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Abstract Traditionally, when optimizing base-stock levels in spare parts inventory systems,
it is common to base the decisions either on a linear shortage cost or on a certain target
fill rate. However, in many practical settings the shortage cost is a non-linear function of
the customer waiting time. In particular, there may exist contracts between the spare parts
provider and the customer, where the provider is obliged to pay a fixed penalty fee if the
spare part is not delivered within a certain timewindow.We consider a two-echelon inventory
systemwith one central warehouse andmultiple local sites. Focusing on spare parts products,
we assume continuous review base stock policies. We first consider a fixed backorder cost
whenever a customer’s time in backorder exceeds a prescribed time limit, second a general
non-linear backorder cost as a function of the customer waiting time, and third a timewindow
service constraint. We show from a sustainability perspective how our model may be used for
evaluating the expected CO2 emissions associated with not satisfying the customer demands
on time. Finally, we generalize some known inventory models by deriving exact closed form
expressions of inventory level distributions.

Keywords Inventory · Multi-echelon · Non-linear backorder cost · Time window service
constraint · Sustainability

1 Introduction and literature review

In many industries spare parts and aftersales in general are big business (Cohen et al. 2006).
For example, the US automotive aftermarket was estimated to be worth $188.6 billion in
2007 (US Automotive Parts Industry Annual Assessment 2009). Another example is the
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aviation industry, which stocks spare parts for several billion US-dollars (Harrington 2007).
However, although it may be very costly to invest in expensive spare parts, it is crucial to
have spare parts available when needed. Obviously, delays and downtimes of bottleneck
production equipment may be very costly. A particularly striking example is in the oil rig
industry, where the production downtime on an oil rig may incur a cost of $200,000 per day
(Turban 1988). For a general overview of models for spare parts inventory control see, e.g.,
Basten and van Houtum (2014).

We consider a two-echelon inventory systemwith N locations and one central warehouse.
All locations and the warehouse apply (S− 1, S) policies (i.e., continuous review base stock
control), which is reasonable for low demand items such as spare parts. This paper extends
the literature on spare parts inventory control in several new directions. Three different
backorder/service level structures are investigated in this paper. In more precise terms, we
consider: (1) a model with piecewise constant backorder costs, (2) a model with general
non-linear backorder costs, and finally (3) a model with time window service constraints.
The motivation for considering these three cases stems from collaboration and discussions
with industry, and the state of the current research frontier. In connection with case (1), one
main focus is also to develop an approach that can be used in order to explicitly evaluate the
expected CO2 emissions associated with not satisfying the customer demands on time. We
provide an exact analysis for all cases considered.

Considering case (1), all unsatisfied demands are backordered and the customers at each
location i are satisfied if their demands are met directly or after an acceptable waiting time
ωi . That is, if a customer receives the requested unit within this acceptable waiting time,
no penalty cost is incurred. If a customer, on the other hand, has to wait longer than this
given time limit, a considerable fixed backorder/penalty cost has to be paid. This backorder
cost is independent of the additional waiting time exceeding ωi . This particular scenario
is quite common in many practical settings. One example is Tetra Pak Technical Services
which provides customers in the dairy industry with spare parts for packaging machines.
In such a case, having to wait for a critical spare part means that the production process is
halted. While a short downtime may be acceptable, it is more crucial if the customer at the
production site has to wait for the spare part longer than a certain critical time limit. Then,
if the critical time limit is violated, the whole batch of the dairy product must be discarded
due to the perishable nature of the product. In situations like this one, it is quite common
that there exists a service agreement (or contract) in which it is stipulated that the service
provider should pay a fixed penalty if the spare part is not delivered within a certain time
window. In this case, the fixed penalty cost is directly associated with the cost of discarding
the batch of the dairy product (and to some extent also the set up cost for a new batch). Other
similar examples can be found in the agriculture sector, where a whole (or parts of) harvest
may be lost if the harvest-machines are down due to missing critical spare parts. Similarly
as in the case with dairy products, a lost harvest incur a large, well defined, fixed cost.

Another main contribution of this paper is to take a first step in quantifying how decision
rules for the logistics system affect the expected CO2 emissions from a production waste
perspective. As noted in Marklund and Berling (2017), there are few models that include
emissions associated with not satisfying customer demand in a timely fashion. Marklund
and Berling (2017) argue that this is particularly accentuated in the distribution of spare
parts, and they explicitly state: “The parts are often quite small suggesting quite limited
emissions associated with transportation, inventory holding and warehousing. However, not
delivering them promptly may have serious consequences on costs and emissions”. In fact,
most literature concerning how to control supply chain systems in order to reduce (or at least
quantify) CO2 emissions have primarily focused on transportation issues, see e.g. McKinnon
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(2010) andAlkawaleet et al. (2014).However, it is important to notice that supply chain policy
decisions also affect CO2 emissions related to waste at the customer sites. For example, as
noted above, a whole production batch of a dairy product may be wasted if the coordination
of supply and demand for critical spares is not aligned.

Of course, there may exist cases where other types of backorder cost structures are more
plausible than a model with piecewise constant backorder costs. Therefore, in case (2) we
generalize the structure of the backorder cost and focus on general non-linear backorder costs
as a function of the waiting time. For many companies a quite long waiting time for a critical
spare part may be severe, while a relatively short waiting time may not incur very large costs.
Hence, although our modeling technique can handle general non-linear backorder costs, we
focus on exponentially increasing backorder costs due to its intuitive and appealing features
from a practical point of view. Another possible situation may be when the backorder cost
is so called S-shaped. This means that the backorder cost as a function of longer waiting
times is concave (instead of convex as in the exponential case). We provide a model that can
handle all such possible backorder cost structures (as mentioned, the exponential case should
be viewed as a concrete example).

