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Abstract
A nonlinear programming method is used for finding an equitable optimal fair division of
the unit interval [0, 1) among n players. Players’ preferences are described by nonatomic
probability measures μ1, . . . , μn with density functions having piecewise strict monotone
likelihood ratio property. The presented algorithm can be used to obtain also an equitable
ε-optimal fair division in case of measures with arbitrary differentiable density functions. An
example of an equitable optimal fair division for three players is given.

Keywords Fair division · Cake cutting · Optimal partitioning of a measurable space

1 Introduction

Suppose we are given a cake to be divided among n players. Let the measurable space
{[0, 1),B} represent the cake and nonatomic probability measures μ1, . . . , μn defined on
the σ−algebra of Borel measurable sets describe individual preferences of each player. The
measures μ1, . . . , μn are used by the players to evaluate the size of sets A ∈ B. Denote
by I = {1, . . . , n} the set of numbered players. By an ordered partition P = {Ai }ni=1 of
the cake among the players i ∈ I , is meant a collection of B-measurable disjoint subsets
A1, . . . , An of [0, 1)whose union is [0, 1). LetP stand for the set of all measurable partitions
P = {Ai }ni=1 of [0, 1). The problem of fair division of the cake is the task to divide [0, 1)
among the players i ∈ I , in a way that would be “fair” according to some fairness notions
accepted by all players. In classic fair division problem we are interested in giving the i-th
person a set Ai ∈ B such that μi (Ai ) ≥ 1/n for i ∈ I . A simple and well-known method for
realizing a fair division (of a cake) for two players is ”for one to cut, the other to choose”.
Steinhaus in 1944 asked whether the fair procedure could be found for dividing a cake among
n participants for n > 2. He found a solution for n = 3 and Knaster (1946) showed that the
solution for n = 2 could be extended to arbitrary n. In the literature several notions of fair
divisions P = {Ai }ni=1 ∈ P are discussed

– Proportional division: μi (Ai ) ≥ 1/n for all i ∈ I .
– Envy-free division: μi (Ai ) ≥ μi (A j ) for all i, j ∈ I .
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– Exact division: μi (A j ) = 1/n for all i, j ∈ I .
– Equitable division: μi (Ai ) = μ j (A j ) for all i, j ∈ I .

An interesting challenge in fair division theory is to find the best possible equitable partition.
For X ∈ B denote by Pe(X) the set all of measurable equitable partitions P = {Ai }ni=1

of X .

Definition 1 The optimal value δ(X) of the fair division problem of X ∈ B is defined by

δ(X) := sup
{
μk(Ak) : P = {Ai }ni=1 ∈ Pe(X)

}
.

Definition 2 A partition P∗ = {
A∗
i

}n
i=1 ∈ P is said to be an equitable optimal fair division

if for all k ∈ I

δ([0, 1)) = μk(A
∗
k).

The equitable optimal fair division will be also called, interchangeably an optimal partition
of the measurable space {[0, 1),B}. For simplicity denote δ := δ([0, 1)).
Definition 3 Apartition Pε = {

Aε
i

}n
i=1 ∈ P is said to be an equitable ε-optimal fair division

if for all i ∈ I

μi (A
ε
i ) > δ − ε.

The existence of optimal partitions follows from a theorem of Dvoretzky et al. (1951):

Theorem 1 If μ1, . . . , μn are nonatomic countably additive finite measures defined on the

measurable space {[0, 1),B} then the range →
μ (P) of the mapping

→
μ: P → R

n defined by

→
μ (P) = (μ1(A1), . . . , μn(An)) , P = {Ai }ni=1 ∈ P,

is convex and compact in Rn.

Finding equitable optimal partitions for arbitrary probability measures is not easy. In the
literature of the fair division field there are known some results concerning algorithms of
finding such partitions. Legut and Wilczyński (2012) showed how to obtain the optimal
partitions for twoplayers.Dall’Aglio andLuca (2014) presented amethod for findingmaxmin
allocations (optimal partitions) for measures satisfying three assumptions:

– complete divisibility of the good (nonatomless),
– mutual absolutely continuity,
– relative disagreement.

