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Abstract
Motivated by a real-life application, this research considers the multi-objective vehicle rout-
ing and loading problem with time window constraints which is a variant of the Capacitated
Vehicle Routing Problemwith TimeWindowswith one/two-dimensional loading constraints.
The problem consists of routing a number of vehicles to serve a set of customers and deter-
mining the best way of loading the goods ordered by the customers onto the vehicles used
for transportation. The three objectives pertaining to minimisation of total travel distance,
number of routes to use and total number of mixed orders in the same pallet are, more
often than not, conflicting. To achieve a solution with no preferential information known
in advance from the decision maker, the problem is formulated as a Mixed Integer Linear
Programming (MILP) model with one objective—minimising the total cost, where the three
original objectives are incorporated as parts of the total cost function. A Generalised Vari-
able Neighbourhood Search (GVNS) algorithm is designed as the search engine to relieve
the computational burden inherent to the application of the MILP model. To evaluate the
effectiveness of the GVNS algorithm, a real instance case study is generated and solved by
both the GVNS algorithm and the software provided by our industrial partner. The results
show that the suggested approach provides solutions with better overall values than those
found by the software provided by our industrial partner.
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1 Introduction

Current trends in international markets such as competition and globalization are forcing
all organisations across supply chains to reduce their costs including logistics expenditures
(related to travel distance, travel time, holding cost, etc.) through more efficient decision
making. Routing and loading are important parts of such decisions. In the case of frozen
and perishable items in particular, tackling the Vehicle Routing Problem (VRP) and vehicle
loading simultaneously can enhance a logistics system (Schmid et al. 2013).

Thewell-knownVRP is a combinatorial optimisation problemwhich is usually formulated
as an integer programmingmodel. TheVRP aims to generate a number of vehicle routes. Each
vehicle will be loaded at a single depot and be routed to service a group of customers then
return to the depot. Each customerwill be serviced once and only once, and the demands of all
customersmust bemet. The objectives associatedwith theVRP vary across the literature. The
two most frequent objectives are minimising the number of vehicles used and minimising
the total travel distance. In practice, the capacity of a vehicle is limited. The VRPs that
take the vehicle capacity into consideration are termed Capacitated VRPs (CVRPs). Further,
deliveries are often subject to time constraints (time windows), leading to the Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW). A detailed survey of the exact
algorithms on CVRP and different methodologies on VRPTW can be found in Baldacci et al.
(2010) and EI-Sherbeny (2010) respectively.

The Vehicle Loading Problem (VLP) is also a challenging combinatorial optimisation
problem. The goal is to optimally load/pack a set of pallets/items into a set of vehicles/bins
of predefined dimensions, which is also a form of Bin-Packing problem (Wäscher et al. 2007).
Several versions of the problem exist depending on the number of pallet dimensions (one-,
two- or multi-dimensional) and the characteristics of the items they are carrying (guillotine,
fragility, stability, etc.). A detailed survey on constraints in container loading can be found in
Bortfeldt andWäscher (2013). Although there are many research papers in the area of loading
problems, there remainmany unexplored topics in this fieldwhen it comes to practical aspects
of the problem (Schmid et al. 2013).

This paper analyses a Multi-Objective Vehicle Routing and Loading Problem with Time
Window constraints (MO-VRLPTW). This research is motivated by a real-life application
in the food services industry, delivering a mixture of Ambient, Produce, Chilled and Frozen
food together with basic kitchen cleaning Chemical products. The deliveries are loaded onto
three types of containers: pallets, and small and big roll-cages. The frozen food needs to
be palletised and loaded into the front compartment of the vehicle and is separated with
a bulkhead from the rest of the products. The chilled food is also palletised, whereas the
ambient food is packed onto big roll-cages and the chemical cleaning materials are kept on
separate big roll-cages. Finally, the produce is packed onto small roll-cages. The vehicles
are multi-temperature, rigid trucks with two unloading doors. A main rear door with tail-lift
is used for unloading chilled, chemical, produce and ambient products. A side door near the
front left of the truck is used for unloading frozen products only. The bulkhead separating the
main compartment from the frozen compartment is moveable to allow variation in quantity
of frozen food loaded (and is raised to allow faster loading of frozen goods).

For simplicity of exposition, the term pallet is used to refer to both types of pallet, big and
small roll-cages. Figure 1 provides a loading diagram.

From Fig. 1, it can be seen that a number of rectangular pallets of different lengths and
widths and of the same height need to be loaded onto the vehicle in a feasible way. However,
before loading the pallets onto the vehicle, the 3D items ordered by the customers need to
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Fig. 1 A loading diagram

be loaded onto the pallets. Since the decision maker assumes that if the total volume and the
total weight of the items do not exceed the volume and weight limit of the pallet, then the
items can be physically loaded onto the pallet. The 3D items can be treated as 1D items. Thus
the items of same type ordered by the same customer are recorded by their weights, volumes
and numbers rather than their weights, lengths, widths and heights, following the ontology
of the Pallet-Packing Vehicle Routing Problem (PPVRP) (Zachariadis et al. 2012). Note that
in Fig. 1, the shapes representing items in each pallet do not reflect the actual sizes (volumes,
weights and numbers) of the items. The shapes only carry the information of the customer
indices. Apart from the weight and volume limits for pallets of different sizes, there are also
weight and volume limits for the vehicles as a whole. So this MO-VRLPTW is actually a
MO-VRLPTW with 1D pallet loading and 2D vehicle loading constraints.

The mathematical description of the above problem is as follows:

• Customers We are given a complete undirected graph G = (V , E), in which V defines
the set of n+2 vertices corresponding to the depot (vertex 0 and n+1) and to the customers
(vertices 1, . . . , n). Each edge (i, j) of the graph has an associated travel distance di j ,
which is the distance of travelling from customer i to customer j . In addition, there is a
time window [ei , li ] related to each customer i ∈ V that specifies that customer i cannot
be serviced before ei or visited later than li . However, waiting times are permitted. That
is, a customer i can be reached before the start of their time window ei but the truck has
to wait there until ei to start servicing the customer.

• Items Each customer i ∈ V \{0, n + 1} requires a supply of mis items of type s ∈ S,
where S = {1—ambient ; 2—chemical; 3—chilled; 4— f rozen; 5—produce} is the
product type set. The total weight and volume of these items are wis and vis , ordered by
the customers. The mis items are of the same weight and volume and can be treated as
1D objects.

• Orders The items of different product types ordered by the same customer i ∈ V \{0, n+
1} is called order i ∈ V \{0, n + 1}.

• Pallets There are in total five types of pallets of width ωs and length ls , where s ∈ S =
{1, 2, 3, 4, 5}. The items of product type s will be loaded in pallet type s. In addition,
each pallet has weight capacity DWs and volume capacity DVs limits, for s ∈ S.
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• Vehicles The delivery of orders is performed by a fleet F = {1, 2, . . . , K } of identical
vehicles, each one with weight capacity D. The two dimensional loading area has width
W and length L . So the total loading area available for each vehicle is A = W · L .

In addition, the following loading constraints must be satisfied:

• The delivered orders are directly unloaded from the vehicle-loading space, without it
being necessary to reposition any of the orders that are going to be delivered later on the
route. In the literature, the last-in-first-out (LIFO) constraint was defined, where only the
straight movements parallel to the length dimension of the vehicle surface are allowed
when unloading items (Gendreau and Martello 2006; Iori et al. 2007; Wei et al. 2015). In
this paper, we define the adapted LIFO constraint, which allows the combination of the
straight movements parallel to both the length dimension and the width dimension of the
vehicle surface. An assumption is also made that, after unloading the customer orders,
the empty roll-cages can be collapsed and empty pallets can be strapped to the side so
they do not interfere with unloading.

