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Abstract
Nowadays, business analytics has become a common buzzword in a range of industries, as
companies are increasingly aware of the importance of high quality predictions to guide
their pro-active planning exercises. The financial industry is amongst those industries where
predictive analytics techniques are widely used to predict both continuous and discrete vari-
ables. Conceptually, the prediction of discrete variables comes down to addressing sorting
problems, classification problems, or clustering problems. The focus of this paper is on
classification problems as they are the most relevant in risk-class prediction in the financial
industry. The contribution of this paper lies in proposing a new classifier that performs both
in-sample and out-of-sample predictions, where in-sample predictions are devisedwith a new
VIKOR-based classifier and out-of-sample predictions are devised with a CBR-based clas-
sifier trained on the risk class predictions provided by the proposed VIKOR-based classifier.
The performance of this new non-parametric classification framework is tested on a dataset
of firms in predicting bankruptcy. Our findings conclude that the proposed new classifier
can deliver a very high predictive performance, which makes it a real contender in industry
applications in finance and investment.
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1 Introduction

Nowadays, the use of analytical methods in extracting intelligence from data, in general,
and business-related data, in particular, to support decision-making is increasing gaining
popularity amongst practitioners. The popularity of descriptive analytics techniques, predic-
tive analytics techniques, and prescriptive analytics techniques vary substantially from one
industry to another. The financial industry is one amongst many first movers where predic-
tive analytics techniques are widely used to predict risk and return amongst other variables
that drive investment decision-making. The focus of this paper is on predictive analytics
techniques for risk-class prediction. Analytics techniques for risk-class prediction fall into
two main categories; namely, parametric methods and non-parametric methods, where non-
parametric prediction methods have obvious advantages over parametric ones. In this paper,
we extend the toolbox of non-parametric predictive methods by proposing a new integrated
classifier that performs both in-sample and out-of-sample predictions, where in-sample pre-
dictions are devised with a first VIKOR-based classifier and out-of-sample predictions are
devised with a CBR-based classifier trained on the risk class predictions provided by the
proposed VIKOR-based classifier—see Fig. 1 for a snapshot of the design of the proposed
prediction framework.

VIKOR is amulti-criteriamethod originally designed for ranking a number of alternatives,
say m, under multiple non-commensurable (i.e., measured on different scales or in different
units) and often conflicting criteria, say n, where criteria are conflicting in the sense that
improving a criterion is only achievable at the expense of at least another criterion; therefore,
trade-offs between conflicting criteria is the way to reach an acceptable solution. VIKOR is
grounded into compromise programming, as it is designed to devise a solution that is the
closest to an ideal one. In sum, VIKOR benchmarks all alternatives against an ideal solution

Fig. 1 An integrated VIKOR-CBR prediction framework for in-sample and out-of-sample analyses
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and makes use of the relative closeness, as measured by the L p distance, from the ideal
solution—typically virtual and infeasible—to construct an index for each alternative or entity
i , say Qi , which is a convex combination of the standardized distance between entity i and
the alternative with the best (observed) average performance and the standardized distance
between entity i and the entity with the least (observed) regret. Since the publication of
seminal paper byDuckstein andOpricovic (1980), several hundreds of papers were published
onVIKOR and its variants. Application papers apart, papers onmethodological contributions
on the crisp version of VIKOR could be divided into two main categories; namely, VIKOR
and variants for multi-criteria decision problems where all alternatives are assessed based on
a common set of criteria, and VIKOR and variants for multi-criteria decision problems where
different alternatives are assessed based on different sets of criteria. Examples of contributions
in the first category include the original VIKOR (Duckstein and Opricovic 1980); VIKOR
enhanced with Weight Stability Analysis and Trade-offs Analysis (Opricovic and Tzeng
2007); VIKOR with Choiceless and Discontent Utilities (Huang et al. 2009); VIKOR with
Logic Judgment (Chang 2010); and VIKOR for criteria with a Normal Reference Range
(Zeng et al. 2013). On the other hand, examples of contributions in the second category
include the modified VIKOR by Liou et al. (2011) and the modified VIKOR by Anvari et al.
(2014). For reviews on VIKOR application areas, we refer the reader toMardani et al. (2016),
Gul et al. (2016), and Yazdani and Graeml (2014).

