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Abstract
Competitive markets, increased fuel costs, and underutilized vehicle fleets are characteristics
that currently define the logistics sector. Given an increasing pressure to act in a manner
that is economically and ecologically efficient, mechanisms that help to benefit from idle
capacities are on the rise. In the Sharing Economy, collaborative usage is typically organized
through platforms that facilitate the exchange of goods or services. Our study examines a col-
laborative pickup and delivery problem where carriers can exchange customer requests. The
aim is to quantify the potential of horizontal collaborations under a centralized framework.
An Adaptive Large Neighborhood Search is developed to solve yet unsolved test instances.
A computational study confirms the results of past studies which have reported cost savings
between 20 and 30%. In addition, the numerical results indicate an even greater potential for
settings with a high degree of regional customer overlap. Unfortunately, these high collabo-
rative gains typically come at the cost of an uneven customer distribution, which is known
to be one of the main barriers that prevent companies from entering into horizontal collabo-
rations. To generate acceptable solutions for all participants, several constraints are included
in the model. The introduction of these constraints to single-vehicle instances, decreases the
potential collaborative gain considerably. Surprisingly, this does not happen in more realistic
settings of carriers operating multiple vehicles. Overall, the computational study shows that
centralized collaborative frameworks have the potential to generate considerable cost sav-
ings, while at the same time limiting customer or profit share losses and enabling carriers to
keep some of their most valued customers.

Keywords Logistics · Collaborations · Transportation · ALNS · Central planning

1 Introduction

Competitive markets, increased fuel costs, underutilized vehicle fleets and stricter customer
demands are characteristics that currently define the logistics sector. Due to the increasing
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competitive pressure, many transport companies have optimized their operations up to an
extent where further improvements are not achievable on an individual level (Vanovermeire
et al. 2014). On average trucks on European roads are at most half-full, where nearly a quarter
of these trucks run empty (IFEU 2008).

The implementation of collaboration networks is an approach that could help tackle this
growing lack of efficiency. In the Sharing Economy collaborative consumption is typically
organized throughplatforms that facilitate the exchange of goods or services. Past studies have
demonstrated that collaboration among competitors can result in considerable cost savings
(Gansterer andHartl 2018b).A collaboration can be described as a partnership between twoor
more companies to optimize operations by making joint decisions and sharing information,
resources or profits (Haider 2014; Simatupang and Sridharan 2002). All participants of a
logistics chain can be involved in such a collaboration including suppliers, manufacturers,
distributors and customers. If companies at different levels of the chain cooperate, it is referred
to as a vertical collaboration (Simatupang and Sridharan 2002; Boros et al. 2008; Yang
et al. 2019). For instance, retailers and suppliers might cooperate by sharing information
regarding sales and inventory to improve forecasting techniques (Cruijssen et al. 2007c).
Another common case of vertical cooperation would be the hiring of third party logistics
providers by shippers (Cruijssen et al. 2007b). A horizontal collaboration, on the other hand,
involves the cooperation between entities at the same level of a supply chain (Simatupang and
Sridharan 2002). This can include joint replenishment between suppliers, or vehicle sharing
between carriers (Cruijssen et al. 2007c). The benefits of both approaches can be combined
in a lateral collaboration (Simatupang and Sridharan 2002).

Simulation studies on collaborative logistics have been presented by, e.g., Sprenger and
Mönch (2012). Based on a real-world setting in the German food industry, the authors show
the clear superiority of the cooperative strategy over the non-cooperative performance. The
proposed heuristics are tested for the dynamic and stochastic logistics system in a rolling
horizon setting using discrete event simulation. A simulation study on request exchange
mechanisms for real-world collaborations has been presented by Dahl and Derigs (2011).
A multi-agent system that implements a distributed hierarchical algorithm for collaborative
transportation planning is assessed by Sprenger and Mönch (2014). Yilmaz and Savasaneril
(2012) study the collaboration of small shippers in the presence of uncertainty by simulating
a Markov decision process. Quintero-Araujo et al. (2016) discuss the potential benefits of
collaborations in supply chains with stochastic demands. A simheuristic approach is used to
compare cooperative and non-cooperative scenarios. Quintero-Araujo et al. (2017) quantify
potential benefits of horizontal cooperation in urban transportation under uncertainty using
a simheuristic approach.

In this study, horizontal collaborations between carriers are examined. The collaboration
should enable carriers to exchange customer requests in order to reduce their transportation
costs. These kinds of horizontal alliances have been linked to various environmental bene-
fits, including the reduction of C O2 emissions, road congestion and noise pollution. Due to
this immense potential, freight-sharing has recently become a widely studied subject in the
field of vehicle routing. In reality, however, transport companies have been reluctant to enter
horizontal collaborations. Potential participants of collaboration networks have expressed
concerns about working with competitors. They fear that instead of profiting from synergy
effects, they will lose valued customers and give up potentially damaging information to their
competition. A fair workload and profit distribution are considered to be the most important
aspects to enable horizontal collaborations in real-world applications. Empirical evidence is
provided by Cruijssen et al. (2007b). Based on a large-scale survey on the potential benefits
and impediments for horizontal cooperation in Flanders, the authors conclude that in general

123



Annals of Operations Research (2021) 305:513–539 515

logistics service providers strongly believe in the potential benefits of horizontal coopera-
tion. However, several barriers do exist. A great majority of respondents agrees that smaller
companies in the partnership may lose clients or get pushed out of the market completely.
Hence, the authors recommend that potential partners must therefore explicitly take these
impediments into account and try to overcome them before cooperation starts. Also Buijs
et al. (2018) empirically analyze whether the fear of losing clients to competitors is a barrier
for horizontal collaboration among logistics providers. The authors conduct a multi-method
approach consisting of observations, in-depth interviews, and a vignette-based experiment.
In their empirical results, the authors distinguish between the roles of respondents. They
show that in larger companies, where transport planning and outsourcing decisions are taken
by different persons, the fear of losing clients to competitors is among the three strongest
impediments for horizontal collaborations. These empirical findings emphasize the neces-
sity to numerically examine the impact of allowing participants to keep specific customers
or competitive market shares.

Clearly, in transportation collaborations several typical properties of complex systems can
be observed: non-linear dependencies, many interacting individuals, competition etc. Even
in the deterministic case, we are facing a combinatorial explosion that leads to the fact that
only very small instances can be solved to optimality (see Sect. 5). In our numerical study,
we are investigating data sets, where the level of complexity is far beyond that. In Sect. 6
we emphasize that analyzing dynamic stochastic behavior of the proposed setting within a
simulation environment seems worth investigating.

In Gansterer and Hartl (2018b) it is shown that literature on collaborative vehicle routing
follows three streams: (i) centralized, (ii) decentralized auction-based, and (iii) decentralized
non-auction-based collaborations. The most effective approach to reallocate these requests
would be through a centralized planning system. In this framework, a central authority is in
charge of customer allocation. This neutral entity, which is sometimes referred to as a trustee,
could for instance be represented by a public authority or an independent online platform.
Given complete information, the authority solves an optimization problem in order to maxi-
mize the total profit of all participants. While this method could achieve the highest potential
cost savings, it involves sharing all relevant information with a third party - something which
many companies will be reluctant to do. Additionally, carriers fear being fully exposed to the
collaboration in the sense that they are not able to keep certain customers out of the coalition.

As an alternative, decentralized planning systems are proposed, assuming that a fully
informed central authority is not required. Instead, a mechanism is put in place to perform
exchanges of customer requests. This mechanism could be conducted in an auction-based
framework, where companies submit customer requests into an auction pool. Other partici-
pants then have the opportunity to bid on submitted requests that are of most value to them.
Complex bidding strategies and profit-sharingmechanisms to avoid strategic behavior have to
be developed to ensure a functioning system.While non-auction based decentralized systems
are generally less complex, they also provide lower savings. A key challenge for both types,
however, is identifying which requests have the potential to improve the total collaboration
profit and should therefore be submitted for reallocation. Considering that participants do not
want to share sensitive information, this identification can become problematic (Gansterer
and Hartl 2016).