• All pallets need to be loaded onto this vehicle in a feasible way. The feasibility of the
way of loading a set of pallets onto the vehicle is defined as follows.

– The pallets must not overlap.
– The pallets cannot be rotated 90◦ about the vertical axis.
– All ambient and chemical items need to be loaded on pallet type s = 1 and s = 2.

All chilled and frozen items need to be loaded on pallet type s = 3 and s = 4. All
produce items need to be loaded on pallet type s = 5.

– The frozen products must be loaded at the front of the truck with a handling area (of
width ωh and length lh) for unloading and be separated from the rest of the products
with a bulkhead of fixed width ωb and length lb. From Fig. 1, it can be seen that
ωh = ωb = W .

• The capacities (weight and loadable area) of pallets of different types need to be respected.
• The capacities (weight and volume) of vehicles need to be respected.
• Order splitting is not allowed. That is, an order must be loaded on the same vehicle. Note

that the problem assumes that a vehicle is always sufficient for accommodating the order
of a single customer.

Figure 2 presents the loading of the vehicle graphically, which illustrates an example
solution for an MO-VRLPTW instance of two vehicles with 10 customers, requiring in total
1 pallet for frozen products, 3 pallets for chilled products, 15 pallets for ambient products, 2
pallets for chemical products and 3 pallets for produce products. From Fig. 2, it can be seen
that the adapted LIFO constraint is necessary. For example, in route A, after unloading the
pallets carrying order 1 and 2, the next pallet carrying item 3 needs to be moved down first
then to the right of the vehicle to avoid repositioning the chilled pallet next to the right door
of the vehicle.

Finally, there are three objectives in the problem that we are examining. The first two
objectives are to minimise the total travel distance and the number of routes, which are
frequently found in the CVRPTW literature. The third objective is to minimise the total
number of mixed orders in the same pallet. Consulting our industrial partner, they favour
putting the same orders in the same pallets with as minimum mixture as possible (that is, the
same pallet should contain the items from the same customer of same product type). This is
because when unloading a dedicated pallet (a pallet that contains the items from the same
customer of same product type), the driver can work quicker as he/she does not have to check
the items aswould be the case for amixed order pallet. In addition, the likelihood of expensive
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Fig. 2 Illustration of a feasible loading of the vehicles

mis-delivery is reduced. For each current order, there are two loading strategies. One is to
start loading the current order in an empty pallet and the other is to start loading the current
order in the pallet loaded with the previous order from a different customer. The pallet with
mixture of orders comes from the second strategy only. Thus, to minimise the total number
of mixed orders in the same pallet, we need to apply the second loading strategy as few
times as possible, that is, to minimise the total number of loading strategies that start loading
the current order in the pallet loaded with the previous order from a different customer. A
graphical explanation of these two loading strategies can be found in Sect. 3.

For real-world problems, the sequence of the customers to be visited by the vehicle routes
and the sequence of the products to be loaded onto the pallets and vehicles should be efficiently
designed to avoid unnecessary unloading and repacking operations. Solving these loading
and routing problems separately may lead to suboptimal decisions, which means optimal
solutions can be found for these two problems independently. However, neither of these opti-
mal solutions is likely to be optimal for the integrated problem. The purpose of this paper is to
propose a Mixed Integer Linear Programming (MILP) model for the MO-VRLPTW, captur-
ing the interdependencies of these two problems. To achieve a solution with no preferential
information known in advance from the decision maker, the MILP model is constructed with
one objective function, minimising the total cost, where the three original objective functions
are incorporated as parts of the total cost function. The MILP can be solved to optimality for
small-sized problems. A Generalised Variable Neighbourhood Search (GVNS) algorithm is
also proposed to find solutions for a real-life large-sized problem.

The remainder of the paper is organised as follows: Sect. 2 provides a literature review. Sec-
tion 3 provides a MILP mathematical formulation for the MO-VRLPTW. Section 4 presents
a detailed solution methodology. Section 5 introduces new MO-VRLPTW instances. It also
evaluates the performance of the proposed method, providing various experimental results.
Finally, Sect. 6 concludes the paper and offers some possible future research directions.
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2 Literature review

The proposed MO-VRLPTW in this paper is a variant of the CVRPTW with two/three-
dimensional loading constraints (2/3L-CVRP) (Iori and Martello 2010).

The 2/3L-CVRP problems and their variants have only been studied recently; for example
the first paper on 2L-CVRP was published by Iori et al. (2007). The 2L-CVRP deals with
an extension of the CVRP problem where the total weight of the demand of a customer is
determined by several items ordered by the customer. Items have different widths and lengths
and are of the same height as the vehicle, while the loading floor of each vehicle is a rectangle
with fixed width and length. In addition to the classical CVRP capacity constraint, a solution
requires a feasible non-overlapping loading of all items into the loading area of the vehicles.
Additional operational constraints are introduced for easy unloading at each customer site.
This is sequential loading or Last-In First-Out (LIFO). The authors Iori et al. (2007) solved
the underlying problem to optimalitywith a branch-and-cutmethod for instances involving up
to 30 customers and 90 boxes. Lately, Côté et al. (2014) and Hokama et al. (2016) presented
improved branch-and-cut methods for the first 60 instances of the 180 created 2L-CVRP
instances reported in Gendreau et al. (2007). Most of the 2L-CVRP instances were tackled
with heuristic, meta-heuristic and evolutionary methods. For example, Tabu Search (TS)
(Gendreau et al. 2007; Zachariadis et al. 2009; Leung et al. 2011), Ant Colony Optimisation
(ACO) (Fuellerer et al. 2009) are the two most popular ones. Other heuristic and meta-
heuristic algorithms used are Simulated Annealing (SA) (Leung et al. 2013; Wei et al. 2018),
Greedy Randomized Adaptive Search Procedure (GRASP) (Duhamel et al. 2011), VNS (Wei
et al. 2015), Iterated Local Search (ILS) (Pollaris et al. 2017), Elitist Non-dominated Sorting
Local Search (ENSLS) (Alinaghian et al. 2017) and column generation based heuristics
(Pinto et al. 2018). Considering the relevant classic variants of 2L-CVRP, the following
papers have been found in the literature: Khebbache-Hadji et al. (2013) considered a 2L-
CVRP with time window constraints. That is, customer services must be performed within
predetermined time windows. This type of problem is called 2L-CVRPTW. The authors
provided some heuristics and GA algorithms to tackle the 2L-CVRPTW. In Leung et al.
(2013), the vehicles are not identical. The SA algorithm was presented combined with a
heuristic local search to improve the solutions found. InMartínez (2013), the transported items
are circular in shape. Most recently, in Zachariadis et al. (2016), a memorisation technique is
designed to solve a VRP with Simultaneous Pick-ups and Deliveries and Two-Dimensional
LoadingConstraints (2L-SPD).Dominguez et al. (2016) examined a two-dimensional loading
capacitated vehicle routing problem (2L-CVRP) with a heterogeneous fleet (2L-HFVRP)
using a biased randomization technique. Côté et al. (2017) considered the 2L-CVRP in an
integrated manner and compared the solutions with those obtained from three non integrated
approaches based on addressing separately the routing and the loading problems. Bódis and
Botzheim (2018) applied Bacterial Memetic Algorithms for a order picking routing Problem
with pallet loading constraints, which is also a variant 2L-CVRP.

