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Abstract In the variant of the well studied nurse rostering problem proposed in the Second
International Nurse Rostering Competition, multiple stages have to be solved sequentially
which are dependent on each other. We propose an integer programming model for this prob-
lem and show that a set of newly developed extensions in the form of additional constraints to
deal with the incomplete information can significantly improve the quality of the generated
solutions. We compare our solution approaches with the results obtained in the competition
and show that the extended model achieves results competitive with the competition finalists.
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1 Introduction

The automated generation of high quality staff schedules, in particular for hospitals, has been
an important problem for over 40 years. Multiple variants and solution approaches exist [to
be found e.g. in surveys by Ernst et al. (2004) and den Bergh et al. (2013)]. A survey focused
on rostering problems in hospitals specifically was published by Burke et al. (2004).

Ceschia et al. (2015) proposed a variant of the Nurse Rostering Problem for the Sec-
ond International Nurse Rostering Competition (INRC-II). In contrast to previous problem
variants, a multi-stage formulation is used, where solutions for individual weeks have to
be produced by the solver sequentially, without information about the requirements of later
weeks. Salassa and Vanden Berghe (2012) denoted such a setting as a stepping horizon
approach.

B Florian Mischek
fmischek@dbai.tuwien.ac.at

Nysret Musliu
musliu@dbai.tuwien.ac.at

1 Database and Artificial Intelligence Group, Vienna University of Technology, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2623-z&domain=pdf
http://orcid.org/0000-0003-1166-3881


124 Ann Oper Res (2019) 275:123–143

This multi-stage setting poses two unique challenges for solvers: The dependencies
between weeks make it necessary to take the solutions of previous weeks into account during
the evaluation of the quality of a schedule. Publications treating this issue are by Glass and
Knight (2010), Salassa and Vanden Berghe (2012) and Smet et al. (2016), who developed
and formalized various strategies to consistently include the results of previous stages in the
evaluation of the current schedule. Their findings have largely been included in the rules for
constraint evaluation of the INRC-II.

Further, and not explored in the previously mentioned papers, is the fact that due to the
incomplete information during all weeks but the last, the generated solution can no longer be
guaranteed to be optimal even if each week is solved to optimality. More so, a naive model
that is not adapted to this setting will produce imbalanced schedules that incur large penalties
in later weeks as options are restricted excessively by the solutions of the previous weeks. It
is therefore necessary to allow for the existence of future scheduling periods already during
the solution of the current stage. While e.g. Salassa and Vanden Berghe (2012) successfully
improve their results by regarding the solutions of past stages, they do not include any special
mechanisms to account for the upcoming future stages. To the best of our knowledge, the
same holds for the other works dealing with such multi-stage settings.

There have been 15 submissions to the INRC-II, with seven of these advancing to the
final round. The results for all participants are available on the competition website,1 while
information about some solution approaches (Dang et al. 2016; Kheiri et al. 2016; Jin et al.
2016; Römer and Mellouli 2016) has been published as extended abstracts in the proceed-
ings of PATAT2016. In particular, the winners of the competition used integer programming
(IP) with a network-flow-based formulation (Römer and Mellouli 2016). One other publi-
cation dealing with this problem is by Santos et al. (2015), who used a weighted constraint
satisfaction approach.

Several IP formulations have been previously used for nurse rostering problems, including
the problem proposed in the First International Nurse Rostering Competition (INRC2010)
(Haspeslagh et al. 2014). For this (single-stage) problem, Santos et al. (2016) provided an
IP formulation and proposed techniques to improve the performance of IP solvers based on
this formulation, by providing good dual and primal bounds. Valouxis et al. (2012) proposed
a two phase approach for the INRC2010 problem. Integer programming formulations were
proposed in both phases to assign nurses to working days and to shift types. A branch and
price algorithm has been proposed for solving INRC2010 instances in Burke and Curtois
(2014). In this competition, also several heuristic and hybrid algorithms have been applied
to the instances. We refer the reader to Haspeslagh et al. (2014) for a comparison of different
approaches. IP has also been used for other nurse rostering problems [e.g. Burke et al. (2010),
Brucker et al. (2011)].

In this article, we investigate solving a new nurse rostering problem (proposed in the
INRC-II) by Integer Programming. As in this problem a multi-stage formulation is used, the
application of previous IP approaches is not sufficient to obtain good solutions that take into
consideration future scheduling periods. Therefore, novel formulations are needed to cope
with this new problem. We first propose a basic IP formulation (Sect. 3) for the INRC-II
problem (as defined in Sect. 2). Our main contribution is the extension of this model with
new additional constraints to account for the multi-stage setting (see Sect. 4). To the best of
our knowledge this extension presents an original contribution to the literature.

We evaluate our formulations in Sect. 5, using the instances provided for the INRC-II
and show that the additional constraints significantly improve the quality of the generated

1 http://mobiz.vives.be/inrc2/?page_id=226.
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solutions. We also compare our model with the results of the finalists in the INRC-II. In this
comparison, the results of the extended (IP) model are competitive (slightly better than the
median).

This paper is an extension of work previously published in the proceedings of the 2016
conference on thePractice andTheory ofAutomatedTimetablingMischek andMusliu (2016),
which was further based on the first author’s master’s thesis [see Mischek (2016)].

2 Problem definition

In this section, we give a short overview of the problem used in the INRC-II. A detailed
description of the problem structure and all constraints can be found in the competition rules
(Ceschia et al. 2015).

Instances are of either 4 or 8 weeks duration. For each week, a schedule has to be found
by the solver, using only the information provided in a global scenario file, containing
information about the nurses and their contracts, week data about the requirements of the
current week and a history with data concerning the last assignments of the previous weeks
and some global counters. Information about the following weeks, in particular about the
covering requirements, is not available until the solution for the current week has been fixed
by the solver.