Horizontal collaborations already play a key role in aviation and maritime transportation.
The overall high investment, maintenance and transportation costs provide a strong incentive
for competitors to form partnerships (Cruijssen et al. 2007b;Martin et al. 2018; Vanovermeire
et al. 2014).
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In the case of the less capital-intense road transportation, companies have been more
reluctant to enter horizontal alliances (Vanovermeire et al. 2014). Defryn and Sörensen (2018)
show that collaborations can be problematic, in particular, if the interests of the players differ
significantly. Thus, the authors propose to include individual objectives into amulti-objective
optimization procedure, where cost allocation is taken into account. A solution framework
for the integration of coalition objectives and partner objectives is presented in Defryn et al.
(2019). However, due to the ecological and environmental benefits that are associated with
these collaborations, public authorities have a keen interest in increasing cooperation in this
sector. This is especially the case for city logistics, where freight transport can contribute
between 16 and 50% of transportation emissions (Muñoz-Villamizar et al. 2015). For this
reason, public authorities have been funding projects to research potential benefits, construct
corresponding platforms and provide additional incentives.
In this respect, the city of Zurich funded a project to develop an online platform facilitating the
collaboration between different transport companies. The main idea of the project overseen
by Schmelzer et al. (2016) was to link transport companies to a small number of carriers that
would carry out last-mile deliveries within the city. A case study consisting of 33 transport
companies found that the total distance traveled could be reduced by 32% and estimated
cost savings of 18%. Two other projects to study and encourage horizontal collaboration in
logistics were launched by the European Union as part of the Horizon 2020 program. The
European Commission’s project U-TURN (2018) aims to minimize the carbon footprint and
reduce urban delivery costs mainly through promoting shared distribution systems for pro-
ducers, retailers and distributors. Additionally, project NextTrust (2018) involves conducting
over 30 pilots to identify overlapping vehicle movements, less than full vehicles and under-
utilized transport fleets. The project aims to reduce deliveries and greenhouse gases as well as
increase load factors through the identification and elimination of barriers to collaboration.
As part of their eCommerce pilot series, a project in Germany is developing a platform to
generate a collaborative network for last-mile deliveries. Fleet operators can submit vacant
capacities and the system will connect them to an optimized tour, improving delivery times,
leading to successful delivery rates and in turn enhancing customer service (NextTrust 2018).
Preliminary results already suggest that over 70% of transport companies would be willing
to cooperate with competitors, provided that a neutral trustee oversees the collaboration.

As in empirical studies by Cruijssen et al. (2007b) and Buijs et al. (2018) it is argued
that the loss of customers and the fear of being forced out of the market are among the main
impediments to horizontal collaborations in practice, the aim of this study is to further extend
existing research on centralized collaborations by examining the potential of horizontal col-
laborations under different restrictions. In this context, we suggest that certain constraints,
referred to as assignment constraints, can be imposed to set up acceptable freight-sharing
frameworks among carriers. These constraints relate to (i) specific sets of customer carriers do
not want to share, (ii) minimum number of customers, and (iii) minimum post-collaboration
profits achieved by the carriers. All of them should enable acceptable conditions for carriers
to enter horizontal alliances.

It has been shown in Gansterer et al. (2018c) that, in the case of a single vehicle per
carrier, these constraints eliminate possible benefits. We extend this research by applying
the constraints to multi-vehicle instances. By doing so we can show that in these—more
realistic—instances, the additional constraints come at very low cost.

Our study has several contributions:

– we introduce the collaborative multi-depot vehicle routing problem with pickups and
deliveries (MDVRPPD).
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– a metaheuristic solution method is developed to solve the problem under a centralized
authority with and without assignment constraints.

– the proposed solution method is applied to an extensive set of test instances with different
characteristics to quantify the potential of carrier collaborations.

– the cost of specific assignment constraints is analyzed in order to assess the remaining
benefits of acceptable collaborative solutions.

The remainder of the paper is organized as follows. In Sect. 2 we give a literature review.
The problem is introduced and mathematically formulated in Sect. 3. The proposed solution
approach is presented in Sect. 4, while the computational study and a deep analysis is given
in Sect. 5. Conclusions and further research are summed up in Sect. 6.

2 Literature review

Krajewska and Kopfer (2006) and Cruijssen et al. (2007c) were the first to examine the
potential benefits of collaborative vehicle routing. Empirical studies were conducted by,
e.g., Cruijssen et al. (2007b), Lydeka and Adomavičius (2007), Pateman et al. (2016), to
assess the drivers and reservations of companies in the relation to enter horizontal logistics
partnerships. Various real-world and hypothetical cases have been examined to determine
potential collaboration gains. According to studies conducted by Cruijssen et al. (2007a),
Muñoz-Villamizar et al. (2015), Chinh et al. (2016), centralized planning has the potential
to improve profits by around 20–30%. Fernández et al. (2018) assess the collaborative gain
of a shared customer vehicle routing problem (VRP). They observe savings between 6 and
25%, depending on the geographical distribution of customers.

Studies regarding decentralized planning systems focus mostly on establishing efficient
frameworks, especially for complex auction-based systems (Gansterer and Hartl 2018a;
Berger and Bierwirth 2010; Dai and Chen 2011; Krajewska and Kopfer 2006).

The challenge of a fair cost or profit allocation is addressed by Hezarkhani et al. (2016),
Liu et al. (2010), Vanovermeire et al. (2014), among others. Gansterer et al. (2018b) elaborate
on desirable game theoretical properties in auction-based transport collaborations.

Recently, several contributions to the related field of cooperative game theory have been
published. Lai et al. (2019), for instance, present an ascending auction for freight forwarder
collaboration in capacity sharing. The proposed mechanism iteratively expands the set of
bundles and approximates the revenue loss to search optimal allocations. Truthful, budget-
balanced bundle double auctions for carrier collaboration are researched by Xu et al. (2016).
A game theoretic analysis of horizontal carrier coordination with revenue sharing in E-
commerce logistics is presented by Zhang et al. (2019). Seminal work on the Traveling
Salesman Game and the Vehicle Routing Game has been published by Engevall et al. (1998),
Göthe-Lundgren et al. (1996) and Engevall et al. (2004). It should be noted that these stud-
ies aim at finding core solutions and cost allocation mechanisms, where sub-coalitions of
participants are evaluated. In our study, we are solving the NP-hard pickup and delivery
problem of the grand coalition and elaborate on the cost of giving the participants flexibility
in keeping customers of competitive market shares. To the best of our knowledge, this aspect
cannot be answered by the vehicle routing game. The interested reader is also referred to
Peleg and Sudhölter (2007), where basics of cooperative game are systematically discussed.

Kimms and Kozeletskyi (2016a) study core-based allocations in the cooperative traveling
salesman problem, while Kimms and Kozeletskyi (2016b) use Shapley value-based cost
allocation in the cooperative traveling salesman problem under rolling horizon planning.
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Environmental aspects are considered by Ballot and Fontane (2010), Muñoz-Villamizar
et al. (2015), Pérez-Bernabeu et al. (2015), Schulte et al. (2017). In addition to cost savings
of 25%, Muñoz-Villamizar et al. (2015) observe a 9% reduction in the number of routes
and a 10% increase in vehicle utilization—factors which can in turn reduce emissions and
congestion.Ballot andFontane (2010) assess a 25%reduction of gas emissionswhile studying
collaborations in French retail chains.