The first research on 3L-CVRP was developed by Gendreau and Martello (2006). Unlike
2L-CVRP, the 3L-CVRP considers customer demand to be composed of orthogonal three-
dimensional boxes of different widths, lengths and heights. These boxes must be loaded into
the rectangular vehicle containers. Additional operational constraints are introduced to ensure
the stability of stacked boxes, the secure transportation of fragile boxes and the easy unloading
of boxes at customers’ sites (LIFO). The authors proposed TS to tackle problem instances
involving up to 100 customers and 199 boxes. Junqueira et al. (2011) applied an MIP-based
approach for the container loading problemwith multi-drop constraints, which is a simplified
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3L-CVRP. Metaheuristic approaches for the 3L-CVRP can be classified as: TS (Gendreau
and Martello 2006; Tarantilis et al. 2009; Bortfeldt 2012; Zhu et al. 2012; Ruan et al. 2013;
Tao and Wang 2015; Reil et al. 2018), ACO (Fuellerer et al. 2010), Genetic Algorithm (GA)
(Moura 2008; Moura and Oliveira 2009), VNS (Wei et al. 2014) and Evolutionary Local
Search (ELS) (Zhang et al. 2015). Most recently Vega-Mejia et al. (2019) have extended an
existing vehicle routing problem with loading constraints (VRPLC) optimization model to
a nonlinear optimization model that considers weight-bearing strength of three-dimensional
items, vehicle weight capacity, weight distribution inside vehicles, delivery time windows,
and a balanced fleet of vehicles. The model was solved with an optimisation software. Some
efforts on setting up a mathematical model for the 3L-CVRP can also be found in Moura
(2019), in which the problem was defined as an integration of a VRPTW and a 3D-CLP
(Container Loading Problem).

In particular, one of the recent publications on Pallet-Packing Vehicle Routing Problem
(PPVRP) (Zachariadis et al. 2012) is mostly related to the MO-VRLPTW as illustrated in
Sect. 1. In the PPVRP, a number of three-dimensional rectangular boxes (items) need to be
feasibly stacked into pallets that are then loaded onto the vehicles before initiating their tours.
A 3L-CVRP can be viewed as a PPVRP instance that involves vehicles carrying only one
pallet.

Although all of the above mentioned literature addresses 2/3L-CVRPTW problems and
their variants, the objective functions of the studies are rather simple. Furthermore, the
objectives only consider economic rather than logistical aspects of the problem. To our best
knowledge, there is only one paper in the literature, addressing three objectives when dealing
with 2/3L-CVRPTW (Moura, 2008). However, most real-world problems involve multiple
objectives. From the above literature review, no formal mathematical model is available for
the MO-VRLPTW in the literature. The MILP model built in this paper is hence novel.

From methodological point of view, a number of publications applied VNS to solve
VRPTW or TSPTW problems. The most recent works are Armas et al. (2015), Bortfeldt
et al. (2015), Dhahri et al. (2015), Kalayci andKaya (2016), Karabulut and Tasgetiren (2014),
Mladenović et al. (2012), Silva and Urrutia (2010), Sze et al. (2016), Tricoire et al. (2011),
Wei et al. (2015), in which three most relevant papers are Bortfeldt et al. (2015), Tricoire
et al. (2011) and Wei et al. (2015), who solved VRPs with loading constraints. The VNS
has also been applied to solve the multi-objective optimisation (MOO) successfully, like
Janssens et al. (2015) and Duarte et al. (2015). However, to our best knowledge, no paper in
the literature has solved the MO-VRLPTW problem proposed in this paper. Thus the model
and methodology developed are novel.

3 Mathematical modelling

The mathematical model is constructed in a way that the orders of the same route are loaded
onto the same vehicle physically, thus satisfying the constraints described in Sect. 1. The
following notations are defined for our MO-VRLPTW.

3.1 Sets

V = {0, 1, . . . , n, n + 1}—Node set, where i = 0 and i = n + 1 represents the depot and
i = 1, . . . , n represent customers;
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S = {1—ambient ; 2—chemical; 3—chilled; 4— f rozen; 5—produce}—Product type
set and pallet type set, where s ∈ S represents both the sth type of product and the pallet
type s.

F = {1, 2, . . . , K }—Vehicle set and k ∈ F represents the kth vehicle.

3.2 Parameters

3.2.1 Input parameters

The following are input parameters provided by the customers of our industrial partner:

P—The fuel cost per kilometre.
H—The cost of hiring one vehicle.
I—The cost of inconvenience incurred by unloading one mixed order from a pallet.
di j—The distance of travelling from node i to node j , (i, j ∈ V ).
[ei , li ]—The time window of customer i, i ∈ V \{0, n+1} indicating that customer i cannot

be serviced before ei or visited later than li .
τi j—The travel time between nodes i and j , i, j ∈ V .
Ti—Service time at customer i , i ∈ V \{0, n + 1}.
mis—The number of items of product type s ∈ S requested by customer i , i ∈ V \{0, n+1},

s ∈ S.
wis—The total weight of the items of type s ∈ S requested by customer i . The weight of

one item of product type s needed by customer i is wis
mis

. The total weight of the customer

order i is
∑5

s=1 wis , i ∈ V \{0, n + 1}, s ∈ S.
vis—The total volume of the items of type s ∈ S requested by customer i . The volume of

one item of product type s needed by customer i is vis
mis

. The total volume of customer

order i is
∑5

s=1 vis , i ∈ V \{0, n + 1}, s ∈ S.
ωs—The width of the pallet s, s ∈ S.
ls—The length of the pallet s, s ∈ S.
ωb—The width of the bulkhead.
lb—The length of the bulkhead.
ωh—The width of the handling area when the bulkhead is needed.
lh—The length of the handling area when the bulkhead is needed.
DWs—The weight capacity of pallet s, s ∈ S.
DVs—The volume capacity of pallet s, s ∈ S.
W—The width of the loading area in the vehicle k, k ∈ F .
L—The length of the loading area of the vehicle k, k ∈ F . The total loading area available

for each vehicle is A = W · L .
D—Weight capacity of the vehicle k, k ∈ F .

3.2.2 Calculated parameters

The following parameters are defined in order to simplify the formulation:

uwis—The weight of one item of type s ∈ S requested by customer i . uwis = wis
mis

.
uvis—The volume of one item of type s ∈ S requested by customer i . uvis = vis

mis
.

maxMis—The maximum number of items of type s ∈ S requested by customer i , which

can be loaded in pallet s. maxMis = min(� DWs
uwis

�, � DVs
uvis

�).
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minXis—The minimum number of pallets required to load items of type s ∈ S requested
by customer i on pallet type s. minXis = �mis/maxMis�.

3.3 Decision variables

yi jk—A binary variable, which equals 1, if customer j is served immediately after customer
i by vehicle k; 0, otherwise. i ∈ V \{n + 1}, j ∈ V \{0} and i �= j .

zk—A binary variable, which equals 1, if vehicle k is used; 0, otherwise. k ∈ F .
tik—Arrival time of vehicle k at node i . i ∈ V \{0}.
Z js—A binary variable, which is equal to 1, if items of type s ∈ S requested by customer j

starts in an empty pallet of type s; 0, otherwise.
Bjs—A binary variable, which equals 1, if items of type s ∈ S requested by customer j can

be completely loaded in the same pallet with the previous order by another customer; 0,
otherwise.

qVjs—Cumulated volume in the last pallet of type s for items of type s ∈ S requested by
customer j .

qWjs—Cumulated weight in the last pallet of type s for items of type s ∈ S requested by
customer j .

X js—Number of pallets used for loading items of type s ∈ S requested by customer j .
nPjs—Number of extra pallets needed for loading items of type s ∈ S requested by customer

j (Compared with X js , the pallet with the mixture of the items requested by customer j
and items requested by previous customers do not count in nPjs . A graphical explanation
of X js and nPjs can be found in Sect. 3.4).

nPallet jsk—Number of extra pallets of type s needed to load order j in vehicle k excluding
the pallets used for loading the previous orders.