In the following, a work stretch denotes a period of consecutive working days for a nurse.
Rest stretch and shift stretch are analogously defined for periods of consecutive days off and
assignments to the same shift, respectively.

There are four hard constraints that have to be fulfilled by any solution to be regarded as
feasible:

H1. Single assignment per day: Each nurse can only work a single shift using a single
skill per day.

H2. Under-staffing: The minimum number of nurses required for each shift and skill must
be present.

H3. Shift type successions: Nurses must not have shifts on two consecutive days that form
a forbidden sequence.

H4. Missing required skill: Nurses can only cover assignments for which they have the
required skill.

Further, seven soft constraints are defined. Solutions should try to satisfy these constraints,
but violating them only results in a penalty to the quality of the solution (weights are listed
in the description of each constraint).

S1. Insufficient staffing for optimal coverage (30): The number of nurses assigned to each
shift and skill should not be smaller than the optimum staffing. The penalty is multiplied
by the number of missing nurses.

S2. Consecutive assignments (15/30): The length of each shift stretch (weight 15) and
work stretch (weight 30) should be within the bounds defined for the shift type resp. the
contract of the involved nurse. The penalty is multiplied by the number of missing or
surplus assignments.

S3. Consecutive days off (30): As before, the length of each rest stretch should be within
the bounds defined in each nurse’s contract. The penalty is multiplied by the number of
missing or surplus days off.

S4. Preferences (10): The requests of nurses for shifts (or days) off should be respected.

123



126 Ann Oper Res (2019) 275:123–143

S5. Complete week-end (30): Nurses with the complete-weekend constraint in their con-
tract should either work both days of the weekend or none.

S6. Total assignments (20): Over the whole planning horizon, each nurse’s assignments
should be within the bounds defined in their contract.

S7. Total working week-ends (30): Over the whole planning horizon, each nurse should
not work more than the maximum number of weekends defined in their contract.

The complete information necessary to evaluate constraints S6 and S7 is available only
after the solution for the last week has been fixed, although they should of course be respected
by solvers during all weeks. All sequence constraints (H3, S2, S3) also use the border data
from the solution for the previous week (this is provided in the history file).

3 Basic model

3.1 Parameters

The first set of parameters contains values that stay the same over the whole planning horizon.
These values are stored in the scenario file:

N set of nurses
S set of shifts
K set of skills
|W | number of weeks
a[+/−]
n maximum/minimum assignments for nurse n across planning horizon

w
[+/−]
n maximum/minimum consecutive working days for nurse n

f [+/−]
n maximum/minimum consecutive days off for nurse n

t+n maximum number of working weekends for nurse n across planning horizon
bn boolean, 1 iff either both days of a weekend should be worked by nurse n, or

none
κnk boolean, 1 iff nurse n has skill k
σ

[+/−]
s maximum/minimum consecutive assignments of shift s

ust boolean, 1 iff shift t may be assigned the day after an assignment of shift s

The next set of parameters is defined for each week.

w number of the current week
cdsk minimum cover requirements for day d , shift s and skill k
odsk optimum cover requirements for day d , shift s and skill k
rdns boolean, 1 iff nurse n requested not to work in shift s on day d (s = 0 is day-off

request)

Finally, these parameters specify values depending on the schedule of the previous week.
This history is given for the first week and calculated from the solution of the last week for
all subsequent weeks.

lidn id of last shift worked by nurse n in previous week (0 if day off)
lns consecutive shifts of type s worked by nurse n at the end of the previous week

(0 if s �= lidn )
lwn consecutiveworking days for nurse n at the end of the previousweek (0 if lidn = 0)

l fn consecutive days off for nurse n at the end of the previous week (0 if lidn �= 0)
atotn total number of assignments for nurse n so far
t totn total number of weekends worked by nurse n so far
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3.2 Decision variables

xdnsk ∈ {0, 1} ∀n ∈ N , s ∈ S, k ∈ K , d ∈ {1...7}
Wn ∈ {0, 1} ∀n ∈ N

xdnsk = 1 if nurse n is assigned to shift s using skill k on day d , and 0 otherwise.
The Wn variable indicates that nurse n works at least one day of the weekend.
The violation of soft constraints is measured using either non-negative or boolean surplus

variables:

CS1
skd ≥ 0 missing nurses for optimal coverage of shift s, skill k on day d

CS2a
nsd ≥ 0 missing days in the block of shifts s starting on day d for nurse n

CS2b
nsd ∈ {0, 1} 1 iff shift s of nurse n on day d violates maximum consecutive shifts

CS2c
nd ≥ 0 missing days in the work block of nurse n starting on day d

CS2d
nd ∈ {0, 1} 1 iff work of nurse n on day d violates maximum consecutive work days

CS3a
nd ≥ 0 missing days in the free block of nurse n starting on day d

CS3b
nd ∈ {0, 1} 1 iff day off of nurse n on day d violates maximum consecutive days off

CS4
nd ∈ {0, 1} 1 iff assignment on day d violates a request of nurse n

CS5
n ∈ {0, 1} 1 iff nurse n violates complete weekend constraint

CS6
n ≥ 0 number of total shifts outside the allowed bounds for nurse n

CS7
n ≥ 0 number of weekends worked above the maximum by nurse n

3.3 Objective function

The objective function is the weighted sum over all violations of each soft constraint:

minimize f = 30 ∗
∑

s∈S
k∈K

d∈{1...7}

CS1
skd

+ 15 ∗
∑

n∈N
s∈S

d∈{1...7}

(CS2a
nsd + CS2b

nsd )

+ 30 ∗
∑

n∈N
d∈{1...7}

(CS2c
nd + CS2d

nd )

+ 30 ∗
∑

n∈N
d∈{1...7}

(CS3a
nd + CS3b

nd )

+ 10 ∗
∑

n∈N
d∈{1...7}

CS4
nd

+ 30 ∗
∑

n∈N
CS5
n

+ 20 ∗
∑

n∈N
CS6
n

+ 30 ∗
∑

n∈N
CS7
n
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3.4 Constraints

The following (in)equalities model the hard constraints, as described above.