Collaborative VRP are often solved with local search based metaheuristics (Defryn et al.
2016; Pérez-Bernabeu et al. 2015; Sanchez et al. 2016).Berger andBierwirth (2010) introduce
the collaborative pickup and delivery problem, which they solve with two decentralized
approaches. Gansterer et al. (2018a) extend the single vehicle case by including workload
constraints. They use different exact solution methods including Benders decomposition and
column generation to solve the problem under a centralized framework. They conclude that
Benders decomposition outperforms the other methods in a setting with fewer constraints,
whereas column generation works better if constraints regarding workload distribution are
introduced. The single vehicle case is solved heuristically and further analyzed in Gansterer
et al. (2018c). It is shown that assignment constraints for single vehicle collaborations, have
a detrimental effect on collaboration gains. However, none of these studies consider the more
realistic multi-vehicle case.

For more detailed information on studies in the field of collaborative logistics, consult
Gansterer andHartl (2018b) for a general overview of collaborative vehicle routing, Cleophas
et al. (2018) for a focus on urban transportation and Guajardo and Rönnqvist (2016) for the
development of cost allocation mechanisms.

The vehicle routing problem was first introduced by Dantzig and Ramser (1959). To
this day, it remains one of the most widely studied problems in the field of combinatorial
optimization (Kritikos and Ioannou 2010). Given a fleet of vehicles and a set of transportation
requests, the task is to determine the optimal set of routes to fulfill these requests while
respecting given constraints (Irnich et al. 2014). If precedence constraints are imposed, these
determine the sequence in which customers can be served within a route. This is especially
of importance in the case of pickup and delivery problems (PDP) (Toth and Vigo 2002). PDP
can be seen as an extension of the classical VRP (Berbeglia et al. 2007; Parragh et al. 2008).
Requests are associated with pickup and delivery locations, where the loading and unloading
of goods takes place. Parragh et al. (2008) distinguish between two main classes of PDP:
The VRP with backhauls (VRPB) and the VRP with pickups and deliveries (VRPPD).

In recent years equity and fairness aspects have been gaining recognition in both real-world
applications as well as theoretical studies in the field of VRP. Balanced resource utilization
and a fair workload distribution have been found to provide non-monetary benefits, such as
employee satisfaction, increased customer service and flexible resource availability (Matl
et al. 2019).

As a result these aspects have been included in vehicle routing models (Bektaş 2013;
Huang et al. 2012; Jozefowiez et al. 2008, 2009; Kritikos and Ioannou 2010). This is done
eitherwith the help of an objective function or by introducing additionalworkload constraints.
The workload of a tour can be defined as the number of customers visited, the total delivered
load or as the distance or time duration (Jozefowiez et al. 2008). In the context of horizontal
collaborations, the inclusion of fairness or continuity aspects could help overcome some of
the barriers to entry by ensuring a fair workload, cost or profit distribution among participants
(Cruijssen et al. 2007b; Buijs et al. 2018). However, the cost of such constraints in the field
of MDVRPPD-based collaborations has not been assessed so far. This is the main objective
of our study. A classification and available solution methods are surveyed in Dragomir et al.
(2018). To the best of our knowledge, collaboration in MDVRPPD with one-to-one, i.e.
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paired, pickup and deliveries (Berbeglia et al. 2007) has not been researched so far. We want
to close this research gap, since these types of problems are considered to be most important
in the field of collaborative vehicle routing (Archetti et al. 2014; Gansterer and Hartl 2018b).
In the small parcel delivery industry, for instance, idle capacities can easily be shared among
collaboration partners.

3 Problem formulation

The aim of this study is to assess the potentials of horizontal collaborations among carriers
by sharing customer requests. A centralized authority will determine the optimal distribution
of customers among participants in order to minimize overall transportation costs.

The underlying problem is a multi-depot PDP as an extension of the classical PDP. Each
depot belongs to and therefore represents one carrier. In the following, we refer to depots and
carriers synonymously. Each carrier is associated with a number of paired requests consisting
of a pickup and delivery point, which will be referred to as the initial customer distribution.
Additionally, each carrier is equipped with a certain number of vehicles, starting from and
returning to their depot. Each vehicle is only capable of performing one tour. The terms tour
and vehicle are therefore used interchangeably. Due to the context of the PDP, a delivery point
has to be served after its associated pickup point by the same vehicle. It is known that an
uneven cost and profit distribution, as well as the fear of losing customers and market share,
are some of themain barriers that prevent companies from entering horizontal collaborations.
In order to circumvent this issue, continuity aspects represented by assignment constraints
will be included in the model.

Both the single and the multi-vehicle case are examined in our study. In the former case,
i.e. the multi-depot traveling salesman problem with pickups and deliveries (MDTSPPD),
each carrier only has access to one vehicle with unlimited capacity. For the multi-vehicle
case, i.e. the multi-depot vehicle routing problem with pickups and deliveries (MDVRPPD),
we include duration and capacity constraints for each vehicle.

The following mathematical model is based on the formulations presented in Dragomir
et al. (2018). For the MDTSPPD, the number of vehicles per carrier (kl ) is set to one for
all carriers. Corresponding capacity (Q) and duration (T ) constraints are set to infinity. A
specific formulation for the single-vehicle case can be found in Gansterer et al. (2018a),
while the following model addresses the multi-vehicle case. Note that, without assignment
constraints, the formulation is equal to a non-collaborative multi-depot VRP (Dragomir et al.
2018).

R Set of customer requests, R = {1, . . . , n}
P Set of pickup nodes, P = {1, . . . , n}
D Set of delivery nodes, D = {n + 1, . . . , 2n}
L Set of depots (i.e. carriers), L = {2n + 1, . . . , 2n + m}
N Set of pickup and delivery nodes, N = P ∪ D
Nl Set of all pickup nodes initially assigned to depot l, Nl ⊂ N
V Set of all nodes, V = N ∪ L

Kl Set of vehicles at depot l, Kl = {1, . . . , kl}
K Set of all vehicles, K = ∪l∈L Kl

ci j Cost of traveling from node i to node j
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qi Load of node i =
⎧
⎨

⎩

+qi , ∀i ∈ P
−qi , ∀i ∈ D

0, otherwise
Q Load capacity of each vehicle
T Maximum tour duration for each vehicle

xi jk =

{
1, if vehicle k travels directly from node i to node j
0, otherwise

Sik = Loading amount of vehicle k at node i
tik = Fulfillment time at node i on vehicle k

minimize
∑

i∈V

∑

j∈V

∑

k∈K

ci j xi jk (1)

∑

i∈V

∑

k∈K

xi jk = 1 ∀ j ∈ N (2)

∑

i∈V

xihk −
∑

j∈V

xhik = 0 ∀k ∈ K , h ∈ N , (3)

∑

i∈V

xilk =
∑

j∈N

xl jk ≤ 1 ∀l ∈ L, k ∈ Kl (4)

∑

j∈N

xi jk −
∑

j∈N

xi+n, j,k = 0 ∀i ∈ R, k ∈ K (5)

t jk ≤ tik + ci j + M(1 − xi jk) ∀i ∈ V , j ∈ V , k ∈ K (6)

t jk ≥ tik + ci j − M(1 − xi jk) ∀i ∈ V , j ∈ V , k ∈ K (7)

tik ≤ ti+n,k ∀i ∈ R, k ∈ K (8)

S jk ≤ Sik + qi + M(1 − xi jk) ∀i ∈ V , j ∈ V , k ∈ K (9)

S jk ≥ Sik + qi − M(1 − xi jk) ∀i ∈ V , j ∈ V , k ∈ K (10)

0 ≤ Sik + qi ≤ Q ∀i ∈ V , k ∈ K (11)
∑

i∈V

∑

j∈V

ci j xi jk ≤ T ∀k ∈ K (12)

