
Annals of Operations Research (2021) 298:469–495
https://doi.org/10.1007/s10479-018-2952-6

S . I . : CODIT2017-COMBINATORIAL OPT IMIZAT ION

Parametric analysis of the quality of single preemption
schedules on three uniform parallel machines

Alan J. Soper1 · Vitaly A. Strusevich1

Published online: 2 July 2018
© The Author(s) 2018

Abstract
For a scheduling problem to minimize the makespan on three uniform parallel machines
we present a parametric analysis of the quality of a schedule with at most one preemption
compared to the global optimal schedule with any number of preemptions. A tight bound is
derived as a function of the relative speeds of themachines, provided that two of themachines
have the same speed.

Keywords Scheduling · Uniform parallel machines · Power of preemption

1 Introduction

In parallel machine scheduling, we are given the jobs of set N = {J1, J2, . . . , Jn} and m
parallel machines M1, M2, . . . , Mm . If a job J j ∈ N is processed on machine Mi alone, then
its processing time is known to be pi j . There are three main types of scheduling systems
with parallel machines: (i) identical parallel machines, for which the processing times are
machine-independent, i.e., pi j = p j ; (ii) uniform parallel machines, which have different
speeds, so that pi j = p j/si , where si denotes the speed of machine Mi ; and (iii) unrelated
parallel machines, for which the processing time of a job depends on themachine assignment.

In this paper, we focus on the problem of minimizing the makespan, i.e., the maximum
completion time across all m machines. For a schedule S, the makespan is denoted by
Cmax(S). In a non-preemptive schedule, each job is processed on the machine it is assigned
to without interruption. In a preemptive schedule, the processing of a job on a machine
can be interrupted at any time and then resumed either on this or on any other machine,
provided that the job is not processed on two or more machines at a time. For an instance
of a scheduling problem on parallel machines, let S∗

(q) and S∗
p denote an optimal schedule

with at most q preemptions, and an optimal preemptive schedule which uses an unlimited
number of preemptions, respectively. We will refer to schedules with an unlimited number

B Vitaly A. Strusevich
V.Strusevich@greenwich.ac.uk

Alan J. Soper
A.J.Soper@greenwich.ac.uk

1 Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row,
Greenwich, London SE10 9LS, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2952-6&domain=pdf

470 Annals of Operations Research (2021) 298:469–495

of preemptions as simply preemptive. The case q = 0 corresponds to a non-preemptive
schedule, and an optimal non-preemptive schedule is denoted by S∗

np.

The number of preemptions in an optimal schedule S∗
p need not exceedm−1 in the case of

identical machines and 2 (m − 1) in the case of uniformmachines, as proved byMcNaughton
(1959) and Gonzalez and Sahni (1978), respectively.

If any number of preemptions is allowed, then even in the most general settings with
unrelated machines an optimal schedule can be found in polynomial time. Finding an optimal
non-preemptive schedule is an NP-hard problem, even on two identical parallel machines.
See a focused survey by Chen (2004) on parallel machine scheduling with the makespan
objective for details and references.

Form ≥ 3, the problem of finding an optimal preemptive schedule with at most q ≤ m−2
preemptions on identical parallel machines is NP-hard due to Shchepin and Vakhania (2008).
For m ≥ 3 uniform machines, the problem of finding an optimal schedule with the number
of preemptions q such that q is even and q ≤ 2 (m − 3) is shown to be NP-hard by Shachnai
et al. (2005). Soper and Strusevich (2018) prove that finding an optimal schedule with at most
one preemption on two unrelated parallel machines is NP-hard. On the other hand, it is shown
by Soper and Strusevich (2018) that on two uniform machines an optimal schedule with at
most one preemption can be found in polynomial time; we reproduce the corresponding
algorithm in Sect. 2.2.

Consider an instanceof a schedulingproblem tominimize themakespanCmax onm parallel
machines (identical, uniform or unrelated). For the corresponding problem, we measure the
quality of a schedule with a limited number of preemptions by an upper bound ρ

(q)
m on the

ratio Cmax(S∗
(q))/Cmax(S∗

p). The bound ρ
(q)
m determines what can be gained regarding the

maximum completion time if instead of at most q preemptions any number of preemptions is
allowed. More formally, in order to determine the exact value of ρ(q)

m for a particular problem
it has to be demonstrated that the inequality

Cmax

(
S∗
(q)

)

Cmax

(
S∗
p

) ≤ ρ
(q)
m (1)

holds for all instances of the problem at hand. To establish tightness of the bound ρ
(q)
m ,

instances of the problem have to be exhibited, for which (1) holds as equality.
Most of the known results in this area address the situation of q = 0, i.e., are aimed at com-

paring an optimal non-preemptive schedule with an optimal preemptive schedule, regarding
the makespan objective. The value ρ

(0)
m is often called the power of preemption. Some of the

results on determining ρ
(0)
m are reviewed below. Among the results on the power of preemp-

tion measured with respect to objective functions other than the makespan, here we mention
the recent studies on the single machine problem to minimize the weighted completion time
by Epstein and Levin (2016) and on the problem on uniform parallel machines to minimize
the total completion time by Epstein et al. (2017).

For the makespan objective, if the machines are identical parallel, then it is known that
ρ

(0)
m = 2 − 2/ (m + 1), as independently proved by Braun and Schmidt (2003) and Lee and

Strusevich (2005). It is shown in Rustogi and Strusevich (2013) that the value of ρ
(0)
m can be

reduced for some instances that contain jobs with fairly large processing times.
According to Woeginger (2000), for m uniform parallel machines ρ

(0)
m = 2 − 1/m. In

Soper and Strusevich (2014b), the necessary and sufficient conditions under which the global
bound of 2 − 1/m is tight are given. If the makespan of an optimal preemptive schedule S∗

p

123

Annals of Operations Research (2021) 298:469–495 471

is equal to the ratio of the total processing time of r < m longest jobs over the total speed of
r fastest machines, it is shown in Soper and Strusevich (2014b) that the tight bound on the
power of preemption ρ

(0)
m is 2 − 1/min{r ,m − r}.

For unrelated parallel machines, a tight bound ρ
(0)
m = 4 on the power of preemption is

established in Correa et al. (2012).
For uniform machines, several papers conduct a parametric analysis of the power of

preemption. For example, an analysis of ρ
(0)
2 with respect to the speed of the faster machine

is independently performed in Jiang et al. (2014) and Soper and Strusevich (2014a). For
m = 3, a similar analysis is contained in Soper and Strusevich (2014a), provided that the
machine speeds take at most two values, 1 and s ≥ 1; in other words, either there are two fast
machines with speed s and one slow machine with speed 1 or there are two slow machines
with speed 1 and one fast machine with speed s. Notice that the difference between the
problem in this paper and the one studied in Soper and Strusevich (2014a) is that in the
latter paper an optimal preemptive schedule is compared with an optimal schedule with no
preemption.

Several publications compare optimal schedules with a limited number of preemptions
to optimal preemptive schedules. For identical machines, Braun and Schmidt (2003) prove
that ρ

(q)
m = (2m) / (m + q + 1), where 0 ≤ q ≤ m − 1, and that this bound is tight.

For the problem on m uniform parallel machines, Soper and Strusevich (2018) show that
ρ

(1)
m = 2 − 2/m, where m ≥ 3.
Jiang et al. (2014) perform a parametric analysis of a single preemption for two uniform

machines with speeds s′ and s′′, where s′ ≥ s′′, from which it follows that

ρ
(1)
2 = 2

(
s′)2 + s′s′′ − (

s′′)2
2 (s′)2

. (2)

This function attains its maximum value of 9/8 when s′ = 2s′′.
In this paper, we focus on the problem on three uniform parallel machines. The bound

ρ
(1)
3 = 4

3 follows from Soper and Strusevich (2018) and holds as a global bound for all
instances, irrespective of relative speeds of the machines. The main purpose of this paper
is to perform a parametric analysis of the value ρ

(1)
3 . Although we establish bounds on ρ

(1)
3

with respect to arbitrary speeds on the machines, as a rule we are only able to demonstrate
the tightness of these bounds, provided that there are either two fast machines or two slow
machines.

The problem that we address may arise in producing schedules for multi-processor sys-
tems. We limit our analysis, at least as far as the tightness of the derived bounds is concerned,
to the situations in which the speeds of the processors have two values, 1 (slow) and s ≥ 1
(fast).Uniformmachineswith twodistinct values ofmachine speeds are often used in attempts
either to improve bounds of approximation algorithms or to demonstrate tightness of those
bounds; see Gonzalez et al. (1977) as an example. Besides, having s as a parameter, allows
performing a thorough parametric analysis, as is done for the problem of minimizing the
makespan on two uniform machines when no preemption is allowed (see Mireault et al.
(1997)) or a single preemption is allowed (see Jiang et al. (2014), Soper and Strusevich
(2014a)). For these problems, as well as for the problems on three uniform machines in
Soper and Strusevich (2014a) and in this paper, the results of the parametric analysis allow
the user to perform an appropriate speed scaling in order to achieve a certain guaranteed
performance.

The single-parameter analysis performed in Soper and Strusevich (2014a) and in this paper
for three uniform machines requires considerable technical efforts, which give an estimate

123

472 Annals of Operations Research (2021) 298:469–495

of a possible difficulty of extending a similar analysis to a larger number of machines. The
latter can be seen as a goal for further research.

An additional interest in considering the three-machine problemwith at most one preemp-
tion is due to (i)m = 3 is the smallest number of machines for which finding a schedule with
at most one preemption is NP-hard, and (ii) form = 3 allowing at most one preemption leads
to the smallest loss of quality of the makespan compared to the global preemptive schedule.