H1 ∀n ∈ N , d ∈ {1 . . . 7}
∑

s∈S
k∈K

xdnsk ≤ 1 (1)

H2 ∀s ∈ S, k ∈ K , d ∈ {1 . . . 7}
∑

n∈N
xdnsk ≥ cdsk

(2)

For constraint H3, any forbidden shift sequence (us1s2 = 0) must not be assigned to the same
nurse on consecutive days. This must be ensured both within the week (a) and at the boundary
of this week with the previous one (i.e. on the first day of the week, b).

H3a ∀n ∈ N , s1, s2 ∈ S, k ∈ K , d ∈ {1 . . . 6} : us1s2 = 0
∑

k∈K
xdns1k +

∑

k∈K
xd+1
ns2k

≤ 1 (3)

H3b ∀n ∈ N , s ∈ S, k ∈ K : ulidn s = 0

x1nsk = 0
(4)

H4 ∀n ∈ N , s ∈ S, d ∈ {1 . . . 7}, k ∈ K : κnk = 0

xdnsk = 0
(5)

The remaining inequalities deal with the soft constraints. Each inequality can be deactivated
by setting the appropriate surplus variable to a value greater than zero, which results in a
corresponding penalty in the objective function.

S1 ∀s ∈ S, k ∈ K , d ∈ {1 . . . 7}
∑

n∈N
xdnsk ≥ odsk − CS1

skd
(6)

S2 actually contains various different constraints that have to be modeled separately: con-
secutive assignments of the same shift (min (a)/ max (b)) and of work in general (min (c) /
max (d)), both during and at the start of the week.

For the minimum consecutive shifts constraints, all patterns that compose a sequence
shorter than the required length are prevented. For example, if the minimum number of
consecutive night shifts (N) is 4, the patterns {xNx, xNNx, xNNNx}, where x is any other
shift or a day off, should not appear.

Since each pattern incurs a penalty proportional to the number of missing assignments,
(in the example, xNx would incur a penalty of 45, while xNNNx would incur a penalty of
15) the surplus variables are weighted correspondingly, to ensure that a value of at least the
number of missing assignments is necessary to deactivate the constraint.
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Equations 8 and 9 model the case where a stretch starts at the beginning of the week or
towards the end of the previous week.

S2a ∀s ∈ S, n ∈ N , b ∈ {1 . . . (σ−
s − 1)}, d ∈ {1 . . . 7 − (b + 1)}

∑

k∈K

⎛

⎝xdnsk +
∑

i∈{1...b}
(1 − xd+i

nsk ) + xd+b+1
nsk

⎞

⎠ ≥ 1 − CS2a
ns(d+1)

σ−
s − b

(7)

∀s ∈ S, n ∈ N , b ∈ {1 . . . (σ−
s − 1 − lns)}

∑

k∈K

⎛

⎝
∑

i∈{1...b}
(1 − xinsk) + xb+1

nsk

⎞

⎠ ≥ 1 − CS2a
ns1

σ−
s − lns − b

(8)

∀s ∈ S, n ∈ N : lidn = s ∧ lns < σ−
s

∑

k∈K
x1nsk ≥ 1 − CS2a

ns1

σ−
s − lns

(9)

The maximum consecutive shifts constraints is modeled like this: For each shift s with a
maximum of σ+

s consecutive assignments, each block of σ+
s + 1 days must contain at least

one day where s is not assigned. Note that contrary to the situation for S2a, violations of this
constraint by more than one shift assignment result in multiple matches of the pattern and
therefore it suffices to use boolean surplus variables.

As before, equations 10 model the case where a shift block started in the previous week.

S2b ∀s ∈ S, n ∈ N , d ∈ {1 . . . (7 − σ+
s )}

∑

k∈K

∑

i∈{0...σ+
s }

xd+i
nsk ≤ σ+

s + CS2b
ns(d+σ+

s )
(10)

∀s ∈ S, n ∈ N , b ∈ {(σ+
s − lns + 1) . . . σ+

s } : lidn = s
∑

k∈K

∑

i∈{1...b}
xinsk ≤ b − 1 + CS2b

nsb
(11)

The inequalities modelling the maximum and minimum length of work stretches (S2c, S2d)
function analogously to those for shift stretches. The only difference is that an assignment
to any shift counts towards the length of the work stretch.

S2c ∀n ∈ N , b ∈ {1 . . . (w−
n − 1)}, d ∈ {1 . . . 7 − (b + 1)}

∑

s∈S
k∈K

⎛

⎝xdnsk +
∑

i∈{1...b}
(1 − xd+i

nsk ) + xd+b+1
nsk

⎞

⎠ ≥ 1 − CS2c
n(d+1)

w−
n − b

(12)

∀n ∈ N , b ∈ {1 . . . (w−
n − 1 − lwn )}

∑

s∈S
k∈K

⎛

⎝
∑

i∈{1...b}
(1 − xinsk) + xb+1

nsk

⎞

⎠ ≥ 1 − CS2c
n1

w−
n − lwn − b

(13)

∀n ∈ N : lidn �= 0 ∧ lwn < w−
n

∑

s∈S
k∈K

x1nsk ≥ 1 − CS2c
n1

w−
n − lwn

(14)
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S2d ∀n ∈ N , d ∈ {1 . . . (7 − w+
n )}

∑

s∈S
k∈K

∑

i∈{0...w+
n }

xd+i
nsk ≤ w+

n + CS2d
n(d+w+

n )
(15)

∀n ∈ N , b ∈ {(w+
n − lwn + 1) . . . w+

n } : lidn �= 0
∑

s∈S
k∈K

∑

i∈{1...b}
xinsk ≤ b − 1 + CS2d

nb
(16)

S3 similarily contains two independent constraints: the minimum (a) and maximum (b)
number of consecutive days off, again both during and at the start of the week.