The remainder of this paper unfolds as follows. In Sect. 2,we provide a detailed description
of the proposed integrated in-sample and out-of-sample framework for VIKOR-based classi-
fiers and discuss implementation decisions. In Sect. 3, we empirically test the performance of
the proposed framework in bankruptcy prediction of companies listed on the London Stock
Exchange (LSE) and report on our findings. Finally, Sect. 4 concludes the paper.

2 An integrated framework for designing and implementing
VIKOR-based classifiers

In this section, we shall describe our integrated VIKOR-based classification framework—see
Fig. 1 for a graphical representation of the process. Without loss of generality, we shall
customize the presentation of the proposed framework to a bankruptcy application as follows:

Input: A set of n entities (e.g., LSE listed firm-year observations) to be assessed on m
pre-specified criteria (e.g., financial criteria) along with their measures (e.g., financial
ratios), where the measure of each criterion could either be minimized or maximized.
Thus, each entity, say i (i � 1, . . . , n), is represented by an m-dimensional vector of
(observed) measures of the criteria under consideration, say xi � (

xi j
)
, where xi j denote

the observed measure of criterion j for entity i and the set of xi s shall be denoted by X .
An observed risk-class membership, say Y , is also available for all entities. The historical
sample X is divided into a training sample, say XE , and a test sample, say XT .

2.1 Phase 1: VIKOR-based in-sample classifier

2.1.1 Step 1: Compute the best and worst virtual alternatives or benchmarks

Compute the best virtual alternative—also referred to as the ideal positive alternative, say
r+, as the best performer on each and every criterion j amongst all entities or alternatives i
in the training sample XE ; that is:
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r+j �
⎧
⎨

⎩

min
i�1,...,#XE

x Ei, j I F j ∈ M−

max
i�1,...,#XE

x Ei, j I F j ∈ M+ ; j � 1, . . . ,m

and compute the worst virtual alternative—also referred to as the ideal negative alternative,
say r−, as the worst performer on each and every criterion j amongst all alternatives i in the
training sample XE ; that is:

r−
j �

⎧
⎨

⎩

max
i�1,...,#XE

x Ei, j I F j ∈ M−

min
i�1,...,#XE

x Ei, j I F j ∈ M+ ; j � 1, . . . ,m

where M− (resp. M+) denote the set of features for which lower (resp. higher) values are
better, x Ei, j denote the observed performance of alternative i ∈ XE on criterion j ( j �
1, . . . ,m), and #XE denote the cardinality of XE . Note that we refer to benchmarks r+ and
r− as virtual, because they are not observed as such; in fact, they are made up of the observed
best (respectively, worst) performer on each criterion.

2.1.2 Step 2: Compute measures of the average performance behavior of alternatives

For each entity i in the training sample XE (i � 1, . . . , #XE ), compute a measure of its
average performance behavior, say Si , which allows for full compensation between criteria,
as follows:

Si �
⎛

⎜
⎝

m∑

j�1

⎛

⎝w j

(
r+j − x Ei, j

)

(
r+j − r−

j

)

⎞

⎠

p⎞

⎟
⎠

1
p

with p � 1; i.e., Si �
m∑

j�1

w j

(
r+j − x Ei, j

)

(
r+j − r−

j

) .

Also, compute S+ � min
i

Si and S− � max
i

Si .