In case (3) we consider a service level instead of a model with backorder costs. This
service level is defined as the probability of satisfying a customer demand within a certain
time window. In all three cases we utilize information about the timing of outstanding orders
for the central warehouse and the downstream locations, respectively.

Early studies on continuous review multi-echelon inventory models include, e.g.,
Sherbrooke (1968), Graves (1985) and Axsäter (1990). Sherbrooke (1968) considers a two-
echelon inventory systemwithmultiple local retailers and one central warehouse, all applying
(S − 1, S) ordering policies where unsatisfied demands are backordered. Given this inven-
tory system, he develops an approximate method (the METRIC approximation), where the
real stochastic leadtimes for the retailers are approximated by their mean values. Graves
(1985) extends the results from Sherbrooke (1968) by deriving an exact solution procedure.
However, one of the main problems is that the solution provided in Graves (1985) is not
in closed form, which means that the evaluation of the inventory level probabilities will be
approximate (due to necessary truncation of infinite series). In order to ease the computa-
tional burden, Graves (1985) also presents corresponding approximate distributions. Given
the same inventory system as in Graves (1985), Axsäter (1990) develops a different exact
solution procedure. However, similar toGraves (1985), Axsäter (1990) does not either present
a closed form solution. Moreover, he does not derive the distribution of the inventory levels
for the local retailers. Instead, he derives a recursive solution procedure in order to obtain
the total average cost. In this paper, we extend the analysis of Graves (1985) and Axsäter
(1990) by deriving closed form solutions of the probability distributions of the inventory
levels and the customer waiting times. For more information concerning continuous review
multi-echelon inventory systems see, e.g., Axsäter (1993).

The literature on multi-echelon inventory models with time window service levels is
relatively limited. Ettl et al. (2000) consider a multi-echelon inventory system with similar
service requirements as in our model. They model their inventory system as a MX/G/∞
queueing system, and consider both assembly and distribution structures. Although Ettl et al.
(2000) in some aspects consider a more general model than we do, their analysis require
assumptions like leadtimes based on the exponential distribution. Another related model is
presented in Caggiano et al. (2007), where the problem in Ettl et al. (2000) is extended to a
multi-item setting. A limitation of this work is that the acceptable customer waiting times at
different sites (ωi in our case) are only allowed to be multiples of the transportation times
between different echelons. Another study on multi-echelon inventory models with time
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window service levels is Wong et al. (2007), which deals only with average time window
constraints.

One category of papers in the literature that is quite related to our work is inventorymodels
with emergency supply. Two papers that fall into this category are Moinzadeh and Schmidt
(1991) and Moinzadeh and Aggarwal (1997). The former studies a single location system,
where the location applies an (S − 1, S) policy and has the option to choose either a normal
order or an emergency order under a given ordering policy. This policy takes all available
information regarding the inventory level and timing of outstanding orders into account.
Moinzadeh and Aggarwal (1997) extend the work done by Moinzadeh and Schmidt (1991)
by considering a base-stock two-echelon inventory system with one warehouse, multiple
retailers and an outside supplier with the possibility of emergency orders. Huang et al. (2011)
introduces a committed service time, in which it is acceptable for the customer to be served.
After this timehas passed, the retailers face a backorder cost (per unit and timeunit) andhas the
ability to fill the demandwith an emergency order. In amore recent paper,Howard et al. (2015)
evaluate an approximate two-echelon spare parts inventorymodel using pipeline information.
In more detail, they consider an inventory system that includes a central warehouse acting
as a supplier and a so called support warehouse. The purpose of the support warehouse
is to provide emergency orders to the local warehouses, and as a last resort emergency
transshipments can be sent directly from the central warehouse. All of these papersmentioned
above consider a standard unit backorder cost per time unit. However, in our model we
consider general non-linear backorder costs, and in particular piecewise constant backorder
costs.

Another related stream of literature concerns lateral transshipments between warehouses,
where a local warehouse with no stock on hand can request an item from another local
warehouse if needed. Yang et al. (2013) assumes, just as we do, that customers have a certain
pre-specified acceptable waiting time limit. Within this time limit, the local warehouse will
wait for an incoming uncommitted item. If the waiting time is too long, it will request a
lateral transshipment having a shorter, but positive, leadtime. Olsson (2015) studies a similar
model as Yang et al. (2013), but uses a backorder cost per unit and time unit instead of a
time limit. For a review of papers studying lateral transshipments see, e.g., Paterson et al.
(2011).

The literature discussed so far is, in general, based on one-for-one ordering policies,
which is also the case we consider in this paper. When instead considering batch-ordering
policies in multi-echelon inventory settings with time window service levels, the model
complexity will increase considerably. In a single-echelon setting Axsäter (2003b) con-
siders an inventory system with lateral transshipments where the locations apply (R, Q)

policies. In Axsäter (2003b) an approximate method is developed that uses information
about the residual leadtimes of the items in the system. Other relevant literature con-
cerning batch-ordering policies include, e.g., Axsäter (2000) and Katehakis and Smit
(2012).