Under these assumptions they proposed a subgradient algorithm for obtaining the optimal
value of a fair division problem. This algorithm is based on an iterative approximation of the
solution up to a given precision and also finds an almost optimal partition. In this paper we
require stronger assumptions on the measures. We assume that the density functions of the
measures satisfy strictly monotone likelihood ratio property separately on each subintervals
of some finite partition of [0, 1). In our approach to obtaining equitable optimal division we
find accurate equitable optimal partitions using a nonlinear programming method.

Dall’Aglio et al. (2015) presented an algorithm for finding an optimal partition in case of
measures defined by densities being simple functions. This result was generalized by Legut
(2017) for the case of measures with piecewise linear density functions. The first estimation
of the optimal value δ was given by Elton et al. (1986) and further by Legut (1988). An
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interesting algorithm for finding the bounds for the optimal value was found by Dall’Aglio
and Luca (2015).

A general form of the optimal partitions could be helpful in some cases for finding con-

structivemethods of optimal partitioning of ameasurable space. Let S = {→
s = (s1, . . . , sn) ∈

R
n, si ≥ 0, i ∈ I ,

∑n
i=1 si = 1} be an (n− 1)-dimensional simplex. We can assume that all

nonatomic measures μ1, . . . , μn are absolutely continuous with respect to the same measure
ν (e.g. ν = ∑n

i=1 μi ). Denote by fi = dμi/dν the Radon-Nikodym derivatives , i.e.

μi (A) =
∫

A
fi dν, for A ∈ B and i ∈ I .

For
→
p= (p1, . . . , pn) ∈ S and i ∈ I , define the following measurable sets

Bi (
→
p ) =

n⋂

k=1,k �=i

{x ∈ [0, 1) : pi fi (x) > pk fk(x)} ,

Ci (
→
p ) =

n⋂

k=1

{x ∈ [0, 1) : pi fi (x) ≥ pk fk(x)} .

Legut and Wilczyński (1988) using a minmax theorem of Sion (cf. Aubin 1980) proved the
following theorem presented here in less general form

Theorem 2 There exists a point
→
p∗∈ S and a corresponding equitable optimal partition

P∗ = {
A∗
i

}n
i=1 satisfying

(i) Bi (
→
p∗) ⊂ A∗

i ⊂ Ci (
→
p∗),

(ii) μ1(A∗
1) = μ2(A∗

2) = . . . = μn(A∗
n).

Moreover, any partition P∗ = {
A∗
i

}n
i=1 which satisfies (i) and (ii) is equitable optimal.

2 Main result

In this section we present an algorithm for obtaining an equitable optimal fair division.
Supposewe are given n nonatomic probabilitymeasuresμi , i ∈ I , defined on themeasurable
space {[0, 1),B}. We need the following

Assumption 1 The measures μi , i ∈ I , are absolutely continuous with respect to the
Lebesgue measure λ defined on {[0, 1),B} and additionally

supp(μi ) = [0, 1), i ∈ I .

Let fi , i ∈ I , denote the Radon–Nikodym derivatives of the measures μi with respect
to the Lebesgue measure λ. Define absolutely continuous and strictly increasing functions
Fi : [0, 1] → [0, 1] by

Fi (t) =
∫

[0,t)
fi dλ, t ∈ [0, 1], i ∈ I . (1)

For proving our main result we need yet another crucial assumption.

Assumption 2 There exists a partition {[a j , a j+1)}mj=1 of the interval [0, 1), where a1 =
0, am+1 = 1, such that the densities fi satisfy strictly monotone likelihood ratio (SMLR)
property on each interval [a j , a j+1),
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j ∈ J := {1, . . . ,m} , i.e. for any i, k ∈ I , i �= k, the ratios
fi (x)

fk(x)
are strictly monotone

on each interval [a j , a j+1).

Proposition 1 If the density functions fi , i ∈ I , are differentiable and the set

D := {
x ∈ (0, 1) : f ′

i (x) fk(x) = fi (x) f
′
k(x), i, k ∈ I , i �= k

}
(2)

is finite then Assumption 2 is satisfied.