The equations modelling these constraints are again analoguous to those from constraints
S2c and S2d, except that days of work and days off were swapped.

S3a ∀n ∈ N , b ∈ {1 . . . ( f −
n − 1)}, d ∈ {1 . . . 7 − (b + 1)}

∑

s∈S
k∈K

⎛

⎝(1 − xdnsk) +
∑

i∈{1...b}
xd+i
nsk + (1 − xd+b+1

nsk )

⎞

⎠ ≥ 1 − CS3a
n(d+1)

f −
n − b

(17)

∀n ∈ N , b ∈ {1 . . . ( f −
n − 1 − l fn )}

∑

s∈S
k∈K

⎛

⎝
∑

i∈{1...b}
xinsk − xb+1

nsk

⎞

⎠ ≥ 0 − CS3a
n1

f −
n − l fn − b

(18)

∀n ∈ N : lidn = 0 ∧ l fn < f −
n

∑

s∈S
k∈K

−x1nsk ≥ 0 − CS3a
n1

f −
n − l fn

(19)

S3b ∀n ∈ N , d ∈ {1 . . . (7 − f +
n )}

∑

s∈S
k∈K

∑

i∈{0... f +
n }

xd+i
nsk ≥ 1 − CS3b

n(d+ f +
n )

(20)

∀n ∈ N , b ∈ {( f +
n − l fn + 1) . . . f +

n } : lidn = 0
∑

s∈S
k∈K

∑

i∈{1...b}
xinsk ≥ 1 − CS3b

nb
(21)

To model nurse requests for shifts or days off, any assignment to an unwanted shift incurs
the penalty.

S4 ∀n ∈ N , s ∈ S, d ∈ {1 . . . 7} : rdns ∨ rdn0∑

k∈K
xdnsk ≤ CS4

nd
(22)

For the complete weekends constraint, first the additional helper variables Wn are set if the
nurse n works either of the days on the weekend. Equations 24 then ensure that if Wn is
set, and the complete weekend constraint is present for the nurse, both days of the weekend
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should have work assigned.

S5 ∀n ∈ N , d ∈ {6, 7}
∑

s∈S
k∈K

xdnsk ≤ Wn (23)

∀n ∈ N : bn
∑

s∈S
k∈K

(x6nsk + x7nsk) ≥ 2Wn − CS5
n (24)

The constraint S6 (number of total assignments) is modeled slightly differently from the
description given by Ceschia et al. (2015). Originally, these constraints were evaluated only
after the schedules of all weeks were fixed. In our model, the penalties are calculated imme-
diately and added to the objective function value of the week in which they arise. This does
not change the overall quality of the whole schedule, so results are still comparable, although
the intermediate quality value of the individual weeks might be different.

S6 ∀n ∈ N
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≤ max{a+
n − atotn , 0} + CS6

n (25)

∀n ∈ N
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≥ min{a−
n − 7 ∗ (|W | − w), 7} − CS6

n (26)

The equations for constraint S7 (maximum number of weekends worked) use the variable
Wn , set in equations 23.

S7 ∀n ∈ N

ttotn + Wn ≤ t+n + CS7
n

(27)

4 Model extensions

While the basic model described in Sect. 3 yields feasible solutions that are optimal for each
week (if given enough time), the connections between weeks are mostly ignored. Because
the weeks are solved individually, solutions are favored that give slightly better results in
earlier weeks, at the cost of having potentially much larger penalties in later weeks.

In order to take this into account and improve the overall solution quality, we propose the
following extensions to the model, in the form of additional (soft) constraints.

4.1 Overstaffing

Looking at the total number of shifts for each nurse, one can see that nearly all nurses exceed
their maximum number of assignments (compare Fig. 1), except for nurses with a full time
contract. Even these nurses mostly have all their available shifts assigned.
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0 5 10 15 20 25 30 35 40

Fig. 1 Total number of assignments for the first 15 nurses in the solution of the instance n035w8_2_9-7-2-2-
5-7-4-3. Red marks assignments exceeding the maximum, blue indicates remaining unassigned shifts below
the maximum. The light green part denotes the minimum number of assignments for each nurse. (Color figure
online)

This is despite the fact that the total number of assignments is much larger than the amount
needed to cover all shifts at the optimal level (1180 assigned versus 1029 needed for optimal
staffing levels in the example instance).

However, since there is no penalty on overstaffing, there is no pressure to avoid unnec-
essary assignments. Indeed, in some cases it can seem advantageous to assign shifts above
the optimal staffing levels in order to fulfil sequence constraints or the complete weekend
constraints (S7).

However, as soon as the available assignments are used up, high penalties are unavoidable
as other constraints (in particular cover constraints and sequence constraints) still have to be
fulfilled.

This can also be seen from Fig. 2: In earlier weeks, far more shifts are assigned to nurses
than necessary, while in later weeks, constraints S6 force solutions to be closer to the required
staffing levels.