The remainder of this paper is organized as follows. Section 2 presents two main tools
that are used as subroutines in the subsequent parts of the paper. A tight bound on the quality
of a schedule with a single preemption is derived as a function of the relative speeds of the
machines in Sects. 3 and 4.

2 Main ingredients

We start this section by introducing a classification of the instances of the problem on m
uniform parallel machines, based on the shape of the optimal preemptive schedule S∗

p .
In our analysis of the quality of schedules with a single preemption on three uniform

parallel machineswe rely on two tools: (i) a polynomial-time algorithm for finding an optimal
schedule with a single preemption on two uniform parallel machines, and (ii) a parametrized
partition algorithm that splits a set of jobs into two subsets with required properties. These
two tools are discussed in the remainder of this section.

2.1 Class distinction

An instance I of the problemwith n jobs andm uniformparallelmachines is defined by the list
Ln = (p1, p2, . . . , pn) of the processing times of the jobs and the listMm = (s1, s2, . . . , sm)

of the machine speeds. In what follows, we assume that both lists are non-increasing. In
other words, the jobs are numbered in accordance with the LPT rule (6) and the machines
are numbered in non-increasing order of their speeds, i.e., s1 ≥ s2 ≥ · · · ≥ sm .

Feasible non-preemptive and preemptive schedules for an instance I = (Ln,Mm) are
denoted by Snp (Ln,Mm) or Snp (I), and by Sp (Ln,Mm) or Sp (I), respectively; the corre-
sponding optimal non-preemptive and preemptive schedules are denoted by S∗

np (Ln,Mm)

or S∗
np (I) and by S∗

p (Ln,Mm) or S∗
p (I) , respectively. The reference to an instance may be

omitted if it is clear which instance is being discussed.
For our analysis, we need precise expressions for the makespan of the preemptive sched-

ules. The fastest algorithm for finding an optimal preemptive schedule on uniform parallel
machines is due to Gonzalez and Sahni (1978) and requires O(n + m logm) time.

Given an instance I = (Ln,Mm), for each u, 1 ≤ u ≤ m, define the total speed of
the u fastest machines Su = ∑u

i=1 si . Besides, define the set of the u longest jobs Hu =
{1, 2, . . . , u}.

Define m′ = min {n,m − 1} and
Tu = p (Hu) /Su, 1 ≤ u ≤ m′; Tm = p (N) /Sm . (3)

It is well-known (see, e.g., Brucker (2007)) that for an optimal preemptive schedule S∗
p (I)

the makespan is equal to

Cmax(S
∗
p (I)) = max

{
max

{
Tu |1 ≤ u ≤ m′} , Tm

}
. (4)

123

Annals of Operations Research (2021) 298:469–495 473

Definition 1 An instance I = (Ln,Mm) is said to belong to Class r , 1 ≤ r ≤ m, if

Cmax

(
S∗
p (I)

)
= Tr = max {Tu |1 ≤ u ≤ m} .

In the case of three machines, we will distinguish between three classes

Cmax(S
∗
p (I)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1
s1

, for Class 1 instances

p1+p2
s1+s2

, for Class 2 instances

p(N)
s1+s2+s3

for Class 3 instances.

(5)

Given an instance of the problem on three uniform machines, we determine its class by
computing the values Tr , 1 ≤ r ≤ 3, and the value of r associated with the largest Tr defines
the class of the instance. In the case of ties, an instance may belong to more than one class;
however, for our purposes instances of Class 3 are harder to handle and we assume without
loss of generality that the ties are broken in favour of the smaller r .

Clearly Tm = p (N) /Sm is a lower bound on Cmax(S∗
p (I)) even when simultaneous

execution of jobs is allowed, since it is the average machine load, i.e., the time for processing
all jobs, provided all machines are continuously busy.

For an instance I , a schedule S(1) (I) with exactly one preemption is defined by

(i) a job Jk ∈ N which is processed with preemption on two machines Mk′ and Mk′′ such
that 1 ≤ k′ < k′′ ≤ m; the actual processing times of job Jk on these machines are equal
to xk/sk′ and yk/sk′′ , where xk + yk = pk;

(ii) a partition of set N\ {Jk} into m subsets N1, N2, . . . , Nm, where the jobs of set Ni are
assigned to be processed on machine Mi , 1 ≤ i ≤ m.

Notice that even in an optimal schedule some of the subsets Ni can be empty, since it may
be counterproductive to assign jobs to very slow machines. For a particular instance, it might
be optimal not to preempt any job, in which case a schedule S(1) (I) is defined by a partition
of set N into m subsets N1, N2, . . . , Nm . If there is a preempted job Jk in schedule S(1) (I)
then the jobs assigned to machines Mk′ and Mk′′ must be arranged in a such a way that the
two portions of job Jk do not overlap.

2.2 Single preemption on two uniform parallel machines

The algorithm that finds an optimal schedule with at most one preemption on two uniform
parallel machines is used throughout this paper as a subroutine. This is why belowwe present
it in a generic way, so that the two machines are denoted by M ′ and M ′′, while their speeds
are s′ and s′′, respectively, where s′ ≥ s′′. Assume that the jobs are numbered in accordance
with the LPT rule, i.e., in non-increasing order of their processing times

p1 ≥ p2 ≥ · · · ≥ pn . (6)

For a non-empty subset R ⊆ N , define

p (R) =
∑
j∈R

p j ,

and for completeness define p (∅) = 0.

123

474 Annals of Operations Research (2021) 298:469–495

For two uniform parallel machines, instances can only be of either Class 1 or Class 2, i.e.,

Cmax

(
S∗
p

)
= max

{
p1/s′, T2

}
,where

T2 = p (N)

s′ + s′′ . (7)

As follows from Gonzalez and Sahni (1978), if there is no restriction on the number of
preemptions, then an optimal preemptive schedule S∗

p can be found in O (n) time.
The algorithm below finds an optimal schedule with at most one allowed preemption. It

is developed by Soper and Strusevich (2018).

Algorithm Q2Pr1

Step 1. Compute T2 by (7). If
p1 < s′T2,

go to Step 2; otherwise, output a non-preemptive schedule S(1) with job J1 on
machine M ′ and the other jobs on machine M ′′ and stop.

Step 2. Scanning the jobs in the order of their numbering, find job Jk such that

k−1∑
j=1

p j < s′T2,
k∑
j=1

p j ≥ s′T2.

Step 3. Compute

xk = s′T2 −
k−1∑
j=1

p j , yk = pk − xk .

If
yk
s′′ >

1

s′
k−1∑
j=1

p j ,

go to Step 4; otherwise, output the following schedule S(1) (see Fig. 1a): on M ′
the jobs J1, . . . , Jk−1 are processed in any order, followed by a part of job Jk for
xk/s′ time units; on M ′′ process a part of job Jk for yk/s′′ time units, followed by
an arbitrary sequence of jobs Jk+1, . . . , Jn . Stop.

Step 4. For job Jk , compute the values x̃k and ỹk such that

ỹk
s′′ = 1

s′
k−1∑
j=1

p j , x̃k = pk − ỹk .

Output the following schedule S(1) (see Fig. 1b): on M ′ the jobs J1, . . . , Jk−1 are
processed in any order, followed by a part of job Jk for x̃k/s′ time units; on M ′′
process a part of job Jk for ỹk/s′′ time units, followed by an arbitrary sequence of
jobs Jk+1, . . . , Jn . Stop.

Soper and Strusevich (2018) show that Algorithm Q2Pr1 finds an optimal schedule and
it requires O (n) time, provided that the LPT numbering of the jobs is available. Obtaining
such a numbering can be seen as a preprocessing stage. Thus, the overall time complexity of
Algorithm Q2Pr1 is O (n log n).

On several occasions in this paper, we demonstrate that certain bounds are tight by exhibit-
ing instances of the problem for which inequalities similar to (1) hold as equalities. In the

123

Annals of Operations Research (2021) 298:469–495 475

M J1 J2 · · · Jk−1 Jk

xk/s

M Jk Jk+1, . . . , Jn

yk/s

(a)

M J1 J2 · · · Jk−1 Jk

x̃k/s

M Jk Jk+1, . . . , Jn

ỹk/s

(b)

Fig. 1 a Schedule S(1) in Step 3; b schedule S(1) in Step 4

analysis of such instances, we quite often need the value of the makespan for a schedule
found by Algorithm Q2Pr1 applied to two jobs of equal duration.

Notice that for schedule S(1) found in Step 4, we have that ỹk = s′′
s′

∑k−1
j=1 p j and x̃k =

pk − s′′
s′

∑k−1
j=1 p j , so that we deduce that

∑k−1
j=1 p j + x̃k =

(
s′−s′′
s′

) ∑k−1
i=1 p j + pk . This

implies that

Cmax
(
S(1)

) = 1

s′

((
s′ − s′′

s′

) k−1∑
i=1

p j + pk

)
. (8)

Lemma 1 Let S(1) be a schedule found by Algorithm Q2Pr1 applied to the instance that
contains two jobs J1 and J2 such that p1 = p2 = w. Then

Cmax
(
S(1)

) = 2s′ − s′′

(s′)2
w. (9)

Proof For the instance under consideration, AlgorithmQ2Pr1will output schedule S(1) found
in Step 4. Applying (8) with k = 2, we obtain

Cmax
(
S(1)

) = 1

s′

((
s′ − s′′

s′

)
w + w

)
,

and (9) follows. �	

2.3 Parametric partition algorithm

Below, we present and analyze Procedure Split, which is used as a subroutine in the algo-
rithms presented in Sect. 4. Although the procedure is used in this paper as an auxiliary
tool, it is of interest in its own right and is applicable if one needs a partition with some
prescribed properties. Such partitions are often required in approximation scheduling algo-
rithms. For example, a simplified version of Procedure Split has been used in Soper and
Strusevich (2014a) for the single-parameter analysis of the power of preemption on three
uniform machines.