Note that Si is an L p-metric based aggregation function for p � 1 that quantifies how
close entity i is from the positive ideal alternative and could be interpreted as a utility function
of entity i . Note also that an aggregating function is used here instead of a utility function,
because in many multi-criteria decision problems it is not possible to obtain a mathematical

representation of the decision maker’s utility function. Finally, notice that
(
r+j − x Ei, j

)/

(
r+j − r−

j

)
is the deviation from the best virtual alternative on criterion j ,

(
r+j − x Ei, j

)
,

standardized by the distance between the best and the worst virtual alternatives on criterion

j ,
(
r+j − r−

j

)
; therefore, Si is the weighted sum over all criteria of standardized deviations

from the best virtual alternative, where w j denote the weight assigned to criterion j . In sum,
Si reflects the average performance behavior of entity i , which allows for full compensation
between criteria. Since Si reflects the average performance behavior of entity i , S+ � min

i
Si

and S− � max
i

Si are the best and worst observed average performance behavior across all

entities in-sample, respectively.Note that S+ is often interpreted as themaximumgroup utility
of the “majority”. Let i+ � argmini Si and i− � argmaxi Si . Thus,

(
Si − S+

)
/
(
S− − S+

)

is the distance between entity i and the best (on average) observed performer; i.e., entity i+,
standardized by the distance between the best and worst (on average) observed performers;
i.e., entities i+ and i−, respectively.
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2.1.3 Step 3: Compute measures of the worst performance behavior of alternatives

For each entity i in the training sample XE (i � 1, . . . , #XE ), compute a measure of its
worst performance behavior, say Ri , which does not allow for any compensation between
criteria, as follows:

Ri �
⎛

⎜
⎝

m∑

j�1

⎛

⎝w j

(
r+j − x Ei, j

)

(
r+j − r−

j

)

⎞

⎠

p⎞

⎟
⎠

1
p

with p � ∞; i.e., Ri � max
j

⎧
⎨

⎩
w j

(
r+j − x Ei, j

)

(
r+j − r−

j

)

⎫
⎬

⎭
.

Also, compute R+ � min
i

Ri and R− � max
i

Ri .

Note that Ri is also an L p-metric based aggregation function with p � ∞ that quantifies
how far, in the extreme case, entity i is from the positive ideal alternative and could be
interpreted as a regret function of entity i . In fact, unlike Si , Ri is the maximum over all
criteria of the weighted standardized deviations from the best virtual alternative and thus
reflects the worst performance behavior of entity i . Note also that Ri does not allow for any
compensation between criteria. Since Ri reflects the worst performance behavior of entity
i , R+ � min

i
Ri and R− � max

i
Ri represent the least and most observed individual regrets

amongst all entities in-sample, respectively. Let i++ � argmini Ri and i−− � argmaxi Ri .
Thus,

(
Ri − R+

)
/
(
R− − R+

)
is the distance between entity i and the observed entity with

the least regret; i.e., entity i++, standardized by the distance between the observed entities
with the least and the most regrets; i.e., entities i++ and i−−, respectively.

2.1.4 Step 4: Compute a VIKOR score for each alternative

For each entity i in the training sample XE (i � 1, . . . , #XE ), compute a performance score,
say Qi , which represents a measure of closeness to the positive ideal solution, as a convex
combination of the standardized distance between entity i and the alternative with the best
(observed) average performance, i+, and the standardized distance between entity i and the
entity with the least (observed) regret, i++:

Qi �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α
(

Si−S+

S−−S+

)
+ (1 − α)

(
Ri−R+

R−−R+

)
I FS− �� S+andR− �� R+; 0 ≤ α ≤ 1

Ri−R+

R−−R+ I FS− � S+andR− �� R+

Si−S+

S−−S+ I FS
− �� S+andR− � R+

constant I FS− � S+andR− � R+

Notice that the definition of Qi allows the user to measure the performance of entities
using indexes that capture the extent to which the benchmarking emphasis is put on the best
observed performer, i+, the observed performer with the least regret, i++, or a combination
between these two extreme behaviors, depending on the value chosen for α. Note that lower
values of Q, S, and R respectively, indicate better performance. Finally, note that the weights
assigned to criteria could be chosen in many different ways; we refer the reader to Table 1
for a sample of commonly used weighting schema in VIKOR implementations.