∑

i∈S

∑

j∈S

xi jk ≤ |S| − 1 ∀k ∈ K , S ⊆ N , |S| ≥ 2 (13)

xi jk ∈ {0, 1} ∀i, j ∈ V , k ∈ K (14)

tik ∈ Z ∀i ∈ V , k ∈ K (15)

Sik ∈ N ∀i ∈ V , k ∈ K (16)

The objective function (1) minimizes overall travel costs. Equation (2) ensures that each
pickup and delivery point is visited exactly once. If a request is visited by a vehicle, the
same vehicle has to leave that node as well (3). Additionally, pickup and delivery points
have to be visited within the same tour (5). Each vehicle has to start from and return to their
assigned depot and is restricted to one trip (4). Constraints (6) and (7) compute the travel time
at each node, which is used to ensure precedence constraints between pickup and delivery
points (8). The load at each node is determined by (9) and (10) and constrained by (11).
Duration constraints are met by (12) and constraint (13) prevents the use of subtours. Finally,
constraints (14) to (16) define the decision variables.
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The mathematical model minimizes the costs of all vehicles, without considering aspects
of equal distribution aspects. Solutions of MDTSPPD as well as MDVRPPD may lead to
unevenly distributed solutions where all customers are assigned to only one carrier. In a
collaborative setting, this is clearly not desirable and will scare off potential participants.
Companies may be more likely to enter collaborations if they can, e.g., keep some of their
current customers (Cruijssen et al. 2007b; Buijs et al. 2018). This is a reasonable request,
given that many companies have valuable long-term customers that they do not want to lose.

We examine the potential of collaborative solutions by considering three different settings
for the MDVRPPD:

– each carrier wants to keep a minimum amount (a subset) of his initial customers (A),
– each carrier wants to keep a certain percentage of customers, no matter whether these

customers initially were served by this carrier or not (B),
– each carrier wants to keep a minimum profit with respect to the status quo, resulting in

an upper bound on profit losses (C).

We add the following parameters:

δi Revenue when serving node i
Ωl Minimum workload (number of customers) at depot (i.e. carrier) l
Ω

p
l Minimum profit at depot (i.e. carrier) l

The mathematical model is extended by the following constraints (17), (18), and (19) for
restrictions A and B, respectively:

∑

i∈V

∑

j∈Nl

∑

k∈Kl

xi jk ≥ Ωl ∀l ∈ L (17)

∑

i∈V

∑

j∈P

∑

k∈Kl

xi jk ≥ Ωl ∀l ∈ L (18)

∑

i∈V

∑

j∈V

∑

k∈Kl

δi xi jk − ci j xi jk ≥ Ω
p
l ∀l ∈ L (19)

For setting A, (17) has to hold for the set of customers initially being assigned to depot
l, i.e. Nl , while for setting B, all customers are considered. This is formulated in (18). For
setting C, which is given in (19), we have to include each customer’s revenue and subtract
the total travel cost of the carrier running depot l. For each setting (A,B,C), Ωl or Ω

p
l are

predetermined parameters that depend on the carriers’ initial situations.
Note that we can easily guarantee that each carrier is better off by assuming the profit-

based Ω
p
l to be more than 100% of the initial profit of carrier l. However, even if Ωl is less

than that, individual losses can be avoided, since the overall collaboration profit can be used to
compensate participants for potential losses. The exceeding total profit (after compensation
payments) can be distributed, making use of any profit sharing method. It should be noted
that not all available profit sharing methods guarantee individual rationality. Guajardo and
Rönnqvist (2016) provide an extensive survey on these approaches. A new method that
distributes profits based on individual contributions is proposed by Gansterer et al. (2019).

4 Solution approach

Vehicle routing problems are typically NP-hard. Exact solution methods for the MDVRPPD
are therefore limited to smaller instances. Readers interested in exact solutions approaches

123



522 Annals of Operations Research (2021) 305:513–539

are referred to Gansterer et al. (2018a), where different methods for the single-vehicle case
are compared. It is shown that, depending on the method, workload constraints can help
the solution procedure. However, to extend the problem to larger instances, a metaheuristic
approach is needed. The ALNS was chosen because it has been widely used in the field of
PDP problems and has been proven to find good solutions in a reasonable time (Ghilas et al.
2016; Li et al. 2016; Masson et al. 2013). In fact, the first ALNS framework was developed
specifically for a PDP problem by Ropke and Pisinger (2006). We extend an ALNS proposed
in Pisinger and Ropke (2007) by new operators, which are tailored to the imposed assignment
constraints.

Information on the solution framework and additional notations are given in Sect. 4.1.
The main removal and insertion operators are explained in Sect. 4.2. Section 4.3 provides an
overview of the ALNS framework and a detailed explanation of its individual components.

4.1 Solution framework and notations

The ALNS will be applied to five cases. First, the costs of a non-collaborative situation
constrained by the initial customer distribution are computed. This means each carrier faces
a classical PDP with only one depot and one (MDTSPPD) or multiple (MDVRPPD) vehicles
at their disposal. Additionally, the collaborative solutions are determined by imposing no
assignment constraints and by imposing constraints A–C.

In the following, notations and terms used are defined. The term position will encompass
information on the tour a request is part of, as well as the position of both pickup and delivery
node in that tour. A solution S encompasses

∑
l∈L kl tours. These individual tours will be

denoted by St , ∀t ∈ K . Each solution S is associated with its objective value f (S). The set
of removal operators is denoted by RO and the set of insertion operators by I O .

4.2 Operators

The calculation of saving and insertion costs (Sect. 4.2.1) is based on Renaud et al. (2000)
and extended to the case of multiple depots. The operators presented in Sects. 4.2.2 and 4.2.3
follow Ropke and Pisinger (2006).

4.2.1 Cost savings and insertion costs

The essence of theALNS lies in destroying a solution by removing requests and then repairing
that solution through reinserting removed requests. By definition, the distance between two
nodes can never be negative. The removal of a requestwill therefore always be associatedwith
cost savings and the insertion of a request with insertion costs. Considering that the majority
of operators select requests based on these values, their computation will be explained in
more detail. In both cases, two scenarios have to be distinguished: If a pickup node i and its
corresponding delivery node i + n are currently located or should be inserted directly next
to each other, it is referred to as scenario 1. If instead i + n is currently located or should be
inserted in some other position after i , it is referred to as scenario 2.

Let k be the the direct predecessor of i and l the direct successor of i +n. Both the savings
of removing and the costs of inserting request i in scenario 1 are then calculated by function
(20).

ck,i + ci,i+n + ci+n,l − ck,l (20)
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Fig. 1 Illustration of the calculation of insertion costs and cost savings for scenarios 1 and 2

Let r be the direct successor of i and s the direct predecessor of i + n. The savings and
insertion costs in scenario 2 are then calculated by function (21).

ck,i + ci,r − ck,r + cs,i+n + ci+n,l − cs,l (21)

Both scenarios are depicted in Fig. 1. In the case of removal operators, blue arcs represent
the connections that have to be removed and red arcs the connections that have to be included
to reconnect the tour. In the case of insertion operators, blue arcs represent the connections
that are to be inserted, and red arcs the abundant connections that have to to be removed. In
each scenario, the depot is represented by the node zero.

4.2.2 Removal operators

Three removal heuristics are implemented to destroy an existing solution by removing a
predefined number of q requests (|RO| = 3). They include random removal, worst removal
and related removal. All of them take a solution S with n requests as their input and return a
solution with (n − q) requests.

Random Removal (R1): The random removal heuristic is the simplest operator, as it merely
picks q requests at random and removes them. Its function relies mainly on diversifying the
search and thus helps to escape local optima.