123

476 Annals of Operations Research (2021) 298:469–495

Procedure Split
Input: An integer r ≥ 3, a set of jobs N = {J1, J2, . . . , Jn} with normalized processing
times, p (N) = 1, numbered in the LPT order (at least for the r − 1 longest jobs) and with
p j ≤ 2

r+1 for all j ∈ N

Output: A partition of set N into two subsets H ′ and H ′′ such that p(H ′) ≤ 2
r+1 and

p(H ′′) ≤ 1 − 1
r

Step 1. Scanning the jobs in the order of their numbering, determine the job Ju , u > 1,
such that

u∑
j=1

p j ≤ 2

r + 1
,

u∑
j=1

p j + pu+1 >
2

r + 1

and define
U := {J1, . . . , Ju} . (10)

If

p(U) ≥ 1

r
(11)

define
H ′ := U , H ′′ = N\U ;

and go to Step 4. Otherwise go to Step 2.
Step 2. Scanning the jobs in the order of their numbering, consider the sum

∑r−1
j=1 p j . If

r−1∑
j=1

p j ≥ 1 − 2

r + 1
(12)

then define U := {J1, . . . , Jr−1},
H ′′ := U , H ′ = N\U

and go to Step 4. If

pr−2 + pr−1 ≥ 1

r
(13)

then define V := {Jr−2, Jr−1} and
H ′ := V , H ′′ = N\V

and go to Step 4. Otherwise go to Step 3.
Step 3. Continue scanning the jobs until the first job Ju is reached such that

u∑
j=1

p j ≥ 1 − 2

r + 1

Define U := {J1, . . . , Ju}
H ′′ := U , H ′ = N\U .

Step 4. Stop.

The running time of Procedure Split is O(n).

Lemma 2 Procedure Split finds a required partition.

123

Annals of Operations Research (2021) 298:469–495 477

Proof In Step 1,

p (U) ≤ 2

r + 1
,

and under the condition (11) we have that

p(H ′) ≤ 2

r + 1
, p

(
H ′′) ≤ 1 − 1

r
,

as required.
We come to Step 2 if the inequality p (U) < 1

r holds for set U defined in Step 1 by (10).
In fact, p1 < 1

r , i.e., the duration of each job is less than 1
r . This implies that

r−1∑
j=1

p j ≤ r − 1

r
= 1 − 1

r
.

If (12) holds, then we may set H ′′ = {J1, . . . , Jr−1} and H ′ = N\H ′′ since

p
(
H ′) =

n∑
j=r

p j ≤ 2

r + 1
,

as required.
If (12) does not hold, then it follows from

r−1∑
j=1

p j ≤ r − 1

r + 1

that the sum of the two smallest processing times pr−2 + pr−1 does not exceed 2
r+1 . Thus,

if pr−2 + pr−1 ≥ 1
r , we have

p
(
H ′) = pr−2 + pr−1 ≤ 2

r + 1
, p

(
H ′′) = 1 − p

(
H ′) ≤ r − 1

r
,

as required.
We come to Step 3 with pr−2 + pr−1 < 1

r , which implies that pr−1 and the processing
time p j of each job j ≥ r is smaller then 1

2r . Thus, for job Ju , u ≥ r , found in Step 3, we
deduce

1 − 2

r + 1
≤

u∑
j=1

p j =
u−1∑
j=1

p j + pu ≤
(
1 − 2

r + 1

)
+ 1

2r
≤ 1 − 1

r
,

where the last inequality holds for all r ≥ 3.
Thus,

p
(
H ′′) ≤ 1 − 1

r
, p

(
H ′) = 1 − p

(
H ′′) ≤ 2

r + 1
,

as required. �	

In this paper, Procedure Split is used in Sect. 4 and is applied with r = 4.

123

478 Annals of Operations Research (2021) 298:469–495

3 Single parameter analysis for three uniformmachines: Classes 1
and 2

The remainder of this paper focuses on the case of three uniform machines, i.e., we consider
instances I = (Ln,M3). We perform a class-based analysis, for each form of the optimal
preemptive schedule, considering Classes 1 and 2 first and then the more intricate Class 3.
Our results give tight bounds for each class as a function of a single parameter equal to the
relative speeds of the machines.

In this section, we consider instances of the problem with three uniform machines that
belong either to Class 1 or 2; see Definition 1. The Class 3 instances are studied in Sect. 4.

We create heuristic schedules with at most one preemption, that will deliver an upper
bound on ρ

(1)
3 as a function of the speeds of the three machines. Although most of the

presented arguments hold for arbitrary speeds, similarly to Soper and Strusevich (2014a) we
derive our final conclusion for the models with two fast machines (s1 = s2 = s ≥ s3 = 1)
and for those with two slow machines (s1 = s ≥ s2 = s3 = 1). This will allow us to deliver
the bound on ρ

(1)
3 as a function of a single parameter s and to prove its tightness.

Consider instances of the form I = (Ln,M3) of the problemwith three uniformmachines
M1, M2 and M3 that belong to either Class 1 or Class 2. As above, it is assumed that the jobs
are numbered in accordance with (6), while for the machines s1 ≥ s2 ≥ s3 holds.

For an instance I = (Ln,M3) of Class r , r ∈ {1, 2}, let ρ
(1)
3 (Class r) denote the ratio

of the makespan that is optimal for schedules with at most one preemption to the optimal
makespan for preemptive schedules for instances of that class. We derive an upper bound on
ρ

(1)
3 (Class r) as a function �(s1, s2, s3) of the machine speeds.
The algorithm below takes as input an instance I = (Ln,M3) of either Class 1 or Class 2,

and finds a schedule SH
(1) (Ln,M3) with at most one preemption.

Algorithm Q3Pr1CL1&2

Step 1. If a given instance I = (Ln,M3) belongs to Class 1, go to Step 2; otherwise, go to
Step 3.

Step 2. Find schedule SH
(1) (Ln,M3) in which job J1 is assigned to be processed onmachine

M1, while the remaining jobs are scheduled by Algorithm Q2Pr1 on machines
M ′ = M2 and M ′′ = M3. Go to Step 4.

Step 3. Find schedule SH
(1) (Ln,M3) in which jobs J1 and J2 are scheduled by Algo-

rithm Q2Pr1 on machines M ′ = M1 and M ′′ = M2, while the remaining jobs
are processed non-preemptively in any order on machine M3. Go to Step 4.

Step 4. Stop.

AlgorithmQ3Pr1CL1&2 is analyzed below. Part of the analysis is based on the parametric
bound (2) developed in Jiang et al. (2014) for two uniform machines.

Theorem 1 For an instance I = (Ln,M3) of Class r , 1 ≤ r ≤ 2, Algorithm Q3Pr1CL1&2
takes O (n log n) time and finds a schedule SH

(1) (Ln,M3) such that

Cmax

(
S∗
(1) (Ln,M3)

)

Cmax

(
S∗
p (Ln,M3)

) ≤
Cmax

(
SH
(1) (Ln,M3)

)

Cmax

(
S∗
p (Ln,M3)

) ≤ � (s1, s2, s3) , (14)

123

Annals of Operations Research (2021) 298:469–495 479

where

�(s1, s2, s3) =

⎧⎪⎨
⎪⎩

2s22+s2s3−s23
2s22

, if r = 1

2s21+s1s2−s22
2s21

, if r = 2

⎫⎪⎬
⎪⎭

.

Proof First, note that the running time of Algorithm Q3Pr1CL1&2 is determined by the
running time of Algorithm Q2Pr1, and is therefore O (n log n).

For a given instance of Class r , r ∈ {1, 2}, define the lists Lr and Mr , that contain the r
longest jobs and the r fastest machines, respectively. Also define the listsL′

r andM′
r obtained

from the lists Ln and M3 by the removal of the r longest jobs and the r fastest machines,
respectively. In other words, L′

r = (pr+1, . . . , pn) and M′
r = (sr+1, . . . , s3).

By definition of a Class r instance, we have that

Cmax

(
S∗
p (Lr ,Mr)

)
≥ Cmax

(
S∗
p

(
L′
r ,M

′
r

))
.

For schedule SH
(1) (Ln,M3) found by Algorithm Q3Pr1CL1&2, we have that

Cmax

(
SH
(1) (Ln,M3)

)
= max

{
Cmax

(
SH
(1) (Lr ,Mr)

)
,Cmax

(
SH
(1)

(
L′
r ,M

′
r

))}
.

It follows that

Cmax

(
S∗
(1) (Ln,M3)

)

Cmax

(
S∗
p (Ln,M3)

) =
Cmax

(
S∗
(1) (Ln,M3)

)

Cmax

(
S∗
p (Lr ,Mr)

)

≤
max

{
Cmax

(
SH
(1) (Lr ,Mr)

)
,Cmax

(
SH
(1)

(
L′
r ,M

′
r

))}

Cmax

(
S∗
p (Lr ,Mr)

)

≤ max

⎧
⎨
⎩
Cmax

(
SH
(1) (Lr ,Mr)

)

Cmax

(
S∗
p (Lr ,Mr)

) ,
Cmax

(
SH
(1)

(
L′
r ,M

′
r

))

Cmax

(
S∗
p

(L′
r ,M′

r

))
⎫
⎬
⎭ .

