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Abstract
In Packet Scheduling with Adversarial Jamming, packets of arbitrary sizes arrive over time
to be transmitted over a channel in which instantaneous jamming errors occur at times cho-
sen by the adversary and not known to the algorithm. The transmission taking place at
the time of jamming is corrupt, and the algorithm learns this fact immediately. An online
algorithm maximizes the total size of packets it successfully transmits and the goal is to
develop an algorithm with the lowest possible asymptotic competitive ratio, where the addi-
tive constant may depend on packet sizes. Our main contribution is a universal algorithm
that works for any speedup and packet sizes and, unlike previous algorithms for the problem,
it does not need to know these parameters in advance. We show that this algorithm guar-
antees 1-competitiveness with speedup 4, making it the first known algorithm to maintain
1-competitiveness with a moderate speedup in the general setting of arbitrary packet sizes.
We also prove a lower bound of φ + 1 ≈ 2.618 on the speedup of any 1-competitive deter-
ministic algorithm, showing that our algorithm is close to the optimum. Additionally, we
formulate a general framework for analyzing our algorithm locally and use it to show upper
bounds on its competitive ratio for speedups in [1, 4) and for several special cases, recover-
ing some previously known results, each of which had a dedicated proof. In particular, our
algorithm is 3-competitive without speedup, matching both the (worst-case) performance of
the algorithm by Jurdzinski et al. (Proceedings of the 12th workshop on approximation and
online algorithms (WAOA), LNCS 8952, pp 193–206, 2015. http://doi.org/10.1007/978-3-
319-18263-6_17) and the lower bound by Anta et al. (J Sched 19(2):135–152, 2016. http://
doi.org/10.1007/s10951-015-0451-z).

Keywords Packet scheduling · Adversarial jamming · Online algorithms · Throughput
maximization · Resource augmentation
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1 Introduction

We study an online packet scheduling model recently introduced by Anta et al. (2016) and
extended by Jurdzinski et al. (2015). In our model, packets of arbitrary sizes arrive over
time and they are to be transmitted over a single communication channel. The algorithm can
schedule any packet of its choice at any time, but cannot interrupt its subsequent transmission.
In the scheduling jargon, there is a single machine and no preemptions. There are, however,
instantaneous jamming errors or faults at times chosen by the adversary, which are not
known to the algorithm. A transmission taking place at the time of jamming is corrupt, and
the algorithm learns this fact immediately. The packet whose transmission failed can be
retransmitted immediately or at any later time, but the new transmission needs to send the
whole packet, i.e., the algorithm cannot resume a transmission that failed.

Theobjective is tomaximize the total size of packets successfully transmitted. In particular,
the goal is to develop an online algorithm with the lowest possible competitive ratio, which
is the asymptotic worst-case ratio between the total size of packets in an optimal offline
schedule and the total size of packets completed by the algorithm on a large instance. (See
the next subsection for a detailed explanation of competitive analysis.)

We focus on algorithms with resource augmentation, namely on online algorithms that
transmit packets s ≥ 1 times faster than the offline optimal solution they are compared
against. Such algorithm is often said to be speed-s, running at speed s, or having a speedup
of s. As our problem allows constant competitive ratio already at speed 1, we consider the
competitive ratio as a function of the speed. This deviates from previous work, which focused
on the case with no speedup or on the speedup sufficient for ratio 1, ignoring intermediate
cases.

1.1 Competitive analysis and its extensions

Competitive analysis focuses on determining the competitive ratio of an online algorithm
ALG, which is the supremum over all valid instances I of OPT(I )/ALG(I ), where OPT(I ) is
the optimal profit and ALG(I ) is the profit of ALGon instance I .1

Note that the optimal solution is to the whole instance. Thus, it can be thought of as being
determined by an algorithm that knows the whole instance in advance and has unlimited com-
putational power. For this reason, the optimal solution is sometimes called “offline optimum”.
The name “competitive analysis” was coined by Karlin et al. (1988) but this kind analysis
was applied even before (Graham 1966; Sleator and Tarjan 1985). Since then, competitive
analysis was employed to the study of many online optimization problems, as evidenced
by (now somewhat dated) textbook by Borodin and El-Yaniv (1998). A nice overview of
competitive analysis and its many extensions in the scheduling context can be found in a
survey by Pruhs (2007).

1.1.1 Asymptotic ratio and additive constant

In some discrete optimization problems, such as bin packing or various coloring problems,
the standard notion of competitive analysis is too restrictive. The issue is that in order to attain
a competitive ratio relatively close to 1 (or even any ratio), an online algorithm must behave

1 We note that this ratio is always at least 1 for a maximization problem such as ours. However, some authors
always consider the reciprocal, i.e., the “alg-to-opt” ratio, which is then at most 1 for maximization problems
and at least 1 for minimization problems.
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in a predictable way when the current optimal value is still small, which makes the algorithm
more or less trivial and the ratio somewhat large. To remedy this, the “asymptotic competitive
ratio” is often considered, which means essentially that only instances with a sufficiently
large optimal value are considered. This is often captured by stating that an algorithm is R-
competitive if (in our convention) there exists a constant c such that R ·ALG(I )+c ≥ OPT(I )
holds for every instance I . The constant c is typically required not to depend on the class
of instances considered, which makes sense for aforementioned problems where the optimal
value corresponds to the number of bins or colors used, but is still sometimes too restrictive.

This is the case in our problem. Specifically, using an examplewe show that a deterministic
algorithm running at speed 1 can be (constant) competitive only if the additive term in the
definition of the competitive ratio depends on the values of the packet sizes, even if there
are only two packet sizes. Suppose that a packet of size � arrives at time 0. If the algorithm
starts transmitting it immediately at time 0, then at time ε > 0 a packet of size �−2ε arrives,
the next fault is at time � − ε and then the schedule ends (i.e., it is not possible to transmit
anything later). Thus the algorithm does not complete the packet of size �, while the adversary
completes a slightly smaller packet of size � − 2ε. Otherwise, the algorithm is idle till some
time ε > 0, no other packet arrives and the next fault is at time �, which is also the end of
the schedule. In this case, the packet of size � is completed in the optimal schedule, while
the algorithm completes no packet again.

1.1.2 Resource augmentation

Moreover, some problems do not admit competitive algorithms at all or yield counterintuitive
results. Again, our problem is an example of the former kind if no additive constant depending
on packet sizes is allowed (cf. aforementioned example). The latter can be observed in the
paging problem, where the optimal ratio equals the cache size, seemingly suggesting that the
larger the cache size, the worse the performance, regardless of the caching policy. Perhaps
for this reason, already Sleator and Tarjan (1985) considered resource augmentation for the
paging problem, comparing an online algorithm with cache capacity k to the optimum with
cache capacity h ≤ k. The “resource(s)” depend on the problem at hand. In particular, in
case of scheduling problems, the machine speed is a natural choice and was introduced in the
seminal paper of Kalyanasundaram and Pruhs (2000). The name “resource augmentation”
itself was coined in Phillips et al. (2002).

The article of Kalyanasundaram and Pruhs (2000) gives online algorithms that are
constant-competitive when their machine runs at a constant speed s > 1 for two fundamen-
tal single machine scheduling problems that do not admit constant competitive algorithms
in the standard setting with the machine running at speed 1. One of the two problems is
a preemptive variant of real-time scheduling where each job has a release time, deadline,
processing time, and a weight, and the objective is to maximize the weight of jobs completed
by their deadlines. This was followed by numerous studies of similar problems, where one
particularly interesting line of research (for multiple machine setting) aims at determining
the minimum speedup which suffices for competitive ratio 1 (Phillips et al. 2002; Lam et al.
1999, 2004; Chrobak et al. 2003). An up-to-date overview of these still open problems can
be found in the thesis of Schewior et al. (2016).
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1.2 Previous and related results

Packet Scheduling with Adversarial Jamming was introduced by Anta et al. (2016), who
resolve it for two packet sizes: If γ > 1 denotes the ratio of the two sizes, then the optimal
competitive ratio for deterministic algorithms is (γ +�γ �)/�γ �, which is always in the range
[2, 3). Jurdzinski et al. (2015) extend this by proving that the optimal ratio for the case of
multiple (though fixed) packet sizes is given by the same formula for the two packet sizes
which maximize it.

Moreover, Jurdzinski et al. (2015) give further results for divisible packet sizes, i.e.,
instances in which every packet size divides every larger packet size. In particular, they prove
that on such instances speed 2 is sufficient for 1-competitiveness in the resource augmentation
setting. (Note that the above formula for the optimal competitive ratio without speedup gives
2 for divisible instances.)

In another work, Anta et al. (2018) consider popular scheduling algorithms and analyze
their performance under speed augmentation with respect to three efficiencymeasures, which
they call completed load, pending load, and latency. The first is precisely the objective that
we aim tomaximize, the second is the total size of the available but not yet completed packets
(which we minimize in turn), and finally, the last one is the maximum time elapsed from
a packet’s arrival till the end of its successful transmission. We note that a 1-competitive
algorithm (possibly with an additive constant) for any of the first two objectives is also
1-competitive for the other, but there is no similar relation for larger ratios.

We note that Anta et al. (2016) demonstrate the necessity of instantaneous error feed-
back by proving that discovering errors upon completed transmission rules out a constant
competitive ratio. They also provide improved results for a stochastic online setting.

1.2.1 Multiple channels or machines

The problem we study has been generalized to multiple communication channels, machines,
or processors, depending on particular application. The standard assumption, in communica-
tion jargon, is that the jamming errors on each channel are independent, and that any packet
can be transmitted on at most one channel at any time.

For divisible instances, Jurdzinski et al. (2015) extend their (optimal) 2-competitive algo-
rithm to an arbitrary number of channels. The same setting is studied by Anta et al. (2015),
who consider both the completed load and the pending load objectives, and investigate what
speedup is necessary and sufficient for 1-competitiveness with respect to either objective.

Recall that 1-competitiveness forminimizing the total size of pending packets is equivalent
to 1-competitiveness for our objective of maximizing the total size of completed packets. In
particular, for either objective, Anta et al. (2015) obtain a tight bound of 2 on speedup for
1-competitiveness for two packet sizes. Moreover, they claim a 1-competitive algorithm with
speedup 7/2 for a constant number of sizes and pending (or completed) load, but the proof
is incorrect. See Sect. 3.3 for a (single-channel) counterexample.

Georgiou and Kowalski (2015) consider the same problem in a distributed setting, dis-
tinguishing between different information models. As communication and synchronization
pose new challenges, they restrict their attention to jobs of unit size only and no speedup. On
top of efficiency measured by the number of pending jobs, they also consider the standard
(in distributed systems) notions of correctness and fairness.

Finally, Garncarek et al. (2017) consider “synchronized” parallel channels that all suffer
errors at the same time. Their work distinguishes between “regular” jamming errors and
“crashes”, which also cause the algorithm’s state to reset, losing any information stored
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about the past events. They prove that for two packet sizes, as the number of channels tends
to infinity, the optimal ratio tends to 4/3 in the former setting and to φ = (

√
5+1)/2 ≈ 1.618

in the latter.

1.2.2 Randomization

All aforementioned results, as well as our work, concern deterministic algorithms. In gen-
eral, randomization often allows an improved competitive ratio. The idea is simply to replace
the algorithm’s cost or profit with its expectation in the competitive ratio, but a proper def-
inition is subtle. One may consider the adversary’s “strategies” for creating and solving an
instance separately, possibly limiting their powers. Formal considerations lead to more than
one adversary model, which may be confusing. As a case in point, Anta et al. (2016) note
that their lower bound strategy for two sizes (in our model) applies to randomized algorithms
as well, which would imply that randomization provides no advantage. However, their argu-
ment requires that the adversary acts based on the previous behavior of the algorithm, which
depends on the algorithm’s random bits. This is permitted in the adaptive adversary model
but not in the far more common oblivious adversary model, where the adversary needs to
fix the instance in advance and cannot change it according to the decisions of the algorithm.
To our best knowledge, randomized algorithms for our problem were never considered in
the oblivious adversary model. For more details and formal definitions of these adversary
models, we refer to the article that first distinguished them (Ben-David et al. 1994) or the
textbook on online algorithms (Borodin and El-Yaniv 1998).

1.3 Our results

The major contribution of this paper is a uniform algorithm that we call PrudentGreedy (PG)
and describe in Sect. 2.1. Our main result concerns the analysis of the general case with
speedup where we show that speed 4 is sufficient for our algorithm PG to be 1-competitive.
The proof is by a complex (non-local) charging argument described in Sect. 4.

However, we start by formulating a simpler (local) analysis framework and applying it
to several settings in Sect. 3. In particular, we prove that on general instances, PG achieves
the optimal competitive ratio of 3 without speedup and we also get a trade-off between the
competitive ratio and the speedup for speeds in [1, 4).

To recover the 1-competitiveness at speed 2 and also 2-competitiveness at speed 1 for
divisible instances, we have to modify our algorithm slightly as otherwise, we can guarantee
1-competitiveness for divisible instances only at speed 2.5 (see Sect. 3.2.3). This is to be
expected as divisible instances are a very special case. Thedefinition of themodified algorithm
for divisible instances and its analysis by our local analysis framework is in Sect. 3.4.

