignall andVeinott (1969), that under certain
situations, “myopic” policy can be optimal. An advantage of the “myopic” policy over the
feasible policy π for Model B is that the former only requires optimizing the single period
cost function at each periodwhich can be implemented easily, while the latter requires solving
(13) to find optimal control parameters to make remanufacturing and disposal decisions, and
this can be challenging.

Denote the average system cost under the “myopic” policy by V̂1. This is obtained by
summing the total system cost obtained in each run under this policy, and then divide by R,
where R is the total number of runs and is taken to be 100. As shown in Tables 6 and 7,
the “myopic” policy approximates the feasible policy π reasonably well, with the highest
percentage difference in average system costs being 17.46%, and the lowest percentage dif-
ference being 2.00%. Out of the 17 scenarios tested, 11 scenarios have percentage difference
in average system costs less than 10%.
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Table 7 Effect of different length of planning horizon on average system costs under the “myopic” and feasible
policies (x0,1 = 5, x1,1 = 10, x2,1 = 15, h = 1.0, p = 2.0, α = 0.5)

N V̂1 V̂π ,1 Difference = V̂1 − V̂π ,1
Difference

V̂π ,1
× 100%

3 44.42 42.05 2.37 5.64

6 52.52 48.83 3.69 7.56

9 53.75 49.39 4.36 8.83

12 54.09 49.95 4.14 8.29

15 54.00 49.28 4.72 9.58

6 Concluding remarks

In this paper, we describe two models for our remanufacturing inventory system, incorpo-
rating a forecasting method for returns, that depends on past demands and sales of buyback
cores. This paper considers two types of cores: buyback cores and normal cores. InTheorem1,
through analyzing a dynamic program, we obtain optimal control parameters to describe the
optimal policy for the backlogmodel when returns are forecast from past demands. Properties
of the optimal cost and the optimal policy we obtained are also provided. Then, in Sect. 5,
we study a feasible inventory policy for the model in which returns are forecast from past
sales, and we show how close this feasible inventory policy is to the optimal inventory policy
by studying the difference in the expected costs under each of these policies. A question that
arises at this point is whether the theoretical upper bounds given in Theorem 5 are tight, and
we leave this as a future work. Numerical results are given in Sect. 5.1.
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Appendix

Proof of Proposition 2 The following arguments apply to j = A and j = B.
Given a policy π j = (π

j
1 , . . . , π

j
N ), let π j,n = (π

j
n , . . . , π

j
N ), for n = 1, . . . , N , be the

“partial” policy from the nth period to the N th period.
Let V j,∗

1 (x1) be the optimal cost from the first period to the N th period, given x1 at the

beginning of the first period. Then, V j,∗
1 (x1) = V ∗

j (x1).

For 2 ≤ n ≤ N , given realization Z j
i = z ji , realized Bi = bi , realized

σi,1, realized εi , 1 ≤ i ≤ n − 1, and xn at the beginning of the nth period, let
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V j,∗
n (xn, z

j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) be the optimal cost from the nth period

to the N th period.
Note that for n=2, V j,∗

n (xn, z
j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1)=V j,∗

2 (x2, z
j
1,

b1).
We have, for 2 ≤ n ≤ N ,

V j,∗
n (xn, z

j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1)

= min
π j,n

Un(xn, yn, z
j
n−1) + αEDn ,Bn ,σn,1,εnUn+1(xn+1, yn+1, Z

j
n )

+
N∑

i=n+2

αi−n EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1), (18)

where for n + 1 ≤ i ≤ N ,

x0,i = y0,i−1 − Di−1,

x1,i = y1,i−1 − Di−1 + R j
i−1,

x2,i = y2,i−1 − Di−1 + R j
i−1 + Bi−1,

with R j
n = σn,1z

j
n−1 + εn . In (18), yi = π

j
i (xi , z

j
i−1, bi−1, σ2,1, . . . , σi−1,1, ε2, . . . , εi−1),

for n ≤ i ≤ N .
It can be seen that (π j,∗

n , . . . , π
j,∗
N ) is an optimal solution to the above problem.

We would like to show by induction that the following statement holds:
Statement: V j,∗

n (xn, z
j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) = V j

n (xn, z
j
n−1) and

π
j,∗
n

(xn, z
j
n−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) = y j,∗

n (xn, z
j
n−1), for 2 ≤ n ≤ N .

For n = N , we have

V j,∗
N (xN , z j

N−1, bN−1, σ2,1, . . . , σN−1,1, ε2, . . . , εN−1)

= min
π j,N

UN (xN , π
j
N (xN , z jN−1, bN−1, σ2,1, . . . , σN−1,1, ε2, . . . , εN−1), z

j
N−1)

and

V j
N (xN , z jN−1)

= min
yN

UN (xN , yN , z jN−1)

subject to

y0,N ≤ y1,N ≤ y2,N ,

y1,N − x1,N ≤ y0,N − x0,N ,

y2,N ≤ x2,N ,

y1,N ≥ x1,N .

By comparison, it is clear that statement holds for n = N .
Suppose statement holds for n = n0, where 3 ≤ n0 ≤ N , that is, V j,∗

n0 (xn0 , z
j
n0−1 , bn0−1 ,

σ2,1, . . . , σn0−1,1, ε2, . . . , εn0−1) = V j
n0(xn0 , z

j
n0−1) and π

j,∗
n0 (xn0 , z

j
n0−1 , bn0−1 , σ2,1,

. . . , σn0−1,1, ε2, . . . , εn0−1) = y j,∗
n0 (xn0 , z

j
n0−1).

We have

123



164 Annals of Operations Research (2020) 288:137–180

V j,∗
n0−1(xn0−1, z

j
n0−2, bn0−2, σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2)

= min
π j,n0−1

{
Un0−1(xn0−1, yn0−1, z

j
n0−2) + αEDn0−1,Bn0−1,σn0−1,1,εn0−1Un0 (xn0 , yn0 , Z

j
n0−1)

+
N∑

i=n0+1

αi−n0+1EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1)

⎫
⎬

⎭

= min
π

j
n0−1

{
Un0−1(xn0−1, yn0−1, z

j
n0−2)

+ α min
π j,n0

{
EDn0−1,Bn0−1,σn0−1,1,εn0−1Un0 (xn0 , yn0 , Z

j
n0−1)

+
N∑

i=n0+1

αi−n0 EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1)

⎫
⎬

⎭

⎫
⎬

⎭

= min
π

j
n0−1

{

Un0−1(xn0−1, yn0−1, z
j
n0−2) + α min

π j,n0
EDn0−1,Bn0−1,σn0−1,1,εn0−1

⎡

⎣E

⎡

⎣
N∑

i=n0+1

αi−n0Ui (xi , yi , Z
j
i−1)