XVk—x coordinate of the reference point of the vehicle k.
YVk—y coordinate of the reference point of the vehicle k.
X Pksu—x coordinate of the reference point of the uth pallet of type s on vehicle k.
Y Pksu—y coordinate of the reference point of the uth pallet of type s on vehicle k.
maxLk—maximum x-coordinate of all the pallets loaded on the vehicle k.

3.4 TheMILPmodel

In this paper, the MO-VRLPTW is modelled in two stages. In Stage One, the routing and 1D
pallet loading problem will be tackled simultaneously, whereas the 2D vehicle loading will
be tackled in Stage Two. This is due to the complexity of the 2D vehicle loading problem.

To avoid the sub-optimality discussed in Sect. 1, a constraint is added to the Stage One
modelling to guarantee that the total areas of the pallets to be loaded onto the vehicle will
not exceed the loadable area of the vehicle α · L · W , where α is a percentage to indicate the
required level of the usage of the vehicle. The lower α will lead to unnecessary wastage. The
higher α might lead to an infeasible solution in Stage Two. A set of discrete α values were
used to run the Stage One and Stage Two models in an iterative way. The procedure starts
with running the Stage One model with the highest α value and then running the Stage Two
model to check if the solution of Stage One model can lead to a feasible 2D loading in Stage
Two. The α value is decreased to run Stage One model again if no feasible solution exists in
Stage Two in the last iteration. Following some experimental analysis, the set of discrete α

values are chosen as 0.92, 0.87 and 0.82.
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Fig. 3 Three loading scenarios: Scenario One—Start loading the current order j onto an empty pallet. Scenario
Two—Start loading the current order j onto the same pallet as the previous order i (order j can be completely
loaded.). Scenario Three—Start loading the current order j onto the same pallet as the previous order i (order
j can be partially loaded)

It should be noted that the Stage One model is already very complicated and that no
comparablemodel exists in the literature to our best knowledge. Furthermore, the combination
of the Stage One and Stage Two models will lead to a model too complicated to be currently
solved by standard optimisation software. The aim of the paper is to derive high quality
solutions for industry usage. Thus the compromising between optimality and solvability is
necessary.

3.4.1 Stage one routing with 1D pallet loading

The challenge of this Stage One modelling is that the number of pallets of each type s to
be loaded onto the vehicle is unknown in advance (it is not known in advance which orders
will be delivered on the same vehicle). In addition, the total number of mixed orders in the
same pallet will be influenced by the choice of loading strategy. As mentioned in Sect. 1,
the first loading strategy is to start loading the current order onto an empty pallet and the
second loading strategy is to start loading the current order onto the pallet loaded with the
previous orders already. Note that in the second loading strategy, a small current order can be
loaded completely onto the same pallet with the previous order and a large current order can
be loaded partially on the same pallet with the previous order. Figure 3 gives three examples
for the above three scenarios, where the first and second digits in the bracket on the pallets
give the total volume and the total weight of the items of the same product type in an order.

In Fig. 3, the values of decision variables Z js and Bjs are provided to reflect the above
three scenarios. Correspondingly, the values of the decision variables qVjs and qWjs are
provided to indicate the accumulated volumes and weights that the order j incurs in the final
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pallet of type s (For example, in Scenario Two qVjs = 144+412 = 556). Further, the values
of decision variables X js and nPjs are provided to indicate the number of pallets used for
loading order j of pallet type s and number of extra pallets needed for loading order j of
pallet type s. Note that if Z js = 1, we have X js = nPjs ; otherwise, nPjs = X js − 1

In scenario one, Z js = 1,

qVjs = [m js − (minX js − 1) · maxMjs] · uv js

qW js = [m js − (minX js − 1) · maxMjs] · uw js

X js = minX js

nPjs = X js

(1)

In scenario two, Z js = 0, Bjs = 1 and
∑

k∈F yi jk = 1

qVjs = qVis + v js

qW js = qWis + w js

X js = 1
nPjs = 0

(2)

In scenario three, Z js = 0, Bjs = 0 and
∑

k∈F yi jk = 1
If the order j cannot be completely loaded in the same pallet with the previous order i

due to the pallet volume capacity, we have.

v js − (X js − 2) · (maxMjs · uv js) − qVjs + qVis ≤ DVs
v js − (X js − 2) · (maxMjs · uv js) − qVjs + qVis + uv js − 1 ≥ DVs

qVjs = qVjs · uw js
uv js

X js ≥ 2
nPjs = X js − 1

(3)

The first constraint in (3) guarantees that the total volume of the first pallet in Fig. 3 to load
order j does not exceed the volume capacity of the pallet of type s. The second constraint in
(3) guarantees that the total volume of the first pallet in Fig. 3 to load order j is used to its
maximum. That is, given one more unit of order j , the volume of the first pallet to load order
j will be exceeded. And the third constraint in (3) makes sure that qWjs is in ratio to qVjs .

On the other hand, if the order j cannot be completely loaded in the same pallet with the
previous order i due to the pallet weight or volume capacity, the first three constraints in (3)
need to be replaced by the following constraints (4).

w js − (X js − 2) · (maxMjs · uw js) − qWjs + qWis ≤ DWs

w js − (X js − 2) · (maxMjs · uw js) − qWjs + qWis + uw js − 1 ≥ DWs

qVjs = qWjs · uv js
uw js

(4)

From the above analysis, two extra decision variables B1 js and B2 js are needed to identify
if order j cannot be completely loaded in the same pallet with the previous order i due to
the pallet volume capacity or weight capacity, where B1 js = 0 if the volume capacity is
exceeded, 1, otherwise. The definition of B2 js is similar to that of B1 js .

qVis + v js − DVs ≤ M1 · (1 − B1 js )

DVs − qVis − v js ≤ M1 · B1 js − 1
qWis + w js − DWs ≤ M2 · (1 − B2 js )

DWs − qWis − w js ≤ M2 · B2 js − 1

(5)

where M1 and M2 are large positive constants. The explanation of M1 and M2 are given in
the next Section.
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With the definition of B1 js and B2 js , the definition of Bjs can be realised using the
following constraints. That is, only when B1 js = 1 and B2 js = 1, the order j can be
completely loaded in the same pallet with the previous order i and Bjs = 1, otherwise,
Bjs = 0.

B1 js + B2 js ≤ 1 + 2 · Bjs

B1 js + B2 js ≥ 2 − 2 · (1 − Bjs)
(6)

With the above analysis, the MILP model for Stage One is given as follows:

MinZ =
∑

k∈F

∑

j∈V

∑

i∈V
P · di j · yi jk + H ·

∑

k∈F
zk + I ·

∑

j∈V \{0,n+1}

∑

s∈S
(1 − Z js) (7)

Subject to

∑

k∈F

∑

j∈V \{0,n+1}
yi jk = 1, i ∈ V \{0} (8)

∑

j∈V \{0,n+1}
y0 jk = zk, k ∈ F (9)

∑

i∈V \{0,n+1}
yi(n+1)k = zk, k ∈ F (10)