On the other hand, we prove that our algorithm PG is 1-competitive on far broader class
of “well-separated” instances at sufficient speed: If the ratio between two successive packet
sizes (in their sorted list) is no smaller than α ≥ 1, our algorithm is 1-competitive if its
speed is at least Sα which is a non-increasing function of α such that limα→∞ Sα = 2 (see
Sect. 3.2.2 for the precise definition of Sα).

In Sect. 3.3, we demonstrate that the analyses of our algorithm are mostly tight, i.e., that
(a) on general instances, the algorithm is no better than (1 + 2/s)-competitive for s < 2
and no better than 4/s-competitive for s ∈ [2, 4), (b) on divisible instances, it is no better
than 4/3-competitive for s < 2.5, and (c) it is at least 2-competitive for s < 2, even for two
divisible packet sizes [example (c) is in Sect. 3.4.1]. See Fig. 1 for a graph of our bounds.
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Fig. 1 A graph of our upper and lower bounds on the competitive ratio of algorithm PG(s), depending on the
speedup s. The upper bounds follow from Theorems 2 and 6, whereas the lower bounds follow from hard
instances from Sect. 3.3

In Sect. 5, we complement these results with two lower bounds on the speed that is
sufficient to achieve 1-competitiveness by a deterministic algorithm. The first one proves
that even for two divisible packet sizes, speed 2 is required to attain 1-competitiveness,
establishing optimality of our modified algorithm and that of Jurdzinski et al. (2015) for the
divisible case. The second lower bound strengthens the previous construction by showing
that for non-divisible instances with more packet sizes, speed φ + 1 ≈ 2.618 is needed for
1-competitiveness. Both results hold even if all packets are released simultaneously.

We remark that Sects. 3, 4, and 5 are independent of each other and can be read in any order.
In particular, the readermay safely skip proofs for various special instances in Sect. 3 (e.g., the
divisible instances), and proceed to Sect. 4 with the main result, which is 1-competitiveness
with speedup 4.

1.3.1 Comparison to previous work

Summarizing, our algorithm PGworkswell inmany settings,whichwe prove using a versatile
local analysis framework (except for our main result in Sect. 4 which requires amore intricate
analysis). This contrasts with the results of Jurdzinski et al. (2015), where each upper bound
is attained by a dedicated algorithm with independently crafted analysis. In a sense, this
means that their algorithms require the knowledge of speed they are running at. Moreover,
algorithms in Jurdzinski et al. (2015) do require the knowledge of all admissible packet
sizes. Our algorithm has the advantage that it is completely oblivious, i.e., requires no such
knowledge. Furthermore, our algorithm is more appealing as it is significantly simpler and
“work-conserving” or “busy”, i.e., transmitting some packet whenever there is one pending,
which is desirable in practice. In contrast, algorithms in Jurdzinski et al. (2015) can be
unnecessarily idle if there is a small number of pending packets.
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2 Algorithms, preliminaries, notations

We start by some notations. We assume there are k distinct non-zero packet sizes denoted by
�i and ordered such that �1 < · · · < �k . For convenience, we define �0 = 0. We say that the
packet sizes are divisible if �i divides �i+1 for all i = 1, . . . , k − 1. For a packet p, let �(p)
denote the size of p. For a set of packets P , let �(P) denote the total size of all the packets
in P .

During the execution of an algorithm, at time t , a packet is pending if it is released before
or at t and not completed before or at t . At time t , if no packet is running, the algorithm may
start any pending packet. As a convention of our model, if a fault (jamming error) happens
at time t and this is the completion time of a previously scheduled packet, this packet is
considered completed. Also, at the fault time, the algorithm may start any packet, including
the one whose transmission has been jammed.

Let LALG(i, Y ) denote the total size of packets of size �i completed by an algorithm ALG
during a time interval Y . Similarly, LALG(≥ i, Y ) (resp. LALG(< i, Y )) denotes the total size
of packets of size at least �i (resp. less than �i ) completed by an algorithm ALG during a
time interval Y . Formally, we define LALG(≥ i, Y ) = ∑k

j=i LALG( j, Y ) and LALG(< i, Y ) =
∑i−1

j=1 LALG( j, Y ). We use notation LALG(Y ) with a single parameter to denote the size
LALG(≥ 1, Y ) of packets of all sizes completed by ALG during Y and notation LALG without
parameters to denote the size of all packets of all sizes completed by ALG at any time.

By convention, the schedule starts at time 0 and ends at time T , which is a part of the
instance unknown to an online algorithm until it is reached. (This is similar to the times of
jamming errors as one can also alternatively say that after T the errors are very frequent and
no packet is completed.) Algorithm ALG is called R-competitive if there exists a constant A,
possibly dependent on k and �1, …, �k , such that for any instance and its optimal schedule
OPT, we have LOPT ≤ R · LALG + A. We remark that in our analyses we show only a crude
bound on A.

We denote the algorithm ALG with speedup s ≥ 1 by ALG(s). The meaning is that in
ALG(s), packets of size L need time L/s to process. In the resource-augmentation variant,we
are mainly interested in finding the smallest s such that ALG(s) is 1-competitive, compared
to OPT = OPT(1) that runs at speed 1.

2.1 Algorithm PrudentGreedy (PG)

The general idea of the algorithm is that after each error, we start by transmitting packets of
small sizes, only increasing the size of packets after a sufficiently long period of uninterrupted
transmissions. It turns out that the right tradeoff is to transmit a packet only if it would have
been transmitted successfully if started just after the last error. It is also crucial that the initial
packet after each error has the right size, namely to ignore small packet sizes if the total
size of remaining packets of those sizes is small compared to a larger packet that can be
transmitted. In other words, the size of the first transmitted packet is larger than the total size
of all pending smaller packets and we choose the largest such size. This guarantees that if
no error occurs, all currently pending packets with size equal to or larger than the size of the
initial packet are eventually transmitted before the algorithm starts a smaller packet.

We now give the description of our algorithm PrudentGreedy (PG) for general packet
sizes, noting that the other algorithm for divisible sizes differs only slightly. We divide the
execution of the algorithm into phases. Each phase starts by an invocation of the initial step
in which we need to carefully select a packet to transmit as discussed above. The phase ends
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by a fault, or when there is no pending packet, or when there are pending packets only of
sizes larger than the total size of packets completed in the current phase. The periods of idle
time, when no packet is pending, do not belong to any phase.

Formally, throughout the algorithm, t denotes the current time. The time tB denotes the
start of the current phase. Initially, tB = 0. We set rel(t) = s · (t − tB). Since the algorithm
does not insert unnecessary idle time, rel(t) denotes the total size of transmitted packets in
the current phase. Note that we use rel(t) only when there is no packet running at time t ,
thus there is no partially executed packet. Intuitively, rel(t) can be thought of as a measure of
time relative to the start of the current phase, scaled by the speed of the algorithm. Note also
that the algorithm can evaluate rel(t) without knowing the speedup as it can simply observe
the total size of the transmitted packets. Let P<i denote the set of pending packets of sizes
�1, …, �i−1 at any given time.

Algorithm PrudentGreedy (PG)

(1) If no packet is pending, stay idle until the next release time.
(2) Let i be the maximal i ≤ k such that there is a pending packet of size �i and

�(P<i ) < �i . Schedule a packet of size �i and set tB = t .
(3) Choose the maximum i such that

(i) there is a pending packet of size �i ,
(ii) �i ≤ rel(t).

Schedule a packet of size �i . Repeat Step (3) as long as such i exists.
(4) If no packet satisfies the condition in Step (3), go to Step (1).

We first note that the algorithm is well-defined, i.e., that it is always able to choose a
packet p in Step (2) if it has any packets pending. Moreover, if it succeeds in sending p, the
length of thus started phase can be related to the total size of the packets completed in it.

Lemma 1 In Step (2), PG always chooses some packet if it has any pending. Moreover, if
PG completes the first packet in the phase, then LPG(s)((tB , tE ]) > s · (tE − tB)/2, where tB
denotes the start of the phase and tE its end (by a fault or Step (4)).

Proof For the first property, note that a pending packet of the smallest size is eligible. For
the second property, note that there is no idle time in the phase, and that only the last packet
chosen by PG in the phase may not complete due to a jam. By the condition in Step (3), the
size of this jammed packet is no larger than the total size of all the packets PG previously
completed in this phase (including the first packet chosen in Step (2)), which yields the bound.

��
The following lemma shows a crucial property of the algorithm. Namely, if packets of

size �i are pending, the algorithm schedules packets of size at least �i most of the time. Its
proof also explains the reasons behind our choice of the first packet in a phase in Step (2) of
the algorithm.

Lemma 2 Let u be a start of a phase in PG(s) and t = u + �i/s.

(i) If a packet of size �i is pending at time u and no fault occurs in (u, t), then the phase
does not end before t.

(ii) Suppose that v > u is such that any time in [u, v) a packet of size �i is pending and no
fault occurs. Then the phase does not end in (u, v) and LPG(s)(< i, (u, v]) < �i + �i−1.
(Recall that �0 = 0.)
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Proof (i) Suppose for a contradiction that the phase started at u ends at time t ′ < t . We have
rel(t ′) < rel(t) = �i . Let � j be the smallest packet size among the packets pending at t ′. As
there is no fault, the reason for a new phase has to be that rel(t ′) < � j , and thus Step (3) does
not choose a packet to be scheduled. Also note that any packet started before t ′ is completed.
This implies, first, that there is a pending packet of size �i , as there was one at time u and there
was insufficient time to complete it, thus j is well-defined and j ≤ i . Second, all packets
of sizes smaller than � j pending at u are completed before or at t ′, implying that their total
size is at most rel(t ′) < � j . Third, the phase started by a packet smaller than � j at time u.
However, this is a contradiction as a pending packet of the smallest size equal to or larger
than � j satisfied the condition in Step (2) at time u and a packet of size �i ≥ � j was pending
at u. (Note that it is possible that no packet of size � j was pending at u.)

(ii) By (i), the phase that started at u does not end before time t if no fault happens. A
packet of size �i is always pending by the assumption of the lemma, and it is always a valid
choice of a packet in Step (3) from time t on. Thus, the phase that started at u does not end
in (u, v), and moreover, only packets of sizes at least �i are started in [t, v). It follows that
packets of sizes smaller than �i are started only before time t and their total size is thus less
than rel(t) + �i−1 = �i + �i−1. ��

3 Local analysis and results

In this section, we formulate a general method for analyzing our algorithm by comparing
locally within each phase the size of “large” packets completed by the algorithm and by the
adversary. This method simplifies a complicated induction used in Jurdzinski et al. (2015),
letting us obtain the same upper bounds of 2 and 3 on competitiveness for divisible and
unrestricted packet sizes, respectively, at no speedup. Furthermore, we get several new results
for the non-divisible cases.

For the analysis, let s ≥ 1 be the speedup. We fix an instance and its schedules for PG(s)
and OPT.

3.1 Critical times andmaster theorem

The common scheme is the following. We introduce a sequence of critical times Ck ≤
Ck−1 ≤ · · · ≤ C1 ≤ C0, where C0 = T is the end of the schedule, that satisfy the following
two informally stated properties: (1) till time Ci the algorithm has completed almost all
packets of size �i released before Ci , and (2) in (Ci ,Ci−1], a packet of size �i is always
pending. Properties (1) and (2) allow us to relate LOPT(i, (0,Ci ]) and LOPT(≥ i, (Ci ,Ci−1]),
respectively, to their “PG counterparts”. Note that each packet of size �i completed by OPT
belongs to exactly one of these sets. Specifically, such packet of size �i belongs to exactly
one of LOPT(i, (0,Ci ]), LOPT(≥ i, (Ci ,Ci−1]), LOPT(≥ i − 1, (Ci−1,Ci−2]), …, LOPT(≥
1, (C1,C0]). See Fig. 2 for an illustration. Hence, summing aforementioned bounds yields
R-competitiveness of the algorithm for appropriate R and speed s.

We first define the notion of i-good times such that they satisfy property (1), and then
choose the critical times among their suprema such that those satisfy property (2) as well.

Definition 1 For i = 1, . . . k, time t is called i-good if one of the following conditions holds:

(i) At time t , no packet of size �i is pending for PG(s),
(ii) at time t , algorithm PG(s) starts a new phase by scheduling a packet of size larger than

�i , or

123



16 Annals of Operations Research (2021) 298:7–42

(iii) t = 0.

We define critical times C0,C1, . . . ,Ck iteratively as follows:

– C0 = T , i.e., it is the end of the schedule.
– For i = 1, . . . , k, Ci is the supremum of i-good times t such that t ≤ Ci−1.

Note that all Ci ’s are defined and Ci ≥ 0 as time t = 0 is i-good for all i . Also, if no
packet of size �i is pending at time t , then no packet of size �i is pending during the whole
interval [t, t ′) for some t ′ > t . This, together with the choice of Ci , implies that each Ci is
of one of the three types (the types are not disjoint):

– Ci is i-good and Ci = Ci−1,
– Ci is i-good according to condition (ii) or (iii) in Definition 1, which implies that a phase

starts at Ci , or
– there exists a packet of size �i pending at Ci , however, any such packet was released at

Ci .