Worst Removal (R2): The worst removal heuristic first calculates the cost savings of all
requests that are currently part of the solution. The requests are then sorted in a list with
descending order according to their savings. Instead of always choosing the request with the
highest savings, Ropke and Pisinger (2006) propose including some level of randomness.
They introduce a parameter pworst ≥ 1 and a random number y ∈ [0, 1). Depending on
the parameter pworst , requests at the beginning of the list have a higher chance of being
selected. If pworst is set equal to one, complete randomness is ensured. A higher value of
pworst increases the likelihood that the request with the highest savings is selected.

Related Removal (R3): The related removal heuristic was introduced by Shaw (1997). It
tries to determine requests that are somehow related to each other and should therefore be
removed together. In the context of the PDP with time windows, Ropke and Pisinger (2006)
define this relatedness regarding the distance between two requests and their difference in
service time, load and vehicle compatibility.

Considering that there are no time window or compatibility constraints in the prob-
lems examined in this study, relatedness refers only to distance and load in the case of
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the MDVRPPD. In the context of the MDTSPPD, the relatedness measure encompasses only
the distance term, as no load capacities are considered.

Distance similarity Di, j is calculated by adding the distance between the pickup points
and the delivery points of two requests i and j and is weighted by the factor α (22).

Di, j = ci, j + ci+n, j+n (22)

Load similarity Li, j is defined as the absolute difference between the load of i and the
load of j and is weighted by factor β.
The relatedness measure Ri, j is then calculated by adding up the weighted similarity terms
according to Eq. (23). For the MDTSPPD, β is simply set to zero.

Ri, j = Di, j ∗ α + Li, j ∗ β Requestsareremovedwi thregardtothisrelatednessmeasure.

(23)

A request currently part of the solution is chosen at random and marked as the seed node
r . The relatedness measures between r and all other requests in the solution are calculated.
The requests are then sorted in a list with descending order according to their relatedness
measure. Similarly to R2, q requests are removed, where requests with a higher relatedness
measure have a greater chance of being selected.

4.2.3 Insertion operators

Six insertion operators are used in total to repair a solution by reinserting the removed
requests (|I O| = 6). They include a greedy insertion, two versions of a regret insertion and
two modifications to promote assignment constraints. All of the insertion operators used can
be described as parallel construction heuristics. The insertion operators take a solution S with
less than n requests and return a solution with n requests.

Greedy Insertion (I1, I2): The greedy insertion operator—also referred to as best or basic
greedy insertion (Masson et al. 2013; Ropke and Pisinger 2006)—is a simple and fast heuris-
tic. At each iteration, the minimum insertion costs of each request currently not part of the
solution are determined. Functions (20) and (21) are used to calculate the insertion costs of a
request for all feasible positions in the solution. The position which yields the smallest inser-
tion cost is defined as the best position for request i and the corresponding cost as minI Ci .
Among all requests i /∈ S, the one with the smallest minI Ci is inserted at its best position.
This process is continued until all requests are included in the solution. Ropke and Pisinger
(2006) propose introducing a noise parameter to diversify the search. Following the formu-
lation from Ghilas et al. (2016), a noise parameter μ and a random number ε ∈ [−1, 1] are
used to perpetuate the insertion cost. The following value is then added, where d is defined
as the largest distance between nodes.

I nsertionCostrandomized = I nsertionCost + d ∗ μ ∗ ε (24)

Insertion operator I1 is defined as a greedy insertion heuristic without noise and insertion
operator I2 with noise.

Regret Insertion (I3, I4): Instead of only taking into account the best insertion position of
a node, regret heuristics evaluate the cost of not inserting a node at its best position. At each
iteration, a regret value is calculated for all unvisited requests. The request with the highest
regret value is selected and inserted into its best position. In I3, this regret value is defined
as the difference between inserting a request at its best position and inserting a request at its
second best position. In I4, the regret value is defined as the difference between inserting a
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request in its best position among all tours and inserting the request in its best position in
another tour.

Assignment Insertion (I5, I6): To reduce violations of assignment constraints, two assign-
ment operators are included. They are based on operators I1 and I4, respectively. For operators
I5 and I6, however, the probability of inserting a request in a tour rises with the fairness vio-
lation of the corresponding depot. If no assignment constraints are introduced, the same
probability is given to all depots. When using operators I5 and I6, only tours belonging to
the selected depot are eligible for insertion, and the insertion cost (I5) or regret value (I6) are
modified by adding a violation value to the second term of Eq. (24). A pseudo code for the
general framework of the insertion operators is provided in Algorithm 1.

Algorithm 1 A general structure of insertion operators (feasibility refers to tour durations).

Input: solution S containing < n requests, insertion operator io ∈ I O
1: while |S| < n do
2: for all i /∈ S do
3: for all eligible tours St do 
 see I5, I6
4: determine the best feasible insertion position

of i in St based on minI Ci 
 see (20), (21)
5: if no feasible insertion position is found then
6: improve tour 
 see Sect. 4.2.4
7: if a feasible insertion is found then
8: update minI Ci

9: end if
10: end if
11: end for
12: end for
13: among all feasible insertions, select request r /∈ S based on io
14: if r is inserted in its best position without an improvement operator then
15: insert r into S at its best position
16: else if r is inserted in St using the improvement operator then
17: update St

18: end if
19: if no feasible insertion was found ∀i /∈ S then
20: insert all requests i /∈ S into their best position,

neglecting duration constraints
21: f (S) ← ∞
22: end if
23: end while
24: return solution S containing n requests

4.2.4 Feasibility

All insertion operators presented in Sect. 4.2.3 aim to return a feasible solution in terms of
precedence, capacity and duration constraints. The precedence constraints are guaranteed
by only considering positions following the pickup point in the same tour for the delivery
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Fig. 2 For each exchange of requests i, j , the swap operator exchanges the position of pickup nodes i, j and
the delivery nodes i + n, j + n. In doing so, precedence constraints remain fulfilled

point. Similarly, capacity restrictions are ensured by only examining insertion positions
which would not lead to a capacity violation. At the very least, this constraint can always
be fulfilled by inserting pickup and delivery point of a request directly next to each other
at the end or the beginning of a tour. Considering that only a limited number of vehicles is
available, the iterative insertion of nodes can lead to cases where tour duration constraints
are not fulfilled. Due to this issue, an improvement heuristic is performed if the insertion
of a request would lead to a duration violation. Specifically, an intra-tour node exchange is
applied to the corresponding tour. The swap operator is illustrated in Fig. 2. If, despite this
improvement, no feasible insertion position can be found for a request, the solution is marked
infeasible and its objective value is set to infinity. It should be noted that without assignment
constraints the insertion heuristics will always guarantee feasibility for the MDTSPPD, as
there are no duration constraints.

The assignment constraints, on the other hand, pose much stronger restrictions to the
solution. As it is difficult to find a solution that complies with these constraints, the insertion
heuristics themselves do not seek to fulfill them. Instead, a penalty is added to the objective
value of a solution if assignment constraints are violated. This is to enforce the algorithm to
leave infeasible regions.

Following Kovacs et al. (2014), an artificial objective function fa(s′) is calculated for
solutions that violate only the assignment constraints.

fa(S′) = f (S′) + γ ∗ violationDegree ∗ e
it
δ
−ppenalty (25)

The penalty is therefore determined by the number of iterations currently performed (i t),
parameters δ and ppenalty , and a normalized value (violationDegree) indicating the level
of assignment constraint violation weighted by parameter γ . As the number of performed
iterations increases so does the penalty, making it less likely to accept infeasible solutions.
This way the search process can explore infeasible spaces, while at the same time working
towards a feasible solution.