(15)

For instances of Class 1, Step 2 of Algorithm Q3Pr1CL1&2 guarantees that

Cmax

(
SH
(1) (L1,M1)

)
= p1/s1,

i.e.,

Cmax

(
SH
(1) (L1,M1)

)

Cmax

(
S∗
p (Ln,M3)

) = 1.

Since the remaining jobs are scheduled on machines M2 and M3 optimally with at most

one preemption, we have that Cmax

(
SH
(1)

(
L′
1,M

′
1

))
= Cmax

(
S∗
(1)

(
L′
1,M

′
1

))
, so that

Cmax

(
SH
(1)

(
L′
1,M

′
1

))

Cmax

(
S∗
p

(L′
1,M

′
1

)) =
Cmax

(
S∗
(1)

(
L′
1,M

′
1

))

Cmax

(
S∗
p

(L′
1,M

′
1

)) ≤ 2s22 + s2s3 − s23
2s22

where the last inequality follows from (2) applied to the machines with speeds s′ = s2 and
s′′ = s3. Thus, (14) holds for r = 1, since

(
2s22 + s2s3 − s23

)
/2s22 ≥ 1.

123

480 Annals of Operations Research (2021) 298:469–495

Fig. 2 �(s1, s2, s3) as a function of speed ratio

Applying (15) to the instances of Class 2, notice that

Cmax

(
SH
(1)

(
L′
2,M

′
2

))

Cmax

(
S∗
p

(L′
2,M

′
2

)) = 1,

since themachine environmentM′
2 consists onlyofmachineM3, so thatCmax

(
S∗
p

(
L′
2,M

′
2

))

= Cmax

(
SH
(1)

(
L′
2,M

′
2

))
.

Step 3 of Algorithm Q3Pr1CL1&2 guarantees that

Cmax

(
SH
(1) (L2,M2)

)

Cmax

(
S∗
p (L2,M2)

) =
Cmax

(
S∗
(1) (L2,M2)

)

Cmax

(
S∗
p (L2,M2)

) ,

and due to (2) applied with s′ = s1 and s′′ = s2, we conclude that

Cmax

(
SH
(1) (L2,M2)

)

Cmax

(
S∗
p (L2,M2)

) ≤ 2s21 + s1s2 − s22
2s21

.

Thus, (14) holds for r = 2. �	
Figure 2 illustrates �(s1, s2, s3) as a function of the speed ratio: s2/s3 for r = 1 or s1/s2

for r = 2. The maximum of the function is 9
8 , attained for the ratio equal to 2. That value

provides a global numerical bound on ρ
(1)
3 for the instances of Classes 1 and 2.

Lemma 3 Bound (14) is tight for instances of Class 2.

Proof Take a Class 2 instance given by a set of three jobs with L3 =
(
p, p, p 2s3

s1+s2

)

and M3 = (s1, s2, s3). It follows that Cmax

(
S∗
p (L3,M3)

)
= Cmax

(
S∗
p (L2,M2)

)
=

123

Annals of Operations Research (2021) 298:469–495 481

2p/ (s1 + s2). Let SH
(1) (L3,M3) be the schedule found by Algorithm Q3Pr1CL1&2. The

algorithm schedules the identical jobs J1 and J2 on machines M1 and M2 and the remaining
job on machine M3. It follows that schedule SH

(1) (L2,M2) is in fact an optimal schedule
S∗
(1) (L2,M2) for processing the two longest jobs on the two fastest machines with at most

one preemption. We deduce from (9) applied with s′ = s1 , s′′ = s2 and w = p that

Cmax

(
S∗
(1) (L2,M2)

)
= 2s1 − s2

s21
p.

Furthermore,

Cmax

(
S∗
(1) (L3,M3)

)
= max

{
2s1 − s2

s21
p,

2p

s1 + s2

}
≥ 2s1 − s2

s21
p,

and therefore ρ
(1)
3 (Class 2) = (2s1−s2)(s1+s2)

2s21
= 2s21+s1s2−s22

2s21
= �(s1, s2, s3), as required. �	

Lemma 4 Bound (14) is tight for instances of Class 1 with two distinct values of speed.

Proof Consider a Class 1 instance given by a set of three jobs such that L3 =(
p, p s2+s3

2s1
, p s2+s3

2s1

)
and M3 = (s1, s2, s3). It follows that Cmax

(
S∗
p (L3,M3)

)
=

Cmax

(
S∗
p (L1,M1)

)
= p/s1. Algorithm Q3Pr1CL1&2 creates the heuristic schedule

SH
(1) (L3,M3) by scheduling job J1 on machine M1 and the two remaining identical jobs on

machines M2 and M3 in accordance with Algorithm Q2Pr1. It follows from (9) applied with
s′ = s2, s′′ = s3 and w = p s2+s3

2s1
that

Cmax

(
SH
(1)

(L′
1,M′

1

)) = (2s2 − s3)

s22

(s2 + s3)

2s1
p = 2s22 + s2s3 − s23

2s1s22
p >

p

s1
.

Thus, Cmax

(
SH
(1) (L3,M3)

)
= Cmax

(
SH
(1)

(L′
1,M′

1

))
, and therefore

Cmax

(
SH
(1) (L3,M3)

)

Cmax

(
S∗
p (L3,M3)

) = 2s22 + s2s3 − s23
2s22

.

Bound (14) is tight for the instance under consideration if schedule SH
(1) (L3,M3) is in fact

an optimal schedule with at most one preemption. However, unlike for the Class 2 instances
discussed in Lemma 3, this does not happen for all combinations of speeds. To demonstrate
this, assume that s1 = s, s2 = s

2 and s3 = 1. It follows that

Cmax

(
SH
(1) (L3,M3)

)
= p (s + 2)

s − 1

s3
.

However, for such an instance an optimal schedule with exactly one preemption can be
found by splitting job J3 between machines M1 and M3. In this schedule S∗

(1) (L3,M3), jobs
J1 and J2 are processed without preemption on machines M1 and M2, respectively. Job J3
is processed in the time interval [0, p/s] on machine M3 and then starting from time p/s on
machine M1, so that the makespan of this schedule becomes

Cmax

(
S∗
(1) (L3,M3)

)
= p

s
+ p

s

(s
2 + 1

2s
− 1

s

)
= p

5s − 2

4s2
.

123

482 Annals of Operations Research (2021) 298:469–495

It is easily seen that 5s−2
4s2

< (s + 2) s−1
s3

for 2 < s < 4.
Still, bound (14) is tight if there are two different values of speeds only, i.e., either s1 =

s > s2 = s3 = 1 (two slow machines) or s1 = s2 = s > s3 = 1 (two fast machines).
In the former case, the smallest makespan of p/s is achieved for a non-preemptive

schedule, and that cannot be improved by allowing any number of preemptions, so that
ρ

(1)
3 (Class 1) becomes equal to 1, which complies with (14).
In the latter case, schedule SH

(1) (L3,M3) is in fact an optimal schedule with a single

preemption, which implies that ρ
(1)
3 (Class 1) = 2s22+s2s3−s23

2s22
= �(s1, s2, s3), as required.

Note that for two slow machines s2 = s3, the bound ρ
(1)
3 (Class 1) becomes equal to 1.

Notice that the example above demonstrates that for the Class 2 instances the bound (14)
is tight for arbitrary machines speeds, in particular for instances with two fast and two slow
machines. �	

Since our main intention is to perform a single parameter analysis of the quality of sched-
ules with at most one single preemption on three uniform parallel machines, below we
formulate the results of this section in terms of the instances with two fast machines and with
two slow machines.

Corollary 1 For the instances of the problem with two fast machines (s1 = s2 = s > 1 = s3)
the following bounds

ρ
(1)
3 (Class 1) ≤ 2s2 + s − 1

2s2
;

ρ
(1)
3 (Class 2) = 1

hold and are tight. For the instances of the problem with two slow machines (s1 = s > 1 =
s2 = s3) the following bounds

ρ
(1)
3 (Class 1) = 1;

ρ
(1)
3 (Class 2) ≤ 2s2 + s − 1

2s2

hold and are tight.

The fact that the bound ρ
(1)
3 is equal to 1 for some classes of instances complies with the

fact that for those instances the optimal preemptive schedule requires at most one preemption.

4 Single parameter analysis for Class 3 instances on three uniform
machines

It remains to consider instances of Class 3, i.e., instances for whichCmax

(
S∗
p (I)

)
= T3. Our

analysis is presented in two subsections, starting with instances for which the ratio between
the fastest and the slowest speeds is limited to 2 and followed by instances with larger relative
speeds.

4.1 Limited relative machine speeds s2 ≤ s1 ≤ 2s3

Temporarily assume that the feasibility of schedules with a single preemption is ignored,
i.e., simultaneous processing of pieces of the same (preempted) job on different machines

123

Annals of Operations Research (2021) 298:469–495 483

is allowed. Let C be the makespan of an optimal schedule of this type. Comparing C with

the optimal makespan Cmax

(
S∗
p (I)

)
= T3, define an upper bound � (s1, s2, s3) such that

the inequality C ≤ � (s1, s2, s3) T3 holds across all instances of Class 3. Obtaining the
required heuristic schedule simplifies to an appropriate split of the jobs into two sets, and an
allocation of one of these sets to be processed on a single machine, and placing the other on
the remaining pair of machines, using the preemption to share the load appropriately between
the pair. The splitting of the jobs is performed by Procedure Split defined and analyzed in
Sect. 2.3.