In the following section we formulate our model in detail. Section 3 presents the solution
procedure with the derivation of exact closed form expressions for various performance
characteristics. In Sect. 4, cost structures are presented together with cost evaluations. In
Sect. 5, we present cost optimization procedures for all three cases considered, and in Sect. 6
numerical examples are presented and discussed. In Sect. 6, we also give an application
of how to use the theory developed in order to quantify sustainability measures, such as
expected CO2 emissions related to production waste. Some concluding remarks are given in
Sect. 7.
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2 Model formulation

We consider a two-echelon continuous review inventory model with one central warehouse
and N local sites.All transportation times are positive and constant.Customer demands follow
independent Poisson processes and occur only at the local sites. Since we focus on spare parts
products, we assume that replenishments are made according to base stock ordering policies.
All unsatisfied demands are backordered. Furthermore, we assume that backorders at the
sites and at the central warehouse are filled according to the FCFS (first come - first served)
rule.

In similar models like this one, it is commonly assumed that base stock levels are based
on a backorder cost per unit and time unit or a prescribed service level. In those cases a target
service level is used, the service level definition is very often the so called fill rate (fraction
of demand that can be satisfied directly from stock on hand). However, in this paper, we
consider one step function and one general non-linear backorder cost structure, where the
cost is a function of the customer’s time in backorder. In addition, we also consider a time
window based service level.

Let us introduce some notations for parameters and decision variables:

λi − customer arrival rate at local sitei,

Li − transportation time from the central warehoue to local sitei,

L0 − transportation time from the supplier to the central warehouse,

hi − holding cost per unit and time unit at local sitei,

h0 − holding cost per unit and time unit at the warehouse,

N − number of local sites,

Si − base-stock level at local sitei,

S0 − base-stock level at the warehouse,

We proceed by defining the two cost structures and the time window based service level
in more detail. In the subsequent analysis, let Yi denote the time a customer demand is
backordered at site i . Note that 0 ≤ Yi ≤ L0 + Li is stochastic and depends on the base-
stock levels at site i and the central warehouse.

3 Performance characteristics

Define X0 as the limiting (i.e., the stationary case) age of the oldest unit at the warehouse
not assigned to any waiting customer, where the age is assumed to start when the unit is
ordered from the outside supplier. Similarly, let Xi be the limiting age of the oldest unit
at site i (i = 1, . . . , N ) not assigned to any waiting customer, where the age of an item is
assumed to start when the unit is ordered from the warehouse. Note that, if the warehouse
has zero stock on hand when a site orders a unit, the ordered unit will arrive at the site after
Li + Z unit of time, where Z is the stochastic delay at the warehouse. Obviously, we must
have Z = L0 − X0, for 0 ≤ X0 ≤ L0. Hence, given a stochastic delay of Z units of time at
the warehouse, the oldest unit at site i is outstanding if 0 < Xi < Li + Z , and in stock if
Xi ≥ Li + Z .

Let us proceed by noting that X0 ∼ Erlang(λ0, S0) and Xi ∼ Erlang(λi , Si ), where
λ0 = λ1 + · · ·+λN . This is the case since (Si − 1, Si ) policies are used and that the demand
process is pure Poisson at the sites and at the warehouse, which means that the well known
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PASTA-property (Poisson Arrivals See Time Averages) holds. It should be noted that our
technique of tracking the ages of the units in the system yields a richer model than the unit
trackingmethodology first presented inAxsäter (1990). This is the case since the unit tracking
methodology in Axsäter (1990) considers only what happens at times of customer arrivals.
In our case, we have full information about the ages of the (oldest) units in the system at
all times. This means that, unlike Axsäter (1990), it is possible to generalize our model to
incorporate decision rules based on events which are not customer arrivals. In any case, we
have the density functions, fXi (t), and the distribution functions, FXi (t),

fXi (t) = λ
Si
i e−λi t t Si−1

(Si − 1)! , t ≥ 0 (1)

FXi (t) = 1 −
Si−1∑

n=0

e−λi t (λi t)
n

n! , t ≥ 0 (2)

for i = 0, 1, . . . , N . Using (1) and Z = L0 − X0, it is easy to obtain the density of the
stochastic delay, Z , as

fZ (t) = fX0(L0 − t) = λ
S0
0 e−λ0(L0−t) (L0 − t)S0−1

(S0 − 1)! , for 0 ≤ t ≤ L0. (3)

The probability mass in the point Z = 0 is found by using (2),

P{Z = 0} = P{X0 > L0} = 1 − FX0(L0) =
S0−1∑

n=0

e−λ0L0
(λ0L0)

n

n! . (4)

Let us continue by deriving the probability function for the inventory level at the local site
i , I Li . Now, given the delay Z = z, the conditional stationary probability function for I Li

follows as

P{I Li = k|Z = z} = (λi (Li + z))Si−k

(Si − k)! e−λi (Li+z), (5)

Using (3)–(5), we may remove the condition on Z as follows

P{I Li = k} = (λi Li )
Si−k

(Si − k)! e−λi LiP{Z = 0} +
∫ L0

0
P{I Li = k|Z = z} fZ (z)dz. (6)

In order to be able to evaluate inventory level probabilities exactly, we provide the fol-
lowing closed form expression of the inventory level probability function:

Proposition 1 For k ≤ Si , S0 > 0, n := Si − k, m := S0 − 1, and μ := λ0 − λi ≥ 0, the
closed form expression of P{I Li = k} is given by

P{I Li = k} = (λi Li )
Si−k

(Si − k)! e−λi LiP{Z = 0}

+A
n∑

k1=0

m∑

k2=0

(−1)m−k2

(
n

k1

)(
m

k2

)
Lk1
i Lk2

0 �(k1, k2), (7)
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where

�(k1, k2) = eμL0(m + n − k1 − k2)!
m+n−k1−k2∑

j=0

[
(−1)m+n−k1−k2− j

μm+n−k1−k2− j+1 · L
j
0

j !