∣
∣
∣
∣
∣
∣
Dn0−1, Bn0−1, σn0−1,1, εn0−1

⎤

⎦

⎤

⎦

⎫
⎬

⎭

= min
π

j
n0−1

{

Un0−1(xn0−1, yn0−1, z
j
n0−2) + α min

π j,n0
EDn0−1,Bn0−1,σn0−1,1,εn0−1

[
Un0 (xn0 , yn0 , Z

j
n0−1) + αEDn0 ,Bn0 ,σn0,1,εn0

Un0+1(xn0+1, yn0+1, Z
j
n0 )

+
N∑

i=n0+2

αi−n0 EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1)

⎤

⎦

⎫
⎬

⎭

≥ min
π

j
n0−1

{
Un0−1(xn0−1, yn0−1, z

j
n0−2) + αEDn0−1,Bn0−1,σn0−1,1,εn0−1

[

min
π j,n0

{
Un0 (xn0 , yn0 , Z

j
n0−1) + αEDn0 ,Bn0 ,σn0,1,εn0

Un0+1(xn0+1, yn0+1, Z
j
n0 )

+
N∑

i=n0+2

αi−n0 EDi−2,Di−1,Bi−1,σi−1,1,εi−1Ui (xi , yi , Z
j
i−1)

⎫
⎬

⎭

⎤

⎦

⎫
⎬

⎭

= min
π

j
n0−1

{
Un0−1(xn0−1, yn0−1, z

j
n0−2) + αEDn0−1,Bn0−1,σn0−1,1,εn0−1

(V j,∗
n0 (xn0 , dn0−2, Z

j
n0−1, bn0−2, Bn0−1, σ2,1, . . . , σn0−1,1, ε2, . . . , εn0−1))

}

= min
π

j
n0−1

{
Un0−1(xn0−1, yn0−1, z

j
n0−2)) + αEDn0−1,Bn0−1,σn0−1,1,εn0−1(V

j
n0 (xn0 , Z

j
n0−1))

}

= V j
n0−1(xn0−1, z

j
n0−2),

where the fourth equality holds by independence of random variables across periods, the
fifth equality holds by definition of V j,∗

n0 (xn0 , z
j
n0−1), the sixth equality holds by induction

hypothesis, and the last equality holds by definition of V j
n0−1(xn0−1 , z

j
n0−2). Here, for n0 ≤

i ≤ N ,
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x0,i = y0,i−1 − Di−1,

x1,i = y1,i−1 − Di−1 + Ri−1,

x2,i = y2,i−1 − Di−1 + R j
i−1 + Bi−1,

with R j
n0−1 = σn0−1,1z

j
n0−2 + εn0−1. Also, for n0 − 1 ≤ i ≤ N , yi = π

j
i (xi , z

j
i−1, bi−1,

σ2,1, . . . , σi−1,1, ε2, . . . , εi−1).

Therefore, V j,∗
n0−1(xn0−1 , z

j
n0−2 , bn0−2 , σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2) ≥ V j

n0−1(xn0−1 ,

z jn0−2).

On the other hand, y j ,∗
n (xn, z

j
n−1), n0 − 1 ≤ n ≤ N , form a “partial” policy

from the (n0 − 1)th period to the N th period, with expected cost V j
n0−1(xn0−1 , z

j
n0−2).

Since V j,∗
n0−1(xn0−1 , z

j
n0−2 , bn0−2 , σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2) is the optimal expected

cost over all “partial” policy from the (n0 − 1)th period to the N th period, we must
have V j,∗

n0−1(xn0−1 , z
j
n0−2 , bn0−2 , σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2) ≤ V j

n0−1(xn0−1 , z
j
n0−2).

Hence, V j,∗
n0−1(xn0−1 , z

j
n0−2 , bn0−2 , σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2) = V j

n0−1(xn0−1 , z
j
n0−2)

with π
j,∗
n0−1(xn0−1 , z

j
n0−2 , bn0−2 , σ2,1, . . . , σn0−2,1, ε2, . . . , εn0−2) = y j,∗

n0−1(xn0−1 , z
j
n0−2).

Hence, statement holds for n = n0 − 1. This implies by induction that statement holds
for 2 ≤ n ≤ N .

Similar arguments as above apply to show that V j,∗
1 (x1) = V j

1 (x1) and π
j,∗
1 (x1) =

y j,∗
1 (x1), using V j,∗

2 (x2, z
j
1, b1) = V j

2 (x2, z
j
1) and π

j,∗
2 (x2, z

j
1, b1) = y j,∗

2 (x2, z
j
1), which

follows from the above statement when n = 2. 
�
Proof of Theorem 1 For 2 ≤ n ≤ N , the theorem follows from Theorem 4 by letting

C( y, z) = Un(xn, yn, z
A
n−1) + r0x0,n + (r1 − r0)x1,n − ux2,n − (s0 + b)E(εn) − s1E(Bn),

K ( y, z) = Kn( yn, z
A
n−1)

in Sect. 4.1, where x = xn, y = yn, z = zAn−1, β = (s0+b)E(σn,1). Note that Kn( yb, z
A
n−1)

is defined by

Kn( yn, z
A
n−1) = EDn ,Bn ,σn,1,εn (V

A
n+1(y0,n − Dn, y1,n − Dn + σn,1z

A
n−1 + εn,

y2,n − Dn + σn,1z
A
n−1 + εn + Bn, Dn)), (19)

Hence K (x, z) defined in Sect. 4.1 equal V A
n (xn, zAn−1) + r0x0,n + (r1 − r0)x1,n − ux2,n −

(s0 + b)E(εn) − s1E(Bn).
In order to apply Theorem 4, we need to show that the following statement holds for

2 ≤ n ≤ N :
Statement: Kn( yn, z

A
n−1) defined by (19) satisfies Properties 1 - 4 for 2 ≤ n ≤ N

We show this by induction on n, 2 ≤ n ≤ N .
For n = N ,V A

N+1(xN+1, zAN ) ≡ 0, hence Properties 1 - 4 hold trivially for KN ( yN , zAN−1).
In particular, Property 4 holds in this case since r1 > r0.

Suppose Kn( yn, z
A
n−1) satisfies Properties 1–4 for n = n0, where 3 ≤ n0 ≤ N .