During the analysis of the Class 3 instances we will assume that the jobs of any instance
have normalized processing times, p (N) = 1, so that T3 = 1

s1+s2+s3
. Define

�(s1, s2, s3) T3 = max

{
2

5s1
,

3

4 (s1 + s2)
,

1

s1 + 2s3
,

1

2s2 + s3

}
. (16)

Algorithm OneSplit below partitions the set of jobs into two subsets Nu and Nv,w such
that for some triple (u, v, w) of the machine indices 1, 2 and 3 the inequalities

p (Nu) ≤ �T3su; (17)

p
(
Nv,w

) ≤ �T3 (sv + sw) . (18)

hold, provided that s2 ≤ 2s3. In what follows, without loss of generality we assume that
v < w, i.e., (u, v, w) is one of the triples (1, 2, 3) , (2, 1, 3) or (3, 1, 2).

Algorithm OneSplit
Input: An instance I = (Ln,M3) of Class 3, with normalized processing times, p (N) = 1,
numbered in the LPT order and a set of speeds satisfying s3 ≤ s2 ≤ s1 ≤ 2s3
Output: Subsets Nu and Nv,w that satisfy (17) and (18) for some triple (u, v, w)

Step 1. Compute T3 and �T3. If p1 > 2/5 then output N1 = {J1} and N2,3 = N\ {J1} and
stop. Otherwise, run Procedure Split with r = 4, to produce two sets of jobs H ′
and H ′′ satisfying p(H ′) ≤ 2

5 and p(H ′′) ≤ 3
4 .

Step 2. Identify a triple (u, v, w) ∈ {(1, 2, 3) , (2, 1, 3) , (3, 1, 2)} such that p(H ′) ∈ [
1 −

�T3 (sv + sw) ,�T3su
]
and output Nu = H ′, Nv,w = H ′′.

Lemma 5 Algorithm OneSplit splits the jobs of set N into two subsets Nu and Nv,w such that
(17) and (18) hold for some triple (u, v, w).

Proof For a partition N1 and N2,3 found in Step 1, we deduce that

p1 ≤ T3s1 ≤ �T3s1,

since � ≥ 1 and our instance is of Class 3, so that p1
s1

≤ T3. It follows from p (N1) = p1 >

2/5 that p
(
N2,3

)
< 3

5 . Using the fourth term in the right-hand side of (16), we derive

�T3 (s2 + s3) ≥ s2 + s3
2s2 + s3

.

The right-hand side of the above inequality decreases in s2, so that s2 ≤ 2s3 implies
�T3 (s2 + s3) ≥ 3

5 , as required by (18). Thus, the lemma holds for (u, v, w) = (1, 2, 3).
We carry out Step 2 if p1 ≤ 2/5, so that the conditions for running Procedure Split are

satisfied and the two sets of jobs H ′ and H ′′ will be found with p(H ′) ≤ 2
5 and p(H ′′) ≤ 3

4 .
This additionally bounds p(H ′) from below, since p(H ′) = 1 − p(H ′′) ≥ 1

4 .

123

484 Annals of Operations Research (2021) 298:469–495

If for some triple (u, v, w) we have that p
(
H ′) ∈ [1 − �T3 (su + sv) ,�T3sw] then the

lemma holds for such a triple. Thus, we need to prove that such a triple always exists.
Consider the three intervals [1 − �T3 (s1 + s2) ,�T3s3], [1 − �T3 (s1 + s3) ,�T3s2],

[1 − �T3 (s2 + s3) ,�T3s1]. It is straightforward to check that the right endpoint of each
interval is no less than its left endpoint, since � ≥ 1, so that the intervals are well
defined. We can consider the intervals in the natural order: [1 − �T3 (s1 + s2) ,�T3s3],
[1 − �T3 (s1 + s3) ,�T3s2], [1 − �T3 (s2 + s3) ,�T3s1], since in this sequence the right
endpoints of the intervals are nondecreasing, as are their left endpoints.

We show that the value p
(
H ′) such that 1

4 ≤ p(H ′) ≤ 2
5 belongs to at least one of these

intervals.
Using each of the components of � in the order of their appearance in the right-hand side

of (16), we deduce that

• the right endpoint of [1 − �T3 (s2 + s3) ,�T3s1] is no less than 2/5 since �T3s1 ≥ 2
5 ;

• the left endpoint of [1 − �T3 (s1 + s2) ,�T3s3] is at most 1/4 since �T3 (s1 + s2) ≥ 3
4 ;• the intervals [1 − �T3 (s1 + s2) ,�T3s3] and [1 − �T3 (s1 + s3) ,�T3s2] overlap since

�T3s3 ≥ 1 − �T3 (s1 + s3) due to �T3 (s1 + 2s3) ≥ 1;
• the intervals [1 − �T3 (s1 + s3) ,�T3s2] and [1 − �T3 (s2 + s3) ,�T3s1] overlap since

�T3s2 ≥ 1 − �T3 (s2 + s3) due to �T3 (2s2 + s3) ≥ 1.

Suppose that p
(
H ′) belongs to neither the interval [1 − �T3 (s1 + s2) ,�T3s3] nor to

[1 − �T3 (s2 + s3) ,�T3s1]; otherwise, the lemma holds either for (u, v, w) = (3, 1, 2) or
for (u, v, w) = (1, 2, 3), respectively. This is only possible if the two intervals do not intersect
and

�T3s3 < p
(
H ′) < 1 − �T3 (s2 + s3) .

However, since each of these two intervals intersects with [1 − �T3 (s1 + s3) ,�T3s2], we
obtain that

1 − �T3 (s1 + s3) ≤ �T3s3 < 1 − �T3 (s2 + s3) ≤ �T3s2,

so that p
(
H ′) ∈ [1 − �T3 (s1 + s3) ,�T3s2], and the lemma holds for (u, v, w) =

(2, 1, 3). �	
Algorithm OneSplit is used as a splitting procedure in the following algorithm for finding

a schedule with a single preemption.

Algorithm Q3Pr1CL3Lim
Input: An instance I = (Ln,M3) of Class 3, with its jobs having normalized processing
times, p (N) = 1, numbered in the LPT order
Output: A schedule SH

(1) with at most one preemption

Step 1. If p1 ≥ p2 > �T3s2 then define (u, v, w) = (3, 1, 2), Nv,w = {J1, J2}, Nu =
N\ {J1, J2} and go to Step 4; otherwise go to Step 2.

Step 2. If p2 > �T3s3 then define (u, v, w) = (2, 1, 3), Nu = {J2}, Nv,w = N\ {J2} and
go to Step 4; otherwise go to Step 3.

Step 3. Run Algorithm OneSplit that outputs sets Nu and Nv,w for a triple of indices
(u, v, w).

Step 4. Run Algorithm Q2Pr1 to find a schedule Sv,w for processing the jobs of set Nv,w

on machines M ′ = Mv and M ′′ = Mw, provided that at most one preemption is
allowed. Create the following schedule SH

(1): schedule the jobs of set Nu nonpreemp-
tively on machine Mu and process the remaining jobs in accordance with schedule
Sv,w . Stop.

123

Annals of Operations Research (2021) 298:469–495 485

In the analysis below, the following notation is used. For schedule SH
(1) found by Algo-

rithm Q3Pr1CL3Lim that is associated with a triple (u, v, w) of indices, letCu = p (Nu) /su
denote themakespan of processing the jobs of set Nu non-preemptively onmachineMu , while
Cv,w denotes the makespan of processing the jobs of set Nv ,w with a single preemption on

machines Mv and Mw. Thus, Cmax

(
SH
(1)

)
= max

{
Cu,Cv,w

}
.

Lemma 6 For schedule SH
(1) associated with the sets N1,2 and N3 found in Step 1 of Algo-

rithm Q3Pr1CL3Lim the following bound

Cmax

(
S∗
(1)

)

Cmax

(
S∗
p

) ≤
Cmax

(
SH
(1)

)

T3
≤ max

{
�,

2s21 + s1s2 − s22
2s21

}

holds, where � is defined by (16).

Proof Since in Step 1, we have that p1 ≥ p2 ≥ �T3s2, it follows from (16) that

p (N\ {J1, J2}) = 1 − p1 − p2 ≤ 1 − 2�T3s2 ≤ 1 − 2s2
2s2 + s3

= s3
2s2 + s3

,

which implies that p(N\{J1,J2})
s3

≤ 1
2s2+s3

≤ �T3. Therefore, C3 ≤ �T3 as required. Accord-
ing to (8), the processing of jobs J1 and J2 will complete at time

C1,2 = 1

s1
max

{
p1,

s1 − s2
s1

p1 + p2

}
.

If C1,2 = p1
s1

= T1 then C1,2 ≤ T3 ≤ �T3, since we deal with instances of Class 3 (and
not of Class 1) and � ≥ 1. Further, since we are considering instances of Class 3 (and not
of Class 2), it follows from T2 = p1+p2

s1+s2
≤ T3 = 1

s1+s2+s3
that p1 ≤ s1+s2

s1+s2+s3
− p2, which

implies that p2 ≤ s1+s2
2(s1+s2+s3)

due to p2 ≤ p1. We deduce

C1,2 ≤ 1

s1

(
s1 − s2

s1

(
s1 + s2

s1 + s2 + s3
− p2

)
+ p2

)

= 1

s1

(
s1 − s2

s1

(
s1 + s2

s1 + s2 + s3

)
+ s2

s1
p2

)

≤ 1

s1

(
s1 − s2

s1

(
s1 + s2

s1 + s2 + s3

)
+ s2

s1

s1 + s2
2 (s1 + s2 + s3)

)
= (2s1 − s2) (s1 + s2)

2s21 (s1 + s2 + s3)
.