2.1.5 Step 5: Compute in-sample classification of alternatives

Use the performance scores, Qi s, computed in the previous step to classify alternatives i in
the training sample XE according to a user-specified classification rule into, for example,
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Table 1 Sample of commonly used weighting schema in VIKOR

Type of weighting process Description Sample of references

Subjective assignment of
weights

Direct assignment of weights Vinodh et al. (2014), Devi
(2011), Peng et al. (2015),
Anvari et al. (2014), Vučijak
et al. (2015), Mela et al.
(2012), Tošić et al. (2015),
Vahdani et al. (2013), Bashiri
et al. (2013), Chatterjee et al.
(2009), Jahan et al. (2011),
Bahraminasab and Jahan
(2011), Yazdani and Payam
(2015) and Chang and Hsu
(2011)

Analytical hierarchy process
(AHP) based methods

Chatterjee et al. (2010), Zhu
et al. (2015), Parameshwaran
et al. (2015), Liu et al. (2015),
Bairagi et al. (2014), Tzeng
and Huang (2012), Mousavi
et al. (2013), Büyüközkan and
Görener (2015), Mohammadi
et al. (2014), Ebrahimnejad
et al. (2012), Hsu et al. (2012),
Jahan et al. (2011), Çalışkan
et al. (2013), Cavallini et al.
(2013), Çalışkan (2013), Liu
et al. (2014), Ray (2014),
Rezaie et al. (2014), Wu et al.
(2011a), Wu et al. (2009),
Chen and Chen (2010),
Zolfani et al. (2013), Dincer
and Hacioglu (2013), Tsai and
Chang (2013), Liu et al.
(2012), Ren et al. (2015) and
San Cristobal (2011)

PROMETHEE II Feng et al. (2013)

SWARA (step-wise weight
assessment ratio analysis)

Zolfani et al. (2013)

Modified digital logic approach
(MDL)

Bahraminasab and Jahan (2011)

Objective/data-driven
assignment of weights

Equal weights Zeng et al. (2013)

Entropy weight method Liu et al. (2015), Chatterjee
et al. (2009), Jahan et al.
(2011), Chauhan and Vaish
(2012), Çalışkan et al. (2013),
Çalışkan (2013), Hsu (2014,
2015), Chou et al. (2014),
Ranjan et al. (2015),
Shemshadi et al. (2011) and
Geng and Liu (2014)

Coefficient of variation weight
method

Zavadskas and Antuchevičiene
(2004)

Data envelopment analysis Peng (2015), Lee and Pai (2015)
and Hsu (2014, 2015)
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risk (e.g., bankruptcy) classes, say Ŷ E . Then, compare the VIKOR based classification of
alternatives in XE into risk classes; that is, the predicted risk classes, Ŷ E , with the observed
risk classes of alternatives in the training sample, Y E , and compute the relevant in-sample
performance statistics. The choice of a decision rule for classification depends on the nature
of the classification problem; that is, a two-class problem or a multi-class problem. In this
paper,we are concernedwith a two-class problem; therefore,we shall provide a solution that is
suitable for these problems. In fact, we propose a VIKOR score-based cut-off point procedure
to classify entities in XE . The proposed procedure involves solving an optimization problem
whereby the VIKOR score-based cut-off point, say κ , is determined so as to optimize a
given classification performance measure, say π (e.g., Type I error, Type II error, Sensitivity,
Specificity), over an interval with a lower bound, say κLB , equal to the smallest VIKOR
score of entities in XE and an upper bound, say κUB , equal to the largest VIKOR score
of entities in XE . Any derivative-free unidimensional search procedure could be used to
compute the optimal cut-off score, say κ∗—for details on derivative-free unidimensional
search procedures, the reader is referred to Bazaraa et al. (2006). The optimal cut-off score
κ∗ is used to classify observations in XE into two classes; namely, bankrupt and non-bankrupt
firms. To be more specific, the predicted risk classes Ŷ E are determined so that firms with
VIKOR scores greater than κ∗ are assigned to a bankruptcy class and those with VIKOR
scores less than or equal to κ∗ are assigned to a non-bankruptcy class. Note that an important
feature of the design of our VIKOR score-based cut-off point procedure for classification
lies in the determination of a cut-off score to optimise a specific performance measure of the
classifier.