Then, using Proposition 4, V A
n0(xn0 , z

A
n0−1) is continuously differentiable a.e. in (xn0 ,

zAn0−1) and is also convex in (xn0 , z
A
n0−1). Furthermore, by Proposition 5, its first derivative

w.r.t. x1,n0 is greater than or equal to −(r1 − r0) a.e.. These imply that Properties 1, 4
hold for Kn0−1( yn0−1

, zAn0−2). Proposition 5 also implies that Properties 2 and 3 hold for

Kn0−1( yn0−1
, zAn0−2). Hence, statement holds for n = n0 − 1. Therefore, by induction,

statement holds for all n, 2 ≤ n ≤ N .
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By similar arguments as above, we can apply Theorem 4 to the case n = 1 to conclude
the proof of the theorem. 
�

Proof of Theorem 4 As ξ1(z) ≤ ξ0 ≤ ξ−1(z) and x0 ≤ x1 ≤ x2, the existence of m ∈ {0, 1}
such that ξm(z) ≤ xm ≤ ξm−1(z) or xm ≤ ξm(z) ≤ xm+1, with x0 ≤ x1 ≤ x2 ≤ ξ1(z) ≤ ξ0
if no such m exists, can be checked easily.

Next, we show that (y∗
0 (x, z), y∗

1 (x, z), y∗
2 (x, z)) given by the expressions in the statement

of the theorem is an optimal solution to (11) subject to constraints (12) .
Writing �( y, z) as �0(y0) + �1(y1, z) + �2(y2, z), the KKT conditions for (11) subject

to constraints (12) are given by
⎛

⎜
⎝

∂�0
∂ y0
∂�1
∂ y1
∂�2
∂ y2

⎞

⎟
⎠+ λ1

⎛

⎝
1

−1
0

⎞

⎠+ λ2

⎛

⎝
0
1

−1

⎞

⎠+ λ3

⎛

⎝
−1
1
0

⎞

⎠+ λ4

⎛

⎝
0
0
1

⎞

⎠+ λ5

⎛

⎝
0

−1
0

⎞

⎠ = 0,

λ1(y0 − y1) = 0, λ1 ≥ 0, y0 ≤ y1,

λ2(y1 − y2) = 0, λ2 ≥ 0, y1 ≤ y2,

λ3(y1 − x1 − y0 + x0) = 0, λ3 ≥ 0, y1 − x1 ≤ y0 − x0,

λ4(y2 − x2) = 0, λ4 ≥ 0, y2 ≤ x2,

λ5(x1 − y1) = 0, λ5 ≥ 0, y1 ≥ x1.

Since (11) subject to constraints (12) is a convex program and the Slater’s condition holds
trivially, (y∗

0 (x, z), y∗
1 (x, z), y∗

2 (x, z)) is an optimal solution to (11) subject to constraints
(12) if and only if it satisfies the KKT conditions. Hence, to show that y∗

i (x, z), i = 0, 1, 2,
given by the expressions in the theorem, are indeed optimal solutions, we only need to show
that they satisfy the above KKT conditions.

Case (a): m = 0, ξ0 ≤ x0.
Subcase (a)(i): x1 ≤ η2(z) ≤ x2.
The expressions for y∗

i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗
0 (x, z) =

x0, y∗
1 (x, z) = x1, y∗

2 (x, z) = η2(z). Then λ1 = λ2 = λ4 = 0, λ3 = ∂�0
∂ y0

(x0) ≥ 0,

λ5 = ∂�1
∂ y1

(x1, z)+λ3 ≥ 0, with yi = y∗
i (x, z), i = 0, 1, 2, satisfy the aboveKKT conditions.

Hence, theorem holds for this subcase.
Subcase (a)(ii): x1 ≤ x2 ≤ η2(z).
The expressions for y∗

i (x, z), i = 0, 1, 2, given in the statement of theorem are
y∗
0 (x, z) = x0, y∗

1 (x, z) = x1, y∗
2 (x, z) = x2. Then λ1 = λ2 = 0, λ3 = ∂�0

∂ y0
(x0) ≥ 0,

λ4 = − ∂�2
∂ y2

(x2, z) ≥ 0, λ5 = ∂�1
∂ y1

(x1, z) + λ3 ≥ 0, with yi = y∗
i (x, z), i = 0, 1, 2, satisfy

the above KKT conditions. Hence, theorem holds for this subcase.
Subcase (a)(iii): η2(z) ≤ x1 ≤ x2.
The expressions for y∗

i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗
0 (x, z) =

x0, y∗
1 (x, z) = x1, y∗

2 (x, z) = x1. Then λ1 = λ4 = 0, λ2 = ∂�2
∂ y2

(x1, z) ≥ 0, λ3 =
∂�0
∂ y0

(x0) ≥ 0, λ5 = ∂�1
∂ y1

(x1, z) + λ2 + λ3 ≥ 0, with yi = y∗
i (x, z), i = 0, 1, 2, satisfy the

above KKT conditions. Hence, theorem holds for this subcase.

Case (b): m = 0, x0 ≤ ξ0 ≤ x1.
Subcase (b)(i): x1 ≤ η2(z) ≤ x2.
The expressions for y∗

i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗
0 (x, z) =

ξ0, y∗
1 (x, z) = x1, y∗

2 (x, z) = η2(z). Then λ1 = λ2 = λ3 = λ4 = 0, λ5 = ∂�1
∂ y1

(x1, z) ≥ 0,
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with yi = y∗
i (x, z), i = 0, 1, 2, satisfy the above KKT conditions. Hence, theorem holds for

this subcase.
Subcase (b)(ii): x1 ≤ x2 ≤ η2(z).

The expressions for y∗
i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗

0 (x, z) =
ξ0, y∗

1 (x, z) = x1, y∗
2 (x, z) = x2. Then λ1 = λ2 = λ3 = 0, λ4 = − ∂�2

∂ y2
(x2, z) ≥ 0,

λ5 = ∂�1
∂ y1

(x1, z) ≥ 0, with yi = y∗
i (x, z), i = 0, 1, 2, satisfy the above KKT conditions.

Hence, theorem holds for this subcase.
Subcase (b)(iii): η2(z) ≤ x1 ≤ x2.

The expressions for y∗
i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗

0 (x, z) =
ξ0, y∗

1 (x, z) = x1, y∗
2 (x, z) = x1. Then λ1 = λ3 = λ4 = 0, λ2 = ∂�2

∂ y2
(x1, z) ≥ 0,

λ5 = ∂�1
∂ y1

(x1, z)+λ2 ≥ 0, with yi = y∗
i (x, z), i = 0, 1, 2, satisfy the aboveKKT conditions.

Hence, theorem holds for this subcase.
Other cases with their associated subcases can be considered in a similar manner to show

that theoremholds for them. In particular, we conclude the proof by considering an illustrative
case as follows:

Illustrative case: ξ1(z) ≤ x1 ≤ ξ0, η2(z) ≤ x1 ≤ x2.
The expressions for y∗

i (x, z), i = 0, 1, 2, given in the statement of theorem are y∗
0 (x, z) =

x1, y∗
1 (x, z) = x1, y∗

2 (x, z) = x1. Let λ3 = λ4 = 0, and the rest of λi ≥ 0 are chosen such
that

∂�0

∂ y0
(x1) = −λ1 ≤ 0,

∂�1

∂ y1
(x1, z) = λ1 − λ2 + λ5,

∂�2

∂ y2
(x1, z) = λ2 ≥ 0.