(19)

This proves the lemma. �	
Lemma 7 For schedule SH

(1) associated with the sets Nu and Nv,w found either in Step 2 or
in Step 3 of Algorithm Q3Pr1CL3Lim the following bound

Cmax

(
S∗
(1)

)

Cmax

(
S∗
p

) ≤
Cmax

(
SH
(1)

)

T3

≤
⎧⎨
⎩
max

{
�,

(2s1−s3)(s1+s2+s3)
3s21

}
if SH

(1) is found in Step 2,

� otherwise,

holds, where � is defined by (16).

123

486 Annals of Operations Research (2021) 298:469–495

Proof We only need to analyze the instances for which p2 ≤ �T3s2. Since for any triple
(u, v, w) we have that v ≤ 2, it follows that p2 ≤ �T3sv .

In our proof, we need to distinguish between the following three options: the sets Nu and
Nv,w are found

Option 1: in Step 2 of Algorithm Pr1CL3Lim, so that �T3s3 < p2 ≤ �T3s2 and
(u, v, w) = (2, 1, 3), Nu = {J2}, Nv,w = N\ {J2};

Option 2: by running Step 1 of Algorithm OneSplit, so that p1 > 2
5 , p2 ≤ �T3s3 and

(u, v, w) = (1, 2, 3), Nu = {J1}, Nv,w = N\ {J1};
Option 3: by running Step 2 of Algorithm OneSplit, so that p1 ≤ 2

5 , p2 ≤ �T3s3 and
p (Nu) ∈ [1 − �T3 (sv + sw) ,�T3su].

First, we prove that Cu ≤ �T3. For Option 1, the inequality Cu = p2/s2 ≤ �T3 follows
immediately. For Options 2 and 3, set Nu is found by Algorithm OneSplit, so that (17) holds
due to Lemma 5.

From now on, we focus on establishing an upper bound on Cv,w. Let p = max{
p j |J j ∈ Nv,w

}
denote thedurationof the longest job in set Nv,w , andσ = (σ (1) , σ (2) , . . .)

be the sequence of indices for jobs of set Nv,w taken in the LPT order, so that pσ(1) = p.
Adapting (8), the makespan Cv,w can be written as

Cv,w = max

{
p

(
Nv,w

)

sv + sw
,
p

sv
,
1

sv

((
sv − sw

sv

) k−1∑
i=1

pσ(i) + pσ(k)

)}
, (20)

where in the last term the preempted job Jσ(k), such that σ (k) ≥ 2, is identified by Algo-
rithm Q2Pr1.

We start with the case that Cv,w is determined by the average load on machines Mv and
Mw . Again, for Options 2 and 3, set Nv,w is found by Algorithm OneSplit, so that (18) holds
due to Lemma 5 and Cv,w ≤ �T3. For Option 1, it follows from �T3s3 < p2 ≤ �T3s2 that
p (Nu) = p2 ∈ [1 − �T3 (s1 + s3) ,�T3s2], since the intervals [1 − �T3 (s1 + s2) ,�T3s3]
and [1 − �T3 (s1 + s3) ,�T3s2] overlap; see the proof of Lemma 5. Thus, for Option 1, we
deduce that p (Nu) ∈ [1 − �T3 (sv + sw) ,�T3su], so that

Cv,w = p(Nv,w)

sv + sw
= 1 − p(Nu)

sv + sw
≤ 1 − (1 − �T3 (sv + sw))

sv + sw
= �T3,

and the lemma holds.
Now we look at the case that Cv,w = p

sv
, so that schedule Sv,w is non-preemptive and

its makespan is determined by the duration of processing the longest job in set Nv,w on the
fastest machine Mv . For Option 1, p = max

{
p j |J j ∈ N1,3

} = p1 and ifCv,w = C1,3 = p1
s1
,

we obtain p1
s1

= T1 ≤ T3 ≤ �T3. For Option 2, clearly p = p2. For Option 3, set Nv,w is
found by Procedure Split run with r = 4. It follows from Step 1 of that procedure that either
job J1 belongs to set Nu and therefore p ≤ p2, or p ≤ p1 ≤ 1

4 .
It follows from (16) that

�T3 ≥ 1

s1 + 2s3
≥ 1

4s3
,

since s2 ≤ s1 ≤ 2s3. This guarantees that �T3s3 ≥ 1
4 for all speeds of the range under

consideration. If p ≤ p2 then the inequality p2 ≤ �T3sv ensuresCv,w ≤ �T3. Alternatively,
p ≤ 1

4 and we have that
p

sv
≤ 1

4sv
≤ 1

4s3
≤ �T3. (21)

123

Annals of Operations Research (2021) 298:469–495 487

We are now left to consider the case that Cv,w is given by the third term in the right-hand
side of (20). It can be derived that Cmax

(
Sv,w

)
does not exceed the actual processing time

of the preempted job Jσ(k) on the slower machine, i.e., Cv,w ≤ pσ(k)
sw

. Since (8) implies that
job Jσ(k) is at most the second longest in set Nv,w, it follows that pσ(k) ≤ p2. In the case of
Options 2 and 3, the condition p2 ≤ �T3s3 implies that

Cv,w ≤ pσ(k)

sw
≤ p2

sw
≤ p2

s3
≤ �T3,

so that we only need to consider Option 1. If pσ(k) ≤ 1
4 then we apply (21) to deduce

Cv,w ≤ pσ(k)

sw
≤ 1

4s3
≤ �T3.

In the remainder of this proof, we assume pσ(k) > 1
4 , i.e., job Jσ(k), as the second longest

job of set N1,3 is job J3.

Cv,w = 1

s1

((
s1 − s3

s1

)
p1 + p3

)
.

It is clear that p1 ≤ (1 − p2 − p3) ≤ (1 − 2p3), and p3 ≤ 1
3 . We deduce

Cv,w = 1

s1

((
s1 − s3

s1

)
p1 + p3

)
≤ 1

s1

((
s1 − s3

s1

)
(1 − 2p3) + p3

)

= 1

s1

((
s1 − s3

s1

)
+

(
2s3 − s1

s1

)
p3

)
.

Since p3 ≤ 1
3 and s1 ≤ 2s3 for the range of speeds under consideration, we finally derive

Cv,w ≤ 1

3s21
(2s1 − s3) ,

as required. �	
Lemmas 6 and 7 together provide a global upper bound on ρ

(1)
3 (Class 3). We now use

this to provide tight bounds for the cases of two slow and two fast machines.
Wefirst notice that the component of�givenby s1+s2+s3

s1+2s3
is dominatedby (2s1−s3)(s1+s2+s3)

3s21

found in Lemma 7 since (2s1−s3)
3s21

≥ 1
s1+2s3

if (s1 − 2s3) (s3 − s1) ≥ 0. The latter condition

holds for s3 ≤ s1 ≤ 2s3, the speed range of interest. Hence we define �̃ to be � with the
component s1+s2+s3

s1+2s3
removed.

Corollary 2 For schedule SH
(1) on two slow machines (2 ≥ s1 = s ≥ 1 = s2 = s3) found by

Algorithm Q3Pr1CL3Lim the bound

Cmax

(
SH
(1)

)

Cmax

(
S∗
p

) ≤ ρ
(1)
3 (Class 3) ≤

⎧
⎪⎨
⎪⎩

2(s+2)
5s , if 1 ≤ s ≤ 8

7
3(s+2)
4(s+1) , if 8

7 ≤ s ≤ 5
4

1
3 (s + 2) , if 5

4 ≤ s ≤ 2

⎫
⎪⎬
⎪⎭

, (22)

holds and this bound is tight.

Proof For the case of two slow machines, T3 = 1
s+2 and we derive from (16) that

�̃ = 1

T3
max

{
2

5s1
,

3

4 (s1 + s2)
,

1

2s2 + s3

}
= max

{
2(s + 2)

5s
,
3(s + 2)

4 (s + 1)
,
s + 2

3

}
.

123

488 Annals of Operations Research (2021) 298:469–495

Fig. 3 Graph of Graph of ρ
(1)
3 (Class 3) for two slow machines as a function of s

If the makespan of schedule SH
(1) is dominated by preemptive processing, then the expres-

sions given in Lemma 6 and in Lemma 7, respectively, simplify as

(2s1 − s2) (s1 + s2)

2s21
= (2s − 1) (s + 1)

2s2
;

(2s1 − s3) (s1 + s2 + s3)

3s21
= (2s − 1) (s + 2)

3s2
.

Since s+1
2 > s+2

3 for s ≥ 1, it follows that in the two expressions above the first one

dominates the second. On other other hand, we can compare (2s−1)(s+1)
2s2

with the second

and the third components of �̃. We see that (2s−1)(s+1)
2s2

≤ 3(s+2)
4(s+1) ≤ �̃ for s ≤ 3

√
2, while

(2s−1)(s+1)
2s2

≤ s+2
3 ≤ �̃ for (s − 1)

(
2s2 − 3

) ≥ 0, which holds if s ≥
√

3
2 . Since for

each s ∈ [1, 2] either s ≤ 3
√
2 = 1. 259 9 . . . or s ≥

√
3
2 = 1. 2247 . . ., we deduce that

(2s−1)(s+1)
2s2

≤ �̃, so that ρ
(1)
3 (Class 3) ≤ �̃. The break-points are easily seen to be as in

(22).
Figure 3 shows the graph of ρ

(1)
3 (Class 3), as a function of s ∈ [1, 2].