2.2 Phase 2: CBR-based out-of-sample classifier

2.2.1 Step 6: Compute out-of-sample classification of alternatives

Use an instance of case-based reasoning (CBR); namely, the k-nearest neighbour (k-NN) algo-
rithm, to classify alternatives in XT into risk classes (i.e., bankruptcy class, non-bankruptcy
class), say Ŷ T . Then, compare the predicted risk classes Ŷ T with the observed ones Y T and
compute the relevant out-of-sample performance statistics. A detailed description of k-NN
is hereafter outlined:
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We would like to stress out that, when the decision maker is not confident enough to
provide a value for α in step 5, one could automate the choice of α. In fact, an optimal
value of α with respect to a specific performance measure (e.g., Type 1 error, Type 2 error,
Sensitivity, or specificity) to be optimized either in-sample only or both in-sample and out-of-
sample could be obtained by using a derivative-free unidimensional search procedure, which
calls either a procedure that consists of steps 4 and 5 to optimize in-sample performance,
or a procedure that consists of steps 4 to 6 to optimize both in-sample and out-of-sample
performances simultaneously.

Finally, note that VIKOR outcome depends on the choice of the ideal solution, whose
calculation depends on the given set of alternatives XE . Therefore, inclusion or exclusion
of one or several alternative; e.g., XT , would affect the VIKOR outcome unless the ideal
solution is chosen or fixed at the outset by the decision maker independently from XE . This
is the main reason for choosing a CBR framework for the out-of-sample classification instead
of VIKOR.

In the next section, we shall report on our empirical evaluation of the proposed VIKOR-
CBR integrated prediction framework.

3 Empirical results

In order to assess the performance of the proposed framework, we considered a sample of
6605 firm-year observations consisting of non-bankrupt and bankrupt UK firms listed on the
London Stock Exchange (LSE) during 2010–2014 excluding financial firms and utilities as
well as those firms with less than 5 months lag between the reporting date and the fiscal year.
The source of our sample is DataStream. The list of bankrupt firms is however compiled from
London Share Price Database (LSPD)—codes 16 (Receiver appointed/liquidation. Probably
valueless, but not yet certain), 20 (In Administration/Administrative receivership) and 21
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Table 2 Dataset composition