While three different assignment constraint violations are considered, the approach is
standardized for all of them. The violation degree per carrier is therefore defined relative to
the minimum workload for all assignment constraints (A–C):

violationDegreet = 1 − Ccurrent

Crequired
(26)

The term Crequired stands for the minimum and Ccurrent for the current number of initial
customers (A), total customers (B) or profit (C) that has to be held. Since only solutions
with assignment constraint violations are considered, the following rule applies: Crequired >

Ccurrent . The violationDegreet will therefore always be within the range of (0; 1] for
constraints A and B. For constraint C, it may exceed 1, if the current profit is negative. The
total violationDegree is composed by adding up the violation degrees of all carriers t .
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4.3 The adaptive large neighborhood search

In the following section, the framework of the ALNS including all relevant elements, will be
explained in detail.

4.3.1 General framework

First, an initial solution has to be generated on the basis of a constructive heuristic (Sect. 4.3.3).
The algorithm is initializedwith a best knownobjective value of infinity and the initial solution
S. If the initial solution is feasible with respect to all constraints, the best known solution Sbest

is updated.At each iteration a number of requests q is chosen at randomwithin the given range
[qmin, qmax ]. A removal operator ro ∈ RO and an insertion operator io ∈ I O are chosen
on the basis of a roulette wheel selection. The current solution S′ is then partially destroyed
by removing q requests with the removal operator ro. Removed requests are reinserted by
applying io on S′. The incumbent solution S is updated if the current solution S′ fulfills
a certain acceptance criterion (Sect. 4.3.2). If the current solution S′ is feasible and leads
to a lower objective value than the currently known best solution, Sbest is also updated. If,
however, the current solution is not accepted, S′ is reset to the incumbent solution S. At the
end of each iteration, the weights of the operators io and ro are updated according to their
performance. The process continues until some stopping criterion (Sect. 4.3.2) is met.

4.3.2 Acceptance and stopping criterion

The stopping criterion is defined as a certain number of iterations (iter) to be performed.
Whether or not an incumbent solution is accepted depends on the acceptance criterion.

In this study, the linear Threshold Acceptance, introduced by Dueck and Scheuer (1990), is
used. According to this concept, a solution S′ is accepted if its objective value is not more
than T percent higher than the objective value of the incumbent solution S.

The threshold is initializedwith Tstart and decreases at each iteration by a constant amount
until Tend is reached (27).

(Tstart − Tend)

i terations
(27)

Ropke and Pisinger (2006)—along with many other comparable studies (e.g. Azi et al.
2014; Ghilas et al. 2016; Kovacs et al. 2014; Li et al. 2016; Masson et al. 2013)—use
a Simulated Annealing approach as the acceptance criterion. In their recent evaluation of
acceptance criteria for the ALNS, however, Santini et al. (2017) conclude that Simulated
Annealing does not necessarily provide better results and that linear threshold acceptance
excels both in simplicity and in the quality of solutions. Infeasible solutions in terms of
distance and assignment constraints are rejected until a feasible solution is found. Afterwards
they may be accepted as the current solution with an objective value of infinity for distance
violations or penalized by (25) for assignment constraint violations. The threshold Tstart is
used until the first feasible solution is found. Only then, the threshold will start to decrease
by setting i terations to the number of remaining iterations.

4.3.3 Initial solution

Initial solutions are constructed with a regret-based insertion heuristic. Since only a certain
number of nodes are removed and reinserted at each iteration, it may be difficult for the
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algorithm to get from a solution with a high violation of assignment constraints to a feasible
solution. Therefore, all initial solutions are required to fulfill these constraints. The construc-
tive heuristic is based on insertion heuristic I3. If assignment constraints are not fulfilled,
only the tours of violated carriers are eligible for insertion. For constraint C, the finding of
a feasible solution cannot be guaranteed by a constructive heuristic. In light of this fact, the
non-collaborative solution is used as an initial solution. When solving the MDTSPPD, ini-
tial solutions are always feasible. For the MDVRPPD the possibility of a duration violation
remains, in which case the objective value of the solution is set to infinity. Considering that
infeasible solutions are rejected until a feasible solution has been found, the algorithm will
first try to improve the initial solution in order to fulfill the duration constraints before it can
explore neighborhoods that may violate assignment constraints.

The main feature that distinguishes the ALNS from the LNS, is the use of various destroy
and repair heuristics that are chosen with the help of an adaptive selection procedure.

Initially all removal operators ro ∈ RO and all insertion operators io ∈ I O are assigned
the same weight W −

ro and W +
io , respectively. The initial value of all weights is set to one.

According to Ropke and Pisinger (2006), a roulette wheel selection principle is used on the
basis of these weights. The probability of selecting an operator is determined separately for
removal and insertion heuristics.

5 Computational study and discussion

The numerical experiments aim to quantitatively measure potential benefits of collaborative
solutions in comparison to the status quo, as well as the trade-offs when constraints (A–C) are
introduced. TheALNSdescribed in Sect. 4was implemented using different data sets for both
the MDTSPPD and the MDVRPPD. The algorithm was coded in C++ and the experiments
were carried out single-threaded on an Intel Core i5-7500 processor with 2.70 GHz.

All instances are created by generating equidistant carrier depots with a distance of 200.
Customer requests are then randomly added within a radius of 150, 200 and 300 from their
carrier’s depot. This results in three different settingsO1–O3,which differ in the geographical
distribution of customers.

The corresponding data sets will be referred to as TSP_O1 to TSP_O3 for the single
vehicle case and VRP_O1 to VRP_O3 for the multi-vehicle case. The first setting (O1)
is characterized by a clustered location of requests around their initial depots. In the third
setting (O3), customers are instead distributed more randomly around all depots. This in turn
leads to a higher level of competition between the carriers. Figure 3 illustrates the regional
differences based on an exemplary instance of the single vehicle case. The distinction goes
in line with Berger and Bierwirth (2010), where three different degrees of customer overlap
are distinguished.

All data sets are divided into two classes where each carrier initially holds either 10 or
15 customer requests. For each scenario, 20 instances are created, leading to a total of 120
instances for both the single and the multi-vehicle case. All instances include three depots
which represent the carriers. This results in a total of 30 and45 customer requests, respectively.
For the MDVRPPD, three vehicles—subject to duration and load constraints—are available
at each depot. For the MDTSPPD instances, there is only one vehicle available at each depot,
which is not subject to any additional constraints. The cost of traveling between nodes i
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Fig. 3 An illustration of the different distribution settings

and j (ci j ) is defined as the Euclidean distance between them. All instances are publicly
available.1,2

The ALNS contains several parameters which can determine the quality of the solution.
The initial parameters were taken from the literature and are for the most part based on
Ropke and Pisinger (2006). Sensible parameters such as the reaction factor r , the roulette
wheel parameters σ1, σ2, σ3, the infeasibility parameters ppenalty and γ , as well as the starting
and ending acceptance threshold Tstart and Tend were adapted. The tuning was performed
sequentially as proposed by Ropke and Pisinger (2006). One parameter was changed while
the others remained constant. Combinations of parameter values were applied to the Berger
and Bierwirth (2010) instances and compared to the optimal solutions. The combination that
led to the best objective value over three runs was chosen. Additionally, the interval of nodes
to be removed [qmin , qmax ] was extended and the number of iterations was set to 100. The
final parameter setting for the ALNS is shown in Table 1.

In Table 2 we compare the proposed algorithm against available benchmarks, where
assignment constraints are not considered. For the single-vehicle case, optimal results for test
instances provided by Berger and Bierwirth (2010) (O1–O3) are available (Gansterer et al.
2018a). In Table 3 we provide a comparison of the proposed ALNS against the available
optimal results.

The results show a relatively low average percentage gap of less than 3%. However, it
should be noted that optimal results are available for small 1-vehicle instances only. Even
with state of the art exact approaches larger instances could not be solved so far (Gansterer
et al. 2018a). However, for the multi-vehicle case, we compare against best-known results
obtained by several methods including a powerful combinatorial auction approach (Gansterer
et al. 2019).