Tight instances are represented by five jobs of equal length for 1 ≤ s ≤ 8
7 , four jobs of

equal length for 8
7 ≤ s ≤ 5

4 and three jobs of equal length for 5
4 ≤ s ≤ 2; see rows 1–3

of Table 1. In this table, the column labelled S∗
(1) shows the assignment of the jobs to the

machines; if a job appears in two of the columns labelled M1, M2 or M3, then the job is
processed on the corresponding machines with a single preemption.

For the instance in row 1 of Table 1, we have that �̃ = 2(s+2)
5s . The schedule shown in

Fig. 4a assigns two jobs to the fast machine M1 and processes the remaining three jobs on
two slow machines with a single preemption of job J4. Notice that 2

5s > 3
10 for s < 4

3 . This
schedule is in fact an optimal schedule for the instance. Indeed, with a single preemption, we
need to schedule four full jobs and two parts of the fifth job on three machines. In any case,

123

Annals of Operations Research (2021) 298:469–495 489

Table 1 Tightness examples—limited relative machine speeds

Cmax(S∗
p) s p1 p2 p3 p4 p5 S∗

(1) Cmax(S∗
(1))

= T3 M1 M2 M3

1 1
s+2 1 ≤ s ≤ 8

7
1
5

1
5

1
5

1
5

1
5 J1, J2 J3, J4 J4, J5

2
5s

2 8
7 ≤ s ≤ 5

4
1
4

1
4

1
4

1
4 − J1, J2 J2, J3 J4

3
4(s+1)

3 5
4 ≤ s ≤ 2 1

3
1
3

1
3 − − J1 J2 J3

1
3

4 1
2s+1 1 ≤ s ≤ 5

4
1
5

1
5

1
5

1
5

1
5 J1, J2 J3, J4 J5

2
5s

5 5
4 ≤ s ≤ 2 1

3
1
3

1
3 J1, J3 J2 J3

2s−1
3s2

M1 J1 J2

M2 J3 J4

M3 J4 J5

0 1
10

1
5

3
10

2
5s

(a)

M1 J1 J2

M2 J2 J3

M3 J4

0 1
4

3
4(s+1)

(b)

Fig. 4 Schedule S∗
(1) for the instances in Table 1: a row 1, b row 2

there will be a machine that processes at least two full jobs, so that the makespan cannot be
smaller than 2

5s .

For the instance in row 2, we have that �̃ = 3(s+2)
4(s+1) . The schedule shown in Fig. 4b

processes three jobs on machines M1 and M2, while machine M3 processes a single job. The

preempted job J2 is processed on M2 in the time interval
[
0, 2−s

4(s+1)

]
, where 2−s

4(s+1) < 1
4s for

all s. Job J2 is also processed on machine M1 in the time interval
[

1
4s ,

3
4(s+1)

]
. There is no

overlap in the processing of this job. Machine M2 performs 2−s
s+1 of the job, while machine

M1 performs 2s−1
s+1 = 1 − 2−s

s+1 of the job, i.e., job J2 is processed in full. Since 3
4(s+1) ≥ 1

4

for s ≤ 2, the makespan of this schedule is equal to 3
4(s+1) , which is the average machine

load for processing three jobs on two non-identical machines, i.e., this schedule is the best
schedule, provided that the fast machine is involved in the processing of the preempted job.
In the alternative class of schedules, exactly one job is processed on machine M1, while
the remaining three jobs are processed with a single preemption on machines M2 and M3,
similarly to the schedule shown in Fig. 4a. However, the makespan of the latter schedule is
equal to 3

8 ≥ 3
4(s+1) . Thus, the schedule in Fig. 4b is optimal.

For the instance in row 3, we have that �̃ = s+2
3 . Consider a schedule in which each

machine receives exactly one job, which is processed with no preemption. The makespan of
the resulting schedule is 1

3 . If no job is processed in full on a slow machine, then the average
load of the fast and a single slow machine is equal to 1

s+1 , which is no less than
1
3 for s ≤ 2.

This completes the proof. �	

123

490 Annals of Operations Research (2021) 298:469–495

Fig. 5 Graph of ρ
(1)
3 (Class 3) for two fast machines as a function of s

Corollary 3 For schedule SH
(1) on two fast machines (2 ≥ s1 = s2 = s ≥ 1 = s3) found by

Algorithm Q3Pr1CL3Lim the bound

Cmax

(
SH
(1)

)

Cmax

(
S∗
p

) ≤ ρ
(1)
3 (Class 3) ≤

{
2(2s+1)

5s , if 1 ≤ s ≤ 5
4

4s2−1
3s2

, if 5
4 ≤ s ≤ 2

}
, (23)

holds and this bound is tight.

Proof For the case of two fast machines, T3 = 2s + 1 and we derive from (16) that

�̃ = 1

T3
max

{
2

5s1
,

3

4 (s1 + s2)
,

1

2s2 + s3

}

= max

{
2(2s + 1)

5s
,
3(2s + 1)

8s
, 1

}
= 2(2s + 1)

5s
,

where the last equality holds since 2
5s dominates the other components for s ≤ 2.

If the makespan of schedule SH
(1) is dominated by preemptive processing, then the expres-

sions given in Lemma 6 and in Lemma 7, respectively, simplify as

(2s1 − s2) (s1 + s2)

2s21
= (2s − s) 2s

2s2
= 1;

(2s1 − s3) (s1 + s2 + s3)

3s21
= (2s − 1) (2s + 1)

3s2
≥ 1.

Thus,

ρ
(1)
3 (Class 3) ≤ max

{
2 (2s + 1)

5s
,
(2s − 1) (2s + 1)

3s2

}
,

and the break-point is easily seen to be as in (23).

123

Annals of Operations Research (2021) 298:469–495 491

M1 J1 J2

M2 J3 J4

M3 J5

0 1
5

2
5s

(a)

M1 J1 J3

M2 J2

M3 J3

0 1
3s

2s−1
3s2

(b)

Fig. 6 Schedule S∗
(1) for the instances in Table 1: a row 4, b row 5

Figure 5 shows the graph of ρ
(1)
3 (Class 3), as a function of s ∈ [1, 2] .

Tight instances consist of five jobs of equal length for 1 ≤ s ≤ 5
4 , and of three jobs of

equal length for 5
4 ≤ s ≤ 2; see rows 4–5 of Table 1.

For the instance in row 4 of Table 1, we have that �̃ = 2(2s+1)
5s . The schedule shown

in Fig. 6a assigns two jobs to each of the fast machines M1 and M2, while the fifth job is
processed on M3. The makespan of this schedule is 2

5s ≥ 1
5 for s ≤ 2. This schedule is in fact

an optimal schedule for the instance. Indeed, with a single preemption, we need to schedule
four full jobs and two parts of the fifth job on three machines. In any case, there will be a
machine that processes at least two full jobs, so that the makespan cannot be smaller than
2
5s .

For the instance in row 5, the schedule shown in Fig. 6b assigns one job to be processed
non-preemptively on each fast machine M1 and M2, while job J3 is processed with a single
preemption: on the slow machine M3 in the time interval

[
0, 1

3s

]
and on machine M1 in the

interval
[

1
3s ,

2s−1
3s2

]
. There is no overlap in the processing of this job. Machine M3 performs

1
s of the job, while machine M1 performs s−1

s = 1− 1
s of the job, i.e., job J3 is processed in

full. If machine M3 processes at least one full job, then it completes no earlier than time 1
3 ,

which is no less than 2s−1
3s2

for all s ≥ 1. If M3 processes no jobs at all, then the three jobs are
to be processed on two identical fast machines M1 and M2, which implies the makespan of
at least 1

2s , the latter value being no less than 2s−1
3s2

for s ≤ 2. Thus, the schedule in Fig. 6b
is an optimal schedule S∗

(1). �	

4.2 Unlimited relative machine speeds (s1 ≥ 2s3)

In this section, we assume that s1 ≥ 2s3. The analysis of the value of ρ
(1)
3 (Class 3) is focused

on the instances of the three-machine problem with either two fast or two slow machines.
For these situations, we derive tight upper bounds on the value ρ

(1)
3 (Class 3).

The algorithm below schedules all jobs with at most one preemption on the first two
machines, the slowest machine M3 is not used at all.

Algorithm Q3Pr1CL3UnLim
Input: An instance I = (Ln,M3) of Class 3, with its jobs having normalized processing
times, p (N) = 1, numbered in their LPT order; among the three machines there are either
two fast (s1 = s2 = s ≥ 2, s3 = 1) or two slow (s1 = s ≥ 2, s2 = s3 = 1)
Output: A schedule SH

(1) with at most one preemption

123

492 Annals of Operations Research (2021) 298:469–495

Step 1. Create schedule SH
(1) in which all jobs are scheduled in accordance with Algo-

rithm Q2Pr1 on machines M ′ = M1 and M ′′ = M2. Stop.

Lemma 8 For schedule SH
(1) found in Step 1 of Algorithm Q3Pr1CL3UnLim, the inequality

ρ
(1)
3 (Class 3) ≤ (3s − 2) (s + 2)

3s2

holds for two slow machines, while the inequality

ρ
(1)
3 (Class 3) ≤ 2s + 1

2s

holds for two fast machines. Both bounds are tight.

