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Abstract
This paper presents a combinatorial auction, which is of particular interest when short com-
pletion times are of importance. It is based on a method for approximating the bidders’
preferences over two types of item when complementarity between the two may exist. The
resulting approximated preference relation is shown to be complete and transitive at any
given price vector. It is shown that an approximated Walrasian equilibrium always exists if
all bidders either view the items as substitutes or complements. If the approximated prefer-
ences of the bidders comply with the gross substitutes condition, then the set of approximated
Walrasian equilibrium prices forms a complete lattice. A process is proposed that is shown
to always reach the smallest approximatedWalrasian price vector. Simulation results suggest
that the approximation procedure works well as the difference between the approximated
and true minimal Walrasian prices is small.

Keywords Approximate auction · Approximated preferences · Non-quasi-linear
preferences · Combinatorial auction

1 Introduction

Auctions are extensively used as a way to determine who gets to buy which good and at
what price. It is not uncommon for a seller to simultaneously auction multiple items. Spec-
trum licenses are often divided into smaller geographical areas rather than one countrywide
license, and a company can be sold as several divisions rather than one entity. In recent
years, the literature on multi-item auctions, and, in particular, combinatorial auctions, has
grown substantially. In a unit-demand setting, Demange et al. (1986) propose a multi-item
auction, which is Pareto efficient and strategy-proof. Key to their result is to find the unique
minimal Walrasian equilibrium price vector, its existence being guaranteed by the lattice
structure of equilibrium prices (Demange and Gale 1985; Shapley and Shubik 1972), and to
allocate the items in accordance with this price. When allowing bidders to demand multiple

Financial support from the “Jan Wallander and Tom Hedelius Foundation” [P2012-0107:1] is gratefully
acknowledged.

B Jim Ingebretsen Carlson
jim.ingebretsen_carlson@nek.uu.se

1 Department of Economics, Uppsala University, SE-751 20 Uppsala, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03461-2&domain=pdf
http://orcid.org/0000-0001-9471-7624


66 Annals of Operations Research (2020) 288:65–93

units of items, the problem becomesmore complex. For homogeneous items, Ausubel (2004)
presents an ascending-bid auction, which is efficient and where the outcome of the auction
coincides with the outcome of the Vickrey auction. Extending to heterogeneous items, Gul
and Stacchetti (2000) designed a generalized version of Demange et al. (1986)’s auction,
which also terminates at the unique minimal Walrasian equilibrium price vector.1 In their
setting, the existence of a Walrasian equilibrium is guaranteed when bidders have gross sub-
stitute preferences. The gross substitutes condition was introduced by Kelso and Crawford
(1982) and is utilized by Ausubel (2006), who suggests a multi-item auction that reaches
the Vickrey-Clarkes-Groves outcome and therefore is incentive compatible. Sun and Yang
(2006, 2009) introduce the gross substitutes and complements condition, which allows for
some complementarity in the bidders’ preferences. The authors show that this condition is
sufficient for the existence of competitive equilibrium and propose two auction processes
that always find an equilibrium price vector. Sun and Yang (2014) extend their work to the
more general case of super additive preferences and show that an equilibrium exists when
prices of the packages are allowed to be non-linear. Ausubel and Milgrom (2002) suggest
an ascending-bid proxy auction: each bidder reports a valuation for each package and then
commits to bid straightforwardly according to these reports. When bidders have quasi-linear
preferences in money, and goods are substitutes, the outcome of the proxy auction coincides
with the Vickrey auction and sincere bidding is a Nash equilibrium. By allowing prices to
differ across packages and bidders, authors such as de Vries et al. (2007) and Mishra and
Parkes (2007) propose auction processes that reach the VCG outcome for general valuations.

A possible problem with many auction formats is that they may take a long time to carry
out. The auction for British telecom licenses, conducted in 2000, is one example of this
as it took two months to complete (Binmore and Klemperer 2002). One reason for long
completion times is that many auctions are dynamic processes in which the prices of the
items are either only increased or only decreased.2 This may result in a time-consuming
process as the starting prices have to be set far below or far above the expected final prices
to make sure that the process converges to a desired equilibrium. In some cases, however,
short completion times of auctions are very important. One such example is the product-
mix auction, which was designed to help the Bank of England during the bank run in the
autumn of 2007. Due to the outbreak of the financial crisis, the Bank of England wished to
allocate loans to commercial banks in a very rapid fashion. Klemperer (2010) proposed a
quick auction procedure for allocating two different types of loan to the banks. The idea was
that bidders submitted a number of bids consisting of two prices (interest rates), one for each
type of loan, and a quantity (same for both loans), which served as an approximation of the
bidders’ demand. Based on the supplied quantities of the two loans, prices were determined
and the bidders were awarded the loans that gave them the highest, non-negative profit. In
this way, the central bank allocated the loans in a quick fashion.

Quick auctions are not uncommon in the auction literature. Sealed-bid auctions, such as the
famousVickrey auction, arewell studied examples.However, such auction formats, andmany
more, are usually analyzed under the assumption that bidders have quasi-linear preferences
in money. This may be restrictive as it implies that bidders neither exhibit risk-aversion,
experience wealth effects, nor face financing- or budget constraints. If bidders’ preferences
are in fact non-linear in money, this should be taken into account. Optimal auctions, in which

1 Auction processes converging to the unique minimal equilibrium price vector is common in the literature;
see, for example, Andersson et al. (2013), Andersson and Erlanson (2013), Mishra and Talman (2010) and
Sankaran (1994).
2 For auction processes that may be both ascending and descending, see, for example, Andersson and Erlanson
(2013), Ausubel (2006), Erlanson (2014) and Grigorieva et al. (2007).
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bidders exhibit risk-aversion, have been studied by Maskin and Riley (1984) and Matthews
(1987). Morimoto and Serizawa (2015) analyzed allocation rules for multiple indivisible
items, allowing bidders to have non-linear preferences in money and unit demand. Ausubel
and Milgrom (2002) also propose a generalized proxy auction, in which the seller and the
bidders have non-linear but strict preferences over all offers made in the bidding process.
This auction is embedded in the matching with contracts model by Hatfield and Milgrom
(2005).

Thus far, two problems have been identified: auctions may take a long time to conduct and
bidders may not have quasi-linear preferences in money. This paper proposes a combinatorial
auctionwhich is quick and allows for bidders to havenon-linear preferences inmoney. In order
for the auction to be quick, the bidders report all required information prior to the execution
of the auction. Consequently, and similar to sealed-bid auctions, the bidders do not participate
in a dynamic auction process. Due to the possible high complexity of the bidders’ non-linear
preferences in money, requiring a bidder to report her preferences over money does not seem
feasible. Therefore, the bidder will report a fraction of her preferences, which will be used to
approximate her preferences. More specifically, a bidder reports two sets of prices that makes
her indifferent between the packages that are available in the auction. Using these prices,
linear approximations of the bidder’s indifference curves between any two distinct packages
will be made. In this context, an indifference curve contains all combinations of prices for
the two packages, which makes the bidder indifferent between the packages. By combining
the linearly approximated indifference curves, a bidder’s approximated preferences can be
constructed.

As suggested in the literature review, linear approximations of bidders’ preferences are not
uncommon. Importantly, the quasi-linear preferences are contained in the class of preferences
corresponding to the approximation procedure of this paper. In particular, if a bidder has
quasi-linear preferences in money and reports truthfully, the approximated preferences will
coincide with the bidder’s true preferences.

It is shown that the approximated preference relation of each bidder is complete and
transitive at any price vector. Given the approximated preference relations of the bidders, it is
of interest to knowwhether it is always possible to find an equilibrium assignment. In addition
to theoretical interest, equilibrium assignments are particularly important in, for example,
spectrum auctions as governments typically want all regions of the country to have coverage.
As a bidder’s approximated preferences do not necessarily coincidewith her true preferences,
the equilibrium concept analyzed in this paper is denoted by an approximated Walrasian
equilibrium. It is shown that, if each bidder views the items as substitutes, or complements,
then the set of approximated Walrasian equilibrium prices is non-empty. The substitutability
(complementarity) only requires that the larger report of prices for the package of two items
is strictly smaller (greater) than the sum of the larger reports for the two items separately. It
is further shown that imposing the gross substitutes condition on the bidders’ approximated
preference relations is sufficient for the set of approximated Walrasian equilibrium prices
to form a complete lattice and, hence, to contain unique minimal element. A process is
described that can be used to find the unique minimal approximated Walrasian equilibrium
price vector. However, the bidders do not actively participate in any intermediate step of this
process. Using the bidders’ approximated preferences as input, the process is a structured
method for finding the unique minimal approximated Walrasian equilibrium price vector.
This price vector may be of particular importance when the auctioneer is concerned with
consumer welfare. A government selling spectrum licenses may be interested in assuring low
consumer prices. Selling the licenses for the smallest equilibrium prices may aid in achieving
this as the resulting producer costs are relatively low. Finally, simulations are conducted that
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suggest that the approximation procedure works fairly well. In fact, the absolute relative error
between a true and approximated minimal Walrasian price is only 4.8% on average. This is
compared to the case when bidders are assumed to have quasi-linear preferences, in which
case the absolute relative error is 71.5% on average.

To summarize auction procedure can be summarized in the following steps:

1. Each bidder reports prices that makes her indifferent between the available packages.
2. These prices are used to construct linear approximations of the bidder’s indifference

curves.
3. Combining a bidder’s linearly approximated indifference curves, her approximated pref-

erences are constructed.
4. Using the approximated preferences as input, a process is used to find the uniqueminimal

approximated Walrasian equilibrium price vector.
5. The items are allocated to the bidders in accordance with this price vector.

The paper is outlined as follows: Sect. 2 introduces the basic model and some definitions.
The approximation procedure is described in Sect. 3. In Sect. 4, the results concerning the
existence of the approximated Walrasian equilibrium are presented. Section 5 contains a
description of the process and related results. The simulation results are presented in Sect. 6.
Section 7 concludes the paper. All proofs are collected in the “Appendix”.

2 Themodel

A finite number of bidders, collected in the set N = {1, 2, . . . , n}, participate in the auction.
A seller wishes to auction two types of indivisible items, called a and b,3 of which there may
exist multiple copies. Let qa ≥ 1 and qb ≥ 1 denote the finite integer number of copies of
each type of item. Copies of the same type are to be sold for some uniform price, pa or pb
depending on the type. In order to sell the items, the seller requires at least some prices ra ≥ 0
and rb ≥ 0 for each type of item. Such prices are referred to as the seller’s reservation prices
and imply that pa ≥ ra and pb ≥ rb. Each bidder has the outside option of not acquiring
anything in the auction. The outside option is represented by a null-item, which is denoted 0
and is equal to the empty set. The price of the null-item is normalized to 0 so p0 = r0 = 0.
Each bidder is interested in acquiring, atmost, one copy of itema and b. Letab = {a, b} be the
combination of one item of each type and let pab = pa+ pb denote its price. The sets of items
that the bidders are interested in purchasing are collected in I = {0, a, b, ab} and any element
x ∈ I is referred to as a package. A bidder’s preferences over the packages are determined by
the utility generated from consuming the packages and their prices. A consumption bundle
is therefore defined to be a pair consisting of a package and a price. For any given prices of
the packages, the bidders are hence interested in consuming at least one of the consumption
bundles (0, 0), (a, pa), (b, pb), or (ab, pab). Each bidder i ∈ N has a preference relation,
denoted Ri , over all possible consumption bundles. Ri is complete, transitive, continuous,
and finite. Let Pi be the strict relation and Ii the indifference relation associated with Ri . The
preferences of the bidders satisfy price monotonicity; that is, for any package x ∈ I and any
two prices p′

x , p
′′
x ∈ R+, if p′

x > p′′
x , then (x, p′′

x )Pi (x, p
′
x ). Finally, any bidder is indifferent

between any two identical consumption bundles. An objective of the auction is to find an
assignment of the items to the bidders such that any bidder is assigned either 0, a, b, or ab.

3 To simplify the notation, we let a and b denote both the item and a set containing the item, i.e. a ≡ {a} and
b ≡ {b}.
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While any number of bidders can be assigned the null-item, an assignment needs to be such
that the number of assigned items of any type, a or b, does not exceed the available number
of copies of the type. Formally, let μ : N → I be an assignment such that #Na ≤ qa and
#Nb ≤ qb, where Na = {i ∈ N | μ(i) ∈ {a, ab}} and Nb = {i ∈ N | μ(i) ∈ {b, ab}}, and
where μ(i) denotes the assignment of bidder i ∈ N .