The results show that for two sets of instances (VRP_O2andVRP_O3) the proposedALNS
finds new best solutions. For single-vehicle instances (O1–O3), where optimal solutions are
available, the maximum gap is 5.44%. Overall these results indicate that the performance
of the selected solution approach is sufficiently good in order to be adapted for the newly
introduced scenarios.

In addition to the ALNS parameters, the assignment constraints have to be defined as well.
For constraint A, the setting implemented in Gansterer et al. (2018a) was chosen. Therefore,
the requirement that each carrier has to keep at least 1

3 and 2
3 of their initial customer base is

imposed. For instances with 45 requests in total, the minimum workload is set to 5 and 10

1 TSP: http://prolog.univie.ac.at/research/FairInst/Fairness_instances.zip.
2 VRP: http://prolog.univie.ac.at/research/BundlingInst/Instances.zip.
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Table 1 Parameter settings for the ALNS

Parameter Value Description

i ter 100 Number of iterations

qmin 5% of |R| Lower limit of removable requests

qmax 35% of |R| Upper limit of removable requests

σ1 10 Weight adjustment: score for new global best

σ2 5 Weight adjustment: score for new better solution

σ3 15 Weight adjustment: score for new worse solution

r 0.4 Weight adjustment: reaction factor

pworst 3 Worst removal: randomization parameter

prelated 6 Related removal: first parameter

α 9 Related removal: second parameter

β 3 Related removal: third parameter

μ 0.1 Noise parameter

δ 20 Infeasibility: first parameter

ppenalty 2 Infeasibility: second parameter

γ 0.1·d Infeasibility: third parameter

Tstart 8% First threshold

Tend 2% Last threshold

Table 2 Comparison of
algorithm (without assignment
constraints) against best-known
solutions (BKS)

Instance Gap (%) to BKS (%)

O1 3.48

O2 5.2

O3 5.44

VRP_O1 1.56

VRP_O2 −0.5

VRP_O3 −4.8

We report average percentage gaps. Negative numbers indi-
cate that new BKS could be found

Table 3 Comparison of the
proposed algorithm against exact
solutions for small 1-vehicle
instances provided by Berger and
Bierwirth (2010) and solved in
Gansterer et al. (2018a)

Instance set Gap (%) to BKS (%)

O1 1.67

O2 5.41

O3 1.17

Average 2.51

We report average percentage gaps
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Table 4 Constraint settings: The
table shows the two minimum
workloads that are tested for
constraints A–C

Keep at least

A: 33.33%, 66.67% Of the initial customer base

B: 33.33%, 66.67% Of the initial # of customers

C: 80.00%, 90.00% Of the initial profit

initial customers for each carrier. For instances with 30 requests the minimum workload is
set to 3, 4, 6 and 7 initial requests. Then, the weighted average of keeping 3 and 4 customers
is computed for 1

3 and the weighted average of keeping 6 and 7 customers is computed
for 2

3 . To examine the difference between keeping specific customers and keeping only a
number of customers—regardless of who they were originally assigned to—the same setting
is implemented for constraint B as well. Constraint C guarantees a certain profit to potential
participants relative to their profits from a non-collaborative solution.

While it is reasonable to assume that carriers may want to keep at least a few of their
original customers, a maximum profit loss of 2

3 does not appear to be a satisfying guarantee.
Instead, a stricter minimumworkload of 80% and 90% of the initial profit is set for constraint
C. An overview of the different workload settings is given in Table 4.

First, the potential cost savings of a collaborative solution in comparison to a non-
collaborative will be examined. Then, the effect of imposing the three different assignment
constraints will be analyzed (A–C).

5.1 Potential collaboration gain

The ALNS is applied to both the collaborative and the non-collaborative setting to assess the
potential collaboration gain. Table 5 reports the relative gap between initial and collaborative
solution.

According to the numerical results, collaboration among carriers can lead to cost savings
of around 25% (MDTSPPS) and 17% (MDVRPPD) on average. These findings go in linewith
past studies, where collaborative gains of 20–30% are reported (Chinh et al. 2016; Cruijssen
et al. 2007a; Muñoz-Villamizar et al. 2015). The cost savings could even go up to around 35–
40% when there is a strong regional overlap of customers, as demonstrated by setting O3. A
smaller degree of customer overlap decreases the potential collaborative gain. This becomes
especially apparent in setting O1, where customers are located closely around their initial

Table 5 Total collaboration gain: the average gap between initial and collaborative solutionwithout assignment
constraints

Instances n=30 n=45 Average Instances n=30 n=45 Average

TSP_O1 12.53 13.48 13.01 VRP_O1 8.46 13.67 11.07

TSP_O2 24.28 22.09 23.18 VRP_O2 18.12 15.28 16.70

TSP_O3 39.38 35.45 37.42 VRP_O3 25.22 20.00 22.61

Average 25.40 23.67 24.54 Average 17.27 16.32 16.79

All numbers are reported in percentage points
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Fig. 4 An illustration of the average customer distribution among carriers for settings O1–O3 (MDTSPPD).
The carrier with the highest customer share is reflected by a darker color, and the carrier with the lowest
customer share by a lighter color

Fig. 5 An illustration of the average customer distribution among carriers for settings O1–O3 (MDVRPPD).
The carrier with the highest customer share is reflected by a darker color, and the carrier with the lowest
customer share by a lighter color

depots. The reassignment to other carriers will therefore often be associated with additional
costs. Furthermore, the results suggest that the collaborative gain decreases with the total
number of customers. Carriers with many customers have more flexibility to build efficient
tours and therefore less incentives to collaborate with others. The additional flexibility seems
to decrease with the level of competition and vanishes in setting O1.

This effect could be explained with a high probability to have customers close to the
depot of competitors. The potential cost savings of collaborative solutions, however, are
considerably smaller for the VRP instances. The average gains of over 20% in the single-
vehicle case, can only be achieved in the highly competitive setting O3.

Despite these large potential savings, companies hesitate to enter horizontal collaborations
for fear of customer and profit loss. The computational results show that these concerns are not
unsubstantiated. Figures 4 and 5 illustrate the average customer distribution among carriers
for the different settings.

In instances with a high degree of regional customer overlap, one carrier ends up serving
nearly all customers. For the instances with less competition, this effect is reduced. These
findings go in line with the significantly smaller collaboration gain reported for setting O1.
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Table 6 Vehicle utilization: The
table reports the percentage of
instances where each carrier uses
at least 1, 2 or 3 vehicles in the
collaborative solution

Instances 1 2 3

VRP_O1 100.0 100.0 57.5

VRP_O2 100.0 100.0 50.0

VRP_O3 95.0 92.5 45.0

Even in setting O1, however, customers are unevenly distributed among carriers. This can
be explained by the fact that all vehicles have to start from and return to their depot. Even
though customers are located around their initial carrier, it might be more efficient to include
the requests within an existing tour. This way an additional trip to a depot can be avoided.
Once a customer from a competitor is included in a tour, all other customers of that carrier
can easily be reached as well. In either case, it is clear that this distribution is not desirable
for potential participants.

In contrast to the single-vehicle case, customers are more evenly distributed among carri-
ers. In a setting with less customer overlap (O1), there is in fact not much difference between
the workload of the carriers. In more competitive settings (O2, O3), one carrier does hold
significantly more customers than the other participants.

Despite some imbalances, no carrier holds a market share of over 50% and even the
carrier with the lowest market share is able to serve a quarter of all customers. This is a
considerable difference to the single-vehicle case where one carrier ended up serving nearly
all customers and can explain the lower collaboration gain. In the multi-vehicle case, only a
certain number of customers can be visited within one tour. Once a second route has to be
opened, the benefits of avoiding the trip to the depot are eliminated. The remaining customers
may then be located closer to competitors, resulting in evenly distributed solutions. Table 6
gives additional insights on the vehicle utilization among carriers.