To avoid this situation, we introduced a new constraint penalizing overstaffing:

S8*. Overstaffing: The number of nurses assigned to each shift and skill per day should not
exceed the optimal coverage levels.

This constraint can be added to the basic IP model with the following inequalities:

S8* ∀s ∈ S, k ∈ K , d ∈ {1 . . . 7}
∑

n∈N
xdnsk ≤ odsk + CS8∗

skd
(28)

where CS8∗
skd is a new surplus variable.
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Fig. 2 Distribution of the total number of assignments in the eight stages of the instance n035w8_2_9-7-2-
2-5-7-4-3

4.2 Average assignments

While the overstaffing constraints already reduce the number of excess assignments over
the maximum, they do not differentiate between nurses with different contracts. As a result,
nurses with part-time or half-time contracts have the same schedules as those with full-time
contracts in the earlier weeks. Consequently, they are not available in later weeks without
penalties, as their contracts are already maxed out.

Ideally, nurses should be employed according to their contracts during all weeks, with
full-time nurses having more assignments per week than other nurses. In part this is already
done implicitly, because nurses with shorter contracts usually also have shorter work stretch
lengths and longer rest stretch lengths.

To ensure that each nurse will be available until the last stage, their assignments should
be distributed evenly across all stages.

S6*. Average assignments: The total number of assignments up to the current week must
be within the bounds defined in the contract, multiplied by the fraction of weeks that
have already passed.

This extension generalizes constraints S6 to earlier weeks.
To give an example, if a nurse has a minimum of 10 assignments and a maximum of 22,

then after stage 4 (of 8), they should have between 5 and 11 shifts assigned. Assuming that
they already had 7 shifts assigned in stages 1–3, this constraint would require them to have
between 0 and 4 assignments in stage 4.

If these constraints are satisfied during all weeks, it can be guaranteed that also constraints
S6 are satisfied for the whole schedule.
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The following inequalities model these constraints:

S6* ∀n ∈ N

atotn +
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≤ 
a+
n ∗ w

|W | � + CS6∗
n (29)

∀n ∈ N

atotn +
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≥ �a−
n ∗ w

|W | 
 − CS6∗
n (30)

CS6∗
n are again new surplus variables.

Here, fractional limits are rounded such that the limits are always integer numbers and the
solutions satisfying S6* always also satisfy S6.We also experimentedwith different rounding
schemes, but this did not influence the quality of the generated solutions.

An alternative version of constraints S6* can be formulated as

S6*b. Average assignments: In each week, the remaining assignments (not yet used in
previous weeks) should be divided equally among all remaining weeks.

Continuing the example above, the nurse in question would have between 3 and 15 assign-
ments left to distribute over 5 weeks (stages 4–8). This means that according to constraint
S6*b, they should have between 3

5 (rounded up to 1) and 3 shifts assigned during stage 4.

S6*b ∀n ∈ N
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≤ 
(a+
n − atotn ) ∗ 1

|W | − w + 1
� + CS6∗

n (31)

∀n ∈ N
∑

s∈S
k∈K

d∈{1...7}

xdnsk ≥ �(a−
n − atotn ) ∗ 1

|W | − w + 1

 − CS6∗

n (32)

The difference between these two formulations becomes visible in case of an imbalance
in preceding stages (i.e. too many or too few assignments): S6* tries to restore the balance
(which might require unusual work or rest stretches), while S6*b ignores a global balance
and works exclusively with the assignments remaining for the current and future stages. A
further discussion of these two formulations can be found in Sect. 5.

4.3 Average working weekends

The same argument as above also applies to constraints S7, the maximum number of total
weekends. Just like assignments in general, also weekends should not be used up in the early
stages, but distributed across all weeks to preserve options.

Therefore, an analoguous constraint S7* can be defined:

S7*. Average working weekends: In each week, the still available working weekends (not
yet used in previous weeks) should be divided equally among all remaining weeks.
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with the corresponding inequalities

S7* ∀n ∈ N

Wn ≤ 
(t+n − t totn ) ∗ 1

|W | − w + 1
� + CS7∗

n

(33)

Note that since there is at most one working weekend per week and nurse, and the maxi-
mum number of working weekends is less than the number of weeks, the limit set for each
week will either be 0 or 1.

4.4 Next week restrictions

In addition to the global constraints, solutions for different stages influence each other also
at the boundary between weeks.

Since the staffing requirements for the next week are unknown in each stage, leaving
more options to schedule nurses without conflicts is beneficial. If there are only few good
assignments for the nurses with a certain skill, satisfying the cover constraints might become
difficult if they do not match one of those options.

A common way for schedules to restrict the options for the next stage is via the sequence
constraints. For example, let the minimum number of consecutive night shifts (σ−

N ) be 4 and
the proposed solution for this week end with a single night shift on Sunday for a nurse (and
any other shift or a day off on Saturday, compare Fig. 3). Then we already know that any
assignment for this nurse fromMonday to Wednesday that is not a night shift, will inevitably
incur a penalty (and depending on the rest of the schedule, assigning only night shifts on
these three days could result in penalties of its own).

As another example, if the maximum number of consecutive night shifts is 5 and the
proposed solution already contains a shift stretch of at least 5 night shifts in the days leading
up to Sunday, this means that assigning a further night shift on Monday of the next week
would incur a penalty for exceeding the maximum length.

The same reasoning applies to work and rest stretches.

S9*. Restriction of next week’s assignments: Options for next week’s schedule should
not be restricted. The penalty is calculated as the total number of shifts that cannot be
assigned in the next week without violating at least one sequence constraint.

The equations to model this constraint are split into restrictions from shift (a), work (b)
and rest (c) stretches, each regarding the minimum and maximum stretch length and with
their own set of surplus variables.