3 Approximation of the bidders’ preferences

In order to approximate the true preference relation, Ri , of any bidder i ∈ N , the bidder
makes two reports. The first report, denoted v, consists of one price v j ∈ R for each package
j ∈ {a, b, ab}. Recalling that the price of the null-item is normalized to 0, these reported
prices are interpreted as the bidder being indifferent between the consumption bundles (0, 0),
(a, va), (b, vb), and, (ab, vab). The second report, z, consists of some other prices z j < v j for
each j ∈ {a, b, ab}. The prices in z are interpreted as making the bidder indifferent between
the consumption bundles (a, za), (b, zb), and (ab, zab). Note that any price reported for ab
need not necessarily equal the sum of the prices reported for the individual items. Moreover,
the assumptions on Ri guarantee the existence of prices that fulfill the requirements of the
reports.

Assuming that the bidders report truthfully, the two reports will be used to make linear
approximations of the bidders’ indifference curves between any two distinct packages. The
approximations will be referred to as the bidders’ approximated indifference curves. The
approximated indifference curveswill be constructed under the restriction that pab = pa+pb.
In linewith this, four constants,which are based on the two reports, are defined:αv = vab−vb,
αz = zab − zb, βv = vab − va , and βz = zab − za . A constant α j , where j ∈ {v, z}, is
interpreted as a price for item a, which would make the bidder indifferent between the
consumption bundles (ab, α j + jb) and (b, jb), where jb is either the report vb, or zb, defined
earlier. β j has the corresponding interpretation for a price of item b. In this way, six pairs of
prices, (pa, pb), are extracted, with the help of which the approximated indifference curves
between any two packages, except 0, are constructed.

In the following, a number of formal concepts will be introduced. In order to ease the
understanding of the approximation procedure, an example will accompany these concepts.
The example is depicted in Figs. 1 and 2 and is based on a bidder i making the reports of v

and z presented in Table 1.
From the reported prices, it follows that αv = 6, βv = 4, αz = 5, and βz = 4. Assuming

truthful reports, two pairs of prices (10, 8) and (6, 5) are obtained such that (a, pa)Ii (b, pb)
for bidder i . In addition, (10, 4) and (6, 4) are prices for which (a, pa)Ii (ab, pa + pb) and
for (6, 8) and (5, 5) it follows that (b, pb)Ii (ab, pa + pb). These six pairs of prices are shown
in diagram (a) of Fig. 1 and will be the basis for the linear approximation of the bidder’s
indifference curves.

In order to construct the approximated indifference curve between the packages a and b,
in general, the two pairs of prices (va, vb) and (za, zb) are used in constructing the following
linear function:

f1(pa) = zb + (pa − za)

(
vb − zb
va − za

)
(1)

(va, vb) = (10, 8) and (za, zb) = (6, 5) in our example, and f1 is depicted in diagram (b) of
Fig. 1. By combining an approximated indifference curve with pricemonotonicity, prices that
make the bidder strictly prefer one consumption bundle over another consumption bundle
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Fig. 1 First steps in approximation procedure for bidder i
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Fig. 2 Approximated indifference curves and preference relation of bidder i

Table 1 Reports of v and z by
bidder i

a b ab α j β j

v 10 8 14 6 4

z 6 5 10 5 4

can be approximated. For example, as a bidder reports that she is indifferent between (a, va)

and (b, vb), it follows by price monotonicity that the bidder strictly prefers (a, pa) to (b, pb)
if pa ≤ va and pb > vb or if pa < va and pb ≥ vb. Similarly, prices pa and pb for
which the bidder would strictly prefer (b, pb) to (a, pa) are found by reversing the inequality
signs. By applying this reasoning to any pair of prices (pa, pb) for which f1(pa) = pb
is true, all pairs of prices that generate strict preferences between (a, pa) and (b, pb) are
approximated. Returning to the example, diagram (b) of Fig. 1 depicts strict preferences
between the consumption bundles (a, pa) and (b, pb). (a, pa) is strictly preferred to (b, pb)
for any pair of prices above and to the left of f1, whereas (b, pb) is strictly preferred to
(a, pa) for any pair of prices below and to the right of f1.

Similarly as for f1, the pairs of prices (va, βv) and (za, βz) are used to construct the
approximated indifference curve between the packages a and ab, while (αv, vb) and (αz, zb)
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are used for b and ab, in the following way:

f2(pa) = βz + (pa − za)

(
βv − βz

va − za

)
(2)

f3(pb) = αz + (pb − zb)

(
αv − αz

vb − zb

)
(3)

The three approximated indifference curves corresponding to the bidder in our example are
displayed in diagram (a) of Fig. 2. Finally, the approximated indifference curves between 0
and any other package x is given by vx . As before, by combining an approximated indifference
curve and price monotonicity, strict preferences between any two consumption bundles are
approximated. In this way, the approximated indifference curves and price monotonicity
approximate the true preferences of a bidder. Let �i denote the approximated preference
relation of any bidder i ∈ N . Furthermore,�i and∼i are the strict and indifference relations
associated with �i .

In order for the approximated preference relation of a bidder to be meaningful, it is
important that, at any given prices of the items, a consistent ranking of the consumption
bundles can be constructed. Proposition 1 ensures that this is the case.

Proposition 1 For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is complete and transitive.

Diagram (b) of Fig. 2 shows the combination of prices for which a certain consumption
bundle is uniquely most preferred for the bidder in our example.

For a bidder whose preferences are quasi-linear in money, her indifference curves are
linear. If prices are reported truthfully, the resulting approximated indifference curves will
coincide with the true indifference curves of the bidder. The bidder’s approximated and true
preferences will therefore coincide and the quasi-linear preferences are thus contained in the
class of preferences corresponding to the approximation procedure described in this section. It
is difficult to assess howwell the approximated preferences approximate the true preferences
since this depends on the degree of non-linearity of the preferences in money and what prices
of z are reported. As long as a bidder’s true indifference curves are not linear, there will exist
some price p and packages x, y ∈ I such that (x, p)Ri (y, p) under the true preferences
and (x, p) �i (y, p) under the approximated preferences. However, the further away a price
vector p is from a true indifference curve between packages x and y, the more likely it is that
if (x, p)Ri (y, p), then (x, p) �i (y, p). Moreover, the results from the simulations reported
in Sect. 6, perhaps, suggest that this is not a big issue.

4 Existence

Given the approximated preference relations of the bidders, it is interesting to know whether
it is always possible to find an equilibrium assignment. A commonly analyzed equilibrium
concept is the Walrasian equilibrium. However, as the approximated preferences do not
necessarily coincide with the true preferences of the bidders, the equilibrium concept of this
paper is denoted by an approximated Walrasian equilibrium. In order to define this formally,
let a price vector be denoted by p = (0, pa, pb) ∈ R

3, which contains a price for the null-item
and one price for each type of item. Furthermore, the approximated demand correspondence
of a bidder i ∈ N is defined as Di (p) = {x ∈ I | (x, px ) �i (y, py) for all y ∈ I} at any
p. If x ∈ Di (p), then package x is said to be demanded by bidder i ∈ N .
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Definition 1 The pair 〈p, μ〉 constitutes an approximatedWalrasian equilibrium if: (i)μ(i) ∈
Di (p) for all i ∈ N and (i i) if #Nx < qx for some x ∈ ab, then px = rx .

Thus, a price vector p and an assignmentμ constitute an approximatedWalrasian equilibrium
if each bidder is assigned a package that she demands, and if a copy of an item remains
unassigned, then the price of this type of item has to equal the seller’s reservation price for
the item.

An approximated Walrasian equilibrium does not always exist. For an excellent example,
see Milgrom (2000) and recall that the quasi-linear preferences are a special case of the
approximated preferences of this paper. However, requiring substitutability, or complemen-
tarity, in the bidders’ preferences has been shown to guarantee the existence of equilibrium in
the standard model. Kelso and Crawford (1982) required firms’ preferences over workers to
complywith the gross substitutes condition to show the existence of a core allocation. This, in
turn, implies that a Walrasian equilibrium exists in Gul and Stacchetti (1999, 2000). Analyz-
ing the simultaneous ascending auction, Milgrom (2000) showed that, if objects are mutual
substitutes for the bidders, then the objects can be allocated in accordance with a competitive
equilibrium. Similarly, in the matching with contracts model, a stable allocation exists if
hospitals view contracts as substitutes (Hatfield and Milgrom 2005). Sun and Yang (2006,
2014) showed that an equilibrium also exists when bidders have complementary preferences.
The existence of an equilibrium in the first study is guaranteed when bidders’ preferences
comply with the gross substitutes and complements condition and prices are linear. In the
second study, the more general condition of superadditivity in bidders’ preferences is shown
to guarantee the existence of competitive equilibrium when non-linear pricing is used.

To ensure the existence of an approximated Walrasian equilibrium, we consider both
substitutability and complementarity separately. First, we let the bidders treat the packages
a and b as substitutes by making the assumption on the reports v that vab < va + vb for each
bidder i ∈ N . Then we look at the case of complementarity by requiring that vab > va + vb
for each bidder i ∈ N . However, we do not have any requirements regarding the reports of z
in either case. Let P = {p ∈ R

3+ | ∃μ s.t. 〈p, μ〉 is an approximated Walrasian equilibrium}
be the set of approximated equilibrium prices. Proposition 2 asserts that, if vab < va + vb
for all i ∈ N , then there exists an approximated Walrasian equilibrium.

Proposition 2 If vab < va + vb for each bidder i ∈ N, then the set of approximated equilib-
rium prices, P , is non-empty.

Similarly, Proposition 3 states that, if vab > va + vb for all i ∈ N , then there exists an
approximated Walrasian equilibrium.

Proposition 3 If vab > va + vb for each bidder i ∈ N, then the set of approximated equilib-
rium prices, P , is non-empty.

It turns out that the existence of a unique minimal approximatedWalrasian price vector is not
guaranteed when either vab < va +vb, or vab > va +vb, for all i ∈ N . The reason, in the first
case, is that the approximated indifference curves f2 and f3 may be downward-sloping for
some bidder. In the second case, the indifference curve between ab and 0 is downward-sloping
by construction. Therefore, there may exist an infinite number of minimal approximated
Walrasian price vectors along any such, downward-slooping, indifference curve. However,
the gross substitutes condition ensures that neither f2 or f3 are downward-sloping for any
bidder. Following Kelso and Crawford (1982), the gross substitutes condition is defined as:
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Definition 2 The approximated preference relation,�i , of any bidder i ∈ N , fulfills the gross
substitutes condition if, for any two price vectors p′ ≥ p and any x ∈ Di (p), there exists
y ∈ Di (p′) such that {w ∈ x | pw = p′

w} ⊆ y.

The gross substitutes condition implies that a bidder’s demand for an item does not decrease
as the prices of any other items are raised and it guarantees that P forms a complete lattice.
For any two price vectors p′, p′′ ∈ R

3, let the meet p′ ∧ p′′ be defined as a vector s ∈ R
3

with elements s j = min{p′
j , p

′′
j }. Similarly, let the join p′ ∨ p′′ be a vector h ∈ R

3 with

elements h j = max{p′
j , p

′′
j }. Any S ⊆ R

3 forms a complete lattice if, for each p′, p′′ ∈ S,
s, h ∈ S.

Proposition 4 If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N, then P forms a complete lattice.

Proposition 4 implies that P contains a unique minimal element. Let this unique minimal
approximated Walrasian equilibrium price vector be denoted pmin .

5 Process

The proposed process can be used to find pmin . It is designed as an English auction; starting
at some low prices, prices are increased until pmin is reached. As mentioned in Sect. 1, the
bidders do not actively participate in any intermediate step of the process. The process uses
the approximated preference relations of each bidder as input in order to find pmin . As the
approximated preferences are constructed prior to running the process, the process can be
executed quickly.

Following Gul and Stacchetti (2000), the process will use the bidders’ requirement of the
different packages in order to, at least partly, determine how prices should be increased.

Definition 3 The requirement function Ki : I × R
3 → N0 for each i ∈ N is defined by:

Ki (x, p) = min
y∈Di (p)

#(x ∩ y).

Let KN (x, p) = ∑
i∈N Ki (x, p) be the bidders’ aggregate requirement of any x ∈ I at some

p. Proposition 5, below, justifies the interest in the requirement function. Most importantly, it
asserts that, when, at some p, the bidders’ aggregate requirement for each package is weakly
less than the number of existing copies of the items contained in the package, it is possible to
assign each bidder a package that she demands. Hence, the first condition for an approximated
Walrasian equilibrium is fulfilled at p. As any bidder’s requirement of the null-object always
equals zero, let q0 = 0 and naturally qab = qa + qb.