Sample period 2010–2014 Bankrupt firm-year
observations

Non-Bankrupt firm-year
observations

Industry Nb. % Nb. %

Basic materials 100 1.51 907 13.73

Consumer goods 29 0.44 515 7.80

Consumer services 52 0.79 1101 16.67

Health care 40 0.61 457 6.92

Industrials 88 1.33 1648 24.95

Oil and gas 62 0.94 691 10.46

Technology 35 0.53 790 11.96

Telecommunications 1 0.02 89 1.35

Total 407 6.16 6198 93.84

(Cancelled and assumed valueless). In other terms, a company is considered bankrupt if it is
cancelled and assumed valueless, or it is under administration or receivership, or it is being
liquidated. Recall that entities such as businesses are referred to as insolvent when they have
insufficient assets to cover their debts or are unable to pay their debts when they are sup-
posed to. There are mainly five categories of procedures to deal with insolvency; namely,
administrations, company voluntary arrangements, administrative receiverships, compulsory
liquidations, and creditor’s voluntary liquidations, where the first three options provide the
potential for rescuing the company. For the benefit of the reader, hereafter we shall provide
brief descriptions of the insolvency procedures relevant to this research. The purpose of
putting a company under administration is to hold a business together while plans are being
prepared either to put in place a financial restructuring to rescue the company, or to sell
the business and assets to produce a better result for creditors than liquidation. The process
starts with an application to court for an administration. Once the court has appointed an
administrator, he or she takes over the day to day control and management of the company
while devising proposals to be voted on by creditors. Possible exit routes of the adminis-
tration process include the company goes into a scheme of arrangement such as company
voluntary arrangement, and if unsuccessful, the company is liquidated and then dissolved;
the company goes into a creditors’ voluntary liquidation and then dissolved; or the company
goes into compulsory liquidation and then dissolved. Receivership is a procedure similar to
administration, where the main difference lies into who appoints the administrator. In admin-
istration, the administrator is appointed by the court, whereas in receivership, the receiver is
appointed by a lender or a consortium of lenders to whom he or she has the primary duty to
collect a maximum debt for them. Finally, liquidation refers to turning a company’s assets
into cash and then distributing it to creditors and could take the form of a Creditor’s voluntary
liquidation—also known as solvent liquidation, or a compulsory liquidation—also known
as insolvent liquidation. Information on our dataset composition is summarised in Table 2
broken down by industry. As to the selection of the training sample and the test sample,
we have chosen the size of the training sample to be twice the size of the test sample. The
selection of observations was done with random sampling without replacement to ensure
that both the training sample and the test sample have the same proportions of bankrupt and
non-bankrupt firms. A total of thirty pairs of training sample-test sample were generated.
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Table 3 Implementation decisions for VIKOR and k-NN

Decision Options considered and justification, if relevant

VIKOR

Value for α We performed tests for α � 0, 0.25, 0.5, 0.75, 1

Weighting scheme Equal weights w j s

Classification rule VIKOR score-based cut-off point procedure, where the choice of the
cut-off point optimises a specific performance measure (i.e., T1, T2,
Sen, Spe)

k-NN

Metric dk−NN Euclidean, Cityblock, Mahalanobis

Classification criterion Majority vote. Several criteria could have been used such as a Weighted
Vote, but once again our choice is made so as to avoid any personal
(subjective) preferences

Size of the neighbourhood k k � 3; 5; 7. The results reported are for k � 3 since higher values
delivered very close performances but required more computations

Table 4 Summary statistics of the performance of the proposed framework for α � 0 (non-compensating
scheme)

In-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Min 0 0.0484 100 99.9032

Max 0 0.0968 100 99.9516

Average 0 0.0750 100 99.9250

SD 0 0.0147 0 0.0147

Distance metric Out-of-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Euclidean Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Cityblock Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Mahalanobis Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

In our experiment, we reworked a standard and well known parametric model within the
proposed VIKOR-CBR framework; namely, the multivariate discriminant analysis (MDA)
model of Taffler (1984), to provide some empirical evidence on the merit of the proposed
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Table 5 Summary statistics of the performance of the proposed framework for α � 0.25 (mixed scheme)

In-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Min 0 0.0242 100 99.8549

Max 0 0.1451 100 99.9758

Average 0 0.0395 100 99.9605

SD 0 0.0356 0 0.0356

Distance metric Out-of-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Euclidean Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Cityblock Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Mahalanobis Min 0 0 100 99.8547

Max 0 0.1453 100 100

Average 0 0.0194 100 99.9806

SD 0 0.0469 0 0.0469

framework. Recall that Taffler’s model makes use of four explanatory variables or bankruptcy
drivers which belong to the same category; namely, liquidity. These drivers are current lia-
bilities to total assets, number of credit intervals, profit before tax to current liabilities, and
current assets to total liabilities. Note that lower values are better than higher ones for Current
Liabilities to Total Assets and Number of Credit Intervals, whereas higher values of Current
Assets to Total Liabilities and Profit Before Tax to Current Liabilities are better than lower
ones. We report on the performance of the proposed framework using four commonly used
metrics; namely, Type I error (T1), Type II error (T2), Sensitivity (Sen) and Specificity (Spe),
where T1 is the proportion of bankrupt firms predicted as non-bankrupt, T2 is the proportion
of non-bankrupt firms predicted as bankrupt, Sen is the proportion of bankrupt firms predicted
as bankrupt, and Spe is the proportion of non-bankrupt firms predicted as non-bankrupt.