Equations 34 detect blocks of the same shift s at the end of the week with a length b below
the minimum shift sequence length (constraint S2a). If such a block is found, this means that
for the first σ−

s − b days of the next week, neither a day off, nor any of the other |S \ {s}|
shifts can be assigned without penalty. In the equation, the left hand side of the inequality
sums to b + 1 in such a case. To still satisfy the constraint, the surplus variable CS9∗a

n must

Sa Su Mo Tu We
. . . - N N? N? N? . . .

Fig. 3 Assignment that heavily restricts options for the following week. Assuming σ−
N = 4, a single night

shift on sunday will cause a penalty in the next week if any shifts other than additional night shifts have to be
assigned between monday and wednesday
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be assigned a value ≥ |S|(σ−
s − b), resulting in a corresponding penalty in the objective

function.
The case, where a long shift stretch of shift s blocks an assignment of s to the first day of

the following week, is covered by Eq. 36. Any block of shift s at the end of the week with
a length of at least σ+

s violates the corresponding inequality, unless compensated for by a
surplus variable.

The restrictions onwork (b) and rest (c) stretcheswork analogously, except that theweights
of the surplus variables differ according to the number of blocked assignments.

S9* a ∀n ∈ N , s ∈ S, b ∈ {1 . . . (σ−
s − 1)}

∑

k∈K

⎛

⎝(1 − x7−b
nsk ) +

∑

i∈{0...(b−1)}
x7−i
nsk

⎞

⎠ ≤ b + CS9∗a
n

|S|(σ−
s − b)

(34)

∀n ∈ N , s ∈ S
∑

k∈K

∑

i∈{0...(σ+
s −1)}

x7−i
nsk ≤ σ+

s − 1 + CS9∗a
n

(35)

S9* b ∀n ∈ N , b ∈ {1 . . . (w−
n − 1)}

∑

s∈S
k∈K

⎛

⎝(1 − x7−b
nsk ) +

∑

i∈{0...(b−1)}
x7−i
nsk

⎞

⎠ ≤ b + CS9∗b
n

w−
n − b

(36)

∀n ∈ N

∑

s∈S
k∈K

∑

i∈{0...(w+
n −1)}

x7−i
nsk ≤ w+

n − 1 + CS9∗b
n

|S|
(37)

S9* c ∀n ∈ N , b ∈ {1 . . . ( f −
n − 1)}

∑

s∈S
k∈K

⎛

⎝x7−b
nsk −

∑

i∈{0...(b−1)}
x7−i
nsk

⎞

⎠ ≤ 0 + CS9∗c
n

|S|(w−
n − b)

(38)

∀n ∈ N
∑

s∈S
k∈K

∑

i∈{0...( f +
n −1)}

x7−i
nsk ≥ 1 − CS9∗c

n (39)

4.5 Unresolvable patterns

In the solutions generated for various instances, we found that violations of sequence con-
straints most commonly appeared at the boundaries between weeks. In many cases, this is
the result of patterns similar to those shown in Fig. 4.

In general, not checking the feasibility of completing a multi-shift work stretch in the next
week can lead to situations where the last shift stretch can not be extended to the minimum
length without violating the maximum work stretch length.

This leads to the following additional constraint:
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Mo Tu We Th Fr Sa Su Mo

N1 - - D D N N N ? . . .

Fig. 4 Assuming that σ−
N = 4 andw+

N1
= 5, the maximumwork stretch length is already reached but at least

one more night shift at the beginning of the next week is required

Mo Tu We Th Fr Sa Su Mo

N1 - - D D N N N ? . . .

w+
N1

−σ−
N

(A)

1

(B)

b

(C)

w+
N1

+1

Fig. 5 The same pattern as for Fig. 4, split up into the parts matched by the constraints S10*. For this
assignment, b = 3

S10*. Unresolvable Patterns: For work stretches at the end of the week, there should be
a way to complete them in the next week without violating either the maximum work
stretch length or the minimum shift stretch length.

Assume a stretch of shift s is assigned to nurse n at the end of the week. Then an unre-
solvable pattern has the following structure: First, a block of at least w+

n − σ−
s shifts (that

can be any type except a day off) is scheduled (A), followed by a single shift that is not s (B).
Then, the remaining b days up to the end of the week are filled with assignments to shift s
(C), where b < σ−

s .
To avoid a violation of theminimum shift stretch length, at least σ−

s −bmore days of shift s
would be required at the start of the next week. However, together with parts (A) and (B), this
would bring the total work stretch length to at least (w+

n −σ−
s )+1+b+(σ−

s −b) = w+
n +1,

which exceeds the maximum work stretch length w+
n . The different parts are visualized in

Fig. 5
Equations 40 detect and penalize these patterns through the use of a further set of surplus

variables.

S10* ∀n ∈ N , s ∈ S, b ∈ {1 . . . σ−
s − 1}

∑

k∈K
(

(A)︷ ︸︸ ︷∑

j∈{1...w+
n −σ−

s }
t∈S

x7−b− j
ntk +

(B)︷ ︸︸ ︷∑

t∈S\s
x7−b
ntk +

(C)︷ ︸︸ ︷∑

i∈{0...b−1}
x7−i
nsk )

≤ w+
n − (σ−

s − b) + CS10∗
n

(40)

4.6 Objective function

To have an impact on the generated solutions, the surplus variables for the added constraints
have to be included in the objective function. The objective function f ′ for the extended
model is therefore

minimize f ′ = f + WS8∗ ∗
∑

s∈S

∑

k∈K

∑

d∈{1...7}
CS8∗
skd

+ WS6∗ ∗
∑

n∈N
CS6∗
n
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+ WS7∗ ∗
∑

n∈N
CS7∗
n

+ WS9∗ ∗
∑

n∈N
(CS9∗a

n + CS9∗b
n + CS9∗c

n )

+ WS10∗ ∗
∑

n∈N
CS10∗
n

where WS8∗, WS6∗, WS7∗, WS9∗ and WS10∗ are the weights of their corresponding con-
straints.