Proposition 5 Foragivenprice vector p, there exists anassignmentμ such thatμ(i) ∈ Di (p)
for all bidders i ∈ N if, and only if, KN (x, p) ≤ qx for all x ∈ I.

Hence, if KN (x, p) > qx for some package x ∈ I, then there is more demand for the items
contained in x , at p, than the number of available copies of x . To determine the net demand,
in terms of aggregate requirement, for any package at some price vector p, the function
g : I × R

3 → Z : g(x, p) = KN (x, p) − qx is defined. Packages with the greatest net
demand at p are collected in O(p) = {x ∈ I | g(x, p) ≥ g(y, p) for all y ∈ I}.
Lemma 1 O(p) has a unique minimal element with respect to cardinality denoted O∗(p).
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Lemma 1 is important for describing the process as whenever O∗(p) contains any of a, b,
or ab, in any step of the process, the prices of the items contained in O∗(p) will be the main
focus of the price increase.

A price increase consists of one part determining how much the prices are increased
relative to each other and a second part deciding the magnitude. For the first part, δ(p) ∈ R

3+
is introduced, which has elements δx (p) for each x ∈ {0, a, b} and p. Let pt ∈ R

3+ denote
the price vector at step t of the process. The magnitude of a price increase at any step t is
then given by ε(t) = sup{e | O∗(pt + eδ(pt )) = O∗(pt )}. Step 1 of Process 1 checks if
it is possible to assign all copies of the items. If this is not possible, it proceeds to Step 2
in which the prices of the items contained in O∗(p) are raised by equal amounts. However,
as the approximated preferences of the bidders are not necessarily quasi-linear, such a price
increase may not always be possible. To solve this problem, let x �= y for x, y ∈ ab, and
lx (t) = inf{δx (pt ) ∈ R+ | δ0(pt ) = 0, δy(pt ) = 1, and ε(t) > 0} is defined. lx (t) and δ(p)
are used to determine the relative price increase of the items.4

Process 1 Set t = 0 and let p0 = r
Step 1: If O∗(pt ) = 0 set pt = pT and stop. Otherwise, go to Step 2.
Step 2: Let δx (pt ) = 1 if x ∈ O∗(pt ) and 0 otherwise.

If =
{

ε(t) �= 0, let pt+1 = pt + ε(t)δ(pt ) and set t := t + 1 and go to Step 1.ε(t) = 0,

go to Step3.
Step 3: Let δ0 = 0 and

if =
{
a, ab ∈ O∗(pt ), then δa(pt ) = 1 and δb(pt ) = lb(t).

b ∈ O∗(pt ), then δa(pt ) = la(t) and δb(pt ) = 1.

Let pt+1 = pt + ε(t)δ(pt ) and set t := t + 1 and go to Step 1.

Assuming that the bidders’ approximated preferences fulfill the gross substitutes condition,
Lemma 2 asserts that Process 1 does not get stuck at any step t < T .

Lemma 2 If the gross substitutes condition is fulfilled for the approximated preference rela-
tion of each bidder i ∈ N and ε(t) = 0 in Step 2 of Process 1, then ε(t) > 0 in Step 3 of
Process 1.

As O∗(pT ) = 0, Proposition 5 ensures that the first condition for pT to yield an approximated
Walrasian equilibrium is fulfilled. Assuming that each bidder’s approximated preference
relation complies with the gross substitutes condition, Theorem 1 states that Process 1 always
converges to the unique minimal approximated Walrasian equilibrium price vector.

Theorem 1 If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N, then Process 1 always terminates at pT = pmin.

Finally, we consider an example of Process 1. One item of type a and one item of type
b are to be sold and two bidders, i and j , participate in the auction. By reporting v and z,

4 ε(t), lx (t) and δ(p) can be identified in a finite number of steps. If Process 1 proceeds to Step 3 at some
p′, then fi (p

′
x ) = p′

y for some indifference curve i = 1, 2, 3, x, y ∈ {ab} and x �= y. A way to identify
lx (t) is, thus, to order all indifference curves, for which the above holds true, from smallest to largest by their
slopes, m. Starting with the smallest m, set δ0(p

′) = 0, δa(p′
a) = 1 and δb(p

′
b) = m and check if ε(t) > 0.

If not, continue with the second smallest m, and so on until ε(t) > 0, which will happen by Lemma 2. This

gives lx (t) and δ(p′). A straight line can be constructed from δ(p′), with slope
p′
b

p′
a
. ε(t) can be identified by

checking the intersection between this straight line and any indifference curve. Since there are only a finite
number of indifference curves, this process terminates in a finite number of steps.
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Fig. 3 Price trajectory in example
of Process 1
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Table 2 Bidders’ demand and
O∗(pt ) in example of Process 1

pt Di (p
t ) Dj (p

t ) O∗(pt )

p0 ab ab ab

p1 b, ab ab b

p2 a, b, ab ab ab

p3 a, b b, ab 0

the bidders’ preferences have been approximated. The parts of the bidders’ approximated
indifference curves that are relevant to determine their demand at any price vector are shown
in Fig. 3. Note that bidder i is the bidder of our example in Sect. 3. Bidder j has reported
va = vb = 7, and vab = 13 as well as za = zb = 5, and zab = 11. It is left to the reader to
confirm that bidder j’s reports generate the approximated indifference curves shown in Fig. 3.
The seller has reservation prices ra = 2 and rb = 0 and the price trajectory of Process 1 is
shown by the dashed line in Fig. 3. O∗(pt ) and the packages demanded by each bidder at
the price vectors corresponding to the different stages of Process 1 are shown in Table 2.

– t = 0: As O∗(p0) = {ab}, Process 1 moves to Step 2 where δa(p0) = δb(p0) = 1 and
δ0(p0) = 0.Given this δ(p0), it is possible to increase prices andmaintainO∗(p) = {ab}.
Consequently, ε(0) �= 0 and prices are raised from p0 to p1 in Fig. 3.At p1,O∗(p1) = {b}
due to the change in bidder i’s demand. Therefore, p1 is the upper bound for the price
increase at this step. Consequently, p1 = p0 + ε(0)δ(p0) and t = 1.

– t = 1: Since O∗(p1) = {b}, we set δb(p1) = 1 and δ0(p1) = δa(p1) = 0 in Step 2.
For this δ(p1), ε(1) = 0 since an increase in pb would change O∗(p) to contain ab
as i would change to only demand ab. Therefore, Process 1 proceeds to Step 3. In this
step, we find the smallest relative price increase of pa to pb, which makes ε(1) �= 0. In
Fig. 3, this is given by the slope of the indifference curve of bidder i . δa(p1) is therefore
adjusted such that δa(p1) = la(1), which makes ε(1) �= 0. The magnitude of the price
increase is bounded by the intersection of bidder i’s indifference curves. This is where
the demand of bidder i changes. Finally, p2 = p1 + ε(1)δ(p1) and t = 2.

– t = 2:Now O∗(p2) = {ab} and the only price increase that is possible, whilemaintaining
O∗(p) = {ab}, is to follow bidder i’s indifference curve. δ(p2) is adjusted accordingly
and pa and pb are increased until the packages demanded by bidder j change. Let
p3 = p2 + ε(2)δ(p2) and t = 3.

– t = 3: O∗(p3) = {0} and item a is sold to i for a price of 6 and b is sold to j for a price
of 5.
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6 Simulations

Now that we have shown that the approximation procedure of this paper is possible to use
from a practical perspective, it is natural to ask how far the unique minimal approximated
Walrasian equilibrium price vector is from the true unique minimal Walrasian equilibrium
price vector. Measuring this is, probably, the most relevant way to assess how well the
approximation procedure of Sect. 3 approximates the bidders’ true preferences since the
outcome of an auction iswhat trulymatters to bidders, sellers and auction houses. Simulations
are conducted in order to measure this.

Three sets of simulations are carried out. The first set consists in calculating the true unique
minimal Walrasian equilibrium price vector. Secondly, the preferences are approximated, by
the procedure described in Sect. 3, to calculate the unique minimal approximated Walrasian
equilibrium price vector. Thirdly, bidders are assumed to have quasi-linear preferences and
are only asked to report their valuations for the packages and then the resulting unique
minimal Walrasian price vector is calculated. As discussed in Sect. 4, a unique minimal
approximated Walrasian price vector does not always exist since some indifference curves
may be downward-sloping. This may be true for the true Walrasian price vector as well. In
these cases, the minimalWalrasian equilibrium price vector that minimizes pa will always be
picked for comparison. Calculating a true minimal Walrasian price vector is not trivial due to
the non-linearity of the bidders’ preferences. However, we note that such a price vector, which
minimizes at least one of pa and pb, must lie at the intersection of at least two indifference
curves. This follows since, if this is not the case, then it would be possible to decrease the
“minimal price” sufficiently little, possibly along one indifference curve, without changing
any bidder’s demand and, thus, still have a Walrasian equilibrium. Therefore, we calculate
all prices that generate an intersection between at least two indifference curves, as well as
the reservation prices, and check for the existence of an approximatedWalrasian equilibrium
to obtain the true (unique) minimal Walrasian price vector.

The simulations are conducted in the following setting: A seller auctions two copies of a
and b each to four bidders. The reservation prices are set at ra = rb = 0. The bidders have
private valuations for the packages 0, a, b and ab, denoted by pvi0, pv

i
a , pv

i
b and pviab, for

any bidder i ∈ N . We let pvi0 = 0 for all bidders. The bidders have non-linear preferences
in money and the utility for a package x ∈ {a, b, ab} is given by Ui (x) = pvix − pα

x , for
any i ∈ N . Consequently, α is the parameter determining the degree of non-linearity of the
bidders’ preferences. We will conduct simulations for α = 0.6, 0.7, . . . , 1.4. When α > 1,
bidders exhibit a special case of risk aversion known as aversion to price risk (Mezzetti
2011). Bidders are risk-neutral, and have quasi-linear preferences, when α = 1 and they are
seeking price risk when α < 1.5 pvia and pvib are randomly and independently drawn from
a uniform distribution on (10, 20). We limit the simulations to the case when bidders view
a and b as substitutes. Therefore, let pvimax = max{pvia, pvib} for each i ∈ N . In order
to ensure that vab < va + vb, and that ab is desired at some prices, pviab is randomly and
independently drawn from a uniform distribution on (pvimax , (pv

i
a + pvib), if α ≥ 1, and

randomly and independently drawn from a uniform distribution on (pvimax , (pv
i
a + pvib)

1
α )

otherwise. The bidders have the same private valuations for the packages in all three sets
of simulations. The bidders’ reports that are used for approximating their preferences are

generated in the following way: Since px = (pvix )
1
α gives Ui (x) = 0 = Ui (0), the bidders

5 The true and approximated minimal Walrasian equilibrium prices are unique when α ≤ 1, since no indiffer-
ence curves are downward-sloping.There exists nounique true or approximatedminimalWalrasian equilibrium
price when α > 1.
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Fig. 4 Average absolute relative error (%) for approximated (diamonds) and quasi-linear (triangles) prefer-
ences, averaged over 100 simulations, by each value of α. Dotted lines represent standard deviations

first report vx = (pvix )
1
α for each x ∈ {a, b, ab}. To make sure that the reports z are smaller

than v, we let pvimin = min{pvia, pvib} and randomly and independently draw ci from a

uniform distribution on (0, pvimin) for each i ∈ N . We then let zx = (pvix − ci )
1
α for each

x ∈ {a, b, ab} and bidder i ∈ N . The simulations were conducted using the stata 15.1
software and 100 simulations were carried out for every α and each of the three sets of
simulations.

In order to assess performance we will, for each simulation, calculate the absolute relative

error for each price x ∈ {a, b}; |psx−ptx |
ptx

, and then take the average absolute relative error of
the two prices. The superscripts s and t are used for the simulated and true prices respectively.
Figure 4 shows the average absolute relative error, averaged over 100 simulations, for the
approximated and quasi-linear preferences, by each value of α.

Figure 4 suggests that the approximated Walrasian price vectors are close to the true
Walrasian price vectors. In fact, the average absolute relative error is only 4.8% on average.
Moreover, the quasi-linear preferences have a much larger error of 71.5% on average. The
error is larger for the quasi-linear prices when α > 1, while the opposite is true for the
approximated prices. As expected, there is no error for either the approximated or the quasi-
linear prices when α = 1. Table 3 shows the computed true, approximated and quasi-linear
average equilibrium prices for each value of α. We can conclude that the approximated
equilibrium prices are close to the true equilibrium prices, while the quasi-linear prices are
smaller than the true prices when α < 1 and larger when α > 1. Furthermore, the error in
absolute terms is larger between the quasi-linear and true prices when α < 1.