]

− (−1)m+n−k1−k2(m + n − k1 − k2)!
μm+n−k1−k2+1 ,

A = λ
Si−k
i

(Si − k)! · λ
S0
0

(S0 − 1)!e
−λi Li−λ0L0 .

Proof See “Appendix”. ��

Notice that, Proposition 1 is only defined for S0 > 0. However, for S0 = 0 the problem
degenerates to a single-echelon inventory system, i.e., Z ≡ L0.

From (7) the average stock on hand at site i is obtained as

E
{
I L+

i

} =
Si∑

k=1

kP{I Li = k}, (8)

and the average stock on hand at the central warehouse becomes

E
{
I L+

0

} =
S0∑

k=1

k
(λ0L0)

S0−k

(S0 − k)! e−λ0L0 . (9)

Let us continue by deriving an expression for the probability that an arriving customer at
site i has to wait longer than ωi units of time. In this case it is reasonable, from a practical
point of view, to assume that 0 ≤ ωi ≤ Li . By conditioning on Z = z, we obtain the
following conditional probability

P{Yi > ωi |Z = z} = P{Li + z − Xi > ωi } = P{Xi < Li + z − ωi } = FXi (Li + z − ωi )

= 1 −
Si−1∑

n=0

e−λi (Li+z−ωi )
(λi (Li + z − ωi ))

n

n! . (10)

Hence, by using (3), (4), (10) and the law of total probability we obtain

P{Yi > ωi } = P{Xi < Li − ωi }P{Z = 0} +
∫ L0

0
P{Xi < Li + z − ωi } fZ (z)dz. (11)

Interestingly enough, similar to Proposition 1, it is possible to derive a closed form expres-
sion of the probability in (11).

Proposition 2 The probability that an arriving customer at site i has to wait longer than ωi

units of time is obtained, in closed form, as

P{Yi > ωi } = P{Xi < Li − ωi }P{Z = 0} + I, (12)
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where

I = 1 − P{Z = 0} −
Si−1∑

n=0

�(n)

n∑

k1=0

S0−1∑

k2=0

(−1)S0−1−k2

(
n

k1

)(
S0 − 1

k2

)

(Li − ωi )
k1 Lk2

0 �(n, k1, k2),

�(n, k1, k2) = e(λ0−λi )L0 (n + S0 − 1 − k1 − k2)!
n+S0−1−k1−k2∑

j=0

[
(−1)n+S0−1−k1−k2− j

(λ0 − λi )n+S0−k1−k2− j
· L

j
0

j !

]

− (−1)n+S0−1−k1−k2 (n + S0 − 1 − k1 − k2)!
(λ0 − λi )n+S0−k1−k2

,

�(n) = λni

n! · λ
S0
0

(S0 − 1)! e
−λi (Li−ω)−λ0L0 .

Proof See “Appendix”. ��

4 Cost structures

4.1 Piecewise constant backorder costs

Assume that a customer arriving at site i incurs a backorder cost that depends on the time the
demand is backordered. In more detail, denote Bi (Yi ) as the backorder cost, as a function of
Yi , incurred by a customer arriving at site i .

Assume that a customer arriving at site i has an acceptable waiting time of ωi units of
time for a demanded item. As a start, in view of the discussion about service contracts in the
introduction, let us consider a particular simple and important case concerning the backorder
cost structure:

Bi (Yi ) =
{
0 if Yi ≤ ωi ,

bi if Yi > ωi .
(13)

Hence, if an arriving customer has to wait longer than ωi for a spare part, then the service
providing company is obliged to pay a fixed penalty cost bi . Otherwise, no backorder cost
is incurred. Notice that, in this setting, the assumption of the FCFS-rule is not optimal
but reasonable. For example, say that there are two waiting customers at location i and the
customer first in line already has beenwaiting formore thanωi units of time, while the second
has waited less than ωi . Then, when an item then arrives at location i from the warehouse,
it would be more cost efficient to assign the incoming item to the second customer (instead
of applying the FCFS-rule). Also, in practice, using a different rule than FCFS could mean
that a customer that already has exceeded the waiting time limit would not be prioritized and
might end up with a very long waiting time (which in practice would mean that the company
soon would be out of business). Similarly, the FCFS-rule is, of course, also an issue for the
cases presented in Sects. 4.2 and 4.3.

In amore general case, assume that there are K different time limits,ω( j)
i , j = 1, 2, . . . , K .

We consider the following backorder cost (or penalty cost) structure:

Bi (Yi ) =

⎧
⎪⎨

⎪⎩

0 if Yi ≤ ω
(1)
i ,

b( j)
i if ω

( j)
i < Yi ≤ ω

( j+1)
i , j = 1, . . . , K − 1,

b(K )
i if Yi > ω

(K )
i .

(14)
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That is, if an arriving customer has to wait longer than a prescribed time limit ω
( j)
i ,

the service providing company has to pay a fix penalty cost b( j)
i . Here, we assume that

ω
(1)
i < ω

(2)
i < · · · < ω

(K )
i and b(1)

i < b(2)
i < · · · < b(K )

i , i.e. that the cost is increasing with
the customer waiting time.

This cost structure can be extended to also include a standard linear backorder cost per
unit of time. However, in this paper we focus on the non-linear cost expressions.