If the first two options do not apply, then the last one is the only remaining possibility (as
otherwise, some time in the non-empty interval (Ci ,Ci−1] would be i-good). In this case,
Ci is not i-good, but it is the supremum of i-good times. This in turn implies that no pending
packet of size �i was released before Ci .

First, we bound the total size of packets of size �i completed beforeCi . The proof actually
only uses the fact that each Ci is the supremum of i-good times and justifies the definition
above.

Lemma 3 Let s ≥ 1 be the speedup. Then, for any i , it holds that LOPT (i, (0,Ci ]) ≤
LPG(s)(i, (0,Ci ]) + �k .

Proof If Ci is i-good and satisfies condition (ii) in Definition 1, then by the description of
Step (2) of the algorithm, the total size of pending packets of size �i is less than the size of
the scheduled packet, which is at most �k , and the lemma follows.

In all the remaining cases, it holds that PG(s) has completed all the packets of size �i
released before Ci , thus the inequality holds trivially even without the additive term. ��

Our remaining goal is to bound LOPT(≥ i, (Ci ,Ci−1]). We divide (Ci ,Ci−1] into i-
segments by the faults. We prove the bounds separately for each i-segment. For the first
i-segment, only a loose bound suffices as we can use the additive constant. It is the bound
for i-segments started by a fault that is critical, as it determines the competitive ratio. Hence,
the latter bound depends on the particular setting. We summarize the general method by the
following definition and master theorem.

Definition 2 The interval (u, v] is called the initial i-segment if u = Ci and v is either Ci−1

or the first time of a fault after u, whichever comes first.
The interval (u, v] is called a proper i-segment if u ∈ (Ci ,Ci−1) is a time of a fault and

v is either Ci−1 or the first time of a fault after u, whichever comes first.

Note that there is no i-segment if Ci−1 = Ci .

Theorem 1 (Master Theorem)
Suppose that for R ≥ 1 both of the following hold:

1. For each i = 1, . . . , k and each proper i-segment (u, v] with v − u ≥ �i , it holds that

(R − 1)LPG(s)((u, v]) + LPG(s)(≥ i, (u, v]) ≥ LOPT (≥ i, (u, v]). (3.1)

123



Annals of Operations Research (2021) 298:7–42 17

k

i

i−1

1

Ck Ci Ci−1 C2 C1 C0

LOPT (1, (0, C1])

LOPT (i − 1, (0, Ci−1])
LOPT (i, (0, Ci])

LOPT ≥ i,

(Ci, Ci−1]

Ci+1

...

......

. . .

. . .

Ck−1 Ci−2 C3

...

...
...
2 LOPT (2, (0, C2])

Fig. 2 An illustration of dividing the schedule of OPT in the local analysis, i.e., dividing the (total size of)
packets completed by OPT into LOPT(i, (0,Ci ]) and LOPT

(≥ i, (Ci ,Ci−1]
)
for i = 1, . . . , k. Rows corre-

spond to packet sizes and the X-axis to time. Gray “horizontal” rectangles thus correspond to LOPT(i, (0,Ci ]),
i.e., these rectangles represent the time interval (0,Ci ] and packets of size �i completed by OPT in (0,Ci ],
whereas hatched “vertical” rectangles correspond to LOPT

(≥ i, (Ci ,Ci−1]
)

2. For the initial i -segment (u, v], it holds that
LPG(s)(≥ i, (u, v]) > s(v − u) − 4�k . (3.2)

Then PG(s) is R-competitive.

Proof First, note that for a proper i-segment (u, v], u is a fault time. Thus if v − u < �i ,
then LOPT(≥ i, (u, v]) = 0 and (3.1) is trivial. It follows that (3.1) holds even without the
assumption v − u ≥ �i .

Consider the initial i-segment (u, v]. We have LOPT(≥ i, (u, v]) ≤ �k + v − u, as at most
a single packet started before u can be completed. Combining this with (3.2) and using s ≥ 1,
we get LPG(s)(≥ i, (u, v]) > s(v − u) − 4�k ≥ v − u − 4�k ≥ LOPT(≥ i, (u, v]) − 5�k .

Summing this with (3.1) for all proper i-segments and using R ≥ 1, we get

(R − 1)LPG(s)((Ci ,Ci−1]) + LPG(s)(≥ i, (Ci ,Ci−1]) + 5�k
≥ LOPT(≥ i, (Ci ,Ci−1]). (3.3)

Note that for Ci = Ci−1, eq. (3.3) holds trivially.
To complete the proof, note that each completed packet in the optimum contributes to

exactly one of the 2k terms LOPT(≥ i, (Ci ,Ci−1]) and LOPT(i, (0,Ci ]), and similarly for
LPG(s). Thus by summing both (3.3) and Lemma 3 for all i = 1, . . . , k, we obtain

LOPT =
k∑

i=1

LOPT (≥ i, (Ci ,Ci−1]) +
k∑

i=1

LOPT(i, (0,Ci ])

≤
k∑

i=1

(

(R − 1)LPG(s)((Ci ,Ci−1]) + LPG(s)(≥ i, (Ci ,Ci−1]) + 5�k

)

+
k∑

i=1

(
LPG(s)(i, (0,Ci ]) + �k

)

≤ (R − 1)LPG(s) + LPG(s) + 6k�k = R · LPG(s) + 6k�k .

��
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3.2 Local analysis of PrudentGreedy (PG)

We prove a general lemma which is useful in establishing the preconditions of the Master
Theorem. Namely, the first part of the lemma directly implies the precondition (3.2) for
the initial i-segments. The second part of the lemma forms the foundation for proving the
precondition (3.1) for proper i-segments, for appropriate R and s, which may depend on the
instance class. To obtain tight bounds, this part has to be applied carefully, and sometimes
be strengthened by leveraging additional structure of the instance class under consideration.

Lemma 4 (i) If (u, v] is the initial i -segment, then LPG(s)(≥ i, (u, v]) > s(v − u) − 4�k .
(ii) If (u, v] is a proper i-segment and v − u ≥ �i , then LPG(s)((u, v]) > s(v − u)/2 and

LPG(s)(≥ i, (u, v]) > s(v − u)/2 − �i − �i−1. (Recall that �0 = 0.)

Proof (i) If the phase that starts at u or contains u ends before v, let u′ be its end. Otherwise,
let u′ = u. We have u′ ≤ u + �i/s as otherwise, any packet of size �i , pending throughout
the i-segment by definition, would be an eligible choice in Step (3) of the algorithm, and
the phase would not end before v. Using Lemma 2(ii), we have LPG(s)(< i, (u′, v]) <

�i + �i−1 < 2�k . Since at most one packet at the end of the segment is unfinished, we have
LPG(s)(≥ i, (u, v]) ≥ LPG(s)(≥ i, (u′, v]) > s(v − u′) − 3�k ≥ s(v − u) − 4�k .

(ii) Let (u, v] be a proper i-segment. Thus, u is a start of a phase that contains at least the
whole interval (u, v] by Lemma 2(ii). By the definition of Ci , u is not i-good, implying that
the phase starts by a packet of size at most �i . If v − u ≥ �i , then the first packet finishes
(as s ≥ 1) and thus LPG(s)((u, v]) > s(v − u)/2 by Lemma 1. The total size of completed
packets smaller than �i is less than �i + �i−1 by Lemma 2(ii), and thus LPG(s)(≥ i, (u, v]) >

s(v − u)/2 − �i − �i−1. ��

3.2.1 General packet sizes

The next theorem gives a tradeoff of the competitive ratio of PG(s) and the speedup s using
our local analysis. While Theorem 6 shows that PG(s) is 1-competitive for s ≥ 4, here we
give a weaker result that reflects the limits of the local analysis. However, for s = 1, our local
analysis is tight as already the lower bound from Anta et al. (2016) shows that no algorithm
is better than 3-competitive (for packet sizes 1 and 2 − ε). See Fig. 1 for an illustration of
our upper and lower bounds on the competitive ratio of PG(s).

Theorem 2 PG(s) is Rs-competitive where:
Rs = 1 + 2/s for s ∈ [1, 4),
Rs = 2/3 + 2/s for s ∈ [4, 6), and
Rs = 1 for s ≥ 6.

Proof Lemma 4(i) implies the condition (3.2) for the initial i-segments. We now prove (3.1)
for any proper i-segment (u, v] with v − u ≥ �i and appropriate R. The bound then follows
by the Master Theorem.

Since there is a fault at time u, we have LOPT(≥ i, (u, v]) ≤ v − u.
For s ≥ 6, Lemma 4(ii) implies

LPG(s)(≥ i, (u, v]) > s(v − u)/2 − 2�i
≥ 3(v − u) − 2(v − u) = v − u ≥ LOPT(≥ i, (u, v]),

which is (3.1) for R = 1.
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For s ∈ [4, 6), by Lemma 4(ii) we have LPG(s)((u, v]) > s(v − u)/2. We multiply it by
(2/s − 1/3) and obtain

(
2

s
− 1

3

)

· LPG(s)((u, v]) >
(
1 − s

6

)
(v − u).

Thus, to prove (3.1) for R = 2/3 + 2/s, it suffices to show that

LPG(s)(≥ i, (u, v]) >
s

6
(v − u),

as clearly v − u ≥ LOPT(≥ i, (u, v]). The remaining inequality again follows from
Lemma 4(ii), but we need to consider two cases:

If (v − u) ≥ 6
s �i , then

LPG(s)(≥ i, (u, v]) >
s

2
(v − u) − 2�i ≥ s

2
(v − u) − s

3
(v − u) = s

6
(v − u).

On the other hand, if (v − u) < 6
s �i , then using s ≥ 4 as well,

LPG(s)(≥ i, (u, v]) >
s

2
(v − u) − 2�i ≥ 0.

Therefore, PG(s) completes a packet of size at least �i which implies

LPG(s)(≥ i, (u, v]) ≥ �i >
s

6
(v − u),

concluding the case of s ∈ [4, 6).
For s ∈ [1, 4), by Lemma 4(ii) we get (2/s) · LPG(s)((u, v]) > v −u ≥ LOPT(≥ i, (u, v]),
which implies (3.1) for R = 1 + 2/s. ��

3.2.2 Well-separated packet sizes

We can obtain better bounds on the speedup sufficient for 1-competitiveness if the packet
sizes are substantially different. Namely, we call the packet sizes �1, . . . , �k α-separated if
�i ≥ α�i−1 holds for i = 2, . . . , k.

Next, we show that for α-separated packet sizes, PG(Sα) is 1-competitive for the following
Sα . We define

α0 = 1

2
+ 1

6

√
33 ≈ 1.46,which is the positive root of3α2 − 3α − 2.

α1 = 3 + √
17

4
≈ 1.78,which is the positive root of2α2 − 3α − 1.

Sα =

⎧
⎪⎪⎨

⎪⎪⎩

4α + 2

α2 for α ∈ [1, α0],
3 + 1

α
for α ∈ [α0, α1), and

2 + 2
α

for α ≥ α1.

This definition follows from the specifics of the proof of Theorem 3 (which follows). We
prove that for α-separated packets, PG(s) is 1-competitive if s is at least the maximum of
(4α + 2)/α2, 3 + 1/α, and 2 + 2/α. Hence, α0 is chosen as the point where the first two
functions cross. Moreover, for α ≥ α1, the speedup need not exceed 3+1/α as the argument
in case (viii) of the proof works, which means that for α ≥ α1 it is 2 + 2/α that attains the
maximum value, defining Sα . See Fig. 3 for an illustration.
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1
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3

4

5

321 α0 α1

Sp
ee
du

p

α

(4α + 2)/α2

2 + 2/α
3 + 1/α for α < α1

Sα

Fig. 3 A graph of Sα and the functions whose pointwise maximum defines it. Note that 3 + 1/α need not be
exceeded for α ≥ α1

Note that Sα is decreasing in α, with a single discontinuity at α1. We have S1 = 6,
matching the upper bound from Theorem 2. Moreover, S2 = 3, i.e., PG(3) is 1-competitive
for 2-separated packet sizes, which includes the case of divisible packet sizes. (However,
only s ≥ 2.5 is needed in the divisible case, as we show later.) The limit of Sα for α → +∞
is 2. For α < (1 + √

3)/2 ≈ 1.366, we get Sα > 4, while Theorem 6 shows that PG(s) is
1-competitive for s ≥ 4. The weaker result of Theorem 3 below reflects the limits of the local
analysis.

Theorem 3 Let α > 1. If the packet sizes are α-separated, then PG(s) is 1-competitive for
any s ≥ Sα .

Proof Lemma 4(i) implies (3.2). We now prove for any proper i-segment (u, v]with v−u ≥
�i that

LPG(s)(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]), (3.4)

which is (3.1) for R = 1. The bound then follows by the Master Theorem.
Let X = LOPT(≥ i, (u, v]). Note that X ≤ v − u.
Lemma 4(ii) together with �i−1 ≤ �i/α gives LPG(s)(≥ i, (u, v]) > M for M = sX/2 −

(1 + 1/α)�i .
We use the fact that both X and LPG(s)(≥ i, (u, v]) are sums of some packet sizes � j , j ≥ i ,

and thus only some of the values are possible. However, the situation is quite complicated,
as for example, �i+1, �i+2, 2�i , �i + �i+1 are possible values, but their ordering may vary.