7 Concluding remarks

This paper has provided a procedure for approximating a bidder’s preferences over two types
of items when complementarity between the two may exist. A quick auction procedure is
proposed that is shown to always converge to the unique minimal approximated Walrasian
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Table 3 True, approximated and
Quasi-linear average equilibrium
prices by each value of α

α Average equilibrium prices

True Approximated Quasi-linear

0.6 48.66 48.59 5.27

(21.70) (19.40) (1.55)

0.7 26.75 27.00 6.39

(10.59) (9.89) (2.08)

0.8 18.56 18.74 7.86

(5.43) (5.29) (2.11)

0.9 13.28 13.38 8.94

(3.51) (3.46) (2.21)

1.0 10.98 10.98 10.98

(2.58) (2.58) (2.58)

1.1 8.10 7.97 10.58

(1.82) (1.82) (2.55)

1.2 6.08 6.03 10.54

(1.23) (1.28) (2.64)

1.3 4.91 4.84 10.52

(1.00) (1.11) (2.65)

1.4 3.99 3.99 10.76

(0.72) (0.81) (2.58)

Standard deviations within parenthesis

equilibrium price vector. The auction procedure is efficient with respect to the approximated
preferences of the bidders. Simulation results suggests that the approximation procedure
works fairly well as the absolute relative error between the true and approximated minimal
Walrasian equilibrium prices is only 4.8% on average. For future research, it would be desir-
able to find a, perhaps, similar approximation procedure that can be applied to a more general
setting, in which bidders are interested in more than two items. Moreover, the auction pro-
cess is designed to find the unique minimal approximated Walrasian price vector. Extending
the process to the cases when such a price vector is not unique, for example, when bidders
view the packages as complements, as in Sun and Yang (2009, 2014), would be another
direction for future research. Furthermore, the approximation procedure described in this
paper assumes that bidders report truthfully and the auction procedure is not strategy-proof.
Finding a strategy-proof way of conducting a quick auction, when bidders preferences are
not necessarily quasi-linear, would be of great interest and importance.
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8 Appendix A: proofs related to the approximation

For proving Proposition 1, completeness of�i for any i ∈ N will be shown in Lemma 3. Then
Lemma 4, which is of technical nature, will be proven to aid in the proof of the transitivity
of �i . Transitivity of �i will be shown in Lemma 5.

Let the consumption set of a bidder be Z = I × R+ and any consumption bundle is a
pair (x, px ) ∈ Z . Let Z(p) denote the consumption set at any p = (p0, pa, pb) ∈ R

3. For
any bidder i ∈ N , �i is complete if for any given p and for all (x, px ), (y, py) ∈ Z(p), we
have that (x, py) �i (y, py) or (y, py) �i (x, px ) (or both). Let I+ = {a, b, ab}.
Lemma 3 For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is complete.

Proof (Proof of Lemma 3) Fix p = (p0, pa, pb). Then as any bidder is assumed to be indif-
ferent between two identical consumption bundles, we need to show that any pair of the four
distinct consumption bundles available at p are related by �i . By the requirements on the
bids we know that (x, vx ) ∼i (0, 0) for any x ∈ I+. Assume that px ≤ vx . Then it follows
by price monotonicity that (x, px ) � (x, vx ) ∼i (0, 0). By construction, fi (p j ) = pik , for
i = 1, 2, 3, are some prices of j, k ∈ ab, which would make the bidder indifferent between
any two packages x �= y where x, y ∈ I+. Assume that pij ≤ p j for i = 1, 2, 3, which by

price monotonicity implies that (x, px ) � (x, pix ) ∼i (y, piy) ∼i (y, py), where the identity
of the two packages depend on the identity of i . By replacing ≤ with ≥ in the arguments
above, the same conclusion is derived by symmetry. ��

While completeness of the approximated preference relations could be established by
only considering one indifference curve at a time, transitivity depends on the construction
of different indifference curves. Therefore, it is important to know the relationship of the
approximated indifference curves. Let ci be the intercept, mi the slope of fi for i = 1, 2, 3,
c4 = zb − αz

m3
, and m4 = 1

m3
. We start by noting that since v j > z j for j ∈ ab, it is always

the case that m1 = vb−zb
va−za

> 0.

Lemma 4 The linearly approximated indifference curves have the following relationship:

(i) If m j �= mk for some j, k = 1, 2, 4, then m1 �= m2 �= m4

(ii) If m1 �= m2 �= m4, then there exist unique p∗
a ∈ R and p∗

b ∈ R such that f1(p∗
a) =

f2(p∗
a) = p∗

b and f3(p∗
b) = p∗

a .
(iii) If m3 > 0 and m1 �= m2 �= m4, then l > m1 > k for l, k ∈ {m2,m4} ⊂ R

2 where
l �= k.

(iv) m j > −1 for j = 2, 3.
(v) If m2 > m1, then m2 > m1 > m4 > 0.
(vi) If m1 = m2 = m4, then l ≤ c1 ≤ k for l, k ∈ {c2, c4} ⊂ R

2 where l �= k.
(vii) If c j �= ck for some j, k = 1, 2, 4, then c1 �= c2 �= c4

Proof (i) By symmetry it is enough to consider one case. Let m1 �= m4 and to derive a
contradiction we assume that m2 = m1 �= m4, which is equivalent to βv−βz

va−za
= vb−zb

va−za
�=

vb−zb
αv−αz

. Therefore, βv − βz = vb − zb and va − za �= αv − αz . By the definition of the four
constants βv , αv , βz , and αz we know that

βv + va = αv + vb (4)

and

βz + za = αz + zb (5)
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Using Eqs. (4) and (5) to replace αv and αz we get that βv − βz �= vb − zb, which is a
contradiction.

(ii) As any fi is a linear function for i = 1, 2, 3 and m1 �= m2, there must exist a unique
p∗
a where f1 = f2. f1 and f2 are defined by Eqs. (1) and (2) respectively. This gives:

p∗
a = za(vb − βv) + va(βz − zb)

vb − zb − βv + βz
(6)

Naturally since m1 �= m2 we have vb − zb �= βv −βz and vb − zb −βv +βz �= 0. Replacing
pa in Eq. (1) by (6) gives:

p∗
b = vbβz − zbβv

vb − zb − βv + βz
(7)

We proceed by showing that p∗
a and p∗

b can be found for f1 and f3 as well. Replacing pb in
(3) by (1) gives:

p′
a = zaαv − αzva

αv − αz − va + za
(8)

As m1 �= m4 it is ensured that αv − αz − va + za �= 0. Replacing p′
a in Eq. (1) by (8) gives:

p′
b = zb(αv − va) + vb(za − αz)

αv − αz − va + za
(9)

By using Eq. (4) in (8) as well as (5) in (9) we get p′
a = p∗

a and p′
b = p∗

b .
(iii) First note that if m3 > 0, then m4 > 0. As m1 �= m2 �= m4 we either have

m1 > m j or m1 < m j for some j = 2, 4. By symmetry it is enough to consider one case.
Let m1 > m4, then m1 = vb−zb

va−za
>

vb−zb
αv−αz

= m4 > 0. As vb > zb by construction we have
αv − αz > va − za . Using Eqs. (4) and (5) to replace αv and αz we get βv − βz > vb − zb
and thus m2 = βv−βz

va−za
> m1 = vb−zb

va−za
.

(iv) As we have a requirement on the reports that vab > zab we get vab = va + βv =
vb +αv > za +βz = zb +αz = zab or va − za > βz −βv and vb − zb > αz −αv . Therefore,
1 >

βz−βv

va−za
and 1 >

αz−αv

vb−zb
or equivalently, −1 < m2 = βv−βz

va−za
and −1 < m3 = αv−αz

vb−zb
.

(v) m2 > m1 gives that
βv−βz
va−za

>
vb−zb
va−za

> 0 or βv − βz > vb − zb. Moreover, m2 > m1

implies thatm2 �= m1 �= m4.Applying (4) and (5) toα andβz gives thatαv−αz > va−za > 0
and thus m3 = αv−αz

vb−zb
> 0. The rest follows from point iii of this lemma.

(vi) Letm1 = m2 = 1
m3

= m and then either c1 ≤ l or c1 ≥ l for l = c2, c4. By symmetry
it is enough to consider when c1 ≥ c2, which implies c1 = zb − za ∗m ≥ βz − za ∗m = c2 or
zb ≥ βz . Using (5) to replace βz gives za ≥ αz and thus c4 = zb−αz ∗m ≥ zb− za ∗m = c1.

(vii) If l �= c1 for l = c2, c4, then by symmetry it is enough to consider one case: Let
c2 �= c1, which implies za �= αz . Using (5) to replace αz gives βz �= zb and hence c4 �= c1.
By point (vi) of this lemma we must have c2 �= c1 �= c4. If c2 �= c4, then by point (vi) of this
lemma we have l ≥ c1 ≥ k with at least one weak inequality being a strict inequality and we
can use the same argument as before. ��

For any bidder i ∈ N , �i is transitive if for any given p and for all (x, px ), (y, py),
(w, pw) ∈ Z(p), (x, px ) �i (y, py) and (y, py) �i (w, pw) imply that (x, px ) �i (w, pw).

Lemma 5 For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is transitive.
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Proof As (x, px ) ∼i (x, px ) at any p for any (x, px ) ∈ Z(p) it is assumed that x �= y �= w.
Transitivity in any other case follows by completeness. Fix some p = (p0, pa, pb). We start
by considering the case when x, y, w ∈ I+ and then proceed to where one of x , y, or w is
equal to the null-item 0. By point (i) of Lemma 4 it follows that either m1 = m2 = m4 or
m1 �= m2 �= m4. These will have to be treated separately. Assume m1 �= m2 �= m4 and by
point (ii) of Lemma 4 there exist p∗

a and p∗
b such that (a, p∗

a) ∼i (b, p∗
b) ∼i (ab, p∗

a + p∗
b).

Let x �= y for x, y ∈ {b, ab}, then we will show the following:
If for any i ∈ N (a, pa) �i (x, px ) and either (i) (x, px ) �i (y, py) or (i i) (y, py) �i

(a, pa) at some p, then (i) (y, py) �i (a, pa) or (i i) (x, px ) �i (y, py).
By symmetry, the following arguments apply when �i and � are replaced by �i and ⊀i

respectively. Let fX be the indifference curve between a and x and fY be the indifference
curve between y and a. Note that X , Y ∈ {1, 2} and X �= Y as x �= y. Moreover, let
fX (pa) = pXb , fY (pa) = pYb and f3(pb) = p3a .
Let V �= W for V ,W ∈ {�i ,�i }. In order to derive a contradiction, assume that

(a, pa) �i (x, px ), (x, px )W (y, py), and (y, py)V (a, pa) for any i ∈ N at some p. By
price monotonicity it follows that pXb ≤ pb ≤ pYb and, depending on the identity of the
packages, either p3a ≥ pa or p3a ≤ pa , with some weak inequality being a strict inequality.

It will now be shown that p∗
a �= pa . If pa = p∗

a , then p∗
b �= pb since otherwise

(a, pa) ∼i (b, pb) ∼i (ab, pa + pb), which contradicts the assumption that bidder i ∈ N
is not indifferent between the three consumption bundles. Combining pXb ≤ pb ≤ pYb with
p∗
b �= pb we get that either pXb �= p∗

b and/or pYb �= p∗
b . This together with pa = p∗

a imply

that the slopes mX = pXb −p∗
b

pa−p∗
a
and/or mY = pYb −p∗

b
pa−p∗

a
would be undefined. This contradicts the

requirement on the bids that va > za . Hence, pa �= p∗
a .

Assume that pa > p∗
a . Symmetric arguments, to the ones presented below, can be used

when pa < p∗
a . As m1 �= m2 by assumption, it follows that mY = pYb −p∗

b
pa−p∗

a
> mX = pXb −p∗

b
pa−p∗

a
.

Case 1 y = b. Then m1 > m2 and either m3 = p3a−p∗
a

pb−p∗
b
or m3 = p∗

a−p3a
p∗
b−pb

. By price

monotonicity y = b requires that p3a ≥ pa > p∗
a , which implies that we must have p∗

b �= pb
as m3 would otherwise be undefined, contradicting that vb > zb. If pb > p∗

b , then m1 =
pYb −p∗

b
pa−p∗

a
> m4 = pb−p∗

b
p3a−p∗

a
> 0, which contradicts point (iii) of Lemma 4. If p∗

b > pb, then we

must have that m1 = pYb −p∗
b

pa−p∗
a

> 0 >
p∗
b−pb

p∗
a−p3a

= m4 = pb−p∗
b

p3a−p∗
a

≥ m2 = pXb −p∗
b

pa−p∗
a
. By point (iv)

of Lemma 4 m3 > −1 and we have −1 > m4 ≥ m2. This is a contradiction of point (iv) of
Lemma 4.