4.2 Exponential backorder costs

Here we consider a more general type of non-linear backorder cost structure that depends on
the time an arriving customer has to spend in backorder. As mentioned in the introduction,
although our solution procedure can handle general non-linear backorder costs, we focus on
exponentially increasing backorder costs as a function of the customer waiting time. That is,
for Yi > 0, let us define:

Bi (Yi ) = ci · aYii , (15)

where ai > 1 and ci > 0, i = 1, 2, . . . , N , are constants. In this case, the backorder cost
grows exponentially with the customer’s waiting time. This means that the backorder cost
rapidly gets large when the customer’s waiting time gets longer.

4.3 Time window service constraint

Here we consider a case where we replace the backorder cost by a time window service
constraint. In more detail, assume that there is an agreement that requires that the service
level should be at least �i within ωi units of time. In other words, the time window service
level at location i is defined as

βi = P{Yi ≤ ωi } ≥ �i , ∀i ∈ {1, . . . , N }.
Notice that, in view of (14), this time window service level can be extended to a more general
service level definition where different target service levels may be defined for different
intervals of waiting times. For example, immediate service could be 95%, while service
within 4 h could be 97%, etc.

4.4 Evaluation of costs

For the casewhere there is a backorder cost, let EB denote the total systemexpected backorder
cost, per unit of time. Then, the expected total cost, EC , is obtained as

EC = h0E
{
I L+

0

} +
N∑

i=1

hiE
{
I L+

i

} + EB, (16)

where E
{
I L+

i

}
and E

{
I L+

0

}
are defined in (8) and (9), respectively.

In the following analysis we state explicitly how to evaluate EB for piecewise constant
and exponential backorder costs. The cost minimization problem for the case with a time
window service constraint is defined and analyzed in the optimization section, see Sect. 5.2.

Piecewise constant backorder costs For the special case of a backorder cost with just one
acceptable time limit, ωi , we obtain EB as

EB =
N∑

i=1

λi biP{Yi > ωi }. (17)
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For the more general cost structure in (14) it is reasonable to assume that 0 ≤ ω
(1)
i <

ω
(2)
i < · · · < ω

(K )
i ≤ Li . Hence, using (11), the probability for a customers time in backorder

to be in the interval between two consecutive time limits can be written as

P
{
ω

( j)
i < Yi ≤ ω

( j+1)
i

}
= P

{
Yi < ω

( j+1)
i

}
− P

{
Yi < ω

( j)
i

}
. (18)

Given these probabilities, the expected backorder cost per unit of time follows as

EB =
N∑

i=1

λi

⎛

⎝
K−1∑

j=1

b( j)
i P

{
ω

( j)
i < Yi ≤ ω

( j+1)
i

}
+ b(K )

i P
{
Yi > ω

(K )
i

}
⎞

⎠ . (19)

Exponential backorder costsGiven the cost structure in (15),wederive the expectedbackorder
cost EB. The time in backorder, Yi , depends both on the age of the oldest item, Xi , and the
delay at the warehouse, Z . For a given delay Z = z and age of the oldest item Xi = t , we
have Yi = Li + z − t . Hence, the conditional backorder cost for location i becomes

Bi (Yi |Xi = t, Z = z) = Bi (Li + z − t) = ci · aLi+z−t
i . (20)

Using (1) and (20), the conditional expected backorder cost, per unit of time, for location i
follows as

EBi (Z = z) = λi

∫ Li+z

0
Bi (Li + z − t) fXi (t)dt. (21)

Further, using (3), (4) and (21), we get the (unconditional) expected backorder cost per unit
of time for location i as

EBi = EBi (Z = 0) · P{Z = 0} +
∫ L0

0
EBi (Z = z) fZ (z)dz, (22)

which in turn gives us the total expected backorder cost,

EB =
N∑

i=1

EBi .

Remark 1 Observe that when the backorder cost has a linear structure, we have the special
case Bi (Yi |Xi = t, Z = z) = Bi (Li + z − t) = bi (Li + z − t), which is the backorder cost
structure studied in Graves (1985) and Axsäter (1990). This directly implies that

EBi (Z = z) = λi bi

∫ Li+z

0
(Li + z − t) fXi (t)dt.

5 Optimization

5.1 Piecewise constant and general non-linear backorder costs

For a standard two-echelon inventory system with linear holding and backorder costs, the
optimization procedure is relatively simple, see e.g. Axsäter (1990). For example, with linear
holding and backorder costs it is easy to show that the total cost function is convex in Si ,
i = 1, . . . , N , for a given S0. This appealing property is, however, lost when considering
non-linear costs, as in our case. Therefore, in our optimization procedure we will use other
characteristics of the system when optimizing the base-stock levels. One such characteristic
is described in the following remark, which is easy to prove (we omit the details):
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Remark 2 If the leadtime for location i is constant, the holding cost at location i , Hi (Si ), is
increasing in Si . Furthermore, Hi (Si ) → ∞ when Si → ∞.

Our optimization procedure is based on the property described in Remark 2. Due to the
non-convex behavior of the total cost function, we derive upper and lower bounds for the
optimal values of S0 and Si , i = 1, . . . , N , where we denote the optimal value of Si for a
given S0 as S∗

i (S0). Similarly, the overall optimal values of S0 and Si are denoted as S∗
0 and

S∗
i , respectively. Then, obviously, we have S∗

i ≤ S∗
i (S0) ≤ S∗

i , where S∗
i and S∗

i are the
lower and upper bounds, respectively. In complete analogy, we also derive an upper bound,
S∗
0 , and a lower bound, S∗

0 , for the optimal value of S0.