We distinguish several cases based on X and α. We note in advance that the first five cases
suffice for α < α1. Only after completing the proof for α < α1, we analyze the additional
cases needed for α ≥ α1.
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Case (i): X = 0. Then (3.4) is trivial.

Case (ii): X = �i . Using s ≥ 2 + 2/α, we obtain M ≥ (1 + 1/α)�i − (1 + 1/α)�i = 0.
Thus, LPG(s)(≥ i, (u, v]) > M ≥ 0, which implies LPG(s)(≥ i, (u, v]) ≥ �i = X . Hence,
(3.4) holds.

Case (iii): X = �i+1 and �i+1 ≤ 2�i . Using s ≥ (4α + 2)/α2 and X = �i+1 ≥ α�i , we
obtain

M ≥ s�i+1

2
−

(

1 + 1

α

)

�i ≥
(

2 + 1

α

)

�i −
(

1 + 1

α

)

�i = �i .

Hence, LPG(s)(≥ i, (u, v]) > �i which together with �i+1 ≤ 2�i implies LPG(s)(≥
i, (u, v]) ≥ �i+1 = X and (3.4) holds.

Case (iv): X ≥ α2�i . (Note that this includes all cases when a packet of size at least �i+2

contributes to X .) We first show that s ≥ 2(1+1/α2+1/α3) by straightforward calculations
with the golden ratio φ:

– If α ≤ φ, we have

s ≥ 4α + 2

α2 = 2

(
2

α
+ 1

α2

)

≥ 2

(

1 + 1

α2 + 1

α3

)

,

where we use 2/α ≥ 1 + 1/α3 or equivalently α3 + 1 − 2α2 ≤ 0, which is true as

α3 + 1 − 2α2 = α3 − α2 + 1 − α2 = α2(α − 1) − (α + 1)(α − 1)

= (α − 1)(α2 − α − 1) ≤ 0,

where the last inequality holds for α ∈ [1, φ].
– If on the other hand α ≥ φ, then s ≥ 2(1 + 1/α) ≥ 2(1 + 1/α2 + 1/α3), as 1/α ≥

1/α2 + 1/α3 holds for α ≥ φ.

We obtain

M − X ≥
( s

2
− 1

)
X −

(

1 + 1

α

)

�i

≥
(

1 + 1

α2 + 1

α3 − 1

)

X −
(

1 + 1

α

)

�i

≥
(

1

α2 + 1

α3

)

α2�i −
(

1 + 1

α

)

�i = 0 ,

and (3.4) holds.

Case (v): X ≥ 2�i and α < α1. (Note that this includes all cases when at least two packets
contribute to X , but we use it only if α < α1.) Using s ≥ 3 + 1/α, we obtain

M − X ≥
(
1

2

(

3 + 1

α

)

− 1

)

X −
(

1 + 1

α

)

�i ≥ 1

2

(

1 + 1

α

)

2�i −
(

1 + 1

α

)

�i = 0 ,

and (3.4) holds.
Proof for α < α1: We now observe that for α < α1, we have exhausted all the possible
values of X . Indeed, if (v) does not apply, then at most a single packet contributes to X , and
one of the cases (i)–(iv) applies, as (iv) covers the case when X ≥ �i+2, and as X = �i+1 is
covered by (iii) or (v). Thus (3.4) holds and the proof is complete.
Proof for α ≥ α1: We now analyze the remaining cases for α ≥ α1.
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Case (vi): X ≥ (α + 1)�i . (Note that this includes all cases when two packets not both of
size �i contribute to X .) Using s ≥ 2 + 2/α, we obtain

M − X ≥
(

1 + 1

α
− 1

)

X −
(

1 + 1

α

)

�i ≥ 1

α
(α + 1)�i −

(

1 + 1

α

)

�i = 0

and (3.4) holds.

Case (vii): X = n · �i < (α + 1)�i for some n = 2, 3, . . . Since α > α1 > φ, we have
�i+1 > �i + �i−1. This implies that the first packet of size at least �i scheduled in the phase
has size equal to �i by the condition in Step (3) of the algorithm. Thus, if also a packet of
size larger than �i contributes to LPG(s)(≥ i, (u, v]), we have

LPG(s)(≥ i, (u, v]) ≥ �i+1 + �i ≥ (α + 1)�i > X

by the case condition and (3.4) holds. Otherwise, LPG(s)(≥ i, (u, v]) is a multiple of �i . Using
s ≥ 2 + 2/α, we obtain

M ≥
(

1 + 1

α

)

n · �i −
(

1 + 1

α

)

�i ≥ (n − 1)

(

1 + 1

α

)

�i > (n − 1)�i .

This, together with divisibility by �i , implies LPG(s)(≥ i, (u, v]) ≥ n · �i = X and (3.4)
holds again.

Case (viii): X = �i+1 and �i+1 > 2�i . We distinguish two subcases depending on the size
of the unfinished packet of PG(s) in this phase.

If the unfinished packet has size at most �i+1, the size of the completed packets is bounded
by

LPG(s)((u, v]) > sX − �i+1 = (s − 1)�i+1 ≥
(

1 + 2

α

)

�i+1,

using s ≥ 2+ 2/α. Since the total size of packets smaller than �i is less than (1+ 1/α)�i by
Lemma 2(ii), we obtain

LPG(s)(≥ i, (u, v]) − X >
2�i+1

α
−

(

1 + 1

α

)

�i ≥ 2�i −
(

1 + 1

α

)

�i > 0,

where the penultimate inequality uses �i+1/α ≥ �i . Thus (3.4) holds.
Otherwise, the unfinished packet has size at least �i+2 and, by Step (3) of the algorithm,

also LPG(s)((u, v]) > �i+2. We have �i+2 ≥ α�i+1 and by the case condition �i+1 > 2�i , we
obtain

LPG(s)(≥ i, (u, v]) − X > (α − 1)�i+1 −
(

1 + 1

α

)

�i > 2(α − 1)�i −
(

1 + 1

α

)

�i ≥ 0,

as the definition of α1 implies that 2(α − 1) ≥ 1 + 1/α for α ≥ α1. Thus (3.4) holds.
We now observe that we have exhausted all the possible values of X for α ≥ α1. Indeed,

if at least two packets contribute to X , either (vi) or (vii) applies. Otherwise, at most a single
packet contributes to X , and one of the cases (i)–(iv) or (viii) applies, as (iv) covers the case
when X ≥ �i+2. Thus (3.4) holds. ��

3.2.3 Divisible packet sizes

Now, we turn briefly to even more restricted divisible instances considered by Jurdzinski
et al. (2015), which are a special case of 2-separated instances. Namely, we improve upon
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Theorem3 in Theorem 4 presented below in the following sense:While the former guarantees
that PG(s) is 1-competitive on (more general) 2-separated instances at speed s ≥ 3, the latter
shows that speed s ≥ 2.5 is sufficient for (more restricted) divisible instances.

Moreover, we note that by an example in Sect. 3.3, the bound of Theorem 4 is tight, i.e.,
PG(s) is not 1-competitive for s < 2.5, even on divisible instances.

Theorem 4 If the packet sizes are divisible, then PG(s) is 1-competitive for s ≥ 2.5.

Proof Lemma 4(i) implies (3.2). We now prove (3.1) for any proper i-segment (u, v] with
v − u ≥ �i and R = 1. The bound then follows by the Master Theorem. Since there is a fault
at time u, we have LOPT(≥ i, (u, v]) ≤ v − u.

By divisibility, we have LOPT(≥ i, (u, v]) = n�i for some nonnegative integer n. We
distinguish two cases based on the size of the last packet started by PG in the i-segment
(u, v], which is possibly unfinished due to a fault at v.

If the unfinished packet has size at most n�i , then

LPG(s)(≥ i, (u, v]) > 5(v − u)/2 − �i − �i−1 − n�i ≥ 5n�i/2 − 3�i/2 − n�i ≥ (n − 1)�i

by Lemma 1 and Lemma 2(ii). Divisibility now implies LPG(s)(≥ i, (u, v]) ≥ n�i = LOPT(≥
i, (u, v]).

Otherwise, by divisibility, the size of the unfinished packet is at least (n + 1)�i and the
size of the completed packets is larger by the condition in Step (3) of the algorithm. Here,
we also use the fact that PG(s) completes the packet started at u, as its size is at most
�i ≤ v −u (otherwise, u would be i-good, thus Ci ≥ u and (u, v] is not a proper i-segment).
Thus LPG(s)(≥ i, (u, v]) > (n + 1)�i − 3�i/2 ≥ (n − 1/2)�i . Divisibility again implies
LPG(s)(≥ i, (u, v]) ≥ n�i = LOPT(≥ i, (u, v]), which shows (3.1). ��

3.3 Some examples for PG

3.3.1 General packet sizes

Speeds below 2 We show an instance on which the performance of PG(s) matches the bound
of Theorem 2.

Remark 1 PG(s) has competitive ratio at least 1 + 2/s for s < 2.

Proof Choose a large enough integer N . At time 0, the following packets are released: 2N
packets of size 1, one packet of size 2, and N packet of size 4/s− ε for a small enough ε > 0
such that 2 < 4/s − ε. These are all packets in the instance.

First, there are N phases, each of length 4/s − ε and ending by a fault. OPT completes a
packet of size 4/s − ε in each phase, while PG(s) completes 2 packets of size 1, and then it
starts a packet of size 2 which is not finished.

Then, there is a fault every 1 unit of time, thus OPT completes all packets of size 1, while
the algorithm has no pending packet of size 1. As s < 2, the length of the phase is not
sufficient to finish a longer packet.

Overall, OPT completes packets of total size 2 + 4/s − ε per phase, while the algorithm
completes packets of total size only 2 per phase. The ratio thus tends to 1 + 2/s as ε → 0.

��
Speeds between 2 and 4 We show an instancewhich proves that PG(s) is not 1-competitive for
s < 4. In particular, this implies that the speed sufficient for 1-competitiveness in Theorem 6,
which we prove later, cannot be improved.
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Remark 2 PG(s) has competitive ratio at least 4/s > 1 for s ∈ [2, 4).

Proof Choose a large enough integer y. There are four packet sizes: 1, x, y, and z such that
1 < x < y < z, z = x + y − 1, and x = y · (s − 2)/2+ 2. Note that s ∈ [2, 4) implies both
x ≥ 2 and x ≤ y − 1, the latter for large enough y.

We have N phases again. At time 0, the adversary releases all N (y − 1) packets of size
1, all N packets of size y, and a single packet of size z (never completed by either OPT or
PG(s)). The packets of size x are released one per phase.

In each phase, PG(s) completes, in this order, y − 1 packets of size 1 and then a packet of
size x which has arrived just after the y − 1 packets of size 1 are completed. Next, it starts
a packet of size z and fail due to a jam. We show that OPT completes a packet of size y. To
this end, it is required that y < 2(x + y − 1)/s, or equivalently x > y · (s − 2)/2+ 1 which
holds by the choice of x .

After these N phases, there are jams every 1 unit of time, thus OPT completes all the
N (y−1) packets of size 1, while PG(s) is unable to complete any packet (of size y or larger).
The ratio per phase is

OPT
PG(s)

= y − 1 + y

y − 1 + x
= 2y − 1

y − 1 + y·(s−2)
2 + 2

= 2y − 1
y·s
2 + 1

which tends to 4/s as y → ∞. ��

This example also disproves the claimofAnta et al. (2015) that their (m, β)-LAFalgorithm
is 1-competitive at speed 3.5, even for one channel (i.e., m = 1), where it behaves almost
exactly asPG(s). The sole difference is that LAF starts a phase by choosing a “random”packet.
As this algorithm is deterministic, we understand this to mean “arbitrary”, in particular, the
same as chosen by PG(s).

3.3.2 Divisible case

We give an example that shows that PG is not very good for divisible instances, namely, it is
not 1-competitive for any speed s < 2.5 and thus the bound in Theorem 4 is tight.

Remark 3 PG(s) has competitive ratio at least 4/3 on divisible instances if s < 2.5.

Proof We use packets of sizes 1, �, and 2� and we take � sufficiently large compared to the
given speed or competitive ratio. There are many packets of size 1 and 2� available at the
beginning, whereas the packets of size � arrive at specific times where PG schedules them
immediately.

The faults occur at times divisible by 2�, thus the optimum schedules one packet of size
2� in each phase between two faults. We have N such phases, N (2� − 1) packets of size 1,
and N packets of size 2� available at the beginning. In each phase, PG(s) schedules 2� − 1
packets of size 1, then a packet of size � arrives and is scheduled, and finally, a packet of
size 2� is started. The algorithm needs speed 2.5− 1/(2�) to complete it. Hence, for � large,
the algorithm completes only packets of total size 3� − 1 per phase. After these N phases,
we have faults every 1 unit of time, thus the optimum schedules all packets of size 1, but the
algorithm has no packet of size 1 pending and it is unable to finish a longer packet. Therefore,
the optimum finishes all packets of size 2� plus all small packets, a total of 4�− 1 per phase.
The ratio tends to 4/3 as � → ∞. ��
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3.4 Algorithm PG-DIV and its analysis

We introduce our other algorithm PG-DIV designed for divisible instances. Actually, it is
rather a fine-tuned version of PG, as it differs from it only in Step (3), where PG-DIV enforces
an additional divisibility condition, set apart by italics in its formalization below. Then, using
our framework of local analysis from this section, we give a simple proof that PG-DIVmatches
the performance of the algorithms from Jurdzinski et al. (2015) on divisible instances.