Case 2: y = ab. Now p3a ≤ pa and m2 > m1 = pXb −p∗
b

pa−p∗
a

> 0, which requires pb ≥ pXb >

p∗
b . Then it follows by point (v) of Lemma 4 that m1 = pXb −p∗

b
pa−p∗

a
> m4 = pb−p∗

b
p3a−p∗

a
> 0. This in

turn requires p∗
b < pb ≤ pXb and p∗

a < pa ≤ p3a with some weak inequality being a strict
inequality, which is a contradiction.

Next the case when m1 = m2 = m4 = m is considered, which implies that we can

rewrite f3(pb) = p3A = c3 + pb ∗ m3 as pb = − c3
m3

+ p3a
m3

. Note that c4 = − c3
m3

and thus

pb = c4 + p3a ∗ m. Let x �= y �= w for x, y, w ∈ I+, then the following will be shown:
If (x, px ) �i (y, py) and (y, py) �i (w, pw) for any i ∈ N at some p, then (w, pw) �i

(x, px ).
To derive a contradiction assume that (x, px ) �i (y, py), (y, py) �i (w, pw), and

(w, pw) �i (x, px ) for some i ∈ N at some p. Note that by price monotonicity we
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either have: (i) f1(pa) = p1b ≤ pb ≤ p2b = f2(pa) and f3(pb) = p3a ≤ pa or (i i)
f1(pa) = p1b ≥ pb ≥ p2b = f2(pa) and f3(pb) = p3a ≥ pa , with at least one weak
inequality being a strict inequality. By symmetry it is enough to consider one case. Assume
that the three consumption bundles are related such that f1(pa) = p1b ≤ pb ≤ p2b = f2(pa)
and f3(pb) = p3a ≤ pa , with at least one weak inequality being a strict inequality. From
this it follows that p1b = c1 + pa ∗ m ≤ pb = c4 + p3a ∗ m ≤ c4 + pa ∗ m and
p1b = c1 + pa ∗ m ≤ p2b = c2 + pa ∗ m. Thus, c1 ≤ c4 and c1 ≤ c2. However, as at
least one of the three previous mentioned weak inequalities is a strict inequality we must
have that c j �= ck for some j �= k where j, k ∈ {1, 2, 4}. Therefore, c1 �= c2 �= c4 by point
vii. of Lemma 4. Hence, c1 < c4 and c1 < c2, which is a contradiction of point vi. of Lemma
4.

Finally, the case when x, y, w ∈ I andwhere one of x, y, orw is equal to the null-item 0 is
considered. By the requirements of the reports we know that (0, 0) ∼i (a, va) ∼i (b, vb) ∼i

(ab, vab) for any i ∈ N . Let x �= y for x, y ∈ ab and l �= k �= w for l, k, w ∈ {0, x, ab},
then we will show the following:

1. If (x, px ) �i (0, 0) and either (i) (y, py) �i (x, px ) or (i i) (0, 0) �i (y, py) for any
i ∈ N at some p, then (i) (0, 0) �i (y, py) or (i i) (y, py) �i (x, px ).

2. If (l, pl) �i (k, pk) and (k, pk) �i (w, pw) for any i ∈ N at some p, then (w, pw) �i

(l, pl)

Once again, let V �= W for V ,W ∈ {�i ,�i }.
1. To derive a contradiction we assume that (x, px ) �i (0, 0), (y, py)V (x, px ), and

(0, 0)W (y, py). Combining we have: (y, py)V (x, px ) �i (0, 0) ∼i (y, vy)W (y, py). By
price monotonicity we have py ≤ vy ≤ py , with at least one of the weak inequalities being
a strict inequality.

2. Note that pab = px + py . Let fX denote the indifference curve between x and ab and let
mX denote its slope.Moreover, let fX (px ) = pXy for some px . Assume that (l, pl) �i (k, pk),
(k, pk) �i (w, pw), and (w, pw) �i (l, pl) at some p. By pricemonotonicity we either have:
pXy ≥ py , px ≤ vx , and px + py ≥ vab, or pXy ≤ py , px ≥ vx , and px + py ≤ xab, with
at least one weak inequality being a strict inequality as (w, pw) �i (l, pl). By symmetry
it is enough to consider one case. So assume the consumption bundles are related such that
pXy ≥ py , px ≤ vx , and px + py ≥ vab, with at least one weak inequality being a strict
inequality. By the requirements of the bids we know that vab = vx + η, where η is equal
to either αv or βv depending on the identity of x . Hence, px + py ≥ vx + η. Therefore,
py − η ≥ vx − px and pXy − η ≥ vx − px ≥ 0. If vx = px , then pXy = η as fX (vx ) = η

by construction. From this it follows that py = η as 0 = pXy − η ≥ py − η ≥ 0. Therefore,

pXy = py and px + py = vab. Since some of the three weak inequalities above must be
a strict inequality, it must be that px < vx , which is a contradiction. Hence, vx > px and

as fX (vx ) = η we must have mX = η−pYx
vx−px

. Since py − η ≥ vx − px and pXy ≥ py by
assumption, we have mX ≤ −1, which is a contradiction. ��

Proposition 1 For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is complete and transitive.

Proof Lemmas 3 and 5 together imply Proposition 1 ��
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9 Appendix B: proofs related to existence

In the following sections, it is assumed that the gross substitutes condition is fulfilled for �i

for any i ∈ N and if x ⊂ y, then x is a proper subset of y. An item is said to be in excess
demand if there are more bidders demanding a package containing the item than the number
of copies of the item. Similarly, an item is said to be in under demand if there are less bidders
demanding a package containing the item than the existing number of copies of the item.

Proposition 2 If vab < va + vb for each bidder i ∈ N, then the set of approximated equilib-
rium prices, P , is non-empty.

Proof We start by noting that it is always possible to set pa , pb, and thus p, sufficiently high
such that it is possible to construct an assignment μ where μ(i) ∈ Di (p) for all x ∈ ab.
Let C = {p ∈ R

3 | ∃μ s.t. μ(i) ∈ Di (p) for all i ∈ N }, which we know is non-empty.
Moreover, P ⊂ C. To derive a contradiction it is assumed that P = ∅. From this it follows
that for each p ∈ C there exists some assignment μ associated with p such that #Nx < qx
and px > rx for at least some x ∈ ab and where μ(i) ∈ Di (p) for all i ∈ N . Let μp denote
an assignment at some price vector p and A(p) = {μ | μ(i) ∈ Di (p) for all i ∈ N } be the
set of assignments such that each bidder is assigned a package she demands at price vector
p. Let r = (r0, ra, rb). As p ≥ r , it follows that C contains some minimal element. Denote
such a minimal element by s. The idea of the proof is to show that if P = ∅, then s cannot
be a minimal element of C.

If pb = rb for some p ∈ C, then sb = rb for some s and it must be that #Na < qa
and sa > ra for any μs ∈ A( j). By symmetry, the following arguments hold when b and
a are interchanged. For this part of the proof, price monotonicity and the continuity of the
approximated indifference curves will imply that s cannot be a minimal element of C. Let
p′ ≤ s be such that p′

b = sb = rb, and ra ≤ p′
a < sa . By price monotonicity, the demand

for item b has weakly decreased at p′ as compared to at s. Moreover, as p′
b = rb = sb we

know that there does not exist excess demand for item b at p′. Since p′ /∈ C, it is required that
there exist at least some bidder k ∈ N for whom μp′ /∈ Dk(p′) at any μp′ . Since the demand
for item a has weakly increased at any p′, in comparison to s, it must always be possible to
find some p′ and μp′ where either #Na = qa , if p′

a > ra , or #Na ≤ qa , if p′
a = ra , and

where μp′(i) ∈ Di (p′) for all i ∈ N . Because if there exists excess demand for item a at any
p′ ≤ s and under demand at s, then there exist at least two bidders who did not demand any
package containing a at s and who only demand packages containing a at p′. Collect these
bidders in the set F . By price monotonicity and since the approximated indifference curves
are continuous, there must exist some price vector p′′ such that p′ < p′′ < s for each bidder
i ∈ F where the bidder is indifferent between a package containing a and another package
not containing a. As item a is in under demand at s, there must exist some p′′ where it is
possible to assign μs( j) to each j ∈ N\{i}, and in particular to each j ∈ F\{i}, and w ⊃ a
to some i ∈ F . Therefore, μp′′(i) ∈ Di (p′′) for all i ∈ N and p′′ ∈ C, which contradicts the
minimality of s.

Now assume that px > rx for all x ∈ ab and p ∈ C, which implies that there exists at
least some minimal element s ∈ C such that p′ /∈ C for any p′ ≤ s where p′

x < sx for
some x ∈ ab. Once again, at s we know that #Nx < qx for at least some x ∈ ab at any
μs ∈ A(s). Assume that #Na < qa and #Nb ≤ qb for some μs ∈ A(s). By symmetry, the
following arguments can be used if a and b are interchanged. Let p′ be a price vector such
that ra < p′

a < sa and p′
b = sb. As p′ /∈ C we know that μp′(i) /∈ Di (p′) for some i ∈ N

and there exists excess demand for item a and/or b.
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Let s be such that sa is the minimum pa conditional on s ∈ C and assume that item b is
in excess demand at p′. We will let p′′ be a price vector such that p′′

a < sa and p′′
b > sb

and then show that p′′ ∈ C, which contradicts the minimality of s. Since s is minimal,
it must be that some bidders are indifferent at s, but not at p′. The change in demand of
these bidders causes the excess demand of b to vanish at s. As p′

b = sb we cannot have
that the demand of b at s decreases because of that ∃i ∈ N such that Di (p′) = {b} and
Di (s) = {a, b} or Di (s) = {b, 0}. Similarly, as we assume that vab < va + vb, �i ∈ N such
that Di (p′) = {ab} and Di (s) = {ab, 0} since vab = 0 implies va > pa and/or vb > pb.
Hence, the excess demand of b at p′, which vanishes at s, must stem from that Di (p′) = {ab}
and Di (s) = {a, ab} or Di (s) = {a, b, ab} for at least some bidder i ∈ N . Collect these
bidders in the set F . Now we will show that we can assign package a to any i ∈ F at p′′.
To achieve this we let mi

2 be the slope of the indifference curve between a and ab for bidder
i ∈ N and mmax

2 = max{|mi
2||i ∈ N } be the slope with the largest absolute value among all

bidders. When choosing p′′, we let the ratio of the absolute price change be: Δpb
|Δpa | > mmax

2 .
This implies that the direction of the price change is mainly driven by an increase in pb and
that we do not cross any indifference curve between the packages a and ab for any i ∈ N
when moving from s to p′′. Because of this and since p′′

a < sa and p′′
b > sb it must be that

Di (p′′) = {a} for all i ∈ F and we thus let μp′′(i) = a for all i ∈ F . Moreover, we make
the change from s to p′′ sufficiently small such that weakly less number of bidders i ∈ N
are assigned package a at μp′′ than at μs . This is possible since we have decreased pa and
increased pb and for any bidder i ∈ N it must be that if a ⊆ x ∈ Di (s), then a ⊆ μs(i)
since otherwise it would be possible to have #Na = qa at s, which is a contradiction. Finally,
since p′′

a < sa and p′′
b > sb and we do not cross any indifference curve between the packages

a and ab for any i ∈ N , we do not have to assign more copies of b at p′′ than we do at s.
Consequently, p′′ ∈ C, which contradicts that sa is the minimum pa conditional on that s ∈ C

So, it must be that a is the item in excess demand at p′. If #Na < qa for allμs ∈ A(s), then
the same argument as for the case when sb = rb = p′

b can be used to generate a contradiction.
Therefore, #Na < qa for some assignment μ′

s ∈ A(s) and #Na = qa , #Nb < qb for some
other assignment μ′′

s ∈ A(s) as s /∈ P . If #Nb < qb for all μs ∈ A, then we can use
symmetric arguments to case when sb = rb = p′

b in order to derive a contradiction. It must
therefore be that #Na < qa and #Nb = qb at μ′

s .
In this part it will be shown that it must be possible to find some p′ ≤ s such that

p′ ∈ C. More specifically, it will be shown that an assignment μp′ can be constructed such
that μp′(i) ∈ Di (p′) for all i ∈ N . To see this, note that for any bidder i ∈ N who only
demands one package, the price decrease can always be made sufficiently small such that
Di (p′) = Di (s). For any bidder i ∈ N for whom 0, x ∈ Di (s), where x ∈ {a, b, ab}, then
either the assumption of vab < va + vb is violated in the case when x = ab since vab = 0
implies va > pa and/or vb > pb or it is possible to make the price decrease sufficiently
small such that x ∈ Di (p′) for any such bidder. Note that μi (s) = x at any μs ∈ A(s)
for any such bidder i ∈ N as s ∈ P otherwise. Therefore, it is possible to construct μp′
such that μs(i) = μp′(i) = x for any bidder i ∈ N discussed above. Moreover, any bidder
who is indifferent between x ∈ ab and ab at s must have μs(i) = ab at any μs ∈ A(s) as
p ∈ P otherwise. For any price decrease sufficiently small it follows that Di (p′) ⊆ Di (s′).
Hence, it is possible to let μp′(i) ⊆ μs(i) for any such bidder i ∈ N . The only bidders left to
consider are the ones who are indifferent between a and b. Note that some such bidder must
exist as #Na < qa and #Nb = qb for μ′

s and #Na = qa and #Nb < qb for μ′′
s . Collect each

such bidder in the set S. As μp′(i) ⊆ μs(i) for all i ∈ N\S and #Nx < qx for some x ∈ ab
at s, it follows that, at p′, there are more copies of item a and b to assign to the bidders in
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S than number of bidders contained in S. As each bidder i ∈ S wishes to be assigned only
one item at s and prices can always be lowered sufficiently little such that Di (p′) ⊆ Di (s)
for any i ∈ S, there must exist some p′ where μp′(i) ∈ Di (p′) for all i ∈ S.