Since both the VIKOR classifier and the k-NN classifier, trained on the in-sample
classification obtained with VIKOR, require a number of decisions to be made for
their implementation, we considered several combinations of decisions to find out about
the extent to which the performance of the proposed framework is sensitive or robust
to these decisions. Recall that, for the VIKOR classifier, the analyst must choose
(1) a value for α, (2) a weighting scheme, and (3) the classification rule. On the
other hand, for the k-NN classifier, the analyst must choose (1) the metric to use for
computing distances between entities, dk−NN , (2) the classification criterion, and (3)
the size k of the neighbourhood. Our choices for these decisions are summarised in
Table 3.
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Table 6 Summary statistics of the performance of the proposed framework for α � 0.5 (mixed scheme)

In-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Min 0 0.0242 100 99.9516

Max 0 0.0484 100 99.9758

Average 0 0.0274 100 99.9726

SD 0 0.0084 0 0.0084

Distance metric Out-of-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Euclidean Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Cityblock Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Mahalanobis Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Hereafter, we shall provide a summary of our empirical results and findings. Tables 4, 5,
6, 7 and 8 provide summaries of In-sample statistics on the performance of the MDA model
of Taffler (1984) reworked within the VIKOR-CBR framework, which is an integrated In-
sample-Out-of-sample framework for VIKOR-based classifiers, for α � 0, 0.25, 0.5, 0.75, 1
respectively. In sum; In-sample performance statistics are reported for different scenarios
ranging from a non-compensating scheme (α � 0) to a fully compensating scheme (α � 1).
Note that a non-compensating scheme does not allow for any compensation between criteria.
These results show that the performance of the classifier In-sample is outstanding. In fact,
none of the bankrupt firms is misclassified. As to non-bankrupt firms, the misclassification
errors are almost zero. For example, 0.075% (i.e., 4) firms are misclassified by VIKOR as
compared to 0.26% (i.e., 16) firmsmisclassified byMDA—see Tables 4 and 9. Notice that, as
α increases or equivalently compensation between criteria is increased, the misclassification
errors tend to zero. This performance could be explained by the fact that the non-compensating
scheme is benchmarking each alternative i against the entity with the least regret, whereas
the compensating scheme is benchmarking against the best-observed performer.

On the other hand, the performance of the classifier out-of-sample is also outstanding—see
Tables 4, 5, 6, 7 and 8. In fact, for all values of α or compensation schema, all bankrupt and
non-bankrupt firms are correctly classified. Note however that the performance of the out-
of-sample classifier CBR trained on the in-sample classification provided by VIKOR seems
to be marginally affected by the choice of the distance metric; to be more specific, the
Mahalanobis distance seems to have slightly affected the performance – see Table 5, where
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Table 7 Summary statistics of the performance of the proposed framework for α � 0.75(mixed scheme)

In-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Min 0 0.0242 100 99.9516

Max 0 0.0484 100 99.9758

Average 0 0.0274 100 99.9726

SD 0 0.0084 0 0.0084

Distance metric Out-of-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Euclidean Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Cityblock Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Mahalanobis Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

the average type II error increased from 0 to 0.02% and the average specificity decreased
from 100 to 99.98%. These differences in performance are however marginal to recommend
that the Mahalanobis distance be avoided in implementing CBR. In sum, the performance
of CBR trained on VIKOR classifier’s output is robust to the choice of the distance met-
ric.

To conclude, our results suggest that the predictive performance of the proposed classifi-
cation framework is by far superior to the predictive performance ofmultivariate discriminant
analysis—see Table 8.