After a solution has been fixed, the actual penalty has to be recalculated using the objective
function of the basic model f , to ensure that the penalties from the additional constraints of
the extended model are not included in the final result.

Obviously, all constraints introduced in this section should be ignored in the last week, as
there is no further week to influence.

5 Experimental results

All algorithms were implemented in Java 7, and we used the IBM ILOG CPLEX solver,2

version 12.6.3, to solve the IP models. All experiments were performed on an Intel Xeon
2.33GHz PC, using a single thread. The time limit was set to the time alloted by the bench-
marking script3 provided for the INRC-II (on our machine, between 1 and 9 minutes per
stage, depending on the instance size).

We trained the parameters of our models using the parameter-tuning framework irace
(López-Ibáñez et al. 2011), over the set of late instances4 published for the INRC-II. The
models were then evaluated on the set of hidden instances.5

5.1 Model extensions

Wefirst evaluated the impact of adding each extension to the basic IPmodel individually. Due
to the similarity in structure and purpose, constraints S6* (Average Assignments) and S7*
(AverageWeekends) are grouped together. For this comparison, the weight of each additional
constraint was set to a value of 1 to ensure that the focus of the optimization still remains on
the original constraints. The only exception is constraint S10* (Unresolvable patterns), since
a violation of this constraint directly results in a violation of at least one shift stretch length
constraint in the next week and thus warrants a weight of 15 (as if the violation had already
occured).

Figure 6 shows that each extension improves the quality of the solutions, with the largest
impact achieved by S6*/S7* and S8*, those extensions dealingwith the two global constraints
S6 and S7.

Considering the two variants of S6*, there is next to no difference between the performance
of S6* and S6*b.

The solution quality can further be improved by combining multiple extensions. A com-
bination of S6* (and S7*), S8* and S10* produced the best results, each of the extensions

2 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/.
3 http://mobiz.vives.be/inrc2/?page_id=245.
4 http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/late-instances.txt.
5 http://mobiz.vives.be/inrc2/wp-content/uploads/2014/08/hidden-instances.txt.
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S8* S6*/S7* S6b*/S7* S9* S10*
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Fig. 6 Performance of the basic model extended by each set of constraints individually. The baseline (value
of 1) for each instance is the solution generated by the basic model without extensions

Table 1 Constraint weights for
model extensions used for the
final evaluations

Param Weight

WS6∗ 9.9

WS7∗ 9.9

WS8∗ 11.9

WS10∗ 15

further reducing the penalties of the generated solutions. This will be denoted as the extended
model.

Adding also constraints S9* increased the penalties again, even when S9* was assigned
a much lower weight than the other extensions. This is probably connected to the fact that
solving models including constraints S9* took nearly twice as long on average and thus
optimal solutions could not be found for many stages. However, this cannot be the only
reason, as results for models without S9* are also better even for instances where each stage
could be solved to optimality.

To find optimal weights for the extensions S6*/S7* and S8* (the weight for S10* corre-
sponds directly to the weight of the shifts stretch length constraints), we used IRACE. Both
WS6∗(= WS7∗) and WS8∗ were varied between 0 and 20, with a precision of one significant
digit after the decimal point. IRACE was run in parallel on 4 cores with a limit of 5000
iterations.

The best values reported by IRACE areWS6∗ = 9.9 andWS8∗ = 11.9. The two next best
configurations are very similar and further experiments showed that the results do not vary
significantly under small variations of the weights.

Considering solution times, CPLEX was able to solve most weeks to optimality, even
for the larger instances. Over the whole set of hidden instances, using the extended model,
an optimal solution could be found for 274 out of 360 weeks. The average gap between
the best solution found and the final lower bound for the remaining 86 weeks was only
1.90%, indicating that substantial improvements are not to be expected even with much
longer running times.
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Table 2 Results for the basic and the extended model over all instances of the hidden dataset