More specifically, let f i1 be the approximated indifference curve between item a and b
for any bidder i ∈ S and mi

1 its slope. let T = {mi
1 | i ∈ S} and as any mi

1 ∈ R+, the
elements in T can be ordered from smallest to greatest. Let k = #{i ∈ S | μ′

s(i) = b}. As
#Na < qa and #Nb = qb for μ′

s and #Na = qa and #Nb < qb, it must be that k ≥ 1. Pick
the kth element from T and denote the corresponding approximated indifference curve by
f k1 . As μi (p′) = μi (s) for all i ∈ N\S it follows that k is the number of copies of b which
are possible to assign to any bidder i ∈ S at p′. Furthermore, #S − k + 1 is the number of
copies of a which can be assigned at p′. By lowering prices along f k1 sufficiently little, it
must by price monotonicity be that (b, pb) �i (a, pa) for a maximum of k−1 bidders i ∈ S,
(a, pa) �i (b, pb) for a maximum of #S − k bidders i ∈ S, and (a, pa) ∼i (b, pb) for at
least 1 bidder i ∈ S. As there are more copies of item a and b to assign to the bidders in S
than number of bidders contained in S at p′ and no bidder requires ab, it is possible to let
μp′(i) ∈ Di (p′) for all i ∈ S. Therefore, μp′(i) ∈ Di (p′) for all i ∈ N , which contradicts
the minimality of s. ��
Proposition 3 If vab > va + vb for each bidder i ∈ N, then the set of approximated equilib-
rium prices, P , is non-empty.

Proof This proof is similar to Proof 5 and will use some of the notation used in that proof.
We let s be a minimal element of C. If P is empty, then there exists excess demand for a
and/or b at some q ≤ s and under demand for a and/or b at s.

We start that noting that, since s is minimal, some bidders need to be indifferent at s and
that these bidders cause the excess demand at q to vanish at s. Collect these bidders in the
set F . Note that we can make the price change sufficiently small such that Di (q) = Di (s)
for all i /∈ F . It cannot be that a and b both are in excess demand since if {x, y} ⊆ Di (s) for
x ∈ {a, b}, y ∈ {ab, 0} and any i ∈ F , then these bidders cannot cause any under demand of
x at s. So, we must have that {ab, 0} ⊆ Di (s) for any i ∈ F , but then we can either create
an approximated Walrasian equilibrium, when the number of a and b in excess demand are
equal, or we can assign the packages such that we do not have any under demand at s. Since
any bidder i ∈ F , previously discussed, cannot cause an under demand of a or b individually,
at s, neither can them all together.

Hence, we have that either a or b is in excess demand q . Assume that b is in excess demand
at q . The same arguments can be used if a is in excess demand. Select q and s such that
sa = min pa |s ∈ C.

We will now construct p′ such that p′
a < sa and p′

b > sb and show that p′ ∈ C,
contradicting the minimality of s. Note that it must be possible to let #Nb = qb at s since
the bidders in F, who cause the excess demand of b to vanish, still demand some package
containing b, since they are indifferent. Therefore, the same number of copies of b can be
assigned at s as at p. So we can make #Nb = qb at s. Consequently, #Na < qa for any μs .
Therefore, s > r since otherwise s ∈ P .

We make the price change from s to p′ sufficiently small such that any bidder only
demanding one package still demands this package. We will now show that the demand for
items a and b do not increase at p′. Since #Na < qa for any μs , it is possible to let a ⊆ μs

and, thus, a ⊆ μp′ for any bidder for whom a ⊆ Di (s) and a ⊆ Di (p′). Moreover �i ∈ N
such that a � Di (s) and a ⊆ (p′). Consequently, #Na < qa at p′ as well.

Any bidder i ∈ F for whom {b, x} ⊆ Di (s) for x ∈ {0, ab} does not demand more copies
of b at p′. The only buyers who can increase the demand for b at p′ are the ones for whom
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{ab, x} ⊆ Di (s) for x ∈ {a, 0}. However, we will construct p′ such that these bidders can
always be given a or 0. This is achieved by making the ratio of the absolute price change:
Δpb
|Δpa | , sufficiently large such that none of the indifference curves are crossed, in which case

Di (p′) = {ab}. By construction, the indifference curve between ab and 0 has slope −1. To
see this, ab ∼i 0 requires that vab = pa + pb or pb = vab − pa , which is the expression
for the indifference curve with slope −pa . Consequently, letting

Δpb
|Δpa | > 1 ensures that any

such indifference curve is not crossed. If Di (s) ⊆ {ab, a} and Di (p′) = {ab}, then the
indifference curve between ab and a, f2, must be downward-sloping. Therefore, we order
the indifference curves f i2 for all bidders i ∈ N by the absolute values of their slopes |mi

2|
in the set M2. Then we let mmax

2 = maxmi
2||mi

2| ∈ M2. Finally, we let the absolute ratio

of the price increase, when going from s to p′, be: Δpb
|Δpa | > mmax

2 . This ensures that we do
not cross any downward sloping indifference curve f2 and we have that a ⊆ Di (p′) for any
bidder i ∈ F , for whom {ab, a} ⊆ Di (s), and we can let μi (p′) = a for any such bidder.
Consequently, #Nb = qb and #Na < qa at p′ and p′ ∈ C, which contradicts the minimality
of sa . ��

Lemma 6 will be used in the proof of Proposition 4.

Lemma 6 For any two price vectors p and p′ where px > p′
x and p′

y ≥ py for x, y ∈ ab
and x �= y, if for some i ∈ N, x ⊆ w for some w ∈ Di (p), then x ⊆ w′ for all w′ ∈ Di (p′).

Proof Let the price vector p′′ be defined as p′′
j = max{p j , p′

j } for all j ∈ {0, a, b}. Since
p′′
x = px we know by gross substitutes that there exists some w ∈ Di (p′′) such that x ⊆ w.

By price monotonicity (w, p′
w) �i (w, p′′

w) �i (o, p′′
o ) ∼i (o, p′

o) for any o ∈ I for which
x � o. Therefore, x ∈ w′ for all w′ ∈ Di (p′). ��
Proposition 4 If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N, then P forms a complete lattice.

Proof It will first be shown that if p′, p′′ ∈ P , then s ∈ P and then that h ∈ P as well.
Combining this with the fact that P is bounded from below by the seller’s reservation prices
and from above by some bidder’s report v, we can conclude that P forms a complete lattice.

By definition p0 = 0 for any p, so pa and pb are the prices of interest. If #Nx < qx for
some x ∈ ab at some p′ ∈ P , then we must have px = rx for all p ∈ P . Therefore, for any
p′, p′′ ∈ P , s ∈ P . Now let 〈p′, μ′〉 and 〈p′′, μ′′〉 be two distinct approximated Walrasian
equilibria where p′ and p′′ are such that p′

a > p′′
a > ra and p′′

b > p′
b > rb. Hence, #Na = qa

and #Nb = qb for both μ′ and μ′′. Let μp be an assignment associated with the price vector
p. It will first be shown that μ′(i) = μ′′(i) for all i ∈ N and secondly that it is possible to
let μ′(i) = μ′′(i) = μs(i) = μh(i) for all i ∈ N . Therefore, 〈s, μs〉 and 〈h, μh〉 are two
approximated Walrasian equilibria.

Ifμ′(i) = a for any i ∈ N , then a ⊆ μ′′(i) by Lemma 6. In order to derive a contradiction,
assume ab ∈ Di (p′′), which by Lemma 6 implies that b ⊆ w for all w ∈ Di (p′), which
is a contradiction. Hence, μ′(i) = a implies that μ′′(i) = a. Now assume μ′′(i) = a and
μ′(i) �= a. Since #Na = qa and #Nb = qb under both μ′ and μ′′, there has to exist some
j ∈ N\{i} such that either a ⊆ μ′( j) and a � μ′′( j), or b ⊆ μ′′( j) and b � μ′( j),
which we know by Lemma 6 does not exist. Therefore, μ′′(i) = a implies that μ′(i) = a.
If μ′(i) = ab, then a ⊆ μ′′(i) by Lemma 6, which, by using the same arguments as before,
implies that μ′′(i) = ab. By symmetry the above arguments apply for the case when a and
b, together with the assignments, are interchanged. The previous arguments together imply
that if μ′(i) = 0 then μ′′(i) = 0.
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Now to the second part. For any i ∈ N for whom μ′(i) = μ′′(i) = y for any y ∈ {0, a, b}
we know by pricemonotonicity that (y, sy) �i (x, sx ) for any x ∈ {0, a, b}. In order to derive
a contradiction assume that (ab, sa + sb) �i (y, sy). By gross substitutes a ⊆ w for some
w ∈ Di (p′′) and b ⊆ w for somew ∈ Di (p′). FromLemma 6 it follows that ab = Di (p′′) =
Di (p′), which is a contradiction. Finally, for any i ∈ N for whom μ′(i) = μ′′(i) = ab, it
follows by price monotonicity that (ab, sa +sb) �i (0, 0), (ab, sa +sb) �i (ab, p′

a + p′
b) �i

(b, p′
b) ∼i (b, sb), and (ab, sa + sb) �i (ab, p′′

a + p′′
b ) �i (a, p′′

a ) ∼i (a, sa). It is therefore
possible to let μ(i) = ab. Therefore, s ∈ P .

Lastly it will be shown that h ∈ P as well. For any i ∈ N for whom μ′(i) = μ′′(i) = y
for any y ∈ {0, a, b} we know by price monotonicity that (y, hy) �i (x, hx ) for any x ∈ I.
If μ′(i) = μ′′(i) = ab, then a ∈ w and b ∈ w′ for some w,w′ ∈ Di (h) by gross substitutes.
Assume ab /∈ Di (h) and a, b ∈ Di (h). However, for any price vector p such that pa < ha
and pb = hb it follows by price monotonicity that for a price decrease sufficiently small,
b /∈ Di (p), which contradicts the gross substitutes condition. Thus, h ∈ P . ��

10 Appendix C: proofs related to the process

For many of the proofs in this section, the following sets of packages are introduced: Let
Ca = {a, ab, {a, ab}}, Cb = {b, ab, {b, ab}} and Ca,b = {{a, b}, {a, b, ab}}. The reason
for this is that the approximated demand correspondence of any bidder who demands some
package x �= 0, at some p, is a subset of at least one of Ca , Cb, and Ca,b. Therefore, at any
price vector p, it is possible to collect any bidder who demands at least some package x �= 0
into at least one of the following sets: LetDa(p) = {i ∈ N | Di (p) ∈ Ca},Db(p) = {i ∈ N |
Di (p) ∈ Cb}, Da,b(p) = {i ∈ N | Di (p) ∈ Ca,b}, and Dab(p) = {i ∈ N | Di (p) = {ab}}.
These sets will be very useful in many of the proofs in this section.

Proposition 5 Foragivenprice vector p, there exists anassignmentμ such thatμ(i) ∈ Di (p)
for all bidders i ∈ N if and only if KN (x, p) ≤ qx for all x ∈ I.