We have λ5 = ∂�0
∂ y0

(x1) + ∂�1
∂ y1

(x1, z) + ∂�2
∂ y2

(x1, z) ≥ 0.
With yi = y∗

i (x, z), i = 0, 1, 2, KKT conditions are satisfied, and the theorem holds for
this illustrative case. 
�

Proof of Proposition 5 We consider the case when ξ0 ≤ η2(z). The case when η2(z) ≤ ξ0 can
be considered in a similar manner.

In this case, we have K (x, z) = K 0(x0) + K 1(x1, z) + K 2(x2, z), where K 0(x0),
K i (xi , z), i = 1, 2, are given by

K 0(x0) =
{

�0(ξ0), x0 ≤ ξ0,

�0(x0), ξ0 ≤ x0,

K 1(x1, z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�0(ξ1(z)) + �1(ξ1(z), z) + �2(η2(z), z)
−�0(ξ0), x1 ≤ ξ1(z),
�0(x1) + �1(x1, z) + �2(η2(z), z)
−�0(ξ0), ξ1(z) ≤ x1 ≤ ξ0,

�1(x1, z) + �2(η2(z), z), ξ0 ≤ x1 ≤ η2(z),
�1(x1, z) + �2(x1, z), η2(z) ≤ x1,

K 2(x2, z) =

⎧
⎪⎪⎨

⎪⎪⎩

�0(x2) + �1(x2, z) + �2(x2, z)
−�0(ξ1(z)) − �1(ξ1(z), z) − �2(η2(z), z), x2 ≤ ξ1(z),
�2(x2, z) − �2(η2(z), z), ξ1(z) ≤ x2 ≤ η2(z),
0, η2(z) ≤ x2.
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We arrive at the above expression for K (x, z) by considering different scenarios in which
x0, x1, x2 are related to ξ0, ξ1(z), η2(z). As an illustration, if x0 ≤ ξ1(z) ≤ ξ0 ≤ x1 ≤ x2 ≤
η2(z), then by Theorem 4,

K (x, z) = �0(ξ0) + �1(x1, z) + �2(x2, z),

which is equal to the above expression for K (x, z), where K 0(x0) = �0(ξ0), K 1(x1, z) =
�1(x1, z) + �2(η2(z), z) and K 2(x2, z) = �2(x2, z) − �2(η2(z), z).

The above expressions for K 0(x0), K 1(x1, z) and K 2(x2, z) can be similarly checked to
be correct when x0, x1, x2, ξ0(z), ξ1(z), η2(z) are arranged in other ways.

From the above expression for K (x, z), it is clear that it is additively separable in x and
is also additively separable in x0 and z.

Finally, we have ∂K
∂x1

(x, z) ≥ 0, where it is defined. We only need to show that
∂K 1
∂x1

(x1, z) ≥ 0. For x1 ≤ ξ1(z),
∂K 1
∂x1

(x1, z) = 0. For ξ1(z) ≤ x1 ≤ ξ0,
∂K 1
∂x1

(x1, z) =
∂�0
∂x0

(x1) + ∂�1
∂x1

(x1, z) ≥ 0. This follows since ξ1(z) ≤ ξ0 ≤ η2(z), therefore
∂�0
∂x0

(ξ1(z)) +
∂�1
∂x1

(ξ1(z), z) ≥ 0 and hence ∂�0
∂x0

(x1)+ ∂�1
∂x1

(x1, z) ≥ 0 as x1 ≥ ξ1(z) and�0(x1)+�1(x1, z)
is convex in x1. Similar arguments hold for ξ0 ≤ x1 ≤ η2(z) and η2(z) ≤ x1 to show that
∂K 1
∂x1

(x1, z) ≥ 0. 
�

Proof of Theorem 2 For 2 ≤ n ≤ N , we know that V A
n+1(xn+1, zAn ) is additively separable

in xn+1, additively separable in x0,n+1, zAn , convex and continuously differentiable a.e. in
(xn+1, zAn ). Hence, we can write V A

n+1(xn+1, zAn ) as

V A
n+1(xn+1, z

A
n ) = V A,0

n+1(x0,n+1) + V A,1
n+1(x1,n+1, z

A
n ) + V A,2

n+1(x2,n+1, z
A
n ),

whereV A,0
n+1(x0,n+1) is convex and continuously differentiable a.e. in x0,n+1, andV

A,i
n+1(xi,n+1,

zAn ) is convex and continuously differentiable a.e. in (xi,n+1, zAn ), i = 1, 2.
With

K ( y, z) = EDn ,Bn ,σn,1,εn (V
A
n+1(y0,n − Dn, y1,n − Dn + σn,1z

A
n−1 + εn,

y2,n − Dn + σn,1z
A
n−1 + εn + Bn, Z

A
n ))

in Sect. 4.1, where y = yn = (y0,n, y1,n, y2,n) and z = zAn−1, we have � that appears in (13)
is equal to

(r0 − s0)y0,n + (r1 − r0 + s0 − s1)y1,n + (s1 − u)y2,n + (s0 + b)E(σn,1)z
A
n−1

+ hE(y0,n − Dn)
+ + pE(Dn − y0,n)

+ + αEDn ,Bn ,σn,1,εn (V
A,0
n+1(y0,n − Dn)

+ V A,1
n+1(y1,n − Dn + σn,1z

A
n−1 + εn, Z

A
n ) + V A,2

n+1(y2,n − Dn + σn,1z
A
n−1

+εn + Bn, Z
A
n )). (20)

Writing (13) in terms of (20), we get

ξ1,n(z
A
n−1) ∈ argminy0,n (r1 − s1)y0,n + hE(y0,n − Dn)

+ + pE(Dn − y0,n)
+

+αEDn ,Bn ,σn,1,εn (V
A,0
n+1(y0,n − Dn) + V A,1

n+1(y0,n − Dn + σn,1z
A
n−1 + εn, Z

A
n )),

η2,n(z
A
n−1) ∈ argminy2,n (s1 − u)y2,n + αEDn ,Bn ,σn,1,εn (V

A,2
n+1(y2,n − Dn

+ σn,1z
A
n−1 + εn + Bn, Z

A
n )). (21)
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Clearly, from the above, we see that ξ1,n(zAn−1) and η2,n(zAn−1) are dependent on z
A
n−1, when

n ≤ N −1, while when n = N , since V A
N+1(xN+1, zAN ) ≡ 0, we have ξ1,n(zAn−1), η2,n(z

A
n−1)

are independent of zAn−1.