∑

i∈V \{0}
yipk =

∑

j∈V \{n+1}
ypjk, p ∈ V \{0, n + 1} (11)

tik ≥ ei · zk, i ∈ V \{0, n + 1}, k ∈ F (12)

tik ≤ li · zk, i ∈ V \{0, n + 1}, k ∈ F (13)

tik + Ti + τi j ≤ t jk + M · (1 − yi jk), i ∈ V \{n + 1}, j ∈ V \{0}, k ∈ F (14)

qVjs ≥ [m js − (minX js − 1) · maxMjs] · uv js − M1 · (1 − Z js),

j ∈ V \{0, n + 1}, s ∈ S (15)

qVjs ≤ [m js − (minX js − 1) · maxMjs] · uv js + M1 · (1 − Z js),

j ∈ V \{0, n + 1}, s ∈ S (16)

qWjs ≥ [m js − (minX js − 1) · maxMjs] · uw js − M2 · (1 − Z js),

j ∈ V \{0, n + 1}, s ∈ S (17)

qWjs ≤ [m js − (minX js − 1) · maxMjs] · uw js + M2 · (1 − Z js),

j ∈ V \{0, n + 1}, s ∈ S (18)

X js ≥ minX js − M3 · (1 − Z js), j ∈ V \{0, n + 1}, s ∈ S (19)

X js ≤ minX js + M3 · (1 − Z js), j ∈ V \{0, n + 1}, s ∈ S (20)

nPjs ≥ X js − M3 · (1 − Z js), j ∈ V \{0, n + 1}, s ∈ S (21)

nPjs ≤ X js + M3 · (1 − Z js), j ∈ V \{0, n + 1}, s ∈ S (22)

qVjs ≥ qVis + v js − M1 · (1 − Bjs)

− M1 · Z js − M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (23)
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qVjs ≤ qVis + v js + M1 · (1 − Bjs) + M1 · Z js

+ M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (24)

qWjs ≥ qWis + w js − M2 · (1 − Bjs) − M2 · Z js

− M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (25)

qWjs ≤ qWis + w js + M2 · (1 − Bjs)

+ M2 · Z js + M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (26)

X js ≥ 1 − M3 · (1 − Bjs) − M3 · Z js

− M3 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (27)

X js ≤ 1 + M3 · (1 − Bjs) + M3 · Z js

+ M3 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (28)

nPjs ≥ 0 − M3 · (1 − Bjs) − M3 · Z js

− M3 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (29)

nPjs ≤ 0 + M3 · (1 − Bjs) + M3 · Z js

+ M3 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (30)

v js − (X js − 2) · (
maxMjs · uv js

) − qVjs + qVis + uv js − 1 ≥ DVs − M1 · Bjs

− M1 · Z js − M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (31)

v js − (X js − 2) · (maxMjs · uv js) − qVjs + qVis ≤ DVs + M1 · Bjs

+ M1 · Z js + M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (32)

qWjs ≥ qVjs · uw js

uv js
− M2 · Bjs − M2 · Z js

− M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (33)

qWjs ≤ qVjs · uw js

uv js
+ M2 · Bjs + M2 · Z js

+ M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (34)
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X js ≥ 2 − M3 · Bjs − M3 · Z js

− M3 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (35)

nPjs ≥ X js − 1 − M3 · Bjs − M3 · (1 − Bjs)

− M3 · Z js − M3 ·
(

1 −
∑

k∈F
yi jk

)

i, j ∈ V \{0, n + 1}, s ∈ S (36)

nPjs ≤ X js − 1 + M3 · Bjs + M3 · (1 − Bjs)

+ M3 · Z js + M3 ·
(

1 −
∑

k∈F
yi jk

)

i, j ∈ V \{0, n + 1}, s ∈ S (37)

qVis + v js − DVs ≤ M1 · (1 − B1 js ) + M1 · Z js

+ M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (38)

DVs − qVis − v js ≤ M1 · B1 js − 1 + M1 · Z js

+ M1 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (39)

qWis + w js − DWs ≤ M2 · (1 − B2 js ) + M2 · Z js

+ M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (40)

DWs − qWis − w js ≤ M2 · B2 js − 1 + M2 · Z js

+ M2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (41)

B1 js + B2 js ≤ 1 + 2 · Bjs + 2 · Z js

+ 2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (42)

B1 js + B2 js ≥ 2 − 2 · (1 − Bjs) − 2 · Z js

− 2 ·
(

1 −
∑

k∈F
yi jk

)

, i, j ∈ V \{0, n + 1}, s ∈ S (43)

nPallet jsk ≥ nPjs − M3 ·
⎛

⎝1 −
∑

i∈V \{n+1}
yi jk

⎞

⎠ , j ∈ V \{0, n + 1}, k ∈ K , s ∈ S

(44)

nPallet jsk ≤ nPjs, j ∈ V \{0, n + 1}, k ∈ K , s ∈ S (45)
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∑

s∈S

∑

j∈V \{0,n+1}
ωs · ls · nPallet jsk + BEXT RAk · ω4 · l4

+ BBULKk · ωb · (lb + lh) ≤ α · L · W , k ∈ K (46)

Objective function (7) minimises the total cost.
Constraint set (8) guarantees that followingon fromacustomer location, only one customer

can be immediately visited.
Constraint set (9) states that each used vehicle starts its tour from the depot.
Constraint set (10) imposes that each used vehicle ends its tour at the depot.
Constraint set (11) is a flow conservation constraint; it ensures each vehicle entering a

customer location will leave it.
Constraint sets (12) and (13) set the time window constraints for customer visits.
Constraint set (14) ensures that each customer will be served only when a vehicle arrives

at its location.
Constraints set (15)–(22) corresponds to Scenario One in Fig. 3.
Constraints set (23)–(30) corresponds to Scenario Two in Fig. 3.
Constraints set (31)–(37) corresponds to the situation that the current order j cannot be

completely loaded in the same pallet with the previous order i due to the pallet volume
capacity in Scenario Three in Fig. 3. The constraints set which corresponds to the situation
that the current order j cannot be completely loaded in the same pallet with the previous
order i due to the pallet weight capacity in Scenario Three in Fig. 3, is not listed here for
simplicity.

Constraints set (38)–(43) justify the definition of the decision variable Bjs .
Constraints (44)–(46) put an upper limit on the total area of the pallets on each vehicle.

The upper limit is α · L · W as explained at the beginning of Sect. 3. The decision variable
nPallet jsk is defined to keep the number of the extra pallets needed to load order j of type
s completely in vehicle k. The binary variable BBULKk = 1 if there is any frozen product
(s = 4) loaded on vehicle k, 0, otherwise. The binary variable BEXT RAk = 1 if the number
of frozen pallets is odd on vehicle k, where an extra empty area of one frozen pallet size
(s = 4) is needed in the vehicle loading diagram (See Fig. 1), 0, otherwise. For simplicity,
the constraints defining BBULKk and BEXT RAk are not given here.

In the constraints (15)–(46), M1, M2, M3 are large positive constants, which can be set
as the upper limit for the corresponding decision variables: M1 = maxs∈S(DVs), M2 =
maxs∈S(DWs) and M3 = ∑

s∈S, j∈ j∈V \{0,n+1} minX js

3.4.2 Stage two 2D vehicle loading

With the decision variable values from Stage One modelling, the following information can
be specified for any given vehicle k as input data for the Stage Two.

nV—tal number of routes.
nV Pks—Total number of pallets of type s on Vehicle k, k = 1, . . . , nV ; s ∈ S.
nV P Iksu—Total number of orders on the uth pallet of type s on vehicle k, k =
1, . . . , nY ; s ∈ S; u = 1, . . . , nV Pks .
Iksuv—Customer index of the vth order on the uth pallet of type s loaded on vehicle
k, k = 1, . . . , nV ; s ∈ S; u = 1, . . . , nPVks ; v = 1, . . . , nV P Iksu . The orders are
allocated in a way that an order from the customer to be visited earlier will be allocated
in the palletwith lower index u and lower index v to helpwith the adapted LIFOconstraint
modelling.
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Since the allocation of the pallets on vehicles can be realised one by one, it is not necessary
to allocate all the nV vehicles at the same time. We hence set up the mathematical model
for only one vehicle, thus the index k in all input data and decision variables in Stage Two
modelling can be dropped.