Algorithm PG-DIV

(1) If no packet is pending, stay idle until the next release time.
(2) Let i be the maximal i ≤ k such that there is a pending packet of size �i and

�(P<i ) < �i . Schedule a packet of size �i and set tB = t .
(3) Choose the maximum i such that

(i) there is a pending packet of size �i ,
(ii) �i ≤ rel(t), and
(iii) �i divides rel(t).

Schedule a packet of size �i . Repeat Step (3) as long as such i exists.
(4) If no packet satisfies the condition in Step (3), go to Step (1).

Throughout the section, we assume that the packet sizes are divisible. We note that Lemma 1
and 3, and the Master Theorem apply to PG-DIV as well, since their proofs are not influenced
by the divisibility condition. In particular, the definition of critical times Ci (Definition 1)
remains the same. Thus, this section is devoted to leveraging divisibility to prove stronger
analogues of Lemma 2 and Lemma 4 (which are not needed to prove the Master Theorem),
in this order. Once established, these are combined with the Master Theorem to prove that
PG-DIV(2) is 1-competitive and PG-DIV(1) is 2-competitive. Recall that rel(t) = s · (t − tB)

is the relative time after the start of the current phase tB , scaled by the speed of the algorithm.

Lemma 5 (i) If PG-DIV starts or completes a packet of size �i at time t, then �i divides
rel(t).

(ii) Let t be a time with rel(t) divisible by �i and rel(t) > 0. If a packet of size �i is pending
at time t, then PG-DIV starts or continues running a packet of size at least �i at time t.

(iii) If at the beginning of the phase at time u, a packet of size �i is pending and no fault
occurs before time t = u + �i/s, then the phase does not end before t.

Proof (i) follows trivially from the description of the algorithm.
(ii) Suppose that PG-DIV continues running a packet of size � j at t . By (i), the packet is

started at time t ′ < t with rel(t ′) divisible by � j . Observe that � j > �i . Indeed, supposing
otherwise, � j divides t by the assumption, which implies t ′ ≤ t − � j . However, this is a
contradiction, since the packet of size � j would be completed by time t .

Next, suppose that PG-DIV starts a new packet. Then the packet of size �i , which is
pending by the assumption, satisfies all the conditions from Step 3 of the algorithm, as rel(t)
is divisible by �i and rel(t) ≥ �i (from rel(t) > 0 and divisibility). Thus, the algorithm starts
a packet of size at least �i .

(iii) We proceed by induction on i . Assume that no fault happens before t . If the phase
starts by a packet of size at least �i , the claim holds trivially, as the packet is not completed
before t . This also proves the base of the induction for i = 1.

It remains to handle the case when the phase starts by a packet smaller than �i . Let P<i be
the set of all packets of size smaller than �i pending at time u. By Step (2) of the algorithm,
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�(P<i ) ≥ �i . We show that all packets of P<i are completed if no fault happens, which
implies that the phase does not end before t .

Let j be such that � j is the maximum size of a packet in P<i . Note that j exists as the
phase starts by a packet smaller than �i . By the induction assumption, the phase does not
end before time t ′ = u + � j/s. From time t ′ on, the conditions in Step (3) guarantee that the
remaining packets from P<i are processed from the largest ones, possibly interleaved with
some of the newly arriving packets of larger sizes. The reason is that if a packet is completed
at time τ ≥ t ′, then rel(τ ) is divisible by the size of the largest pending packet from P<i .
This shows that the phase cannot end before all packets from P<i are completed if no fault
happens and (iii) follows from �(P<i ) ≥ �i . ��

Now we prove a stronger analogue of Lemma 4.

Lemma 6 (i) If (u, v] is the initial i -segment, then
LPG-DIV(s)(≥ i, (u, v]) > s(v − u) − 3�k .

(ii) If (u, v] is a proper i-segment and v − u ≥ �i , then

LPG-DIV(s)(≥ i, (u, v]) > s(v − u)/2 − �i .

Moreover, LPG-DIV(s)((u, v]) > s(v − u)/2 and LPG-DIV(s)((u, v]) is divisible by �i .

Proof We begin with an observation that we use to prove both (i) and (ii): Suppose that time
t ∈ [u, v) satisfies that rel(t) is divisible by �i and rel(t) > 0. Then, Lemma 5(ii) together
with the fact that a packet of size �i is always pending in [u, v) (which follows from the
definition of critical times and i-segments), implies that from time t on, only packets of size
at least �i are scheduled. In particular, the current phase does not end before v.

For a proper i-segment (u, v], we use the previous observation for t = u + �i/s to prove
(ii). Observe that t ≤ v by the assumption of (ii). Now LPG-DIV(s)(< i, (u, v]) is either equal
to 0 (if the phase starts by a packet of size at least �i at time u), or equal to �i (if the phase
starts by a smaller packet). In both cases, �i divides LPG-DIV(s)(< i, (u, v]) and thus also
LPG-DIV(s)((u, v]). As in the analysis of PG, the total size of completed packets is more than
s(v − u)/2, and (ii) follows.

For the initial i-segment (u, v], we first note that the claim is trivial if s(v − u) ≤ 2�i .
Thus, we assume that u + 2�i/s ≤ v. We distinguish two cases:

1. The phase of u ends at some time u′ ≤ u + �i/s. Then, by Lemma 5(iii) and the
initial observation, the phase that immediately follows the one of u does not end in
(u′, v) and from time u′ + �i/s on, only packets of size at least �i are scheduled. Thus
LPG-DIV(s)(< i, (u, v]) ≤ 2�i .

2. The phase of u does not end by time u + �i/s. In this case, there exists t ∈ (u, u + �i/s]
such that �i divides rel(t) and also rel(t) > 0 as t > u. Using the initial observation for
this t , we obtain that the phase does not end in (u, v) and from time t on, only packets
of size at least �i are scheduled. Thus LPG-DIV(s)(< i, (u, v]) ≤ �i .

In either case, LPG-DIV(s)(< i, (u, v]) ≤ 2�i and at most one packet is possibly unfinished at
time v. Thus, LPG-DIV(s)(≥ i, (u, v]) > s(v − u) − 2�i − �k , and (i) follows. ��
Theorem 5 Let the packet sizes be divisible. Then PG-DIV(1) is 2-competitive. Also, for any
speed s ≥ 2, PG-DIV(s) is 1-competitive.
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Proof Lemma 6(i) implies (3.2). We now prove (3.1) for any proper i-segment (u, v] with
v − u ≥ �i and appropriate R. The theorem then follows by the Master Theorem. Since u is
a time of a fault, we have LOPT(≥ i, (u, v]) ≤ v − u.

For s ≥ 2, Lemma 6(ii) implies

LPG-DIV(s)(≥ i, (u, v]) > s(v − u)/2 − �i ≥ v − u − �i ≥ LOPT(≥ i, (u, v]) − �i .

Since both LPG-DIV(s)(≥ i, (u, v]) and LOPT(≥ i, (u, v]) are divisible by �i , it holds that
LPG-DIV(s)(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]), i.e., (3.1) holds for R = 1.

For s = 1, Lemma 6(ii) implies

LPG-DIV((u, v]) + LPG-DIV(≥ i, (u, v]) > (v − u)/2 + (v − u)/2 − �i

≥ v − u − �i ≥ LOPT(≥ i, (u, v]) − �i .

Since LPG-DIV((u, v]), LPG-DIV(≥ i, (u, v]), and LOPT(≥ i, (u, v]) are all divisible by �i , we
have LPG-DIV((u, v]) + LPG-DIV(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]), i.e., (3.1) holds for R = 2.

��

3.4.1 Example with two divisible packet sizes

We show that neither of our algorithms is better than 2-competitive at speed less than 2,
even if there are only two divisible packet sizes in the instance. This matches the upper
bound given in Theorem 2 for PG(2) and our upper bounds for PG-DIV(s) on divisible
instances, i.e., ratio 2 for s < 2 and ratio 1 for s ≥ 2. We remark that by Theorem 7, no
deterministic algorithm can be 1-competitive with speed s < 2 on divisible instances, but
this example shows a stronger lower bound for our algorithms, namely, that their ratios are
at least 2.

Remark 4 PG and PG-DIV have ratio no smaller than 2 when s < 2, even if packet sizes are
only 1 and � ≥ max{s + ε, ε/(2 − s)} for an arbitrarily small ε > 0.

Proof We denote either algorithm by ALG. There are N phases, that all look the same. In each
phase, issue one packet of size � and � packets of size 1, and have the phase end by a fault at
time (2� − ε)/s ≥ �, where the inequality holds by the bounds on �. Then ALG completes
all � packets of size 1, but no packet of size �. By the previous inequality, OPT completes the
packet of size � within the phase. Once all N phases are over, the jams occur every 1 unit
of time, which allows OPT to complete all N� remaining packets of size 1. However, ALG is
unable to complete any of the packets of size �. Thus the ratio is 2. ��

4 PrudentGreedy with speed 4

In this section, we prove that speed 4 is sufficient for PG to be 1-competitive. An example in
Sect. 3.3 shows that speed 4 is also necessary for our algorithm.

Theorem 6 PG(s) is 1-competitive for s ≥ 4.

Intuition For s ≥ 4, we have that if at the start of a phase, PG(s) has a packet of size �i
pending and the phase has length at least �i , then PG(s) completes a packet of size at least
�i . To show this, assume that the phase starts at time t . Then, the first packet p of size at
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least �i is started before time t + 2�i/s by Lemma 2(ii) and it has size smaller than 2�i by
the condition in Step (3). Thus, it completes before time t + 4�i/s ≤ t + �i , which is before
the end of the phase. This property does not hold for s < 4, as exemplified by the instance
in Remark 2. The property is important to our proof, as it shows that if the optimal schedule
completes a packet of some size and such packet is pending for PG(s), then PG(s) completes
a packet of the same size or larger. However, this is not sufficient to complete the proof by a
local (phase-by-phase) analysis similar to the previous section, as the next example shows.

Assume that at the beginning, we release N packets of size 1, N packets of size 1.5− 2ε,
one packet of size 3− 2ε, and a sufficient number of packets of size 1− ε, for a small ε > 0.
Our focus is on packets of size at least 1. Supposing s = 4, we have the following phases:

– First, there are N phases of length 1. In each phase, the optimum completes a packet of
size 1, while among packets of size at least 1, PG(s) completes a packet of size 1.5− 2ε,
as it starts packets of sizes 1− ε, 1− ε, 1.5− 2ε, 3− 2ε, in this order, and the last packet
is jammed.

– Then there are N phases of length 1.5 − 2ε where the optimum completes a packet of
size 1.5 − 2ε, while among packets of size at least 1, the algorithm completes only a
single packet of size 1, as it starts packets of sizes 1 − ε, 1 − ε, 1, 3 − 2ε, in this order.
The last packet is jammed, since for s = 4, the phase must have length at least 1.5 − ε

to complete it.

In phases of the second type, the algorithm does not complete more (in terms of total size)
packets of size at least 1 than the optimum. Nevertheless, in our example, packets of size
1.5 − 2ε are already finished by the algorithm, and this is a general rule. The novelty in our
proof is a complex charging argument that exploits such subtle interaction between phases.
Outline of the proof We define critical timesC ′

i similarly as before, but without the condition
that they should be ordered (thus either C ′

i ≤ C ′
i−1 or C

′
i > C ′

i−1 may hold). Then, since the
algorithm has nearly no pending packets of size �i just before C ′

i , we can charge almost all
adversary’s packets of size �i started before C ′

i to algorithm’s packets of size �i completed
before C ′

i in a 1-to-1 fashion. We thus call these charges 1-to-1 charges. We account for the
first few packets of each size completed at the beginning of the adversary schedule in the
additive constant of the competitive ratio. Note that this shifts the targets of the 1-to-1 charges
backward in time.

After the critical timeC ′
i , packets of size �i are always pending for the algorithm, and thus

(as we noted in the very beginning) the algorithm schedules a packet of size at least �i when
the adversary completes a packet of size �i . It is more convenient not to work with phases,
but rather partition the schedule into blocks between successive faults. A block can contain
several phases of the algorithm separated by an execution of Step (4). However, in the most
important and tight part of the analysis, the blocks coincide with phases.

In the crucial lemma of the proof, based on these observations and their refinements, we
show that we can assign the remaining packets completed by the adversary to algorithm’s
packets in the same block, such that for each algorithm’s packet q the total size of packets
assigned to it is at most �(q). However, we cannot use this assignment directly to charge
the remaining packets, as some of the algorithm’s big packets may receive 1-to-1 charges.
This very issue can be seen in our introductory example. Instead, our analysis resolves the
interactions of different blocks by carefully modifying the adversary schedule.