Proof Let D = {a2, a3, . . . , am} with a1 = 0 < a2 < · · · < am < am+1 = 1. It is easy to
verify that the set D consists of all the points in which the derivatives

(
fi (x)

fk(x)

)′
, i, k ∈ I , i �= k, (3)

change their signs. Then for given j ∈ J and for all x ∈ [a j , a j+1) the derivatives (3) are

positive or negative. It means that the ratios
fi (x)

fk(x)
are strictly monotone on the interval

[a j , a j+1) and the proof is complete. 	

If the densities fi , i ∈ I , are pairwise different polynomial functions of positive degree, the
assumptions of Proposition 1 are obviously satisfied. Consider the problem of the equitable
optimal fair division for two players with the following density functions f1(x) = x sin 1

x +c,

with the constant c satisfying
∫ 1
0 f1(x)dx = 1, and f2(x) ≡ 1 for x ∈ [0, 1). It is easy to

verify, that in this case the set D is infinite.
For proving the main result of this paper we need the following crucial proposition:

Proposition 2 Assumption 2 is satisfied for the densities fi if and only if for any numbers
θ1, θ2 satisfying a j ≤ θ1 < θ2 < a j+1, j ∈ J , and any i, k ∈ I , i �= k one of the two
following inequalities

Fi (t) − Fi (θ1)

Fi (θ2) − Fi (θ1)
<

Fk(t) − Fk(θ1)

Fk(θ2) − Fk(θ1)
(4)

Fi (t) − Fi (θ1)

Fi (θ2) − Fi (θ1)
>

Fk(t) − Fk(θ1)

Fk(θ2) − Fk(θ1)
(5)

holds for each t ∈ (θ1, θ2).

The inequalities (4) and (5) mean that there is a strict relative convexity relationship between
the functions Fi and Fk, i �= k, defined by (1). If the inequality (4) holds, then Fi is
strictly convex with respect to Fk . This property is equivalent to the strict convexity of the
composite function Fi ◦ F−1

k on the interval (Fk(a j ), Fk(a j+1)) (cf. Palmer 2003). It follows
from a result of Shisha and Cargo (1964) (Theorem 1) that Fi ◦ F−1

k is strictly convex on

(Fk(a j ), Fk(a j+1)) if and only if the ratio
fi (x)

fk(x)
is strictly increasing on (a j , a j+1), which

implies Proposition 2.
The relative convexity is one of many various generalizations of convexity started in 1931

by Jessen (1931). They were developed by Popoviciu (1936) and Beckenbach (1937) and
continued later by Karlin and Novikoff (1963) especially for applications in approximation
theory.

The relation of strict relative convexity induces on each interval (a j , a j+1) a strict partial
ordering of the functions Fi (cf. Palmer 2003). Let Fi ≺ j Fk denote that Fi is strictly convex
with respect to Fk on (a j , a j+1). For each j ∈ J define permutation σ j : I −→ I , such that
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Fσ j (k+1) ≺ j Fσ j (k),

for k = 1, . . . , n − 1. Hence for all t ∈ (a j , a j+1) we have

Fσ j (k+1)(t) − Fσ j (k+1)(a j )

Fσ j (k+1)(a j+1) − Fσ j (k+1)(a j )
<

Fσ j (k)(t) − Fσ j (k)(a j )

Fσ j (k)(a j+1) − Fσ j (k)(a j )
(6)

The following theorem presents an algorithm for obtaining an equitable optimal fair division.

Theorem 3 Let a collection of numbers z∗, {x∗( j)
k }, k = 1, . . . , n − 1, j ∈ J , be a solution

of the following nonlinear programming (NLP) problem

max z (7)

subject to constraints

z =
m∑

j=1

[
Fi (x

( j)
σ j (i)

) − Fi (x
( j)
σ j (i)−1)

]
i = 1, . . . , n, (8)

with respect to variables z, {x ( j)
k }, k = 1, . . . , n − 1, j ∈ J , satisfying the following

inequalities

0 = a1 ≤ x (1)
1 ≤ · · · ≤ x (1)

n−1 ≤ a2,

a2 ≤ x (2)
1 ≤ · · · ≤ x (2)

n−1 ≤ a3,
. . .

am ≤ x (m)
1 ≤ · · · ≤ x (m)

n−1 ≤ am+1 = 1.