Objective The Stage Two modelling is a decision problem, that is, to decide if a feasible
packing exists.Wedefine the objective of the StageTwoproblemas tominimise themaximum
x-coordinate of all the pallets loaded on the vehicle k. With this objective, the pallets are
loaded to the left-most position on the vehicle and the loading layout of the vehicle will be
as compact as possible. From a realistic point of view, the pallets will be loaded as close to
each other as possible, this can improve the stability of the pallets inside the vehicle.

Z Z = min maxL (47)

Constraints Let the reference points of both pallets and vehicles be at the bottom left
corners of the pallets and vehicles. Also let the x and y coordinates originate from the
bottom-left corner of the vehicle and x-coordinate will increase to the right and y-coordinate
will increase upwards respectively.

The first constraint set ensures that the pallets are allocated within the vehicle:

ωs + Y Psu ≤ W + YV , s ∈ S, u = 1, . . . , nV Ps (48)

Y Psu ≥ YV , s ∈ S, u = 1, . . . , nV Ps (49)

ls + X Psu ≤ maxL, s ∈ S, u = 1, . . . , nV Ps (50)

If BBULK = 0, that is, there is no frozen product loaded on the current vehicle, we have

ls + X Psu ≤ L + XV + M4 · BBULK s ∈ S, u = 1, . . . , nV Ps (51)

X Psu ≥ XV − M4 · BBULK s ∈ S, u = 1, . . . , nV Ps (52)

Otherwise, let W f rozen be the width of the vehicle area to load the frozen product, which
is also a decision variable.

ls + X Psu ≤ L + XV + M4 · (1 − BBULK ), s = 1, 2, 3, 5, u = 1, . . . , nV Ps (53)

X Psu ≥ XV + W f rozen − M4 · (1 − BBULK ), s = 1, 2, 3, 5, u = 1, . . . , nV Ps

(54)

ls + X Psu ≤ W f rozen + XV + M4 · (1 − BBULK ), s = 4, u = 1, . . . , nV Ps (55)

X Psu ≥ XV − M4 · (1 − BBULK ), s = 4, u = 1, . . . , nV Ps (56)

The following set of constraints guarantee the non-overlapping among the pallets of the same
type s. To realise the adapted LIFO constraint, the binary variables B3su′ and B4su′ are defined
as 0 if the pallet with higher index u′ (orders to be unloaded later) is loaded on the left or
above the pallet with lower index u (orders to be unloaded earlier); 1, otherwise. In addition,
for ease of unloading, the rightmost edge of the pallets of higher index should not exceed the
rightmost edge of the pallets of lower index. The constraints for the frozen products are not
given here for simplicity. Bear in mind that the door for the frozen products is at the front
bottom of the vehicle.

X Psu′ + ls ≤ X Psu − M4 · B3su , s = 1, 2, 3, 5, u = 1, . . . , nV Ps, u
′ > u (57)

Y Psu + ωs ≤ Y Psu′ − M4 · B4su , s = 1, 2, 3, 5, u = 1, . . . , nV Ps, u
′ > u (58)

B3su + B4su = 1 s = 1, 2, 3, 5, u = 1, . . . , nV Ps (59)

X Psu′ leq X Psu, u, u′ = 1, . . . , nV Ps, u
′ > u (60)
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The following set of constraints guarantee the non-overlapping among the pallets of different
type s. To realise the adapted LIFO, binary variables B5s′u′ and B6s′u′ are defined as 0 if the
pallet u′ of type s′ to be unloaded later is loaded on the left or above the pallet u of type s
to be unloaded earlier, 1, otherwise. In addition, to realise the adapted LIFO, the rightmost
edge of the pallet to be unloaded later should not exceed the rightmost edge of the pallet
to be unloaded earlier. This is the an extra constraint compared with the traditional LIFO
constraint.

X Ps′u′ + ls′ ≤ X Psu − M4 · B5s′u′ , s, s′ = 1, 2, 3, 5, u = 1, . . . , nV Ps , u
′ = 1, . . . , nV Ps′

(61)

Y Psu + ωs ≤ Y Ps′u′ − M4 · B6s′u′ s, s′ = 1, 2, 3, 5, u = 1, . . . , nV Ps, u
′ = 1, . . . , nV Ps′

(62)

B5s′u′ + B6s′u′ = 1 s, s′ = 1, 2, 3, 5, u = 1, . . . , nV Ps, u
′ = 1, . . . , nV Ps′ (63)

X Ps′u′ + ls′ ≤ X Psu + ls s, s′ = 1, 2, 3, 5, u = 1, . . . , nV Ps, u
′ = 1, . . . , nV Ps′

(64)

In the Stage Two modelling, M4 is defined as a large positive constant. The bound for M4

could be M4 = max(L,W ).

4 GVNS for large sizedMO-VRLPTW problems

Due to the complexity of the MO-VRLPTW problem, optimisation software can be applied
to solve a small sized Stage One routing with 1D pallet loading model and a Stage Two 2D
vehicle loading model as proposed in Sect. 3.

It is noted that most of the computational effort in solving the Stage One model to opti-
mality is to cope with the challenge that the loading has to be considered when there is no
clear idea about which orders are to be delivered in the same vehicle and in which sequence
are the orders to be delivered. Thus a GVNS algorithm is proposed to route the customers’
orders first, then the feasible loading for each vehicle is considered by solving a simplified
Stage One model and Stage Two model in an iterated way with optimisation software.

Let Vk be the customer set for vehicle k. The objective of the simplified Stage One model
for vehicle k is defined as follows:

Min Zk =
∑

j∈Vk

∑

s∈S
(1 − Z js)

The constraints of the simplified Stage One model are the same as constraints (15)–(46). The
main framework of the GVNS algorithm for the MO-VRLPTW is described in Sect. 4.1. The
subroutines of the algorithm will be provided in Sects. 4.2–4.5.

4.1 The framework of the GVNS algorithm for theMO-VRLPTW

The basic idea of thisGeneralisedVNSAlgorithm for theMO-VRLPTW, provided inTable 1,
is to start from an initial solution s0 using a SweepLine procedure to be illustrated in Sect. 4.2.
This is followed by a Two Route Exchange procedure to achieve the local optimal solution
sL (see Sect. 4.3). The Two Route Exchange procedure is run for up to lmax number of
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Table 1 Basic steps of the GVNS algorithm for the MO-VRLPTW

neighbours and the best solution is kept in sB . Whenever an improvement is found, the
neighbour index is set to l = 1. The feasibility of the loading and the third objective have not
been considered in the Two Route Exchange procedure. This is due to the fact that it takes a
significant computational time to run the simplified Stage One model and Stage Two model
in an iterative way using optimisation software.

Once the local optimum solution sB is found with the Two Route Exchange procedure,
theMake Feasible procedure is applied to update the solution sB to a solution sP considering
feasible loading constraints. Meanwhile, the inconvenience cost of unloading the mixed
orders I · ∑

j∈Vk
∑

s∈S(1 − Z js) for each vehicle k is calculated in the Make Feasible
procedure through running the simplified Stage One model.

To further improve the solution sP , a Shaking procedure (see Sect. 4.5) is applied to
generate a random solution sR by r kicks of sP , which generates a new local random solution
sL . Then the sL is improved with the TwoRouteExchange procedure again. The Shaking
procedure repeats until no further improvement on sP is found.Whenever the sP is improved,
the kick size is reset to 1. The algorithm is halted when r exceeds the maximum kick size up
to rmax . The solution sP is defined to keep the solution with the lowest total cost as the final
choice.