Instance Basic Extended INRC-II Rank

Median Best

n035w4_0_1-7-1-8 2720 1650 1756.5 1630 3

n035w4_0_4-2-1-6 2625 1950 2021.5 1800 3.1

n035w4_0_5-9-5-6 3020 1775 1928.5 1755 2.2

n035w4_0_9-8-7-7 2700 1680 1723.5 1540 4.3

n035w4_1_0-6-9-2 3035 1755 1737 1500 3.3

n035w4_2_8-6-7-1 2495 1645 1644.5 1490 4.5

n035w4_2_8-8-7-5 2375 1410 1407.5 1255 4.2

n035w4_2_9-2-2-6 2675 1950 1947.5 1705 2.7

n035w4_2_9-7-2-2 2645 2030 1970.5 1650 4.1

n035w4_2_9-9-2-1 2700 1840 1927.5 1620 3.3

n035w8_0_6-2-9-8-7-7-9-8 5640 3550 4171 3020 2.1

n035w8_1_0-8-1-6-1-7-2-0 5380 3360 4045.5 2770 3.3

n035w8_1_0-8-4-0-9-1-3-2 5315 3280 4019 2775 3.7

n035w8_1_1-4-4-9-3-5-3-2 5205 3120 3472.5 2805 4.6

n035w8_1_7-0-6-2-1-1-1-6 5795 3370 3548.5 2840 4.1

n035w8_2_2-1-7-1-8-7-4-2 5570 3390 4205 2910 2.5

n035w8_2_7-1-4-9-2-2-6-7 5725 3445 3699.5 2960 3

n035w8_2_8-8-7-5-0-0-6-9 5265 3250 3603 2815 3

n035w8_2_9-5-6-3-9-9-2-1 6040 3515 3659 3045 2.9

n035w8_2_9-7-2-2-5-7-4-3 5340 3155 3508 2715 3

n070w4_0_3-6-5-1 4580 2775 3151 2700 4.3

n070w4_0_4-9-6-7 4030 2545 2889 2430 2.7

n070w4_0_4-9-7-6 4195 2675 2948 2475 3.8

n070w4_0_8-6-0-8 4440 2850 3016 2435 4.1

n070w4_0_9-1-7-5 4010 2665 2864 2320 4.1

n070w4_1_1-3-8-8 4185 2980 3134.5 2700 3.7

n070w4_2_0-5-6-8 4100 2765 3012 2520 4.1

n070w4_2_3-5-8-2 4250 2800 3141.5 2615 3.5

n070w4_2_5-8-2-5 4460 2820 3005.5 2540 4.1

n070w4_2_9-5-6-5 4315 2820 3046 2615 2.5

n070w8_0_3-3-9-2-3-7-5-2 9690 6065 6222 5115 3.5

n070w8_0_9-3-0-7-2-1-1-0 10,160 6120 6602 5390 3.3

n070w8_1_5-6-8-5-7-8-5-6 9920 6120 6236.5 5475 3.2

n070w8_1_9-8-9-9-2-8-1-4 9715 5740 6018.5 5100 2.9

n070w8_2_4-9-2-0-2-7-0-6 9995 5660 6259 5410 2.9

n070w8_2_5-1-3-0-8-0-5-8 10,310 5810 6315 5280 3.9

n070w8_2_5-7-4-8-7-2-9-9 9885 6010 6317.5 5505 3.9

n070w8_2_6-3-0-1-8-1-5-9 10,785 5590 6255 5120 3.6

n070w8_2_8-6-0-1-6-4-7-8 10,905 5775 6890.5 5350 3

n070w8_2_9-3-5-2-2-9-2-0 10,225 5620 6044.5 5320 2.8

n110w4_0_1-4-2-8 6085 2970 3539 2710 4
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Table 2 continued

Instance Basic Extended INRC-II Rank

Median Best

n110w4_0_1-9-3-5 6110 3185 3663 2920 2.8

n110w4_1_0-1-6-4 6235 3280 4030 2850 3.9

n110w4_1_0-5-8-8 5930 3125 3569.5 2820 3.3

n110w4_1_2-9-2-0 6810 3810 4092 3345 4

n110w4_1_4-8-7-2 6785 3265 3661 2805 3.9

n110w4_2_0-2-7-0 6170 3610 4198.5 3005 3.5

n110w4_2_5-1-3-0 6650 3240 3637.5 2925 4

n110w4_2_8-9-9-2 6725 3990 4025 3415 4

n110w4_2_9-8-4-9 6265 3415 3769 3135 3.3

n110w8_0_2-1-1-7-2-6-4-7 11,595 5995 6596 5155 3.9

n110w8_0_3-2-4-9-4-1-3-7 12,130 5490 6172.5 4805 4

n110w8_0_5-5-2-2-5-3-4-7 12,015 5570 6227 4750 3.8

n110w8_0_7-8-7-5-9-7-8-1 11,640 5855 6251.5 4855 3.9

n110w8_0_8-8-0-2-3-4-6-3 11,495 5205 6146.5 4465 4

n110w8_0_8-8-2-2-3-2-0-8 12,255 5565 6469 4865 3.4

n110w8_1_0-6-1-0-3-2-9-1 12,010 5895 6514 5090 3.7

n110w8_1_4-1-3-6-8-8-1-3 11,355 5540 6115.5 4315 4

n110w8_2_2-9-5-5-1-8-4-0 12,015 5890 6222.5 4770 4

n110w8_2_8-5-7-3-9-8-8-5 11,465 5570 5809 4360 3.9

Added for comparison are the median and best results achieved by the INRC-II finalists for each instance.
The last column contains the average rank among the 7 finalists achieved by our extended IP model for each
instance (over 10 runs)

IP Median Best
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Fig. 7 Performance of the extended IP model compared to the solutions produced by the basic model (value
of 1). Also shown are the median and best results achieved by the INRC-II finalists
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5.2 Final results

For the final evaluation, the extended model was used, with weights for the extensions as
shown on Table 1. The exact results can be found on Table 2, see also Fig. 7 for comparison.

Due to the extensions, the penalty incurred by the generated solutions is reduced by about
40% on average, in some cases even to less than half the penalty of the basic model. Further,
there is no instance, where the extended model produced results that were not at least 20%
better than those of the basic model.

Compared to those of the finalists in the INRC-II, the results of the extended model are
competitive (slightly better than the median), although no new best known solutions could
be found. The average rank over all instances is 3.45, placing our results firmly into the top
half of the finalists.

6 Conclusions

In this paper, we have proposed and evaluated several original extensions of standard IP for-
mulations for nurse rostering problems in order to deal with multi-stage settings, as described
for the INRC-II.

We have shown that our extensions significantly improve upon the results of the basic
model and achieve competitive results compared to the finalists in the competition.

The fact that our model could be solved to (near) optimality in most cases, even under
the strict time limits imposed by the challenge, indicates that major improvements cannot be
expected from varying solution techniques alone. Instead, future research should be focused
on further modifications of the model to distribute the penalties more equally between weeks
and avoid blocking options for later weeks. Techniques that try to predict the requirements of
yet unknown weeks or distinguish between nurses of different skill sets and contracts could
result in even better models.
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