4 Conclusions

The analytics toolbox of riskmanagement is crucial for the financial industry amongst others.
In this paper, we extended such toolbox with a new non-parametric classifier for predicting
risk class belonging. The proposed new integrated classifier has several appealing charac-
teristics. First, it performs both in-sample and out-of-sample predictions, where in-sample
predictions are devised with a first VIKOR-based classifier and out-of-sample predictions
are devised with a CBR-based classifier. Both the newly proposed VIKOR-based classifier
and CBR-based classifier are nonparametric and thus do not have the limitations of the usual
statistical assumptions underlying the parametric classifiers. Second, the proposed VIKOR-
based classifier delivers an outstanding empirical performance suggesting that VIKOR scores
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Table 8 Summary Statistics of the Performance of the Proposed Framework for α � 1(compensating scheme)

In-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Min 0 0.0242 100 99.9758

Max 0 0.0242 100 99.9758

Average 0 0.0242 100 99.9758

SD 0 0 0 0

Distance metric Out-of-sample performance

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

Euclidean Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Cityblock Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Mahalanobis Min 0 0 100 100

Max 0 0 100 100

Average 0 0 100 100

SD 0 0 0 0

Table 9 Summary statistics of the
performance of MDA

Statistics T1 (%) T2 (%) Sen. (%) Spe. (%)

In-sample performance

Min 97.0500 0.1900 0 99.3700

Max 100 0.6300 2.9500 99.8100

Average 98.8200 0.2600 1.1800 99.7400

SD 0.6700 0.0900 0.6700 0.0900

Out-of-sample
performance

Min 0 0 0 0.1500

Max 100 99.8500 100 100

Average 82.2000 17.0100 17.8000 82.9900

SD 37.4300 37.6600 37.4300 37.6600

are highly informative, on one hand, and the computation of the thresholds for classification
using a nonlinear programming algorithm are optimised, on the other hand. Third, the empir-
ical performance of the CBR-based classifier is enhanced by training it on the high-quality
risk class predictions provided by the VIKOR-based classifier. Fourth, the proposed VIKOR
classifier is based on a benchmarking framework, which contributes to its design’s strength.
In fact, VIKOR benchmarks alternatives against the positive ideal solution by measuring
the average and the maximum deviations from it, respectively, standardized by the distance
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between the positive and negative ideals. These deviations or distances from the positive
ideal are then used to compute the distance between the performance behavior of each alter-
native and the behavior of the best observed performer, standardized by the distance between
the behaviors of the best and worst observed performers, and the distance between the regret
behavior of each alternative and the behavior of the observed entity with the least regret, stan-
dardized by the distance between the observed entities with the least and the most regrets. A
convex combination of these behavioral measures is then used as the VIKOR score. Last, but
not least, the basic concepts behind both VIKOR and CBR are easy to explain to managers.

We assessed the performance of the proposedVIKOR-CBR framework using aUKdataset
of bankrupt and non-bankrupt firms. Our results support its outstanding predictive per-
formance. In addition, the outcome of the proposed framework is robust to a variety of
implementation decisions; namely, the choice of the value of α, the choice of the weighting
Scheme, and the choice of the classification rule for VIKOR, and the choice of the distance
metric dk−NN , the choice of the classification criterion, and the choice of the size k of the
neighbourhood for k-NN instance of CBR. Last, but not least, the proposed classification
framework delivers a high performance similar to the DEA-based classifier proposed by
Ouenniche and Tone (2017) and the MCDM classifiers proposed by Ouenniche et al. (2018a,
b, c).

In sum, this research relates to both the field of MCDM and the field of AI. In fact,
this paper proposes a hybrid design that integrates MCDM and artificial intelligence (AI)
techniques, where a VIKOR-based classifier is proposed for the first time and the output
of VIKOR is used to train a CBR out-of-sample classifier. Empirical evidence supports our
claim that the hybridisation of MCDM and AI fields is promising.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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