Proof We start by showing the if part of Proposition 5: if there exists an assignment μ for
some price vector p such that μ(i) ∈ Di (p) for all i ∈ N , then KN (x, p) ≤ qx for all x ∈ I.

We know that KN (0, p) ≤ q0 for all p. Note that if Ki (a, p) = 1 for some i ∈ N , then
i ∈ Da(p). Thus, KN (a, p) = #Da(p). Since μ(i) ∈ Di (p) ∀i ∈ N , it is implied that
Da(p) ⊆ Na . As #Na ≤ qa by assumption, it therefore follows that KN (a, p) = #Da(p) ≤
#Na ≤ qa . KN (b, p) ≤ qb by symmetrical arguments.

We can also note that KN (ab, p) = #Da(p) + #Db(p) + #Da,b(p) since Ki (ab, p) = 1
for any i ∈ N whenever Di (p) ∈ Ca ∪Cb ∪Ca,b\ab, Ki (ab, p) = 2 whenever Di (p) = ab,
andDa(p)∩Db(p)∩Da,b(p) = Dab(p). Sinceμ is such thatμ(i) ∈ Di (p) for all i ∈ N by
assumption, it follows that Da(p) ∪ Db(p) ∪ Da,b(p) = Na ∪ Nb and Dab(p) ⊆ Na ∩ Nb.
Therefore, KN (ab, p) = #Da(p) + #Db(p) + #Da,b(p) ≤ #Na + #Nb ≤ qa + qb = qab.

We continue by showing the only if part of Proposition 5: if KN (x, p) ≤ qx for all x ∈ I
at some p, then there exists an assignment μ such that μ(i) ∈ Di (p) for all i ∈ N .

As KN (x, p) ≤ qx for all x ∈ I, we know from before that #Da(p) ≤ qa , #Db(p) ≤ qb
and #Da(p)+#Db(p)+#Da,b(p) ≤ qa +qb. Assume that at some price vector p there does
not exist a μ such that μ(i) ∈ Di (p) for all i ∈ N , which implies that for all assignments
there exists at least one bidder i ∈ N such that μ(i) /∈ Di (p). Denote this bidder by k. Note
that we can always let μ(k) = 0 so k ∈ Da(p) ∪Db(p) ∪Da,b(p). Moreover, if μ(k) = ab,
then it is possible to remove items in order for μ(k) ∈ Dk(p). If there would exist a group of
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bidders S ⊆ N for which μ(i) /∈ Di (p) for all i ∈ S, then the following arguments would
apply to each bidder i ∈ S individually.

We will focus our attention on an assignment, denoted μ, for which #Nx ≤ qx for all
x ∈ ab, and where each bidder j ∈ N\{k} is matched to a minimal element, w.r.t cardinality,
of her demand correspondence. We will show, by way of contradiction, that it is always
possible to construct μ such that each bidder is assigned something which she demands. As
μ(k) �= ab, and μ( j) = ab if and only if j ∈ Dab(p) for all j ∈ N\{k} we know that
Dab(p) ⊇ Na ∩ Nb.

Obviously, it cannot be that #Nx < qx for all x ∈ ab. Let x �= y for x, y ∈ ab. There are
two cases to consider:

Case 1 #Nl = ql for all l ∈ {a, b}.We cannot haveμ(k) = 0 because thenDa(p)∪Db(p)∪
Da,b(p) ⊃ Na ∪ Nb and KN (ab, p) = #Da(p) + #Db(p) + #Da,b(p) > #Na + #Nb =
qa + qb = qab. Therefore, μ(k) = x and hence y ⊆ w for all w ∈ Dk(p), as we otherwise
would haveμ(k) ∈ Dk(p). From this it follows that k ∈ Dy and as y � μ(k) it must either be
that k ∈ Dab(p) ⊃ Na ∩ Nb, in which case KN (ab, p) = #Da(p) + #Db(p) + #Da,b(p) >

#Na + #Nb = qa + qb = qab, or k ∈ Dy(p)\Dab(p), which implies that there does not
exist a bidder j ∈ Da,b(p) such that y ⊆ μ( j). If this was true, it would be possible
to switch the assignment between bidder k and bidder j yielding μ(i) ∈ Di (p) for all
i ∈ N . As y � μ( j) for all j ∈ Da,b(p), and k ∈ Dy , it follows that Ny ⊂ Dy , and thus
KN (y, p) = #Dy(p) > #Ny = qy , which is a contradiction.

Case 2 #Nx < qx and #Ny = qy . Now we can always let μ(i) = x and if Nx = qx in
consequence of this, we are back in case 1. As μ(k) = x /∈ Dk(p) we know that y ∈ w for
all w ∈ Dk(p), and k ∈ Dy . As #Nx < qx it is implied that there does not exist a bidder
j ∈ Da,b(p) such that y ∈ μ( j) because then it would be possible to switch the assignment
between bidder k and bidder j . Therefore, Ny ⊂ Dy , and KN (y, p) = #Dy > #Ny = qy . ��
Lemma 1 O(p) has a unique minimal element with respect to cardinality denoted O∗(p).

Proof By the construction of O(p) we know that g(x, p) = g(y, p) for all x, y ∈ O(p).
Since #0 < #a = #b < #ab, we need to show that a, b ∈ O∗(p) can never be true.

We will start by showing that if x ⊆ y for any x, y ∈ I, then Ki (x) ≤ Ki (y) for each
i ∈ N . To derive a contradiction, assume that x ⊆ y and Ki (x) > Ki (y) for some i ∈ N ,
which is equivalent to

min
w∈Di (p)

#(x ∩ w) > min
w∈Di (p)

#(y ∩ w)

Let w1 ∈ argminw∈Di (p) #(x ∩ w) and w2 ∈ argminw∈Di (p) #(y ∩ w). If w1 = w2 = w,
then #(x ∩ w) > #(y ∩ w) implies that x � y. If, on the other hand, w1 �= w2, then it must
be that #(x ∩ w2) ≥ #(x ∩ w1) > #(y ∩ w2), which in turn implies that x � y.

We will now show that Ki (ab, p) ≥ Ki (a, p) + Ki (b, p) for each i ∈ N . Since a ⊆ ab
and b ⊆ ab it follows, by the above, that Ki (ab, p) ≥ max{Ki (a, p), Ki (b, p)}. Assume that
Ki (ab, p) < Ki (a, p)+Ki (b, p) for some i ∈ N at some p. As Ki (a, p), Ki (b, p) ∈ {0, 1}
we must have that Ki (a, p) = Ki (b, p) = 1. However, Ki (a, p) = Ki (b, p) = 1 implies
that Di (p) = ab and thus that Ki (ab, p) = Ki (a, p) + Ki (b, p) for each i ∈ N .

Ki (ab, p) ≥ Ki (a, p)+ Ki (b, p) for each i ∈ N implies that KN (ab, p) ≥ KN (a, p)+
KN (b, p) as well as g(ab, p) ≥ g(a, p) + g(b, p). Since g(0, p) = 0 for all p we have
that if O∗(p) = 0, then g(x, p) ≤ 0 for all x ∈ I. So, if a, b ∈ O∗(p), then g(a, p) =
g(b, p) = s for some s > 0 and g(ab, p) ≥ 2s by the arguments above. This implies that
O(p) = O∗(p) = ab, which is a contradiction. ��
Lemma 2 If ε(t) = 0 in Step 2 of Process 1, then ε(t) > 0 in Step 3 of Process 1.
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Proof By construction of Process 1,we know that 0 = O∗(pt ) if and only if t = T . So assume
that t < T , O∗(pt ) = x for some x ∈ I\0 and that ε(pt ) = 0 in step 2. It will be shown that
at any pt there always exist some e > 0 and δ(pt ) such that O∗(pt + eδ(pt )) = O∗(pt ),
and hence ε(pt ) > 0.

If x = O∗(pt ) ∈ ab, then by gross substitutes and price monotonicity it must be that by
only raising the price of item y, the demand for x is weakly increased and the demand for
the other packages contained in I\0 are weakly decreased. As a consequence, the aggregate
requirement of x weakly increases as well. Therefore, if δ0(pt ) = 0, δx (pt ) = 1, and
δy(pt ) = ∞, then O∗(pt + eδ(pt )) = O∗(pt ) for some e > 0 sufficiently small in step 3 of
Process 1 and there exists ε(t) > 0.

Assume O∗(pt ) = ab. The idea of this part of the proof is to construct a particular price
vector p′ ≥ pt and to show that the requirement for ab = O∗(pt ) is greater than for any
other package at p′. To simplify notation, let S = Da,b(pt ) = {i ∈ N | Di (p) ∈ Ca,b}.
Furthermore, let qS

x (p) = qx −KN\S(x, p) for any x ∈ ab at some p. Let p′ be a price vector
such that p′

x > ptx for at least some x ∈ ab. Note that Ki (ab, pt ) = Ki (a, pt ) + Ki (b, pt ),
for any i ∈ N\S at any pt and that for any p′ ≥ pt it is possible to make the price increase
sufficiently small such that Ki (ab, p′) = Ki (a, p′) + Ki (b, p′) and Ki (x, p′) ≥ Ki (x, pt )

for any x ∈ I. Therefore, at any such p′ itmust be thatqS
a (p′) ≤ qS

a (pt ) andqS
b (p′) ≤ qS

b (pt ).
Moreover, for any i ∈ S we have Ki (ab, pt ) = 1, Ki (x, pt ) = 0 for any x ∈ I\ab.
Therefore, g(ab, pt ) = #S − qS

a (pt ) − qS
b (pt ).

It will now be shown that for any p′ ≥ pt , where the price increase is sufficiently small,
Di (p′) �= {ab} for any i ∈ S. If ab /∈ Di (pt ) for any i ∈ S, then any such p′ ≥ pt can be
found by making the price increase sufficiently small. If Di (pt ) = {a, b, ab} however, then
Di (p′) = {ab} would violate the gross substitutes condition. It can be noted that pt is the
price vector where the three approximated indifference curves, f1, f2, and f3, intersect for
bidder i ∈ S. If Di (p′) = ab for some p′ ≥ pt , then p′

x > ptx for all x ∈ ab and we must
by price monotonicity have that f2(p′

a) = p′′
b > p′

b, and f3(p′
b) = p′′

a > p′
a . Therefore,

m2 = p′′
b−ptb
p′
a−pta

> m4 = p′
b−ptb

p′′
a−pta

> 0. Let c be a price vector such that f2(ca) = cb and

ca + cb = vab. Since m2 > m4 it must be that f3(cb) = c′
a > ca and Di (c) = {a, ab, 0}.

Let c′′ be a price vector such that c′′
a = ca and c′′

b = cb + γ for some γ > 0. Then
we must have Di (c′′) = 0 for some γ > 0 sufficiently small as it is always possible to
find c′′ such that f3(c′′

b) = c′′′
a > c′′

a , c
′′
a + c′′

b > vab, and f2(c′′
a) = c′′′

b > c′′
b , which

by price monotonicity implies that (0, 0) ∼i (ab, vab) �i (ab, c′′
a + c′′

b) �i (x, c′′
x ) for

x ∈ ab. However, this contradicts the gross substitutes condition as a � w for any w ∈
Di (c′′).

As Di (p′) �= ab for any i ∈ S and p′ ≥ p, where the price increase is sufficiently
small, it must be possible to construct p′ such that Ki (ab, p′) = 1, for any i ∈ S. There-
fore,

0 < g(ab, pt ) = #S − qS
a (pt ) − qS

b (pt ) ≤ #S − qS
a (p′) − qS

b (p′) = g(ab, p′).