Proof Algorithm Q2Pr1 will produce a schedule with the makespan equal to the maximum
of one of three expressions similarly to (20), i.e.,

Cmax

(
SH
(1)

)
= max

{
1

s1 + s2
,
p1
s1

,
1

s1

((
s1 − s2

s1

) k−1∑
i=1

pi + pk

)}
. (24)

The second expression p1
s1

cannot dominate, since p1
s1

= T1 ≤ T3 = 1
s1+s2+s3

< 1
s1+s2

for
Class 3 instances.

In the case of two fast machines, in order to create schedule SH
(1), two identical machines

of speed s are used and Cmax

(
SH
(1)

)
= 1

s1+s2
= 1

2s for any Class 3 instance. Hence,

ρ
(1)
3 (Class 3) = Cmax

(
SH
(1)

)

T3
= 2s+1

2s as claimed. This function is decreasing and attains

its maximum of 5
4 at s = 2; see Fig. 7.

For two slow machines, the makespan Cmax

(
SH
(1)

)
is given by either the average machine

load on the twomachines 1
s1+s2

= 1
s+1 , or is defined by the total actual processing time of the

preempted job Jk . In the latter case, the third expression of (24) for the two slow machines
simplifies to

Cmax

(
SH
(1)

)
=

(s−1
s

) ∑k−1
i=1 p j + pk
s

. (25)

If k = 2, then in schedule SH
(1) the jobs J1 and J2 are scheduled exactly as in the schedule

analyzed in Lemma 6. Thus, (19) holds, which for the two slow machines simplifies to

Cmax

(
SH
(1)

)
≤ (2s1 − s2) (s1 + s2)

2s21 (s1 + s2 + s3)
= (2s − 1) (s + 1)

2s2 (s + 2)
.

If for the preempted job Jk we have that k ≥ 3, then substituting
∑k−1

i=1 p j ≤ 1 − pk and
pk ≤ 1/k into (25) gives

Cmax

(
SH
(1)

)
≤

s−1
s + pk

s

s
≤

s−1
s + 1

ks

s
.

The right-hand side expression above achieves its maximum for k = 3, which implies

Cmax

(
SH
(1)

)
≤ 3s − 2

3s2
.

Hence

Cmax

(
SH
(1)

)
≤ max

{
1

s + 1
,
(2s − 1) (s + 1)

2s2 (s + 2)
,
3s − 2

3s2

}
.

123

Annals of Operations Research (2021) 298:469–495 493

Fig. 7 Graphs of ρ
(1)
3 (Class 3) as a function of s

It is easily checked that (2s−1)(s+1)
2s2(s+2)

≤ 3s−2
3s2

for s ≥ 1 and 1
s+1 ≤ 3s−2

3s2
for s ≥ 2, so that

3s−2
3s2

dominates, and

ρ
(1)
3 (Class 3) ≤

Cmax

(
SH
(1)

)

T3
≤ (3s − 2) (s + 2)

3s2
,

as claimed. The maximum value of ρ
(1)
3 (Class 3) for the two slow machines is 4/3, which

is attained at s = 2; see Fig. 7. Notice that this maximum value is equal to the global bound
2 − 2/m, since m = 3.

For both situations, the tightness of the bounds is provided by the instance with three
identical jobs, p1 = p2 = p3 = 1

3 . In the schedules discussed below the slow machine M3

is assigned no jobs.
In the case of two fast machines, the schedule shown in Fig. 8a processes the jobs on two

identical machines of speed s with a single preemption, which gives the makespan of 1
2s . This

schedule is in fact an optimal schedule for the instance. Indeed, if machine M3 processes a
full job, then that job would complete at time 1

3 > 1
2s for s ≥ 2. If there is a job which is

processed with preemption on M3 and on one of the fast machines, then we get a schedule
shown in Fig. 6b, with the makespan 2s−1

3s2
≥ 1

2s for s ≥ 2.
In the case of two slowmachines, consider the schedule shown in Fig. 8b, in which two full

jobs are processed on machine M1, and job J3 is processed with a single preemption, on the

slow machine M2 in the time interval
[
0, 2

3s

]
and on machine M1 in the interval

[
2
3s ,

3s−2
3s2

]
.

There is no overlap in the processing of this job. Machine M2 performs 2
s of the job, while

machine M1 performs s−2
s = 1 − 2

s of the job, i.e., job J3 is processed in full. If a slow
machine processes at least one full job, then it completes no earlier than time 1

3 , which is no
less than 3s−2

3s2
for s ≥ 2 . Thus, the schedule in Fig. 8b is an optimal schedule S∗

(1). �	

123

494 Annals of Operations Research (2021) 298:469–495

M1 J1 J2

M2 J2 J3

M3

0 1
6s

1
2s

(a)

M1 J1 J1 J3

M2 J3

M3

0 2
3s

3s−2
3s2

(b)

Fig. 8 Schedule S∗
(1) in the case of a two fast machines; b two slow machines

5 Conclusion

In this paper, for the problem on three uniform machines to minimize the makespan we have
performed a parametric analysis of the quality of a schedule with at most one preemption
compared to the optimal preemptive schedule. We have derived tight bounds in terms of a
single parameter, the relative speed of the machines, for the cases of two fast and two slow
machines, respectively.

We hope that Procedure Split, simple as it, may appear useful as part of various scheduling
algorithms that require partitioning of jobs into two subsets with prescribed properties.

For the general problem on m ≥ 3 uniform machines, it is an interesting research goal
to deduce a quality measure of schedules on uniform machines, provided any fixed number
of preemptions 2 ≤ q ≤ 2 (m − 1) is allowed. Possible extensions may also include an
objective function other than the makespan and/or a more general machine environment,
e.g., unrelated parallel machines.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

Braun, O., & Schmidt, G. (2003). Parallel processor scheduling with limited number of preemptions. SIAM
Journal on Computing, 32, 671–680.

Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.
Chen, B. (2004). Parallel machine scheduling for early completion. In J. Y.-T. Leung (Ed.), Handbook of

scheduling: Algorithms, models and performance analysis (pp. 9-175–9-184). London: Chapman &
Hall/CRC.

Correa, J. R., Skutella, M., & Verschae, J. (2012). The power of preemption on unrelated machines and
applications to scheduling orders. Mathematical Operations Research, 37, 379–398.

Epstein, L., & Levin, A. (2016). The benefit of preemption for single machine scheduling so as to minimise
total weighted completion time. Operations Research Letters, 44, 772–774.

Epstein, L., Levin, A., Soper, A. J., & Strusevich, V. A. (2017). Power of preemption for minimizing total
completion time on uniform parallel machines. SIAM Journal on Discrete Mathematics, 31, 101–123.

Gonzalez, T. F., Ibarra, O. H., & Sahni, S. (1977). Bounds for LPT schedules on uniform processors. SIAM
Journal on Computing, 6, 155–166.

Gonzalez, T. F., & Sahni, S. (1978). Preemptive scheduling of uniform processor systems. Journal of the ACM,
25, 92–101.

Jiang, Y.,Weng, Z., &Hu, J. (2014). Algorithmswith limited number of preemptions for scheduling on parallel
machines. Journal of Combinatorial Optimization, 27, 711–723.

123

http://creativecommons.org/licenses/by/4.0/

Annals of Operations Research (2021) 298:469–495 495

Lee, C.-Y., & Strusevich, V. A. (2005). Two-machine shop scheduling with an uncapacitated interstage trans-
porter. IIE Transactions, 37, 725–736.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6, 1–12.
Mireault, P., Orlin, J. B., & Vohra, R. V. (1997). A parametric worst case analysis of the LPT heuristic for two

uniform machines. Operations Research, 45, 116–125.
Rustogi, K., & Strusevich, V. A. (2013). Parallel machine scheduling: Impact of adding extra machines.

Operations Research, 61, 1243–1257.
Shachnai, H., Tamir, T., & Woeginger, G. J. (2005). Minimizing makespan and preemption costs on a system

of uniform machines. Algorithmica, 42, 309–334.
Shchepin, E., & Vakhania, N. (2008). On the geometry, preemptions and complexity of multiprocessor and

shop scheduling. Annals of Operations Research, 159, 183–213.
Soper, A. J., & Strusevich, V. A. (2014a). Single parameter analysis of power of preemption on two and three

uniform machines. Discrete Optimization, 12, 26–46.
Soper, A. J., & Strusevich, V. A. (2014b). Power of preemption on uniform parallel machines. In

17th international workshop on approximation algorithms for combinatorial optimization problems
(APPROX’14)/18th international workshop on randomization and computation (RANDOM’14). Leibniz
international proceedings in informatics (LIPIcs) (Vol. 28, pp. 392–402). https://doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2014.392.

Soper, A. J., & Strusevich, V. A. (2018). Power of a single preemption on uniform parallel machines. Discrete
Applied Mathematics https://doi.org/10.1016/j.dam.2018.03.007. (in Press).

Woeginger, G. J. (2000). A comment on scheduling on uniform machines under chain-like precedence con-
straints. Operations Research Letters, 26, 107–109.

123

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.392
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.392
https://doi.org/10.1016/j.dam.2018.03.007

	Parametric analysis of the quality of single preemption schedules on three uniform parallel machines
	Abstract
	1 Introduction
	2 Main ingredients
	2.1 Class distinction
	2.2 Single preemption on two uniform parallel machines
	2.3 Parametric partition algorithm

	3 Single parameter analysis for three uniform machines: Classes 1 and 2
	4 Single parameter analysis for Class 3 instances on three uniform machines
	4.1 Limited relative machine speeds s2leqs1leq2s3
	4.2 Unlimited relative machine speeds (s12s3)

	5 Conclusion
	References