4.1 Blocks, critical times, 1-to-1 charges, and the additive constant

We now formally define the notions of blocks and (modified) critical times.
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Ci

. . .ALG:

ADV:

Fig. 4 An illustration of back, up, and forward 1-to-1 charges for �i -sized packets (other packets are not
shown). The winding lines depict the times of jamming errors, which separate blocks. Note that the packets in
the algorithm’s schedule are shorter, due to increased speed. They are also higher, thus the area corresponds
to the packet size. Crossed packets are included in set A (and thus contribute to the additive constant)

Definition 3 Let f1, f2, . . . , fN be the times of faults. Let f0 = 0 and fN+1 = T is the end
of the schedule. Then the time interval ( fi , fi+1], i = 0, . . . , N , is called a block.

Definition 4 For i = 1, . . . k, the critical timeC ′
i is the supremum of i-good times t ∈ [0, T ],

where T is the end of the schedule and i-good times are as defined in Definition 1.

All C ′
i ’s are defined, as t = 0 is i-good for all i . Similarly to Sect. 3.1, each C ′

i is of one of
the following types: (i) C ′

i starts a phase and a packet larger than �i is scheduled, (ii) C ′
i = 0,

(iii) C ′
i = T , or (iv) just before time C ′

i no packet of size �i is pending but at time C ′
i one or

more packets of size �i are pending. In the last case, C ′
i is not i-good but only the supremum

of i-good times. We observe that in each case, at time C ′
i the total size of packets of size �i

pending for PG(s) and released before C ′
i is less than �k .

Next, we define the set of packets that contribute to the additive constant.

Definition 5 Let set A contain for each i = 1, . . . , k:

(i) the first �3�k/�i� packets of size �i completed by the adversary, and
(ii) the first �2�k/�i� packets of size �i completed by the adversary after C ′

i .

If there are not sufficiently many packets of size �i completed by the adversary in (i) or (ii),
we take all the packets in (i) or all the packets completed after C ′

i in (ii), respectively.

For each i , we put into A packets of size �i of total size at most 7�k . Thus, we have �(A) =
O(k�k) which implies that packets in A can be counted in the additive constant.

We define 1-to-1 charges for packets of size �i as follows. Let p1, p2, …, pn be all
the packets of size �i started by the adversary before C ′

i that are not in A. We claim that
PG(s) completes at least n packets of size �i before C ′

i if n ≥ 1. Indeed, if n ≥ 1, before
time C ′

i at least n + �3�k/�i� packets of size �i are started by the adversary, and thus also
released. At time C ′

i , by its definition, all of those packets are completed by PG(s), with the
possible exception of fewer than �k/�i packets which may be pending. We charge pm , for
m = 1, 2, . . . , n, to the mth packet of size �i completed by PG(s). Note that each packet
started by the adversary is charged at most once and each packet completed by PG(s) receives
at most one charge.

We call a 1-to-1 charge starting and ending in the same block an up charge, a 1-to-1 charge
from a block starting at u to a block ending at v′ ≤ u a back charge, and a 1-to-1 charge
from a block ending at v to a block starting at u′ ≥ v a forward charge. See Fig. 4 for an
illustration. A charged packet is a packet charged by a 1-to-1 charge. The definition of A
implies the following two important properties.

Lemma 7 Let p be a packet of size �i , started by the adversary at time t, charged by a forward
charge to a packet q started by PG(s) at time t ′. Then at any time τ ∈ [t − 2�k, t ′), more
than �k/�i packets of size �i are pending for PG(s).
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Proof Let m be the number of packets of size �i that PG(s) completes before q . Then, by the
definition of A, the adversary completes m + �3�k/�i� packets of size �i before p (which it
starts at time t). The adversary starts less than 2�k/�i of these packets in (t − 2�k, t]. Thus,
more than m + �k/�i of the packets started by the adversary are released before or at time
t − 2�k . As PG(s) completed only m packets of size �i by t ′, it has more than �k/�i such
packets pending at any time τ ∈ [t − 2�k, t ′). ��
Lemma 8 Let p /∈ A be an uncharged packet of size �i started by the adversary at time t.
Then at any time τ ≥ t − 2�k , a packet of size �i is pending for PG(s).

Proof Any packet of size �i started before C ′
i + 2�k is either charged or put in A, thus

t − 2�k ≥ C ′
i . After C

′
i , a packet of size �i is pending by the definition of C ′

i . ��

4.2 Processing blocks

Initially, let ADV be an optimal (adversary) schedule. First, we remove all packets in A from
ADV. Then we process blocks one by one in the order of time. When we process a block, we
modify ADV as follows: We (i) remove from ADV some packets of total size of at most the
total size of packets completed by PG(s) in this block, including all packets in ADV charged
to a packet in this block, and (ii) reschedule any remaining packets in ADV in this block to
later blocks, while ensuring that ADV is still a feasible schedule. Summing over all blocks,
(i) and (ii) guarantee that PG(s) is 1-competitive with an additive constant �(A). Moreover,
they ensure that there are no charges to or from a processed block.

When we reschedule a packet in ADV, we keep the packet’s 1-to-1 charge (if it has one),
however, its type may change due to rescheduling. Since we are moving packets to later times
only, the release times are automatically respected. It also follows that Lemmas 7 and 8 apply
to ADV even after rescheduling.

From now on, let (u, v] be the current block that we are processing. All previous blocks
ending at v′ ≤ u are already processed. As there are no charges to the previous blocks, any
packet scheduled in ADV in (u, v] is charged by an up charge or a forward charge, or else
it is not charged at all. We distinguish two main cases of the proof, depending on whether
PG(s) finishes any packet in the current block or not.

4.2.1 Main case 1: empty block

The algorithm does not finish any packet in (u, v]. We claim that ADV does not finish any
packet. The processing of the block is then trivial.

For a contradiction, assume that ADV starts a packet p of size �i at time t and completes
it. The packet p cannot be charged by an up charge, as PG(s) completes no packet in this
block. It is also not charged by a back charge to a previous block, since there are no charges
to already processed blocks. Hence, p is either charged by a forward charge or not charged.
Lemma 7 or 8 implies that at time t some packet of size �i is pending for PG(s).

Since PG does not idle unnecessarily, this means that some packet q of size � j for some
j is started in PG(s) at time τ ≤ t and running at t . As PG(s) does not complete any
packet in (u, v], the packet q is jammed by the fault at time v. This implies that j > i , as
� j > s(v − τ) ≥ v − t ≥ �i . We also have t − τ < � j . Moreover, q is the only packet started
by PG(s) in this block, thus it starts a phase.

As this phase is started by packet q of size � j > �i , time τ is i-good and C ′
i ≥ τ . All

packets ADV started before time C ′
i + 2�k are charged, as the packets in A are removed
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from ADV and packets in ADV are rescheduled only to later times. Packet p is started before
v < τ + � j/s < C ′

i + �k/s < C ′
i + 2�k , thus it is charged. It follows that p is charged by a

forward charge. We now apply Lemma 7 again and observe that it implies that at τ > t − � j

there are more than �k/�i packets of size �i pending for PG(s). This contradicts the fact that
PG(s) started a phase by q of size � j > �i at τ .

4.2.2 Main case 2: non-empty block

Otherwise, PG(s) completes a packet in the current block (u, v].
Let Q be the set of packets completed by PG(s) in (u, v] that do not receive an up charge.

Note that no packet in Q receives a forward charge, as the modified ADV contains no packets
before u, thus packets in Q either get a back charge or no charge at all. Let P be the set of
packets completed in ADV in (u, v] that are not charged by an up charge. Note that P includes
packets charged by a forward charge and uncharged packets, as no packets are charged to a
previous block.

We first assign packets in P to packets in Q such that for each packet q ∈ Q, the total
size of packets assigned to q is at most �(q). Formally, we iteratively define a provisional
assignment f : P → Q such that �( f −1(q)) ≤ �(q) for each q ∈ Q.
Provisional assignment Wemaintain a set O ⊆ Q of occupied packets that we do not use for
a future assignment.Whenever we assign a packet p to q ∈ Q and �(q)−�( f −1(q)) < �(p),
we add q to O . This rule guarantees that each packet q ∈ O has �( f −1(q)) > �(q)/2.

We process packets in P in the order of decreasing sizes as follows. We take the largest
unassigned packet p ∈ P of size �(p) (if there are more unassigned packets of size �(p), we
take an arbitrary one) and choose an arbitrary packet q ∈ Q \ O such that �(q) ≥ �(p). We
prove in Lemma 9 below that such a q exists. We assign p to q , that is, we set f (p) = q .
Furthermore, as described above, if �(q) − �( f −1(q)) < �(p), we add q to O . We continue
until all packets are assigned.

If a packet p is assigned to q and q is not put in O , it follows that �(q)−�( f −1(q)) ≥ �(p).
This implies that after the next packet p′ is assigned to q , we have �(q) ≥ �( f −1(q)), as the
packets are processed from the largest one and thus �(p′) ≤ �(p). If follows that at the end,
we obtain a valid provisional assignment.

Lemma 9 The assignment process above assigns all packets in P.

Proof We prove this independently for each packet size.
First, we fix the size � j and define a few quantities.
Let n denote the number of packets of size � j in P . Let o denote the total occupied size,

defined as o = �(O) + ∑
q∈Q\O �( f −1(q)) at the time just before we start assigning the

packets of size � j . Note that the rule for adding packets to O implies that �( f −1(Q)) ≥
o/2. Let a denote the current total available size defined as a = ∑

q∈Q\O:�(q)≥� j
(�(q) −

�( f −1(q))). We remark that in the definition of a, we restrict attention only to packets of size
� j or larger, but in the definition of o, we consider all packets in Q. However, only packets
of size at least � j contribute to o, since packets in P are processed in the decreasing order of
sizes.

First, we claim that it is sufficient to show that a > (2n − 2)� j before we start assigning
the packets of size � j . As long as a > 0, there is a packet q ∈ Q \ O of size at least � j

and thus we may assign the next packet (and, as noted before, actually a ≥ � j , as otherwise
q ∈ O). Furthermore, assigning a packet p of size � j to q decreases a by � j if q is not
added to O and by less than 2� j if q is added to O . Altogether, after assigning the first n − 1
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ALG: · · ·
τ = τ0 τ1 τ2 τ3

Fig. 5 An illustration of bounding the total size of small packets completed after τ in the case when � j is not
pending in the whole block. Gray packets are small, while hatched packets have size at least � j . The times
τ1, τ2, and τ3 are the ends of phases after τ (thus α = 3), but τ need not be the end of a phase

packets, a decreases by less than (2n − 2)� j , thus we still have a > 0, and we can assign the
last packet. The claim follows.

We now split the analysis into two cases, depending on whether there is a packet of size
� j pending for PG(s) at all times in [u, v) or not. In either case, we prove that the available
space a is sufficiently large before assigning the packets of size � j .

In the first case, we suppose that a packet of size � j is pending for PG(s) at all times in
[u, v). Let z be the total size of packets of size at least � j charged by up charges in this block.
Recall that the size of packets in P already assigned is �( f −1(Q)) ≥ o/2, and that there are
n yet unassigned packets of size � j in P . As ADV has to schedule all these packets and the
packets with up charges in this block, its size satisfies v − u ≥ �(P) + z ≥ n� j + o/2 + z.
Consider the schedule of PG(s) in this block. By Lemma 2, there is no end of phase in (u, v)

and packets smaller than � j scheduled by PG(s) have total size less than 2� j . All the other
completed packets contribute to one of a, o, or z. Using Lemma 1, the previous bound on
v − u, and s ≥ 4, the total size of completed packets is at least s(v − u)/2 ≥ 2n� j + o+ 2z.
Hence, a > (2n� j + o+ 2z) − 2� j − o− z ≥ (2n − 2)� j , which completes the proof of the
lemma in this case.

Otherwise, in the second case, there is a time in [u, v)when no packet of size � j is pending
for PG(s). Let τ be the supremum of times τ ′ ∈ [u, v] such that PG(s) has no pending packet
of size at least � j at time τ ′. If no such τ ′ exists, we set τ = u. Let t be the time when the
adversary starts the first packet p of size � j from P .

Since p is charged using a forward charge or p is not charged, we can apply Lemma 7
or 8, which implies that packets of size � j are pending for PG(s) from time t − 2�k till at
least v. By the case condition, there is a time in [u, v) when no packet of size � j is pending,
and this time is thus before t − 2�k , implying u < t − 2�k . The definition of τ now implies
that τ ≤ t − 2�k .

Towards bounding a, we show that (i) PG(s) completes small packets only of a limited
total size after τ and thus a + o is large, and that (ii) f −1(Q) contains only packets run by
ADV from τ on, and thus o is small.