The strict inequality follows from O∗(pt ) = ab and the weak inequality from the fact that
qS
x (p′) ≤ qS

x (pt ) for x ∈ ab and some p′ ≥ pt . So, if qS
x (pt ) < 0 for all x ∈ ab, then

g(ab, p′) = #S − qS
a (p′) − qS

b (p′) > #S − qS
x (p′) ≥ g(x, p′) and x ∈ ab. The weak

inequality follows from that Ki (x, p′) ∈ {0, 1} for any i ∈ S. There are two cases two
consider:

Case 1 qS
a (pt ) ≥ 0 and qS

b (pt ) ≥ 0. For g(ab, pt ) > 0 it has to be that #S >

qS
a (pt ) + qS

b (pt ). As before, we have 0 < g(ab, pt ) = #S − qS
a (pt ) − qS

b (pt ) ≤
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g(ab, p′). Let mi
1 be the slope of f i1 for bidder i ∈ S, and note that f1(pta) = ptb

for all i ∈ S. Define T = {mi
1 ∈ R | i ∈ S} and let n = qS

a (pt ) + 1. Pick
the nth element from T , which we denote mn

1. Let δ0(pt ) = 0, δb(pt ) = mn
1, and

δa(pt ) = 1. By increasing the prices by p′ = pt + eδ(pt ) for some e > 0 sufficiently
small, we must by price monotonicity have that (a, p′

a) �i (b, p′
b) for a maximum of

qS
a (pt ) bidders who belong to S, (b, p′

b) �i (a, p′
a) for a maximum of #S − qS

a (pt ) − 1
bidders who belong to S, and (a, p′

a) ∼i (b, p′
b) for at least one bidder i ∈ S. There-

fore,

g(a, p′) ≤ qS
a (pt ) − qS

a (p′)
< #S − qS

b (pt ) − qS
a (p′)

≤ #S − qS
b (p′) − qS

a (p′)
= g(ab, p′)

The first weak inequality follows from the fact that Di (p′) �= ab for any i ∈ S. The strict
inequality follows from #S − qS

b (pt ) > qS
a (pt ). Moreover, g(b, p′) ≤ #S − qS

a (pt ) − 1 −
qS
b (p′) < #S − qS

a (p′) − qS
b (p′) = g(ab, p′). Hence, O∗(p′) = ab, and there exist e, δ(pt )

such that ε(t) > 0 in step 3 of Process 1.
Case 2: qS

a (pt ) ≥ 0 and qS
b (pt ) < 0. For g(ab, pt ) > 0 we need g(ab, pt ) = #S −

qS
a (pt )−qS

b (pt ) > −qS
b (pt ) = g(b, pt ), or #S > qS

a (pt ).Moreover, #S > qS
a (pt ) ≥ qS

a (p′)
from before. Let p′ be such that p′

a = pta and p′
b = ptb+γ . Then for some γ > 0 sufficiently

small it must by price monotonicity be that (a, p′
a) �i (b, p′

b) for all i ∈ S. Combining this
with Di (p′) �= ab for any i ∈ S we have, g(a, p′) = #S − qS

a (p′) < #S − qS
a (p′) −

qS
b (p′) = g(ab, p′), and g(b, p′) = −qS

b (p′) < #S − qS
a (p′) − qS

b (p′) = g(ab, p′)
since #S > qS

a (p′). Hence, O∗(p′) = ab, and there exist e, δ(pt ) such that ε(t) > 0 in
Step 3 of Process 1. Symmetric arguments can be used if qS

b (pt ) ≥ 0 and qS
a (pt ) < 0.

��
The proof of Theorem 1 will be decomposed into Lemmas 7 and 9. Lemma 8 will aid in

the proof of Lemma 9.

Lemma 7 pmin ≤ pT

Proof It will be shown that for any p ≤ pmin , for which px < pmin
x for some x ∈ ab, it must

be that O∗(p) �= 0. As the prices are bounded from below by the seller’s reservation prices
it is assumed that pmin

x > rx for at least some x ∈ ab. p is constructed such that px < pmin
x

for at least some x ∈ ab. Thus, p /∈ P .
If it is possible to construct some assignment μp at price vector p such that #Nx = qx

for any x ∈ ab, or alternatively #Nx < qx for any x ∈ ab for which px = rx , then there
must exist i ∈ N for whom μp(i) /∈ Di (p) as p ∈ P otherwise. p ∈ P would contradict
the minimality of pmin . By Proposition 5 it follows that KN (x, p) > qx for some package
x ∈ I and since KN (0, p) ≤ q0 for all p it must be that O∗(p) �= 0.

Now assume, in order to derive a contradiction, that μp can only be constructed such that
#Nx < qx and px > rx for at least some x ∈ ab and that μ(i) ∈ Di (p) for all i ∈ N . Then
it must be possible to find a price vector p′ ≤ p where an assignment can be constructed
such that μ(i) ∈ Di (p′) for all i ∈ N and #Nw = qw for any w ∈ ab for which p′

w > rw
and #Nw ≤ qw for any w ∈ ab for which p′

w = rw . To see this it can be noted that, by price
monotonicity, the demand for anyw ∈ abweakly increases as pw is decreased. Therefore, by
decreasing px to p′

x it must be possible to find a price vector p′ and an assignment such that
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either p′
x > rx and #Nx = qx or p′

x = rx and #Nx ≤ qx . Furthermore, the demand for the
other item y ∈ ab, for which y �= x , has weakly decreased. Therefore, #Ny ≤ qy , p′

y ≥ ry .
Moreover, μ(i) ∈ Di (p′) for all i ∈ N as there would otherwise exist excess demand for
item x , which could be eliminated by raising its price, as there was no excess demand at p.
If #Ny < qy and p′

y > ry , then the price of item y can be decreased in the same manner.
By repeating this process, it must be possible to find some p′ ≤ p, where an assignment can
be constructed, such that μ(i) ∈ Di (p′) for all i ∈ N and #Nx = qx for any x ∈ ab for
which p′

x > rx and #Nx ≤ qx for any x ∈ ab for which p′
x = rx . This implies however

that p′ ∈ P , contradicting the minimality of pmin . There therefore exists i ∈ N such that
μ(i) /∈ Di (p) and by Proposition 5 it follows that KN (x, p) > qx for some package x ∈ I
and since KN (0, p) ≤ q0 for all p it must be that O∗(p) �= 0. ��

For Lemma 8 let x �= y for x, y ∈ ab.

Lemma 8 If for any two price vectors p and p′ where p′
x > px , p′

y = py, and y ⊆ w for all
w ∈ Di (p) and some i ∈ N, then y ⊆ w for all w ∈ Di (p′)

Proof By symmetry it is enough to consider when x = a and y = b. If b ∈ Di (p) for any
i ∈ N , then (b, p′

b) �i (k, p′
k) for all k ∈ I\b by price monotonicity. If ab = Di (p), then

f2(pa) = p2b > pb by price monotonicity. If, to derive a contradiction, a ∈ Di (p′), then
f2(p′

a) = p′2
b ≤ p′

b = pb andm2 = p′2
b −p2b
p′
a−pa

< 0. Let p′′ be a price vector where p′′
a = pa and

p′′
b = pb + γ for some γ > 0 sufficiently small such that Di (p′′) = ab as well. As m2 < 0

there exists a price vector k, for which ka < p′
a and kb = p′′

b , where f2(ka) = k2b < kb and
hence (a, ka) �i (ab, kab). Moreover, as a ∈ Di (p′) and ka < p′

a and kb > p′
b we must by

price monotonicity have (a, ka) �i (x, px ) for x ∈ {b, 0} as well. Hence, Di (k) = a, which
contradicts the gross substitutes condition since b /∈ w for any w ∈ Di (l).

Now we will show that ab = Di (p) implies that (b, p′
b) �i (0, 0). Assume (0, 0) �i

(b, p′
b), which by pricemonotonicity implies that p′

b = pb ≥ vb. For someprice vector k such
that kb = pb + γ and ka = pa for some γ > 0 sufficiently small we must have Di (k) = ab
as well. Let k′ be a price vector where k′

b = kb and k′
a > ka such that k′

b+k′
a > vab. From the

previous arguments we know that a /∈ Di (k′). Therefore, 0 = Di (k′). This however, violates
the gross substitutes condition since b /∈ w for any w ∈ Di (k′). Hence, (b, kb) �i (0, 0),
which concludes the proof. ��
Lemma 9 pT ≤ pmin

Proof To derive a contradiction assume that pt ≤ pmin for some t < T but pt+1
x > pmin

x
for some x ∈ ab. Denote the unique minimal set in excess demand at time t by O∗(pt ). We
know that there must exist some t and e ∈ [0, ε(t)) such that p′(e) = pt + eδ(pt ) ≤ pmin .
As e < ε(t), it follows that O∗(pt ) = O∗(p′(e)) �= 0. Let c(p) = {x ∈ ab | px = pmin

x } for
any p. Moreover, let c1 = O∗(p′(e)) ∩ c(p′(e)) and c2 = O∗(p′(e))\c1. We start by noting
that if g(x, p′(e)) > 0 for x ∈ ab, then KN (x, p) = #Dx (p′(e)) > qx . There are two cases
to consider:

Case 1 c1 �= ∅. If g(c1, p′(e)) > 0, then either c1 = ab, in which case pmin /∈ P ,
or c1 ∈ ab, which implies that KN (c1, p′(e)) = #Dc1(p

′(e)) > qc1 . As c1 ⊆ w for
all w ∈ Di (p′(e)) for all i ∈ Dc1(p

′(e)), it follows by Lemma 8 that c1 ⊆ w for all
w ∈ Di (pmin) for any such bidder i as well. Therefore, KN (c1, pmin) ≥ KN (c1, p′(e)) and
hence g(c1, pmin) > 0, which contradicts that pmin ∈ P .

Now assume that g(c1, p′(e)) ≤ 0, which implies that c1 ∈ ab and O∗(p′(e)) = ab. To
simplify let c1 = a and c2 = b. By symmetry, the following arguments can be used when
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a and b are interchanged. It will now be shown that g(a, pmin) > 0. To see this we start by
noting that as a, b ∈ Di (p′(e)) for all i ∈ Da,b(p′(e)), it follows that Ki (ab, p′(e)) = 1 for
any such bidder i ∈ N . Therefore, it follows that g(ab, p′(e)) = #Da,b(p′(e))+g(a, p′(e))+
g(b, p′(e)) and we know that #Da,b(p′(e)) ≥ 1 since O∗(p′(e)) = ab and g(a, p′(e)) ≤ 0.
Moreover, as O∗(p′(e)) = ab we know that #Da,b(p′(e)) + g(a, p′(e)) + g(b, p′(e)) >

g(b, p′(e)) or #Da,b(p′(e)) + g(a, p′(e)) > 0. By gross substitutes and price monotonicity
it must be that Ki (a, pmin) ≥ Ki (a, (p′(e))) for all i ∈ N . In particular, since a, b ∈
Di (p′(e)) for all i ∈ Da,b(p′(e)), it follows that Ki (a, p′(e)) = 0 and by gross substitutes
and price monotonicity that Ki (a, pmin) = 1 for any such bidder i ∈ Da,b(p′(e)). As
#Da,b(p′(e))+g(a, p′(e)) > 0, itmust be that g(a, pmin) ≥ #Da,b(p′(e))+g(a, p′(e)) > 0,
which is a contradiction.

Case 2: c1 = ∅ and c(p′(e)) �= ∅. As c1 = ∅ and c(p′(e)) �= ∅ it must be that e, δ(pt ) and
ε(t) are generated in step 3 of Process 1. Furthermore, c2 = O∗(p′(e)) �= ∅ and O∗(p′(e)) �=
ab because if O∗(p′(e)) = ab, then c1 �= ∅. For simplicity we can let c2 = O∗(p′(e)) = a
but symmetric arguments apply if c2 = b. Let p′′ be defined as p′′

b = pmin
b = p′

b(e) and
p′′
a = p′

a(e)+γ for some γ > 0 sufficiently small such that p′′
a < pmin

a . As ewas generated in
step 3 and O∗(pt ) = a = O∗(p′(e)), we know that δ0 = 0, δa(pt ) = 1, and δb(pt ) = lb(t),
where lb(t) = min{δb(pt ) ∈ R+ | δ0(pt ) = 0, δa(pt ) = 1, and ε(t) > 0}. More importantly,
as ε(t) = 0 in step 2 of Process 1, O∗(p′(e)) �= O∗(p′′).

Note that as p′′
b = pmin

b and p′′
a < pmin

a , we know by Lemma 7 that O∗(p′′) �= 0.
If O∗(p′′) = b, then pmin /∈ P as g(b, pmin) > 0 by the gross substitutes condition.
Thus, O∗(p′′) = ab, which implies that g(ab, p′′) > g(a, p′′) or #Da,b(p′′) + g(a, p′′) +
g(b, p′′) > g(a, p′′) and hence #Da,b(p′′) + g(b, p′′) > 0. Since a, b ∈ Di (p′′) for all
i ∈ Da,b(p′′) we know by price monotonicity that a /∈ Di (pmin) and by Lemma 8 that
b ∈ Di (pmin) for all i ∈ Da,b(p′′) as well. Furthermore, Ki (b, pmin) ≥ Ki (b, p′′) for any
i ∈ N\Da,b(p′′). Therefore, g(b, pmin) > 0, and/or g(ab, pmin) > 0, which contradicts
that pmin ∈ P . ��
Theorem 1 Process 1 always terminates at pT = pmin.

Proof Lemmas 7 and 9 together imply Theorem 1. ��
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