Hence, S∗
0 is found by choosing S0 ∈ {S∗

0 , . . . , S
∗
0 } such that

EC(S0) = C0(S0) +
N∑

i=1

Ci
(
S0, S

∗
i (S0)

)
(23)

is minimized (where C0(·) is the average holding costs per time unit at the warehouse, and
Ci (·, ·) is the average holding and backorder costs at the local site i).

The computation time regarding the optimization procedure for finding optimal base-stock
levels was, on average, quite moderate (in general, less than 1 min).

Lower and upper bounds for S∗
i

Notice that, when S0 = ∞, the leadtime for location i becomes the shortest possible, i.e.,
Li . Hence, in order to obtain a lower bound for S∗

i , the general idea here is to minimize
Ci (S0, Si ) with respect to Si given that S0 = ∞. Now, since Ci (S0, Si ), given S0 = ∞, is
not convex in Si wewill use Remark 2 for obtaining S∗

i := S∗
i (∞). Recall that when S0 = ∞,

the leadtime is constant (= Li ) and therefore the characteristics of Hi (Si ) in Remark 2 may
be used. The method for finding S∗

i (∞) can be found below in Algorithm 1. The intuition
behind Algorithm 1 is that we continue increasing Si until the holding cost becomes greater
than the minimum cost so far. Then, from Remark 1, we know that we can stop the search.

In order to obtain an upper bound for S∗
i , we use exactly the samemethod as when deriving

the corresponding lower bound. Notice that, the longest possible leadtime for location i ,
L0 + Li , is obtained for S0 = 0. Hence, the difference compared to the derivation of the
lower bound is that we, in Algorithm 1, set S0 = 0 when deriving the upper bound for S∗

i .
Furthermore, instead of starting the optimization algorithm with Si = 0, we can here use the
lower bound, S∗

i , as a starting point for Si .

Optimization of S0

In view of Algorithm 1, the problem of finding the optimal S0 is relatively straight-forward.
As mentioned, the total cost function is, in general, not convex in S0. Therefore, we derive
lower and upper bounds for the optimal S0. A lower bound for S∗

0 is found by optimiz-

ing EC
(
S0, S∗

1 , S
∗
2 , . . . , S

∗
N

)
with respect to S0. That is, if all Si , i = 1, . . . , N , are fixed

and chosen as large as possible, a lower bound for S∗
0 is obtained. The optimization pro-

cedure is presented in Algorithm 2 below, and is quite similar to Algorithm 1, with only
a few modifications. In complete analogy, an upper bound for S∗

0 is found by optimizing

EC
(
S0, S∗

1 , S
∗
2 , . . . , S

∗
N

)
with respect to S0.
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Algorithm 1 Computation of S∗
i := S∗

i (∞)

1: procedure
2: S0 = ∞; Si = 0; Cmin = ∞;
3: while Hi (Si ) < Cmin do
4: if Ci (S0, Si ) < Cmin then
5: Cmin = Ci (S0, Si );
6: Smin = Si ;
7: end if
8: Si = Si + 1;
9: end while
10: S∗

i = Smin;

11: end procedure

Algorithm 2 Computation of S∗
0

1: procedure
2: S0 = 0; Si = S∗

i ∀i ; Cmin = ∞;
3: while H0(S0) < Cmin do
4: if EC(S0, S1, S2, . . . , SN ) < Cmin then
5: Cmin = EC(S0, S1, S2, . . . , SN );
6: Smin = S0;
7: end if
8: S0 = S0 + 1;
9: end while
10: S∗

0 = Smin;

11: end procedure

5.2 Time window service constraint

The optimization problem, when considering a time window service constraint instead of
backorder costs, becomes

min
S0≥0,Si≥0 ∀i∈{1,...,N } EC(S0, S1, . . . , SN ) =

N∑

i=0

hiE
{
I L+

i

}
(24)

subject to βi = P{Yi ≤ ωi } = 1 − P{Yi > ωi } ≥ �i , ∀i ∈ {1, . . . , N }, (25)

where �i is the target time window service level. The optimization procedure is quite similar
as in Sect. 5.1. First, notice that from (10) and (11) it follows that the time window service
level βi is strictly monotonic in Si , i ∈ {1, . . . , N }, i.e., P{Yi ≤ ωi |Si } > P{Yi ≤ ωi |Si −1}.
Hence, for a given S0, the minimum value of Si which satisfies the time window constraint
can easily be found.

In order to find the optimal value of S0, again a very similar procedure as in Sect. 5.1
can be developed. In short, given S∗

i = arg minSi Ci (0, Si ) such that βi ≥ �i , a lower

bound of the optimal S0 becomes 0 since minimizing EC
(
S0, S∗

1 , S
∗
2 , . . . , S

∗
N

)
with respect

to S0, such that (25) is satisfied, gives the lower bound S∗
0 = 0. This is the case since

EC
(
S0, S∗

1 , S
∗
2 , . . . , S

∗
N

)
is obviously increasing in S0. The upper bound S∗

0 can be found

in a similar manner by minimizing EC
(
S0, S∗

1 , S
∗
2 , . . . , S

∗
N

)
with respect to S0, such that

(25) is satisfied. That is, we start with S0 = 0 and increase S0 by one unit at a time until (25)
is satisfied.
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6 Applications and numerical experiments

In this section we first evaluate the three cases considered in Sect. 4 for a number of test
problems. In all test problems we consider an inventory system with two downstream sites,
i.e., N = 2. For the sake of simplicity let us also assume that the local sites are identical
(although this is not necessary from amodeling point of view). Secondly,we consider howour
model may be used in order to quantify environmental effects associated with not satisfying
customer demands in a timely fashion. We provide here a small numerical study concerning
sustainability aspects in connection with CO2 emissions.