(9)

Then the partition {A∗
i }ni=1 ∈ P of the unit interval [0, 1) defined by

A∗
i =

m⋃

j=1

[
x∗( j)
σ j (i)−1, x

∗( j)
σ j (i)

)
, i ∈ I , (10)

where x∗( j)
0 = a j , x

∗( j)
n = a j+1, j ∈ J , is an equitable optimal fair division for the

measures μi , i ∈ I .

If for some i ∈ I and j ∈ J , the equality x∗( j)
σ j (i)−1 = x∗( j)

σ j (i)
holds we set

[
x∗( j)
σ j (i)−1, x

∗( j)
σ j (i)

)
= ∅

in the union of intervals (10). We need first to prove the following

Lemma 1 Let {A0
i }ni=1 ∈ P be an equitable optimal fair division of the unit interval [0, 1).

Suppose that for two players i1, i2 ∈ I , and j ∈ J , there exist numbers c, d, e with a j ≤
c < d < e < a j+1 such that

[c, d) ⊂ A0
i1 and [d, e) ⊂ A0

i2 ,

then
σ−1
j (i1) < σ−1

j (i2). (11)

Proof For simpler notation we set i1 = 1 and i2 = 2. Suppose that the inequality (11) is not
satisfied. Then from Proposition 2 and (6) we have

F1(t) − F1(a j )

F1(a j+1) − F1(a j )
<

F2(t) − F2(a j )

F2(a j+1) − F2(a j )
.
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Define continuous and strictly increasing functions hi : [c, e) → [0, 1] by
hi (t) = Fi (t) − Fi (c)

Fi (e) − Fi (c)
, i = 1, 2.

It follows from Proposition 2 that one of the inequalities

h1(t) > h2(t), h1(t) < h2(t)

is satisfied for all t ∈ (c, e). Suppose that h1(t) < h2(t) for all t ∈ (c, e). It follows from the
continuity of the functions hi , i = 1, 2 and the Darboux property that there exist numbers
ti ∈ (c, e), i = 1, 2, such that

h1(d) = 1 − h1(t1) and h2(t2) = 1 − h2(d). (12)

Thus, we have

1 − h2(t2) = h2(d) > h1(d) = 1 − h1(t1) and then h2(t2) < h1(t1).

The last inequality implies that h2(t2) < h1(t1) < h2(t1) and hence the inequality t2 < t1
must be satisfied. Multiplying the first equality (12) by F1(e) − F1(c) and the second one by
F2(e) − F2(c) after simple calculations we obtain

F1(d) − F1(c) = F1(e) − F1(t1) and F2(t2) − F2(c) = F2(e) − F2(d),

which means that μ1([c, d)) = μ1([t1, e)) and μ2([c, t2)) = μ2([d, e)). It follows from
Assumption 1 that μi ([t2, t1)) > 0 for all i ∈ I . Let {Ci }ni=1 be any partition of the interval
[t2, t1) into some subintervals satisfying μi (Ci ) > 0 for all i ∈ I . Define new partition
{A∗

i }ni=1 ∈ P by

A∗
1 = (

A0
1\[c, d)

) ∪ [t1, e) ∪ C1, A∗
2 = (

A0
2\[d, e)

) ∪ [c, t2) ∪ C2,

and

A∗
k = A0

k ∪ Ck, for k = 3, . . . , n.

Hence for all i ∈ I , we have

μi (A
∗
i ) ≥ μi (A

0
i ) + min

i∈I {μi (Ci )} > μi (A
0
i )

which contradicts the fact that {A0
i }ni=1 is an equitable optimal fair division. Then the inequal-

ity h1(t) > h2(t) and also the inequality (11) must be satisfied which completes the proof of
Lemma 1. 	