Since V A,0
n+1(x0,n+1) and V A,1

n+1(x1,n+1, zAn ) are convex and continuous differentiable a.e.
in x0,n+1 and x1,n+1 respectively, we have

∂

∂ y0,n

(
(r1 − s1)y0,n + hE(y0,n − Dn)

+ + pE(Dn − y0,n)
+

+αEDn ,Bn ,σn,1,εn (V
A,0
n+1(y0,n − Dn) + V A,1

n+1(y0,n − Dn + σn,1z
A
n−1 + ε, Z A

n ))
)

= r1 − s1 + h
∫ y0,n

0
fDn (ξ)dξ − p

∫ ∞

y0,n
fDn (ξ)dξ

+αEDn ,Bn ,σn,1,εn

(
dV A,0

n+1

dx0,n+1
(y0,n − Dn) + ∂V A,1

n+1

∂x1,n+1
(y0,n − Dn + σn,1z

A
n−1 + εn, Z

A
n )

)

is nondecreasing in y0,n and zAn−1. Hence, ξ1,n(z
A
n−1) is nonincreasing in zAn−1.

Similarly,

∂

∂ y2,n

(
(s1 − u)y2,n + αEDn ,Bn ,σn,1,εn (V

A,2
n+1(y2,n − Dn + σn,1z

A
n−1 + εn + Bn, Z

A
n ))
)

= s1 − u + αEDn ,Bn ,σn,1,εn

(
∂V A,2

n+1

∂x2,n+1
(y2,n − Dn + σn,1z

A
n−1 + εn + Bn, Z

A
n )

)

is nondecreasing in y2,n and zAn−1. Hence, η2,n(z
A
n−1) is nonincreasing in zAn−1.

We show above that ξ1,n(zAn−1) and η2,n(zAn−1) are nonincreasing in z
A
n−1 if they are given

by (21). Otherwise, we have

η2,n(z
A
n−1) = ξ1,n(z

A
n−1) ∈ argminy0,n (r0 − s0)y0,n + (r1 − r0 + s0 − s1)y0,n + (s1 − u)y0,n

+ hE(y0,n − Dn)
+ + pE(Dn − y0,n)

+αEDn ,Bn ,σn,1,εn (V
A,0
n+1(y0,n − Dn)

+V̂ 1
n+1(y0,n − Dn + σn,1z

A
n−1 + εn, Z

A
n )

+V̂ 2
n+1(y0,n − Dn + σn,1z

A
n−1 + εn + Bn, Z

A
n )),

from which we can also show in a similar way that both ξ1,n(zAn−1) and η2,n(zAn−1) are
nonincreasing in zAn−1. 
�

Proof of Theorem 3 To prove that when x0,1 < ξ0,1, V A
1 (x1) is decreasing in x0,1, we note

that when x0,1 is less than ξ0,1, y
A,∗
0,1 (x1), y

A,∗
1,1 (x1) and yA,∗

2,1 (x1) are not equal to x0,1. In this
case, when x0,1 < x1,1, then

∂V A
1

∂x0,1
(x1) = −r0 < 0,

and when x0,1 = x1,1,

lim
x0→x+

0,1

∂V A
1

∂x0,1
(x0, x1,1, x2,1) = −r0 < 0.

Hence, we obtain the required result.
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We show that for 1 ≤ n ≤ N , if Dn is identically distributed, then ξ0,N ≤ ξ0,n by induction
on n.

First, we note that for 2 ≤ n ≤ N , when x0,n ≤ ξ0,n ,

∂V A
n

∂x0,n
(xn, zAn−1) ≤ 0. (22)

Furthermore, we have for 1 ≤ n ≤ N ,

∂Un

∂ y0,n
(xn, ξ0,N , y1,n, y2,n, z

A
n−1) = 0, (23)

since Dn is identically distributed, and by definition of ξ0,N .
Now, for 2 ≤ n ≤ N − 1, let

Ṽn( yn, z
A
n−1) = Un(xn, yn, z

A
n−1) + αEDn ,Bn ,σn,1,εn (V

A
n+1(xn+1, Z

A
n )).

By definition of ξ0,n , the following holds:

∂ Ṽn
∂ y0,n

(ξ0,n, y1,n, y2,n, z
A
n−1) = 0. (24)

For n = N − 1, we have

∂ ṼN−1

∂ y0,N−1
(ξ0,N , y1,N−1, y2,N−1, z

A
N−2)

= ∂UN−1

∂ y0,N−1
(xN−1, ξ0,N , y1,N−1, y2,N−1, z

A
N−2)

+αEDN−1,BN−1,σN−1,1,εN−1

(
∂V A

N

∂x0,N
(ξ0,N − DN−1, x1,N , x2,N , Z A

N−1)

)

= αEDN−1,BN−1,σN−1,1,εN−1

(
∂V A

N

∂x0,N
(ξ0,N − DN−1, x1,N , x2,N , Z A

N−1)

)

≤ 0,

where the second equality holds by (23), and the inequality holds by (22) since ξ0,N − Dn ≤
ξ0,N . Hence, by convexity of ṼN−1( yN−1, z

A
N−2) in y0,N−1 and (24), we have ξ0,N ≤ ξ0,N−1.

Suppose ξ0,N ≤ ξ0,n+1 for some n between 1 and N − 1. Then by a similar argument as
above, using (23), (22), induction hypothesis, (24) and convexity of Ṽn( yn, z

A
n−1) in y0,n , we

have ξ0,N ≤ ξ0,n . Therefore, by induction, ξ0,N ≤ ξ0,n for 1 ≤ n ≤ N . 
�
Computations for Example 1: It can be checked easily that ξ0,3 = ξ1,3 = −∞ and η2,3 =
∞, as 2s1 < u, r0−s0 > p.We further have for x0,3 ≤ x1,3 ≤ x2,3, y

∗,A
0,3 = x0,3, y

∗,A
1,3 = x1,3

and y∗,A
2,3 = x2,3, and

V A
3 (x3, d) = −s0x0,3 + (s0 − s1)x1,3 + s1x2,3 + 1

2
(s0 + b)d

+5s1 + h(x0,3 − d)+ + h(d − x0,3)
+.

hence

U2(x2, y2, d) + ED2,B2,σ2,1,ε2(V
A
3 (x3, Z A

2 ))

= U2(x2, y2, d) + V A
3

(

y0,2 − d, y1,2 − 1

2
d, y2,2 − 1

2
d + 5, d

)
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= −r0x0,2 − (r1 − r0)x1,2 + ux2,2 + (r0 − 2s0)y0,2
+ (r1 − r0 + 2(s0 − s1))y1,2 + (2s1 − u)y2,2

+ 15s1 +
(
3

2
s0 + b

)

d + h(y0,2 − d)+ + h(d − y0,2)
+

+ h(y0,2 − 2d)+ + h(2d − y0,2)
+. (25)

Collect terms containing y0,2 in the above expression to form F0,2(y0,2) as follows:

F0,2(y0,2) = (r0 − 2s0)y0,2 + h(y0,2 − d)+ + h(d − y0,2)
+

+ h(y0,2 − 2d)+ + h(2d − y0,2)
+.