For settings O1 and O2, every carrier uses at least two vehicles in all observed instances.
In setting O3, there are at least some instances where one carrier does not use a single vehicle
and therefore also serves no customers.

The findings enforce the need for assignment constraints to generate acceptable solutions
for all participants. Introducing these constraints can, however, also dampen the potential
benefits. In the following, the effect of introducing constraintsA–C is quantified and analyzed.

5.2 The effect of assignment constraints

In Table 7 we show the effect of imposing constraint A to the collaborative solution.
In the case of MDTSPPD, the restriction that each carrier has to keep at least 2

3 of their
initial customers decreases potential benefits from well over 20% by about 13% to only
around 7%. The cost of introducing this constraint is especially high in setting O3, where the
highest cost savings were possible.

Even though there is a smaller total collaboration gain for the multi-vehicle case, slightly
higher potential savings remain relative to the single-vehicle case. Due to the more or less
even customer distribution among carriers, the cost of introducing constraint A is rather low.
In fact, requiring each carrier to keep at least 1

3 of their initial customer base only decreases
potential savings by around 2%. The requirement to keep 2

3 of the initial customer base is less
likely to be fulfilled by the collaborative solution and results in higher costs. Still, savings of
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Table 7 The costs of keeping at least 13 and 2
3 of the initial customers with respect to the collaborative solution

without assignment constraints

Instances n=30 n=45 Instances n=30 n=45
1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

TSP_O1 6.16 9.16 7.70 8.67 VRP_O1 0.86 1.64 1.36 2.81

TSP_O2 9.21 16.34 12.91 16.23 VRP_O2 1.76 5.05 2.31 7.35

TSP_O3 21.03 31.46 22.49 29.46 VRP_O3 2.95 11.33 3.60 12.13

Average 12.13 18.99 14.37 18.12 Average 1.86 6.01 2.43 7.43

All numbers are reported in percentage points

Table 8 The costs of keeping at least 13 and
2
3 of the initial number of customerswith respect to the collaborative

solution without assignment constraints

Instances n=30 n=45 Instances n=30 n=45
1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

TSP_O1 2.25 5.33 3.68 6.71 VRP_O1 0.27 1.10 0.44 1.24

TSP_O2 8.19 13.97 10.83 13.53 VRP_O2 0.32 2.81 0.22 2.17

TSP_O3 17.18 27.03 15.50 23.15 VRP_O3 0.40 2.61 0.67 2.46

Average 9.21 15.44 10.01 14.46 Average 0.33 2.17 0.44 1.96

All numbers are reported in percentage points

around 10% on average can be observed. In all cases, the collaborative gain and the cost of
introducing the constraint, increase once again with the degree of regional customer overlap.

Table 8 shows the effect of imposing constraint B to the collaborative solution.
The requirement to keep at least a given number of customers—regardless of who they

were initially assigned to—allows for a more efficient customer allocation to more closely
located depots. The cost of introducing this constraint is therefore considerably lower than
of constraint A. Again, it can be observed that the level of competition influences the cost of
introducing constraint B, as well as the remaining collaborative gain. Particularly in setting
O3, high collaborative gains remain, even when requiring each carrier to keep at least 23 of the
initial number of customers. A limit on customer share losses can therefore be imposed as a
guarantee for all potential participants. At the same time, some participants have the potential
to increase their customer share. Again, it can be observed that the cost of introducing this
constraint is particularly cheap for MDVRPPD instances. Imposing constraint B does not
significantly decrease the potential collaborative gain. High savings of around 15% remain.

Table 9 reports the costs of introducing constraint C.
In the case of MDTSPPD, the costs of introducing this constraint are considerably higher

than of constraints A and B. This can be explained by the fact that the constraint was set more
restrictively to 80% and 90%, rather than 33% and 67%. Requiring each carrier to keep at
least 90% of their initial profit reduces potential benefits to 4% on average. Imposing only
a minimum profit of 80%, allows for slightly higher gains of around 8%. In a setting with
a high degree of customer overlap, these savings can go above 10%. Nevertheless, savings
are relatively low when compared to the huge potential reported in Table 5. However, in
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Table 9 We report the costs of keeping at least 80%and 90%of the initial profitwith respect to the collaborative
solution without assignment constraints. All numbers are reported in percentage points

Instances n=30 n=45 Instances n=30 n=45

80% 90% 80% 90% 80% 90% 80% 90%

TSP_O1 8.02 10.85 7.28 10.08 VRP_O1 1.16 3.25 3.11 4.53

TSP_O2 17.75 21.09 15.23 18.16 VRP_O2 3.36 6.75 2.86 4.77

TSP_O3 24.99 31.83 24.56 30.74 VRP_O3 2.80 6.91 2.48 4.69

Average 16.92 21.26 15.69 19.66 Average 2.44 5.64 2.82 4.66

the multi-vehicle case, the additional costs of imposing an upper bound on profit losses are
relatively small. High collaborative gains remain, particularly for competitive settings. Still,
effective profit sharing mechanisms as presented by, e.g., Guajardo and Rönnqvist (2016),
could be implemented to further increase individual profits.

6 Conclusion

The aim of this study was to assess potential trade-offs in collaborative pickup and delivery
problems under a centralized collaboration framework. Trade-offs relate to the fact that
carriers do not want to share their full set of customers with collaboration partners or want to
preserve aminimumshare of their pre-collaboration profit. Themathematical formulation and
an ALNS solution approach were provided. This approach was applied to publicly available
single-vehicle and multi-vehicle test instances.

The computational study revealed that collaboration can lead to potential savings of up to
40%. However, it was shown that these high gains come at the cost of an uneven workload
distribution. The numerical results therefore confirmed the concerns of transport companies.
Hence, assignment constraints were introduced to generate more acceptable solutions for
possible participants and thereby eliminate barriers to entry. The constraints enable carriers
to keep at least some of their initial customers or provide upper bounds for profit and customer
share losses.

For the single-vehicle case, the introduction of these constraints resulted in considerably
increased costs and reduced collaborative gains. However, results revealed that if each carrier
operates multiple vehicles, collaboration can provide a high potential for cost savings even
when assignment constraints are introduced. Carriersmay therefore explicitly exclude certain
long-term valued customers from reassignment and still benefit from the collaboration.

We could show that high collaborative gains remain, particularly for competitive settings.
Thus, especially last-mile deliveries which are characterized by high competition could there-
fore profit from horizontal collaborations. Apart from increasing efficiency in this sector,
cities could profit from environmental aspects. Due to the complexity of the optimization
problem, we limited our research to the deterministic case. The dynamic stochastic setting
seems absolutely worth investigating as well. In particular, considering volatile profits due
to stochastic travel times might lead to very interesting findings. For this, a discrete-event
or agent-based simulation study—or a combination of both—seems recommendable. The
proposed solution approach could, for instance, be assessed within a dynamic and stochastic
environment in a rolling horizon setting as it is suggested by Sprenger and Mönch (2012) for
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a real-world scenario in the German food industry. We recommend to run simulations, where
carriers, who face stochastic delivery times and dynamically arriving new customer orders,
find new assignments of requests to the collaboration on a regular basis. After a given number
of periods the proposed solution approach should be used to calculate the new assignments
taking newly arrived orders as well as updated information on travel times into account. This
would provide valuable managerial insights in how to handle dynamically changing pools of
customer orders in a stochastic environment. This is of particular interest in case of carriers
insisting on a minimum level of individual collaboration profits, as it was considered in this
study.

Hopefully, our findings and ideas will inspire new projects to exploit the benefits of
horizontal collaborations.
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