6.1 Numerical evaluation of different backorder cost structures

For the first cost structure with a piecewise constant backorder cost function, we let K = 1,
i.e., there is a single acceptable customer waiting time limit. The customer arrival intensity
is either λi = 0.1 or λi = 0.5. The holding costs are, for simplicity, assumed to be the same
at all locations. In more detail, we consider the settings h0 = hi = 0.5 and h0 = hi = 1.
Moreover, we let the backorder cost take values in bi ∈ {10, 100, 500, 1000}. The main
purpose is to study the effect of the backorder cost in the form of a step function. Notice
that, in this numerical study we consider several different ratios of bi and hi . A low ratio
corresponds to a situation with relatively expensive spare parts. When this ratio is relatively
high, the backorder costs are considerably larger than the holding costs. This may be the
case if the spare parts are relatively inexpensive and/or it is very costly if the spare part is
not available when needed. In all problems the transportation time to the central warehouse
is L0 = 10. In Table 1 we have Li = 1, and in Table 2 we set Li = 5. The customer’s
acceptable waiting time is either 10, 30 or 50% of the transportation time to the local sites.

As we can see in Tables 1 and 2, the optimal base-stock levels at the local sites in many
cases tend to increase when ωi gets lower. On the other hand, the optimal base-stock level
at the central warehouse tends to, for most cases, decrease with lower ωi . Hence, when
the acceptable time limit, ωi , is rather low, inventory should be pushed to the downstream
locations. The intuitive explanation is that whenωi is low, it is relatively likely that an arriving
customer’s waiting time will exceed ωi if there is no stock on hand at the downstream sites.
Therefore, the base-stock levels at the local sites should be relatively high in these cases.
On the other hand, if ωi is relatively long it is not that crucial to keep stock close to the
customers. As expected, the total expected cost increases with higher backorder costs and
lower acceptable waiting times.

The results from Tables 1 and 2 also reflect the difficulty of finding structural optimization
properties of the system. For example, in Table 1, it is important to notice that the optimal
S0 is in general not monotonic in ωi . Such characteristics also make it hard for practitioners
to develop heuristic optimization procedures which often rely on convexity results. Hence,
since the optimization results might be counterintuitive for practitioners, it is important to
use the exact optimization procedure developed in Sect. 5. However, it is interesting to note
that the optimal total amount of items in the system, S∗

0 + ∑N
i=1 S

∗
i , is non-increasing in ωi

for all cases considered in Tables 1 and 2. This result is in line with intuition since when ωi

increases, customers acceptable waiting times increase, and we may lower the total amount
of stock in the system and still provide sufficiently high customer service. However, due to
the non-monotonic property discussed above, it is very difficult to argue exactly how the total
stock is allocated among the local sites and the central warehouse.

Apart from the test problemswhere bi = 10 in Tables 1 and 2, the probability of exceeding
the acceptable time limit is quite small. In these problems the backorder cost, bi , is large
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Table 3 Optimal base-stock
levels and expected total cost

ai h0 = hi = 0.5 h0 = hi = 1

λi = 0.1 λi = 0.5 λi = 0.1 λi = 0.5

S∗
0 , S

∗
i EC S∗

0 , S
∗
i EC S∗

0 , S
∗
i EC S∗

0 , S
∗
i EC

1.1 1, 0 0.50 6, 2 1.48 1, 0 0.57 6, 1 1.75

1.5 2, 1 1.48 9, 3 2.64 3, 0 2.40 9, 2 3.93

2 4, 1 2.15 11, 3 3.51 3, 1 3.91 10, 3 5.88

4 7, 1 3.64 15, 3 5.38 6, 1 6.75 14, 3 9.85
L0 = 10 and Li = 2

compared to the holding cost hi . Moreover, as expected, we see that the probability of
exceeding the acceptable time limit is significantly higher when the backorder cost tends to
be relatively low. When the items are relatively expensive to keep in stock we note that the
optimal base-stock levels are low, especially when the customer arrival rate is low.

For our second cost structure with an exponentially increasing backorder cost function,
we evaluate our model for a set of test problems where we let ci = 1 and ai in (15) be one
of four values, ai ∈ {1.1, 1.5, 2, 4}. As before, the customer arrival rate is either λi = 0.1
or λi = 0.5. The holding costs are the same at all locations and either h0 = hi = 0.5 or
h0 = hi = 1. The transportation times are L0 = 10 and Li = 2. We consider different
ratios of ai and hi where a lower ratio corresponds to relatively expensive spare parts and
vice versa.

As seen in Table 3, the optimal base-stock levels at the central warehouse increase rather
rapidly with increasing values of ai . It is also interesting to notice that the base-stock levels
at the local sites are kept at relatively low levels, although ai increases significantly. The
intuition behind this behavior is that when ai is relatively large, long customer waiting times
will be very costly, while short waiting times are not so expensive. Notice that, in order to
suppress long customerwaiting times itmay bewise to allocate stock to the central warehouse
instead of the local sites. That is, instead of allocating relatively large amount of stock to
each local site, the optimal stock policy will suggest that stock should be kept upstream,
since long waiting times can be suppressed just as well from stock at the central warehouse.
It is interesting to note that this result runs absolutely counter to traditional multi-echelon
models with fill rate constraints, see e.g., Muckstadt and Thomas (1980), Axsäter (2003a),
andHausman and Erkip (1994). Optimal solutions of such inventory systems very often show
that inventory should be prioritized downstream, while the fill rate at the central warehouse
may be only about 50%.