Since r0 < 2s0, we have F0,2(y0,2) → ∞ as y0,2 → ±∞. Furthermore,

F0,2(d) = (r0 + h − 2s0)d > (2r0 + h − 4s0)d = F0,2(2d),

as r0 < 2s0. Hence, by definition of ξ0,n , we have ξ0,2 = 2d .
In a similar way, we can check using the definitions of ξ1,n, η2,n , (25), 2s1 < u and r1−2s1 >

2h that ξ1,2 = −∞, η2,2 = ∞ .
To find ξ0,1, we note that for x0,2 ≤ x1,2 ≤ ξ0,2 = 2d , y∗,A

0,2 = y∗,A
1,2 = x1,2 and

y∗,A
2,2 = x2,2, and

V A
2 (x2, d) = −r0x0,2 + (r0 − 2s1 − h)x1,2 + 2s1x2,2 +

(
3

2
s0 + 2h + b

)

d + 15s1

+ h(x1,2 − d)+ + h(d − x1,2)
+,

for x0,2 ≤ ξ0,2 = 2d ≤ x1,2, y
∗,A
0,2 = ξ0,2 = 2d, y∗,A

1,2 = x1,2 and y∗,A
2,2 = x2,2, and

V A
2 (x2, d) = −r0x0,2 + 2(s0 − s1)x1,2 + 2s1x2,2 +

(

h + 2r0 − 5

2
s0 + b

)

d + 15s1,

and for ξ0,2 = 2d ≤ x0,2, y
∗,A
0,2 = x0,2, y

∗,A
1,2 = x1,2 and y∗,A

2,2 = x2,2, and

V A
2 (x2, d) = 2(h − s0)x0,2 + 2(s0 − s1)x1,2 + 2s1x2,2 +

(

−3h + 3

2
s0 + b

)

d + 15s1.

Hence, collecting terms involving y0,1 inU1(x1, y1)+ V A
2 (y0,1 − d, y1,2 − d, y2,2 − d + 5)

to form F0,1(y0,1), we have

F0,1(y0,1) =
{−s0y0,1 + h(y0,1 − d)+ + h(d − y0,1)+, if y0,1 ≤ 3d,

(r0 + 3h − 3s0)y0,1, if y0,1 > 3d.

Observe that F0,1(y0,1) → ∞ as y0,1 → ±∞, by definition of ξ0,n , ξ0,1 = d as required.

Proof of Proposition 6 To prove the proposition, we first write down explicit expressions for
partial derivatives of V A

N wherever they are defined, using Theorem 1 (or Theorem 4), as
follows:
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Case 1: x0,N ≤ x1,N ≤ x2,N ≤ ξ1,N ≤ ξ0,N .

∂V A
N

∂x0,N
(xN , zN−1) = −r0,

∂V A
N

∂x1,N
(xN , zN−1) = −(r1 − r0),

∂V A
N

∂x2,N
(xN , zN−1) = r1 + h

∫ x2,N

0
fDN (ξ)dξ − p

∫ ∞

x2,N
fDN (ξ)dξ.

Case 2: x1,N ≤ ξ1,N ≤ x2,N .

∂V A
N

∂x0,N
(xN , zN−1) = −r0.

Subcase 2(i): x2,N ≤ η2,N .

∂V A
N

∂x1,N
(xN , zN−1) = −(r1 − r0),

∂V A
N

∂x2,N
(xN , zN−1) = s1.

Subcase 2(ii): η2,N ≤ x2,N .

∂V A
N

∂x1,N
(xN , zN−1) = −(r1 − r0),

∂V A
N

∂x2,N
(xN , zN−1) = u.

Case 3: ξ1,N ≤ x1,N ≤ ξ0,N .

∂V A
N

∂x0,N
(xN , zN−1) = −r0.

Subcase 3(i): x2,N ≤ η2,N .

∂V A
N

∂x1,N
(xN , zN−1) = r0 − s1 + h

∫ x1,N

0
fDN (ξ)dξ − p

∫ ∞

x1,N
fDN (ξ)dξ,

∂V A
N

∂x2,N
(xN , zN−1) = s1.

Subcase 3(ii): x1,N ≤ η2,N ≤ x2,N .

∂V A
N

∂x1,N
(xN , zN−1) = r0 − s1 + h

∫ x1,N

0
fDN (ξ)dξ − p

∫ ∞

x1,N
fDN (ξ)dξ,

∂V A
N

∂x2,N
(xN , zN−1) = u.
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Subcase 3(iii): η2,N ≤ x1,N .

∂V A
N

∂x1,N
(xN , zN−1) = r0 − u + h

∫ x1,N

0
fDN (ξ)dξ − p

∫ ∞

x1,N
fDN (ξ)dξ,

∂V A
N

∂x2,N
(xN , zN−1) = u.

Case 4: x0,N ≤ ξ0,N ≤ x1,N .

∂V A
N

∂x0,N
(xN , zN−1) = −r0.

Subcase 4(i): x2,N ≤ η2,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − s1,

∂V A
N

∂x2,N
(xN , zN−1) = s1.

Subcase 4(ii): x1,N ≤ η2,N ≤ x2,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − s1,

∂V A
N

∂x2,N
(xN , zN−1) = u.

Subcase 4(iii): η2,N ≤ x1,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − u,

∂V A
N

∂x2,N
(xN , zN−1) = u.

Case 5: ξ0,N ≤ x0,N .

∂V A
N

∂x0,N
(xN , zN−1) = −s0 + h

∫ x0,N

0
fDN (ξ)dξ − p

∫ ∞

x0,N
fDN (ξ)dξ.

Subcase 5(i): x2,N ≤ η2,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − s1,

∂V A
N

∂x2,N
(xN , zN−1) = s1.

Subcase 5(ii): x1,N ≤ η2,N ≤ x2,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − s1,

∂V A
N

∂x2,N
(xN , zN−1) = u.
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Subcase 5(iii): η2,N ≤ x1,N .

∂V A
N

∂x1,N
(xN , zN−1) = s0 − u,

∂V A
N

∂x2,N
(xN , zN−1) = u.

The proposition then follows by induction on n using the dynamic programming formulation
of V A

n (xn, zn−1) in Sect. 3, Theorem 1 (or Theorem 4), Condition 1 and definitions of ξ0,
ξ1,n(zn−1), η2,n(zn−1) as in (13) and in Proposition 3. In particular, in the induction step, we
need the followings:

Case 1: x0,n ≤ x1,n ≤ x2,n ≤ ξ1,n(zn−1) ≤ ξ0,n .