Lemma 2 Let {A0

i }ni=1 ∈ P be an equitable optimal fair division of the unit interval [0, 1).
Assume that each A0

i , i ∈ I , is a finite union of intervals. Suppose that for fixed j ∈ J , and
numbers a j ≤ c1 < c2 < · · · < cr ≤ a j+1, with r ≥ 4 we have

[c1, c2) ∪ [cr−1, cr ) ⊂ A0
i1 and [ck, ck+1) ⊂ A0

ik , for k = 2, . . . , r − 2

for some ik ∈ I . Then ik = i1 for all k = 2, . . . , r − 2.

Proof Suppose that for some k0 ∈ {2, . . . , r−2}we have ik0 �= i1.Without loss of generality
we can assume that for neighbouring intervals [ck, ck+1), [ck+1, ck+2),

k = 2, . . . , r − 3 we have ik �= ik+1. Otherwise we can connect intervals for which
ik = ik+1 and we could consider fewer of such intervals. It follows from Lemma 1 that

σ−1
j (i1) < σ−1

j (i2) < · · · < σ−1
j (ir−1) < σ−1

j (i1).

This contradiction completes the proof. 	


123



Annals of Operations Research (2020) 284:323–332 329

Proof of Theorem 3: First we observe that the NLP problem (7) has a solution. It is easy to
check that the feasible set defined by (8) and (9) for m(n − 1) + 1 variables {z, x ( j)

k k =
1, . . . , n − 1, j ∈ J } is compact in R

m(n−1)+1.
Suppose {Ai }ni=1 is an equitable optimal fair division. We show that there exist numbers

{x ( j)
k } k = 1, . . . , n − 1, j ∈ J , satisfying the following inequalities

0 = a1 ≤ x (1)
1 ≤ · · · ≤ x (1)

n−1 ≤ a2,

a2 ≤ x (2)
1 ≤ · · · ≤ x (2)

n−1 ≤ a3,
. . .

am ≤ x (m)
1 ≤ · · · ≤ x (m)

n−1 ≤ am+1 = 1.

and that

Ai =
m⋃

j=1

[
x ( j)
σ j (i)−1, x

( j)
σ j (i)

)
, i ∈ I .

It follows from Assumption 2 that for any numbers pi , pk and i, k ∈ I , i �= k, the set
{x ∈ [0, 1) : pi fi (x) = pk fk(x)} is finite. Hence, by Theorem 2 each set Ai must be a union
of a finite number of intervals. Without loss of generality we may assume that all these
intervals are left-closed and right-open. Hence each interval [a j , a j+1), j ∈ J , can be
written as

[a j , a j+1) =
q j⋃

l=1

[
b( j)
l , b( j)

l+1

)
, j ∈ J , l = 1, . . . , q j

with integersq j ≥ 1 and real numbersb( j)
l , b( j)

1 = a j , b
( j)
q j+1 = a j+1, j ∈ J , l = 1, . . . , q j ,

for which there exists i ∈ I such that
[
b( j)
l , b( j)

l+1

)
⊂ Ai .

It follows from Lemma 2 that we can reduce (if necessary) the number of intervals[
b( j)
l , b( j)

l+1

)
, j ∈ J , l = 1, . . . , q j by finding numbers x ( j)

k , j ∈ J , k = 1, . . . , n − 1

with x ( j)
k ∈ {b j

l , l = 1, . . . , q j } such that

Ai ∩ [a j , a j+1) =
[
x ( j)
σ j (i)−1, x

( j)
σ j (i)

)
.

If Ai ∩ [a j , a j+1) = ∅ then we set x ( j)
σ j (i)−1 = x ( j)

σ j (i)
. Finally, we conclude that any equitable

optimal partition {Ai }ni=1 takes the form (10) and the proof is complete. 	

The method presented in Theorem 3 can be used for obtaining also equitable ε-optimal

fair divisions in case where the set D defined by (2) is countably infinite. Then, for a given
ε > 0 there exists a partition {X1, X2} of the unit interval [0, 1) such that
1. X1 is a finite union of subintervals,
2. D ∩ X1 is finite,
3. for all i ∈ I we have μi (X1) > 1 − ε.