We claim that the total size of packets smaller than � j completed in PG(s) in (τ, v] is less
than 3�k . (This claim and its proof are similar to Lemma 2.) Let τ1 < τ2 < . . . < τα be
all the ends of phases in (τ, v) (possibly there is none, then α = 0). Also, let τ0 = τ . For
i = 1, . . . , α, let ri denote the packet started by PG(s) at τi . Note that ri exists since there
is a pending packet at any time in [τ, v] by the definition of τ . See Fig. 5 for an illustration.
First, note that any packet started at or after time τα + �k/s has size at least � j , as such
a packet is pending and satisfies the condition in Step (3) of the algorithm. Thus, the total
size of the small packets completed in (τα, v] is less than �k + �k−1 < 2�k . The claim now
follows for α = 0. Otherwise, as there is no fault in (u, v), at τi , i = 1, . . . , α, Step (4) of the
algorithm is reached and thus no packet of size at most s(τi − τi−1) is pending. In particular,
this implies that �(ri ) > s(τi − τi−1) for i = 1, . . . , α. This also implies that the total size of
the small packets completed in (τ0, τ1] is less than �k and the claim for α = 1 follows. For
α ≥ 2, first note that by Lemma 2(i), s(τi − τi−1) ≥ � j for all i = 2, . . . , α and thus ri is not
a small packet. Thus, for i = 3, . . . , α, the total size of small packets in (τi−1, τi ] is at most
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s(τi − τi−1) − �(ri−1) < �(ri ) − �(ri−1). The size of small packets completed in (τ1, τ2] is
at most s(τ2 − τ1) < �(r2) and the total size of small packets completed in (τα, v] is at most
2�k − �(rα). Thus, the total size of small packets completed in (τ1, v] is at most 2�k , and the
claim follows.

Let z be the total size of packets of size at least � j charged by up charges in this block
and completed by PG(s) after τ . After τ , PG(s) processes packets of total size more than
s(v − τ) − �k , all of which contribute to one of a, o, z, with the exception of small packets
of total size less than 3�k by the claim above. Thus, using s ≥ 4, we get

a > 4(v − τ) − o − z − 4�k . (4.1)

Next, we derive two lower bounds on v − τ using schedule ADV.
Observe that no packet contributing to z is started by ADV before τ as otherwise, it would

be pending for PG(s) just before τ , contradicting the definition of τ .
Also, observe that in (u, τ ], ADV runs no packet p ∈ P with �(p) ≥ � j .
Indeed, for a contradiction, assume that such a p exists. As τ ≤ C j ′ for any j ′ ≥ j , such

a p is charged. As p ∈ P , it is charged by a forward charge. Hence, Lemma 7 implies that at
all times between the start of p in ADV and v, a packet of size �(p) is pending for PG(s). In
particular, such a packet is pending in the interval before τ , contradicting the definition of τ .

These two observations imply that in [τ, v], ADV starts and completes all the assigned
packets from P , the n packets of size � j from P , and all packets contributing to z. This gives
v − τ ≥ �( f −1(Q)) + n� j + z ≥ o/2 + n� j + z.

For the second bound, we note that the n packets of size � j from P are scheduled in [t, v].
Combined with t ≥ τ + 2�k , this yields v − τ = v − t + t − τ ≥ n� j + 2�k .

Summing the two bounds on v − τ and multiplying by two, we get 4(v − τ) ≥ 4n� j +
4�k + o + 2z. Summing with (4.1), we obtain a > 4n� j + z ≥ 4n� j . This completes the
proof of the second case. ��

We remark that the first case, which deals with blocks afterC j , is the typical and tight one.
The second case, which deals mainly with the block containing C j and with some blocks
beforeC j , has a lot of slack, but it is more technically involved. This is similar to the situation
in the local analysis using the Master Theorem.
Modifying the adversary schedule Now all the packets from P are provisionally assigned
by f and for each q ∈ Q, we have that �( f −1(q)) ≤ �(q).

We process each packet q completed by PG(s) in (u, v] according to one of the following
three cases. In each case, we remove from ADV one or more packets with total size at most
�(q).

If q /∈ Q, then the definitions of P and Q imply that q is charged by an up charge from
some packet p /∈ P of the same size. We remove p from ADV.

If q ∈ Q does not receive a charge, we remove f −1(q) from ADV. We have �( f −1(q)) ≤
�(q), thus the size is as required. If any packet p ∈ f −1(q) is charged (necessarily by a
forward charge), we remove this charge.

If q ∈ Q receives a charge, it is a back charge from some packet p of the same size. We
remove p from ADV and in the interval where p was scheduled, we schedule packets from
f −1(q) in an arbitrary order. As �( f −1(q)) ≤ �(q), this is feasible. If any packet p ∈ f −1(q)

is charged, we keep its charge to the same packet in PG(s). The charge was necessarily a
forward charge, thus it leads to some later block. See Fig. 6 for an illustration.

After we have processed all the packets q , we have modified ADV by removing an allowed
total size of packets and rescheduling the remaining packets in (u, v], while guaranteeing
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Fig. 6 An illustration of the provisional assignment on the left. Note that a packet of size � j with a forward
charge is also assigned. Full arcs depict 1-to-1 charges and dashed arcs depict the provisional assignment. The
result of modifying the adversary schedule on the right

that any remaining charges go to later blocks. This completes processing of the block (u, v]
and thus also the proof of 1-competitiveness.

5 Lower bounds

In this section, we study what speed is necessary to achieve 1-competitiveness. We start by
revisiting a result of Anta et al. (2015) which applies to a very restricted setting. Namely, it
gives a lower bound of 2 for instances with only two divisible packet sizes, proving that our
algorithm PG-DIV and the algorithm of Jurdzinski et al. (2015) are optimal. We then extend
the construction to a setting with multiple non-divisible packet sizes, for which we show a
lower bound of φ + 1 ≈ 2.618.

In each proof, we describe a strategy that an adversary uses to create an instance for any
algorithm ALG on which ALG is not 1-competitive. This requires comparing the profit of ALG
to the optimal profit. As is common, we do not consider the optimal profit directly, but rather
use a lower bound on it that follows from a particular offline scheduling algorithm. We think
of this scheduling algorithm as a counterpart of the adversary’s strategy, and therefore denote
it by ADV.

5.1 Lower boundwith two packet sizes

Note that the following lower bound follows from results of Anta et al. (2015) by a similar
construction, although the packets in their construction are not released together.

Theorem 7 No deterministic online algorithm running at speed s < 2 is 1-competitive, even
if packets have sizes only 1 and � for � > 2s/(2 − s) and all of them are released at time 0.

Proof For a contradiction, consider an algorithm ALG running with speed s < 2
that is claimed to be 1-competitive with an additive constant A where A may depend
on �. At time 0, the adversary releases N1 = �A/�� + 1 packets of size � and

N0 =
⌈
2�

s
· (
N1 · (s − 1) · � + A + 1

)
⌉

packets of size 1. These are all packets in the

instance.
The adversary’s strategy works by blocks where a block is a time interval between two

faults, and the first block begins at time 0. The adversary ensures that in each such block,
ALG completes no packet of size � and moreover, ADV either completes an �-sized packet or
completes more 1’s (packets of size 1) than ALG.

Let t be the time of the last fault. Initially, t = 0. Let τ ≥ t be the time when ALG starts
the first �-sized packet after t (or at t) if no fault occurs after t . We set τ = ∞ if ALG never
starts such packet. Note that we use here that ALG is deterministic. In a block beginning at
time t , the adversary proceeds according to the first case below that applies.
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Fig. 7 An illustration of
Case (D3)

ALG:

ADV:

τ ≥ t + − 2t

Fig. 8 An illustration of
Case (D4) ALG:

ADV:

τ < t + − 2
Gain = 7

Gain = 8

t

(D1) If ADV has less than 2�/s pending packets of size 1, then the end of the schedule is at
t .

(D2) If ADV has all packets of size � completed, then the adversary stops the current process
and issues faults at times t + 1, t + 2, . . . until ADV, which completes a packet of
size 1 between each pair of successive faults, has no packet of size 1. Then, there is
the end of the schedule. Clearly, ALG may complete only packets of size 1 after t as
� > 2s/(2 − s) > s for s < 2.

(D3) If τ ≥ t+�/s−2, then the next fault is at time t+�. In the current block, the adversary
completes a packet �. ALG completes at most s · � packets of size 1 and then it possibly
starts � at τ if τ < t + �. This packet would be completed at

τ + �

s
≥ t + 2�

s
− 2 = t + � +

(
2

s
− 1

)

� − 2 > t + �

where the last inequality follows from
( 2
s − 1

)
� > 2 which is equivalent to � >

2s/(2 − s). Thus, the fault occurs before the �-sized packet completes. See Fig. 7 for
an illustration.

(D4) Otherwise, if τ < t + �/s − 2, then the next fault is at time τ + �/s − ε for a small
enough ε > 0. In the current block, ADV completes as many packets of size 1 as it can,
that is �τ + �/s − ε − t� packets of size 1. Note that by Case (D1), ADV has enough
1’s pending. Again, the algorithm does not complete the packet of size � started at τ ,
because it would be finished at τ + �/s. See Fig. 8 for an illustration.

First, notice that the process above ends, since in each block, the adversary completes a
packet. We now show LADV > LALG + A which contradicts the claimed 1-competitiveness
of ALG.

If the adversary’s strategy ends in Case (D2), then ADV has all �’s completed and then it
schedules all 1’s, thus LADV = N1 · � + N0 > A + N0. However, as ALG does not complete
any �-sized packet, LALG ≤ N0, which concludes this case.

Otherwise, the adversary’s strategy ends in Case (D1). We first claim that in a block (t, t ′]
created in Case (D4), ADV finishes more 1’s than ALG. Indeed, let o be the number of 1’s
completed by ALG in (t, t ′]. Then τ ≥ t + o/s, where τ is from the adversary’s strategy in
(t, t ′], and we also have o < � − 2s or equivalently � > o + 2s, because τ < t + �/s − 2 in
Case (D4). The number of 1’s scheduled by ADV is

⌊

τ + �

s
− ε − t

⌋

≥
⌊

t + o

s
+ �

s
− ε − t

⌋

≥
⌊
o

s
+ o + 2s

s
− ε

⌋

=
⌊
2

s
o + 2 − ε

⌋

≥
⌊
2

s
o + 1

⌋

≥ o + 1,

which proves the claim.
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Let α be the number of blocks created in Case (D3). Note that α ≤ N1, since in each such
block, ADV finishes one �-sized packet. ALG completes at most s� packets of size 1 in such
block, thus LADV((u, v])− LALG((u, v]) ≥ (1− s) · � for a block (u, v] created in Case (D3).

Let β be the number of blocks created in Case (D4). We have

β >
s

2�
·
(

N0 − 2�

s

)

= s · N0

2�
− 1 ≥ N1 · (s − 1) · � + A,

because in each such block, ADV schedules less than 2�/s packets of size 1 and less than
2�/s of these packets are pending at the end. By the claim above, we have LADV((u, v]) −
LALG((u, v]) ≥ 1 for a block (u, v] created in Case (D4).

Summing over all blocks gives

LADV − LALG ≥ α · (1 − s) · � + β > N1 · (1 − s) · � + N1 · (s − 1) · � + A = A,

where we used s ≥ 1 which we may suppose w.l.o.g. ��

5.2 Lower bound for general packet sizes

Our main lower bound of φ + 1 = φ2 ≈ 2.618 (where φ = (
√
5 + 1)/2 is the golden

ratio) generalizes the construction of Theorem 7 for more packet sizes, which are no longer
divisible. Still, we make no use of release times.

Theorem 8 No deterministic online algorithm running at speed s < φ + 1 is 1-competitive,
even if all packets are released at time 0.

Outline of the proof We start by describing the adversary’s strategy which works against an
algorithm running at speed s < φ +1, i.e., it shows that it is not 1-competitive. It can be seen
as a generalization of the strategy with two packet sizes above, but at the end, the adversary
sometimes needs a new strategy in order to complete all short packets (of size less than �i for
some i), while preventing the algorithm from completing a long packet (of size at least �i ).

Then we show a few lemma about the behavior of the algorithm. Finally, we prove that
the gain of the adversary, i.e., the total size of its completed packets, is substantially larger
than the gain of the algorithm.
Adversary’s strategy The adversary chooses ε > 0 small enough and k ∈ N large enough,
such that s < φ + 1− 1/φk−1. For convenience, the smallest size in the instance is ε instead
of 1. There are k + 1 packet sizes in the instance, namely, �0 = ε, and �i = φi−1 for
i = 1, . . . , k.

Suppose for a contradiction that there is an algorithm ALG running at speed s < φ + 1
that is 1-competitive with an additive constant A, where A may depend on �i ’s, in particular,
on ε and k. The adversary issues Ni packets of size �i at time 0, for i = 0, . . . , k. The Ni ’s
are chosen such that N0 � N1 � · · · � Nk . These are all the packets in the instance.

More precisely, Ni ’s are defined inductively, such that Nk > A/�k and Ni >

φs�k
∑k

j=i+1 N j + A/�i holds for i = k − 1, . . . , 1, and finally,

N0 >
A + 1 + φ�k

ε2
· (

φs�k

k∑

i=1

Ni
)
.

The adversary’s strategy works by blocks where a block is again a time interval between
two faults and the first block begins at time 0. Let t be the time of the last fault. Initially,
t = 0. Let τi ≥ t be the time when ALG starts the first packet of size �i after t (or at t) if
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Fig. 9 An illustration of
Case (B5) ALG:

ADV:
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Fig. 10 An illustration of
Case (B6) ALG:

ADV:
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no fault occurs after t . We set τi = ∞ if ALG never starts such packet. Again, we use here
that ALG is deterministic. Let τ≥i = min j≥i τ j be the time when ALG starts the first packet
of size at least �i after t .