∂V A
n

∂x0,n
(xn, zn−1) = −r0,

∂V A
n

∂x1,n
(xn, zn−1) = −(r1 − r0),

∂V A
n

∂x2,n
(xn, zn−1) = r1 + h

∫ x2,n

0
fDn (ξ)dξ − p

∫ ∞

x2,n
fDn (ξ)dξ

+αE

((
∂V A

n+1

∂x0,n+1
+ ∂V A

n+1

∂x1,n+1
+ ∂V A

n+1

∂x2,n+1

)

(xA,∗
n+1, Dn)

)

.

Case 2: x1,n ≤ ξ1,n(zn−1) ≤ x2,n .

∂V A
n

∂x0,n
(xn, zn−1) = −r0.

Subcase 2(i): x2,n ≤ η2,n(zn−1).

∂V A
n

∂x1,n
(xn, zn−1) = −(r1 − r0),

∂V A
n

∂x2,n
(xn, zn−1) = s1 + αE

(
∂V A

n+1

∂x2,n+1
(xA,∗

n+1, Dn)

)

.

Subcase 2(ii): η2,n(zn−1) ≤ x2,n .

∂V A
n

∂x1,n
(xn, zn−1) = −(r1 − r0),

∂V A
n

∂x2,n
(xN , zn−1) = u.

Case 3: ξ1,n(zn−1) ≤ x1,n ≤ ξ0,n .

∂V A
n

∂x0,n
(xn, zn−1) = −r0.
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Subcase 3(i): x2,n ≤ η2,n(zn−1).

∂V A
n

∂x1,n
(xn, zn−1) = r0 − s1 + h

∫ x1,n

0
fDn (ξ)dξ − p

∫ ∞

x1,n
fDn (ξ)dξ

+αE

((
∂V A

n+1

∂x0,n+1
+ ∂V A

n+1

∂x1,n+1

)

(xA,∗
n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = s1 + αE

(
∂V A

n+1

∂x2,n+1
(xA,∗

n+1, Dn)

)

.

Subcase 3(ii): x1,n ≤ η2,n(zn−1) ≤ x2,n .

∂V A
n

∂x1,n
(xn, zn−1) = r0 − s1 + h

∫ x1,n

0
fDn (ξ)dξ − p

∫ ∞

x1,n
fDn (ξ)dξ

+αE

((
∂V A

n+1

∂x0,n+1
+ ∂V A

n+1

∂x1,n+1

)

(xA,∗
n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.

Subcase 3(iii): η2,n(zn−1) ≤ x1,n .

∂V A
n

∂x1,n
(xn, zn−1) = r0 − u + h

∫ x1,n

0
fDn (ξ)dξ − p

∫ ∞

x1,n
fDn (ξ)dξ

+αE

((
∂V A

n+1

∂x0,n+1
+ ∂V A

n+1

∂x1,n+1
+ ∂V A

n+1

∂x2,n+1

)

(xA,∗
n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.

Case 4: x0,n ≤ ξ0,n ≤ x1,n .

∂V A
n

∂x0,n
(xn, zn−1) = −r0.

Subcase 4(i): x2,n ≤ η2,n(zn−1).

∂V A
n

∂x1,n
(xn, zn−1) = s0 − s1 + αE

(
∂V A

n+1

∂x1,n+1
(xA,∗

n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = s1 + αE

(
∂V A

n+1

∂x2,n+1
(xA,∗

n+1, Dn)

)

.

Subcase 4(ii): x1,n ≤ η2,n(zn−1) ≤ x2,n .

∂V A
n

∂x1,n
(xn, zn−1) = s0 − s1 + αE

(
∂V A

n+1

∂x1,n+1
(xA,∗

n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.
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Subcase 4(iii): η2,n(zn−1) ≤ x1,n .

∂V A
n

∂x1,n
(xn, zn−1) = s0 − u + αE

((
∂V A

n+1

∂x1,n+1
+ ∂V A

n+1

∂x2,n+1

)

(xA,∗
n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.

Case 5: ξ0,n ≤ x0,n .

∂V A
n

∂x0,n
(xn, zn−1) = −s0 + h

∫ x0,n

0
fDn (ξ)dξ − p

∫ ∞

x0,n
fDn (ξ)dξ

+αE

(
∂V A

n+1

∂x0,n+1
(xA,∗

n+1, Dn)

)

.

Subcase 5(i): x2,n ≤ η2,n(zn−1).

∂V A
n

∂x1,n
(xn, zn−1) = s0 − s1 + αE

(
∂V A

n+1

∂x1,n+1
(xA,∗

n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = s1 + αE

(
∂V A

n+1

∂x2,n+1
(xA,∗

n+1, Dn)

)

.

Subcase 5(ii): x1,n ≤ η2,n(zn−1) ≤ x2,n .

∂V A
n

∂x1,n
(xn, zn−1) = s0 − s1 + αE

(
∂V A

n+1

∂x1,n+1
(xA,∗

n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.

Subcase 5(iii): η2,n(zn−1) ≤ x1,n .

∂V A
n

∂x1,n
(xn, zn−1) = s0 − u + αE

((
∂V A

n+1

∂x1,n+1
+ ∂V A

n+1

∂x2,n+1

)

(xA,∗
n+1, Dn)

)

,

∂V A
n

∂x2,n
(xn, zn−1) = u.


�
Proof of Proposition 7 First, note that

V A
n (xn, zn−1) = −r x0,n − (r1 − r0)x1,n + ux2,n + (s0 + b)E(εn) + s1E(Bn)

+�n( yA,∗
n (xn, zn−1), zn−1), (26)

where

�n( yn, zn−1) = (r0 − s0)y0,n + (r1 − r0 + s0 − s1)y1,n + (s1 − u)y2,n

+ (s0 + b)E(σn,1)zn−1 + hE(y0,n − Dn)
+ + pE(Dn − y0,n)

+

+αEDn ,Bn ,σn,1,εn (V
A
n+1(xn+1, Dn)), (27)

and yA,∗
n (xn, zn−1) = (yA,∗

0,n (xn, zn−1), y
A,∗
1,n (xn, zn−1), y

A,∗
2,n (xn, zn−1)) is defined in terms

of ξ0,n , ξ1,n(zn−1), η2,n(zn−1) and xn from Theorems 1 and 4.
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The proposition then follows from (26), (27), and definitions of ξ0, ξ1,n(zn−1), η2,n(zn−1) as
in (13) and in Proposition 3. 
�

Proof of Proposition 8 We prove the proposition by induction on n.
It is clear that the proposition holds when n = N since