There exist pairwise disjoint subintervals X ( j)
1 , j = 1, . . . ,m of [0, 1), not necessary con-

tiguous, such that X1 = ∪m
j=1X

( j)
1 and for all i, k ∈ I the ratios

fi (x)

fk(x)
are strictly monotone
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on each X ( j)
1 . Applying Theorem 3 for X1 we obtain a partition Pε = {

Aε
i

}n
i=1 ∈ Pe(X1)

such that for all i ∈ I

μi (A
ε
i ) = δ(X1).

Since δ = δ(X1) + δ(X2) and δ(X2) < ε the partition Pε is equitable ε-optimal.

3 Example

Consider a problem of fair division for three players I = {1, 2, 3} estimating measurable
subsets of the unit interval [0, 1) using measures μi , i = 1, 2, 3, defined respectively by the
following density functions

f1 = 12

(
x − 1

2

)2

, f2 = 2x, f3 ≡ 1, x ∈ [0, 1).

We use the algorithm described in Theorem 3 to obtain an equitable optimal fair division.
First we need to divide the interval [0, 1) into some subintervals on which the densities
fi , i = 1, 2, 3, separably satisfy SMLR property. For this reason we find the set D defined
by (2). It is easy to check that D = { 12 } and hence by Proposition 1 the densities fi , i =
1, 2, 3, satisfy the SMLR property on intervals [0, 1

2 ) and [ 12 , 1). Denote cumulative strictly
increasing distribution functions by Fi (t) = ∫ t

0 fi (x) dx, i = 1, 2, 3. Then we have

F1(t) = 4t3 − 6t2 + 3t, F2(t) = t2, F3(t) = t, t ∈ [0, 1).
Based on the inequalities (6) we establish the proper order of assigments of the subintervals
[0, 1

2 ) and [ 12 , 1) to each player as follows: we take midpoints 1
4 and

3
4 of the two subintervals

and verify that

F1(1/4) − F1(0)

F1(
1
2 ) − F1(0)

>
F3(1/4) − F3(0)

F3(
1
2 ) − F3(0)

>
F2(1/4) − F2(0)

F2(
1
2 ) − F2(0)

,

and

F3(3/4) − F3(0)

F3(1) − F3(
1
2 )

>
F2(3/4) − F2(0)

F2(1) − F2(
1
2 )

>
F1(3/4) − F1(0)

F1(1) − F1(
1
2 )

.

Hence, we obtain permutations

σ1 =
(
1 2 3
1 3 2

)
and σ2 =

(
1 2 3
3 2 1

)
.

Now we are ready to formulate an NLP problem as in Theorem 3

max z

subject to constraints

z = 4

((
x (1)
1 )3 − (x (2)

2

)3) − 6

((
x (1)
1 )2 − (x (2)

2

)2) + 3
(
x (1)
1 − x (2)

2

)
+ 1,

z =
(
x (2)
2

)2 −
(
x (1)
2

)2 −
(
x (2)
1

)2 + 1

4
,

z = x (2)
1 − x (1)

1 + x (1)
2 − 1

2
,
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with respect to the variables z, {x ( j)
k } k = 1, 2, j = 1, 2, satisfying the following inequalities

0 ≤ x (1)
1 ≤ x (2)

1 ≤ 1

2
≤ x (1)

2 ≤ x (2)
2 ≤ 1.

Solving the above NLP problem using the Mathematica package we obtain

z∗ ≈ 0.4843, x∗(1)
1 ≈ 0.1426, x∗(2)

1 = a2 = 0.5, x∗(1)
2 ≈ 0.6269,

x∗(2)
2 ≈ 0.9367.

Hence, we get the equitable optimal fair division {A∗
i }3i=1 ∈ P of the unit interval [0, 1),

where

A∗
1 =

[
0, x∗(1)

1

)
∪

[
x∗(2)
2 , 1

)
, A∗

2 =
[
x∗(2)
2 , x∗(1)

2

)
and A∗

3 =
[
x∗(1)
2 , x∗(1)

1

)
.
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