4.2 Initial solution

The procedure Sweep Line() follows the traditional sweep algorithm for VRP (Gillett and
Millet 1974). That is: choose an unused vehicle and rotate a straight line in a circle with the
centre point at the depot. Whenever it touches a customer, this customer’s order is loaded
onto the selected vehicle. This procedure continues until all the customer orders are loaded.
When loading a vehicle, the timewindow constraint and weight limit of the vehicle constraint
need to be satisfied.

4.3 Local search

Given any solution s, the basic structure of procedure TwoRoute Exchange (s) is an extension
to the variable iterated greedy algorithm for a TSPTW in Karabulut and Tasgetiren (2014).
That is, given each pair of different routes in the solution s, a Two Route Destruct Construct
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(k1,k2) procedure similar to the Destruct Construct () in Karabulut and Tasgetiren (2014) is
applied to exchange k1 number of customers from route one with the k2 number of customers
from route two in order to generate two new routes. The two new routes are treated as
independent TSPTW problems and are optimised using the VNS_1_Opt local search of
Karabulut and Tasgetiren (2014). The original two routes will be replaced by the two new
routes if the resulting new solution snew has smaller value of total fuel cost and total vehicle
hiring cost, as defined in (7)

∑
k∈F

∑
j∈V

∑
i∈V P · di j · yi jk + H · ∑k∈F zk than that of the

original solution s.
One new feature of this Two Route Exchange (s) is that the Destruct Construct() in Karab-

ulut and Tasgetiren (2014) destroys ONE original route and constructs ONE new route (The
problem they dealt with is the TSPTW problem), whereas the Two Route Destruct Construct
(k1,k2) procedure in this paper destroys TWO original routes into parts and construct TWO
new routes by exchanging the parts from the original routes.

The other feature of this Two Route Exchange (s) is that the best improve strategy is
adopted. That is, given one fixed route, choose the route to exchange, which will lead to
the best improved result among all unchanged routes. Mark these two routes as exchanged
routes. We repeatedly search all unchanged routes for the next pair to exchange using the
best improve strategy until all routes are considered.

The third feature is that different neighbourhoods are used in the Two Route Exchange (s)
by exchanging different numbers of customers in the two routes. The number of customers
chosen in each route to be exchanged is generated randomly in the range [1, 4].

We adapted the Variable Iterated Greedy Algorithm fromKarabulut and Tasgetiren (2014)
because this is a well performing method from the literature.

4.4 Make feasible procedure

TheMakeFeasible(s1, s2) is used to update the solution s1 from a solution without the loading
feasibility check to a feasible solution s2 with the loading feasibility check. The basic steps
of the function MakeFeasible(s1, s2) is provided in Table 2.

For each route k in solution s1, the procedure starts with running the simplified Stage One
model with the highest α value in constraint (48) and then run the Stage Two model to check
if the solution of Stage One model can lead to a feasible 2D vehicle loading solution in Stage
Two. The α value is decreased to run the simplified Stage One model again if no feasible
solution exists in the Stage Two in the last iteration. With some experimental analysis, the
set of discrete α values are chosen as 0.92, 0.87 and 0.82.

If after all the three iterations, a route k in solution s1 cannot be made feasible, then the
route will be split up into two smaller routes with equal number of orders in each route. Thus
the load feasibility can be easily achieved with less loads for the two new smaller routes.

When solving the simplified Stage One model, the value of the min Zk = ∑
j∈Vk

∑
s∈S

(1− Z js) can be achieved. And with the known value Zk , the selection criterion in the GVNS
becomes to choose the solutions with the lowest total cost defined in Eq. (7).

4.5 Shaking

The Shake() procedure generates a random solution by kicking the original solution randomly
r times. This is done by exchanging min (number of customers in the route-1, r ) number of
customers for each pair of selected routes. Once a pair of routes is exchanged, they will not
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Table 2 Basic steps of the function MakeFeasible(s1, s2)

be considered for other route exchanges. This exchange procedure will be applied repeatedly
until all routes are exchanged.

5 Experimental analysis

To assess the effectiveness of the MO-VRLPTW models, a small sized data set with 5
customers was used as our case study and the Xpress-IVE 1.23.02 software used to solve
the model. The data input and the parametric analyses are provided in Sect. 5.1. Then in
Sect. 5.2, a real industrial case study based on real geographic data and simulated customers’
data is generated and solved by both the GVNS algorithm and the software provided by our
industrial partner—Optrak. The effectiveness of the GVNS algorithm is also discussed in
Sect. 5.2.

5.1 A small sized case study for assessing the stage one and stage twomodels

In this case study, the fuel cost per kilometre is P = £0.12/km, cost of hiring a vehicle is
H = £50/vehicle. There is no clear definition about the cost of inconvenience of unloading
one mixed order. Thus a set of values are set to represent this cost I = £1, £5, and £10
to assess the influence of this inconvenience on the final solution. The detailed parametric
analysis is given in Sect. 5.1.2. Section 5.1.1 gives detailed data input information.

5.1.1 Data inputs

The distance and time matrix of the five customers are given in Tables 3 and 4. Table 5 gives
the customers’ demand on volume, number and weight of items of different product types.
Table 6 gives the sizes and capacities of the vehicle and the pallets. Table 7 gives the service
time and time window for each customer.

5.1.2 Parametric analysis

The α value is set to be α = 0.92, which can lead to feasible solutions for all vehicles for all
sets of parameters.

Let Z ′ = ∑
k∈F

∑
j∈V

∑
i∈V di j · yi jk be the total travel distance, Z ′′ = ∑

k∈F zk be the
total number of vehicles used and Z ′′′ = ∑

j∈V \{0,n+1}
∑

s∈S(1 − Z js) be the total number
of mixed orders to be unloaded. The results and a parametric analysis of parameters are

123



Annals of Operations Research (2020) 291:799–825 819

Table 3 Distance matrix (km)

Depot Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Depot − 138.92 29.68 80.21 24.86 29.10

Customer 1 136.35 − 117.13 203.78 124.46 137.82

Customer 2 27.20 115.00 − 94.63 22.46 32.91

Customer 3 80.89 204.55 95.31 − 67.97 52.89

Customer 4 24.89 123.76 22.60 67.77 − 16.25

Customer 5 29.27 138.74 32.76 52.95 16.27 −

Table 4 Time matrix (minutes)

Depot Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Depot – 93.0 25.0 58.3 25.9 31.0

Customer 1 95.4 − 79.9 136.5 90.1 99.6

Customer 2 26.7 78.4 – 67.9 24.2 31.6

Customer 3 60.2 137.0 69.0 − 59.8 49.2

Customer 4 25.9 89.8 24.1 59.4 – 17.1

Customer 5 31.2 99.8 32.0 49.7 17.2 –

Table 5 Customers’ demand on volume, number and weight of pallets of different product types

Customer No. i 1 2 3 4 5

Volume ordered (1000 cm3) s = 1 1720 600 230 260 1088

s = 2 0 55 0 0 36

s = 3 37 0 0 138 0

s = 4 22 34 2504 12 0

s = 5 330 0 0 33 0

Number ordered s = 1 5 16 23 13 34

s = 2 0 10 0 0 2

s = 3 4 0 0 7 0

s = 4 5 4 4 4 0

s = 5 20 0 0 3 0

Weight ordered (kg) s = 1 320 300 460 410 374

s = 2 0 29 0 0 22

s = 3 28 0 0 49 0

s = 4 90 20 12 12 0

s = 5 140 0 0 36 0

summarised in Table 8. Columns 2 in Table 8 details the set of values of the inconvenience
cost I of unloading one mixed order. Columns 3–5 give the total travel distance, total number
of vehicles used and total number of mixed orders to be unloaded. Columns 6–9 give the
total fuel cost, total cost of hiring a vehicle, total inconvenience cost and total cost Z . The
final column gives the computational time for each analysis.
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Table 6 Sizes and capacities of the vehicle and the pallets