Vπ ,N (xN , zN−1, bN−1, σ2,1, . . . , σN−1,1, ε2, . . . , εN−1) = V A
N (xN , zN−1),

by definition of the feasible policy π on Model B.
Suppose the proposition holds for some n = n0 + 1, where 2 ≤ n0 ≤ N − 1, then

Vπ ,n0(xn0 , zn0−1 , bn0−1 , σ2,1, . . . , σn0−1,1, ε2, . . . , εn0−1) − V A
n0(xn0 , zn0−1)

= Un0(xn0 , y
A,∗
n0 (xn0 , zn0−1), zn0−1)

+αEDn0 ,Bn0 ,σn0,1,εn0
(Vπ ,n0+1(x

A,∗
n0+1

, ZA,∗
n0 , Bn0 , σ2,1, . . . , σn0,1, ε2, . . . , εn0))

−Un0(xn0 , y
A,∗
n0 (xn0 , zn0−1), zn0−1) − αEDn0 ,Bn0 ,σn0,1,εn0

(V A
n0+1(x

A,∗
n0+1

, Dn0))

= αEDn0 ,Bn0 ,σn0,1,εn0
(Vπ,n0+1(x

A,∗
n0+1

, ZA,∗
n0 , Bn0 , σ2,1, . . . , σn0,1, ε2, . . . , εn0)

− V A
n0+1(x

A,∗
n0+1

, Dn0))

= αEDn0 ,Bn0 ,σn0,1,εn0
(Vπ,n0+1(x

A,∗
n0+1

, ZA,∗
n0 , Bn0 , σ2,1, . . . , σn0,1, ε2, . . . , εn0)

−V A
n0+1(x

A,∗
n0+1

, Z A,∗
n0 ))

+αEDn0 ,Bn0 ,σn0,1,εn0
(V A

n0+1(x
A,∗
n0+1

, Z A,∗
n0 ) − V A

n0+1(x
A,∗
n0+1

, Dn0))

≤ α2(1 + · · · + αN−n0−1)max{α((1 + · · · + αN−n0−3)p − r0) − s0 − b, 0}μn0+1

+αEDn0 ,Bn0 ,σn0,1,εn0

(
∂V A

n0+1

∂zn0
(xA,∗

n0+1
, ξn0)(Z

A,∗
n0 − Dn0)

)

= α2(1 + · · · + αN−n0−1)max{α((1 + · · · + αN−n0−3)p − r0) − s0 − b, 0}μn0+1

+αE(σn0+1,1)EDn0 ,Bn0 ,σn0,1,εn0

[(
s0 + b + αEDn0+1,Bn0+1,σn0+1,1,εn0+1 (

(
∂V A

n0+2

∂x1,n0+2
+ ∂V A

n0+2

∂x2,n0+2

)

(xA,∗
n0+2

, Dn0+1)

))

(Z A,∗
n0 − Dn0)

]

≤ α2(1 + · · · + αN−n0−1)max{α((1 + · · · + αN−n0−3)p − r0) − s0 − b, 0}μn0+1

+αmax{α((1 + · · · + αN−n0−2)p − r0) − s0 − b, 0}μDn0

≤ α(1 + · · · + αN−n0)max{α((1 + · · · + αN−n0−2)p − r0) − s0 − b, 0}μn0 ,

where the first inequality holds by induction hypothesis and theMean Value Theorem, where
ξn0 lies between Z A,∗

n0 and Dn0 , the fourth equality holds by Proposition 7, and the second
inequality holds by Proposition 6. Therefore, proposition holds for n = n0. Hence, by
induction, proposition holds for all n, 2 ≤ n ≤ N . The consequence in the proposition
follows from similar arguments as above. 
�

Proof of Proposition 9 The proof of this proposition is similar to that of Proposition 8 and by
observing that
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V A
n (xn, zn−1) − V B

n (xn, zn−1)

≤ Un(xn, yB,∗
n (xn, zn−1), zn−1) + αEDn ,Bn ,σn,1,εn (V

A
n+1(x

B,∗
n+1, Dn))

−Un(xn, yB,∗
n (xn, zn−1), zn−1) − αEDn ,Bn ,σn,1,εn (V

B
n+1(x

B,∗
n+1, Z

B,∗
n ))

= αEDn ,Bn ,σn,1,εn (V
A
n+1(x

B,∗
n+1, Dn) − V B

n+1(x
B,∗
n+1, Z

B,∗
n )).


�

Proof of Proposition 10 Observe that if p ≤ (1−α)(r0 + (s0 +b)/α), then by Propositions 6
and 7, we have V A

n (xn, zn−1) is nondecreasing in zn−1, for 2 ≤ n ≤ N .
We now show that Vπ,n(xn, zn−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) ≤ V A

n (xn, zn−1)

for 2 ≤ n ≤ N by induction on n.
Statement: Vπ,n(xn, zn−1, bn−1, σ2,1, . . . , σn−1,1, ε2, . . . , εn−1) ≤ V A

n (xn, zn−1) for 2 ≤
n ≤ N .
It is clear that the statement holds for n = N .
Suppose the above statement holds for some n0 + 1, where 2 ≤ n0 ≤ N − 1. Then we have

Vπ ,n0(xn0 , zn0−1 , bn0−1 , σ2,1, . . . , σn0−1,1, ε2, . . . , εn0−1)

= Un0(xn0 , y
A,∗
n0 (xn0 , zn0−1), zn0−1)

+αEDn0 ,Bn0 ,σn0,1,εn0
(Vπ ,n0+1(x

A,∗
n0+1

, ZB,∗
n0 , bn0 , σ2,1, . . . , σn0,1, ε2, . . . , εn0))

≤ Un0(xn0 , y
A,∗
n0 (xn0 , z

B
n0−1), zn0−1) + αEDn0 ,Bn0 ,σn0,1,εn0

(V A
n0+1(x

A,∗
n0+1

, Z B,∗
n0 ))

≤ Un0(xn0 , y
A,∗
n0 (xn0 , z

B
n0−1), zn0−1) + αEDn0 ,Bn0 ,σn0,1,εn0

(V A
n0+1(x

A,∗
n0+1

, Dn0))

= V A
n0(xn0 , zn0−1),

where the first inequality holds by induction hypothesis, the second inequality holds by the
nondecreasing property of V A

n (xn, zn−1) w.r.t. zn−1 and Proposition 1, noting that Z A
n0 =

Dn0 . The last equality holds bydefinition ofV
A
n0(xn0 , zn0−1) and again noting that Z A

n0 = Dn0 .
Hence, the above statement holds by induction. Finally, to complete the proof of the

proposition to show that Vπ ,1(x1) ≤ V A
1 (x1), we apply similar arguments as that to show

the above statement, using the statement for n = 2 in the process. 
�
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