Let PADV(i) be the total size of �i ’s (packets of size �i ) pending for the adversary at time t .
In a block beginning at time t , the adversary proceeds according to the first case below

that applies. Each case has an intuitive explanation which we make precise later.

(B1) If there are less than φ�k/ε packets of size ε pending for ADV, then the end of the
schedule is at time t .
Lemma 10 below shows that in blocks in which ADV schedules ε’s, it completes more
than ALG in terms of total size. It follows that the schedule of ADV hasmuch larger total
completed size for N0 large enough, since the adversary scheduled nearly all packets
of size ε (see Lemma 15).

(B2) If there is i ≥ 1 such that PADV(i) = 0, then the adversary stops the current process
and continues by Strategy Finish described below.

(B3) If τ1 < t + �1/(φ · s), then the next fault occurs at time τ1 + �1/s − ε, thus ALG does
not finish the first �1-sized packet. ADV schedules as many ε’s as it can.
In this case, ALG schedules �1 too early, and in Lemma 10, we show that the total size
of packets completed by ADV is larger than the total size of packets completed by ALG.

(B4) If τ≥2 < t + �2/(φ · s), then the next fault is at time τ≥2 + �2/s − ε, thus ALG does
not finish the first packet of size at least �2. ADV again schedules as many ε’s as it can.
Similarly as in the previous case, ALG starts �2 or a larger packet too early, and we
show that ADV completes more in terms of size than ALG, again using Lemma 10.

(B5) If there is 1 ≤ i < k such that τ≥i+1 < τi , then we choose the smallest such i and
the next fault is at time t + �i . ADVschedules a packet of size �i . See Fig. 9 for an
illustration.
Intuitively, this case means that ALG skips �i and schedules �i+1 (or a larger packet)
earlier. Lemma 12 shows that the algorithm cannot finish its first packet of size at least
�i+1 (nor of size �i , which it skipped).

(B6) Otherwise, the next fault occurs at t + �k and ADV schedules a packet of size �k in this
block. Lemma 13 shows that ALG cannot complete an �k-sized packet in this block.
See Fig. 10 for an illustration.

We remark that the process above eventually ends either in Case (B1), or in Case (B2),
since in each block ADV schedules a packet. Also note that the length of each block is at
most φ�k .

We describe Strategy Finish, started in Case (B2). Let i be the smallest index i ′ ≥ 1 such
that PADV(i ′) = 0. For brevity, we call a packet of size at least �i long, and a packet of size � j

with 1 ≤ j < i short. Note that ε’s are not short packets. In a nutshell, ADV tries to schedule
all short packets, while preventing the algorithm from completing any long packet. Similarly
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to Cases (B3) and (B4), if ALG starts a long packet too early, ADV schedules ε’s and gains in
terms of total size.

Adversary’s Strategy Finish works again by blocks. Let t be the time of the last fault. Let
τ ≥ t be the time when ALG starts the first long packet after t . We set τ = ∞ if it does not
happen. The adversary proceeds according to the first case below that applies.

(F1) If PADV(0) < φ�k , then the end of the schedule is at time t .
(F2) If ADV has no pending short packet, then the strategy Finish ends and the adversary

issues faults at times t + ε, t + 2ε, . . . Between every two consecutive faults after t , it
completes one packet of size ε and it continues issuing faults until it has no pending
ε. Then there is the end of the schedule. Clearly, ALG may complete only ε’s after t if
ε is small enough. Note that for i = 1, this case is immediately triggered, as �0-sized
packets are not short, and hence, there are no short packets whatsoever.

(F3) If τ < t + �i/(φ · s), then the next fault is at time τ + �i/s − ε, thus ALG does not
finish the first long packet. ADV schedules as many ε’s as it can. Note that the length
of this block is less than �i/(φ · s) + �i/s ≤ φ�k . Again, we show that ADV completes
more in terms of size using Lemma 10.

(F4) Otherwise, τ ≥ t + �i/(φ · s). The adversary issues the next fault at time t + �i−1.
Let j be the largest j ′ < i such that PADV( j ′) > 0. ADV schedules a packet of size � j

which is completed as j ≤ i − 1. Lemma 14 shows that ALG does not complete the
long packet started at τ .

Again, ADV completes a packet in each block, thus Strategy Finish eventually ends. Note
that the length of each block is less than φ�k .

Properties of the adversary’s strategy We now prove the lemma mentioned above. In the
following, t is the beginning of the considered block and t ′ is the end of the block, i.e., the
time of the next fault after t . Recall that LALG((t, t ′]) is the total size of packets completed by
ALG in (t, t ′]. We start with a general lemma that covers all cases in which ADV schedules
many ε’s.

Lemma 10 In Cases (B3), (B4), and (F3), LADV ((t, t ′]) ≥ LALG((t, t ′]) + ε holds.

Proof Let i and τ be as in Case (F3). We set i = 1 and τ = τ1 in Case (B3), and i = 2
and τ = τ≥2 in Case (B4). Note that the first packet of size (at least) �i is started at τ

with τ < t + �i/(φ · s) and that the next fault occurs at time τ + �i/s − ε. Furthermore,
PADV(0, t) ≥ φ�k by Cases (B1) and (F1). As t ′ − t ≤ φ�k , it follows that ε-size packets fill
nearly the whole block in ADV. In particular, LADV((t, t ′]) > t ′ − t − ε.

Let a = LALG((t, t ′]). Since ALG does not complete the �i -sized packet, we have τ ≥
t + a/s and thus also a < �i/φ as τ < t + �i/(φ · s).

If a < �i/φ − 3sε/φ which is equivalent to �i > φ · a + 3sε, then we show the required
inequality by the following calculation:

LADV((t, t
′])+ ε > t ′ − t = τ + �i

s
− ε − t ≥ a

s
+ �i

s
− ε >

a + φ · a + 3sε

s
− ε > a+2ε,

where the last inequality follows from s < φ + 1.
Otherwise, a is nearly �i/φ and thus large enough. Then we get

LADV((t, t
′]) + ε > t ′ − t = τ + �i

s
− ε − t ≥ a

s
+ �i

s
− ε >

a

s
+ φa

s
− ε > a + 2ε

where the penultimate inequality follows by �i > φa, and the last inequality holds as (1 +
φ)a/s > a + 3ε for ε small enough and a ≥ �i/φ − 3sε/φ. ��
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For brevity, we inductively define S0 = φ − 1 and Si = Si−1 + �i for i = 1, . . . , k. Thus
Si = ∑i

j=1 �i +φ−1 and a calculation shows Si = φi+1−1.We prove a useful observation.

Lemma 11 Fix j ≥ 2. If Case (B3) and Case (B5) for i < j are not triggered in the block,
then τi ′+1 ≥ t + Si ′/s for each i ′ < j .

Proof We have τ1 ≥ t + �1/(φ · s) = t + (φ − 1)/s by Case (B3) and τi+1 ≥ τi + �i/s for
any i < j , since Case (B5) was not triggered for i < j and the first �i -sized packet needs to
be finished before starting the next packet. Summing the bounds gives the inequalities in the
lemma. ��
Lemma 12 If Case (B5) is triggered for (minimal) i , then the algorithm does not complete
any packet of size �i or larger.

Proof Recall that we have τ≥i+1 < τi , thus the first started packet p of size at least �i has
size at least �i+1. It suffices to prove

τ≥i+1 + �i+1

s
− t > �i , (5.1)

which means that p would be completed after the next fault at time t + �i .
We start with the case i = 1 in which τ≥2 < τ1. Since Case (B4) was not triggered, we

have τ≥2 ≥ t + �2/(φ · s) = t + 1/s. We show (5.1) by the following calculation:

τ≥2 + �2

s
− t ≥ 1

s
+ �2

s
= 1 + φ

s
> 1 = �1 ,

where the strict inequality holds by s < φ + 1.
Now, consider the case i ≥ 2. As i is minimal satisfying the condition of Case (B5),

Lemma 11 for j = i and i ′ = i − 2 yields τi−1 ≥ t + Si−2/s. Since a packet of size �i−1

is started at τi−1 and must be finished by τ≥i+1, we have τ≥i+1 ≥ t + (Si−2 + �i−1)/s =
t + Si−1/s. Thus

τ≥i+1 + �i+1

s
− t ≥ Si−1 + �i+1

s
= φi − 1 + φi

s

= φi+1 + φi−2 − 1

s
≥ φi+1

s
> φi−1 = �i ,

where the penultimate inequality holds by i ≥ 2 and the last inequality by s < φ + 1. (We
remark that the penultimate inequality has a significant slack for i > 2.) ��
Lemma 13 In Case (B6), ALG does not complete a packet of size �k .

Proof It suffices to prove

τk > t +
(

1 − 1

s

)

�k, (5.2)

since then, ALG completes the first �k-sized packet at

τk + �k

s
> t +

(

1 − 1

s

)

�k + �k

s
= t + �k,

i.e., after the next fault at time t + �k .
SinceCases (B3) and (B5) are not triggered, Lemma11 for j = k yields τk ≥ t+Sk−1/s =

t + (φk − 1)/s.
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Recall that we choose k large enough such that s < φ + 1 − 1/φk−1 or equivalently
φ − 1/φk−1 > s − 1. We multiply this inequality by φk−1, divide it by s, and add t to both
sides to get

t + φk − 1

s
> t +

(

1 − 1

s

)

φk−1 = t +
(

1 − 1

s

)

�k, (5.3)

which shows (5.2). ��
Lemma 14 In Case (F4), ALG does not complete any long packet.

Proof Recall that the first long packet p is started at τ and it has size at least �i , thus it would
be completed at τ + �i/s or later. We show τ + �i/s− t > �i−1 by the following calculation:

τ + �i

s
− t ≥ �i

φ · s + �i

s
= φ�i

s
>

�i

φ
= �i−1,

where the strict inequality holds by s < φ + 1. This implies that the long packet p would be
completed after the next fault at time t + �i−1. ��
Analysis of the gains We are ready to prove that at the end of the schedule, LADV > LALG+ A
holds, which contradicts the initial assumption about 1-competitiveness of ALG, proving
Theorem 8. We inspect all the cases in which the instances may end, starting with Cases (B1)
and (F1).

We remark that we use only crude bounds to keep the analysis simple.

Lemma 15 If the schedule ends in Case (B1) or (F1), we have LADV > LALG + A.

Proof Recall that each block (t, t ′] has length of at most φ�k , thus LALG((t, t ′]) ≤ sφ�k and
LADV((t, t ′]) ≤ φ�k .

We call a block in which ADV schedules many ε’s small, other blocks are big. Recall that
ADVschedules no ε in a big block. Note that Cases (B3), (B4), and (F3) concern small blocks,
whereas Cases (B5), (B6), and (F4) concern big blocks.

By Lemma 10, in each small block (t, t ′] it holds that LADV((t, t ′]) ≥ LALG((t, t ′]) + ε.
Let β be the number of small blocks. Then

β ≥
(
N0 − φ�k

ε

)
ε

φ�k
,

because in each such block, ADV schedules at most φ�k/ε packets of size ε, and PADV(0) <

φ�k holds when the strategy ends by Case (B1) or (F1).
The number of big blocks is at most

∑k
i=1 Ni , since in each such block, ADV schedules a

packet of size at least �1. For each such block, we have LADV((t, t ′])−LALG((t, t ′]) ≥ −sφ�k .
(This is a crude bound, but sufficient for large enough N0.)

Summing over all blocks, we obtain

LADV − LALG ≥ βε − φs�k

k∑

i=1

Ni ≥
(
N0 − φ�k

ε

)
ε2

φ�k
− φs�k

k∑

i=1

Ni

> A + φs�k

k∑

i=1

Ni − φs�k

k∑

i=1

Ni = A , (5.4)

where (5.4) follows from N0 > φ�k(A + 1 + φs�k
∑k

i=1 Ni )/ε
2. ��
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It remains to prove the same for termination by Case (F2), since there is no other case in
which the strategy may end.

Lemma 16 If Strategy Finish ends in Case (F2), then LADV > LALG + A.

Proof Note that ADV schedules all short packets and all ε’s, i.e., those of size less than �i .
In particular, we have LADV(< i) ≥ LALG(< i).

Call a block in which ALG completes a packet of size at least �i bad. As the length of any
block is at most φ�k , we have LALG(≥ i, (t, t ′]) ≤ sφ�k for a bad block (t, t ′]. Bad blocks
are created only in Cases (B5) and (B6), but in each bad block, ADV finishes a packet strictly
larger than �i . Note that here, we use Lemmas 12 and 13. Hence, the number of bad blocks
is bounded by

∑k
j=i+1 N j . As ADV completes all packets of size �i , we obtain

LADV(≥ i) − LALG(≥ i) ≥ �i Ni − φs�k

k∑

j=i+1

N j

> �iφs�k

k∑

j=i+1

N j + A − φs�k

k∑

j=i+1

N j ≥ A,

where the strict inequality follows from Nk > A/�k for i = k and from Ni >

φs�k
∑k

j=i+1 N j + A/�i for i < k. By summing it with LADV(< i) ≥ LALG(< i), we
conclude that LADV > LALG + A. ��
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