Length (cm) Width (cm) Weight Limit (kg) Volume Limit (1000 cm3)
Vehicle 515 240 1500 500000

Pallet 1 76 80 800 270

Pallet 2 76 80 800 270

Pallet 3 100 120 1300 1000

Pallet 4 100 120 1300 1000

Pallet 5 63 80 562 250

Bulkhead 45 240

Table 7 Service time and time window for each customer (minutes)

Depot Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Service Time 0 15 15 18 13 15

Start Time 0 90 240 360 150 150

End Time 1, 00, 000 420 540 780 450 420

Table 8 Solutions produced by the sensitivity analysis

I Z ′ Z ′′ Z ′′′ P · Z ′ H · Z ′′ I · Z ′′′ Z Time (s)

1 £1 455.94 2 11 54.71 100 11 165.71 6

2 £5 481.00 2 10 57.72 100 50 207.72 7

3 £10 481.00 2 10 57.72 100 100 257.72 7

All the solutions are optimal and found within the given computational time in Table 8.
It can be seen from Table 8 that along with the increase of the unit inconvenience cost I , the
number of the mixed orders to be unloaded is reduced from 11 to 10. On the other hand, the
total travel distance has increased from 455.94 to 481.00 km. If a decision maker prefers a
solution with the least fuel cost, then the value of the unit inconvenience cost I needs to be
set as small as possible.

The loading graph for unit inconvenience cost I = £1 and the corresponding routing
strategy is given by Fig. 4. In Fig. 4, the number i in a circle represents the i th pallet of the
same type. The number on the left-bottom corner represents which order has been loaded.
The first number in the bracket represents the volume of the order loaded in the pallet; the
second number in the bracket represents the weight of the order loaded in the pallet. The
“Visit Seq.” gives the visiting sequence of the orders, where “0” represents the depot. The
“Visit Time” gives the time that the order is delivered to the customer.

5.2 Large sized case studies for assessing the generalized GVNS algorithm

Similar to the parametric analysis for the small sized problem, the set of values of the
inconvenience cost of unloading one mixed order I are chosen for evaluating how sensitive
theGVNSalgorithm is to the different values of I for the large scaleMO-VRLPTWproblems.
The algorithm is coded with Microsoft Visual Studio C++ 2012 on a laptop of Window 7
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Fig. 4 The loading graph for unit inconvenient cost I = £1 and the corresponding routing strategy

Table 9 Solutions produced by
the Optrak Software Z

′
Z

′′
Z

′′′
Time (s)

6883.00 47 433 320

x64, with the processor Intel(R) core(TM) CPU 2.40 GHz. The installed memory (RAM) is
8.00GB.

Onenew instance based on real geographic data and simulated customers’ data is generated
with a total of 489 customers. The information of the data input is exactly the same as that
is provided in Sect. 5.1. The only difference is that the size of the problem is much larger.
Thus we upload all the data information to the website https://sites.google.com/a/port.ac.uk/
song-2016-mo-vrltw-data-site/ for researchers who wish to make future investigations.

In addition, the solution from the Industrial Software Optrak is also provided in Table 9.
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Table 10 Solutions produced by the GVNS

I Z ′ Z ′′ Z ′′′ P · Z ′ H · Z ′′ I · Z ′′′ ZGV NS Zoptrak Time (s)

1 £0.0 6401.42 45 356 768.17 2250 0 768.17 825.96 423

2 £0.1 6423.69 45 350 770.84 2250 35 805.84 869.26 503

3 £0.5 6535.87 44 336 784.30 2200 168 952.30 1042.46 291

4 £1.0 6538.90 44 326 784.67 2200 326 1110.67 1258.96 290

5 £5.0 6592.54 45 318 791.04 2250 1950 2741.04 2990.96 412

An explanation of the algorithm of the Optrak Software Company is that various local
search techniques, which are well known in the literature, have been implemented. The best
result is used as their final solution. The algorithmwas designed to achieve a good solution in
an acceptable customer time. Thus the parameters are usually set to small values. However,
to compare this with this paper’s result, the software parameters are set to its upper limit. For
example, in 2-opt search algorithm, the number of the nearest neighbours considered is set
to 489. So the computational time is somewhat slow (320 s). Another reason for the longer
computational time is that the Optrak software is designed to take into account additional
constraints such as driver break regulations and rush-hour travel speeds, which although
omitted from our problem definition and data sets still impact computational times.

A small deviation from the model presented in this paper is that the company allow a
driver to carry out two routes on the same day. That is, if one order is too small, the driver
might return to the depot too early. They will send that driver off again on the same day to
deliver another order. In that case, their number of routes used is a bit more than necessary,
because some routes were actually run by the same vehicle. Thus, we don’t compare the
second objective—minimising the total number of routes used in the following experiments,
since the problem solving strategies of this GVNS algorithm and OPTRAK software are
slightly different as explained above.

The results in Table 10 follow the same basic format as in Table 8. In addition to Table 8, the
Z value of the GVNS algorithm is defined as ZGV NS . The corresponding objective Z value of
the Software is also provided, which is defined as Zoptrak . The upper limit of computational
time is set to 300 s, which is assumed to be acceptable in industry and recommended by
Optrak as a typical user expectation. The key parameter values in the GVNS are set as
lmax = 4, rmax = 30.

From Table 10, it can be seen that the GVNS algorithm provides solutions with a better
overall z-value than those of the OPTRAK software company. And also the GVNS algorithm
is sensitive to the different values of I . The tendency is clear that the total travel distance
will increase along with a larger I value and the number of mixed orders loaded on the same
pallet will decrease on the vice versa.

6 Conclusions and future work

In this paper, a MILP model for the multi-objective vehicle routing and loading with time
window constraints is formulated. In addition to the classic time window constraints, the
1D pallet loading and 2D vehicle loading constraints are also taken into consideration. The
problem consists of routing a number of routes to serve a set of customers, and determining
the best way for loading the goods ordered by the customers on the vehicles used for trans-
portation. The three objective functions pertaining to minimisation of total travel distance,
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number of routes to use and total number of mixed orders in the same pallet are, more often
than not, conflicting. In the formulated MILP model, the problem is converted to one objec-
tive - minimising the total cost, where the three original objectives are incorporated as parts
of the total cost function.

The Xpress-IVE 1.23.02 software is used to solve the MILP models. The real data is
provided by our industrial collaborator and the results and sensitivity has been provided
for different scenarios. Due to the complexity of the problem, it takes a long time for the
computer to find optimal solutions to the different combinations of the weights for large sized
problems. Thus, a case study with only 5 customers was solved to optimality. The individual
execution times are acceptable for this small-sized case study.

To solve the practical industrial case study with up to 489 customers, we have proposed
a GVNS algorithm, which provides a set of distinct solutions to this optimisation problem
with different unit inconvenience costs for unloading one mixed order. In addition, the local
search function is novel compared to other published algorithms in the VRPTW domain.
The algorithm was coded with C++ and the results show that it can provide overall efficient
solutions as compared with the Optrak software.

In the future, shift rules and patterns for drivers (legal limits for drivers’ shifts correspond
to the HGV and van regulations like the hours of the night or day shifts, start time of the
work and the amount of time working) as well as work limits (non-legal shift limits) can been
considered for incorporation in the mathematical model and algorithm as a future research
work.
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