For the case with time window service level constraints βi ≥ �i , we evaluate our model
for test problems with three different levels of the time window service level that must be
achieved, that is �i ∈ {0.90, 0.95, 0.98}. As before, the customer arrival rate is eitherλi = 0.1
or λi = 0.5. The holding costs are the same at all locations and either h0 = hi = 0.5 or
h0 = hi = 1. The transportation times are L0 = 10 and Li = 2 and the acceptable waiting
time ωi is either 0, 10, 30 or 50% of the transportation time Li .

In Table 4, we see that there often is little or no change in the optimal base-stock levels
depending on the value of ωi . With increasing �i , the base-stock levels also increase, as
expected. Notice that, a time window service level constraint where ωi = 0 is the same as
the traditional fill rate defined as the fraction of demand that can be satisfied immediately
from stock on hand. Comparing the test problems in Table 4 where ωi is zero to the the ones
where ωi has a larger value, it can be seen that optimizing the system using the traditional
fill rate even though customers are willing to wait for a certain amount of time may lead
to increased costs, especially for higher holding costs or higher customer arrival rates. For
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example, among the test problems, the cost increase can be as high as 35% (see the problems
where hi = 1, λi = 0.5, and ωi = 0.5Li ).

6.2 Application: sustainable inventory control

Let us in this section demonstrate how our model may be used for quantifying CO2 emissions
emanating from the customer production site. To this end, we focus on the practical case
concerning packaging of dairy products, as mentioned in Sect. 1. To be more specific, let
us assume that the dairy product is milk. Quite a few previous studies have investigated the
carbon footprint related to milk production. Thoma et al. (2013) conclude that the range of
CO2 emissions is approximately 0.75–1.5 kg, per kg milk produced. Hence, we assume that,
on average, there is a one to one correspondence between the amount of milk produced and
the amount of CO2 emissions (in units of weight).

Recall from the discussion in Sect. 1 that we assume a whole milk-batch is wasted if the
production downtime exceeds the critical time limit ωi . Hence, the expected CO2 emissions
of production waste in kg per unit of time becomes

E{CO2} =
N∑

i=1

λiP{Yi > ωi }Mi , (26)

where Mi is the average batch size (in kg) at the production facility corresponding to the
local inventory site i . In practice, Mi ranges from approximately 1000–30,000 kg.

Similar expressions for E{CO2} for other products than milk may, of course, be evaluated
by using exactly the same modeling technique, and the evaluation of E{CO2} in (26) may
be of interest in many other related applications. For example, if a CO2 tax is introduced by
the government for the specific product produced, a corresponding model should take the
average CO2 cost into account. Another related problem is government imposed restrictions
on CO2 emissions for specific products. In such a case, our modeling technique may be used
in order to evaluate if these CO2 restrictions are satisfied or not, when deciding inventory
target levels in spare part logistics systems.

In order to set the CO2 emissions emanating from customer production sites in relation
to CO2 emissions from transportation, let us consider a small set of numerical examples.
For simplicity, we consider the same test bed as in Table 1. That is, in Table 1, we present
optimal base-stock levels and probabilities P{Yi > ωi } for a system with N = 2 locations
(for a specific parameter setting). Assuming Mi = 15,000 as a benchmark, and given the
probabilities P{Yi > ωi } in Table 1 (for the case h0 = hi = 1) we list, in Table 5, the
corresponding expected CO2 emissions of production waste. As mentioned, to set the CO2

emissions of production waste in relation to transportation, it is interesting to notice that the
carbon intensity (expressed as gCO2 per tonne-km) for heavy trucks is approximately 200
(McKinnon 2010). This corresponds to 5 tonne-km per kg CO2. To illustrate this relation we
also list, in Table 5, the equivalent number of tonne-km of transportation by heavy trucks.

In Table 5, we can conclude that E{CO2} may be relatively large even for quite low
probabilities of exceeding the acceptable waiting time. Of course, it is also clear that when
P{Yi > ωi } is very low (which corresponds to a very high fixed penalty cost), then E{CO2}
is also very low. However, it is important to realize that in some situations the CO2 emissions
related to (too long) production downtime may be relatively high, while the downtime cost
may bemoderate. For example, in order to avoid discarding a dairy product, excessive energy
in terms of cooling may be considered (for other types of products, excessive heating has to
be initiated in order to avoid obsolescence).
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Table 5 Examples of E{CO2} and the corresponding number of tonne-km of transportation by heavy trucks

λi = 0.1 λi = 0.5

P{Yi > ωi } E{CO2} (kg) Transportation (km) P{Yi > ωi } E{CO2} Transportation (km)

0.6638 1991 9955 0.2618 3927 19,635

0.6570 1971 9855 0.2476 3714 18,570

0.6501 1950 9750 0.2212 3318 16,590

0.0688 206 1030 0.0219 329 1645

0.0648 194 970 0.0186 279 1395

0.0611 183 915 0.0144 216 1080

0.0114 34 170 0.0022 33 165

0.0095 28 140 0.0031 47 235

0.0079 24 120 0.0023 36 180

0.0048 14 70 0.0011 17 85

0.0043 13 65 0.0017 26 130

0.0079 24 120 0.0012 18 90

7 Conclusions

In this paper, we have presented an exact analysis of a two-echelon spare part inventory
model with new types of backorder cost structures. By using the stationary age distribution
of the units in the system we extended the results from Graves (1985) and Axsäter (1990) by
deriving exact closed form expressions for the inventory level distributions (Proposition 1),
and also for the customer waiting time distributions (Proposition 2).

Furthermore, we analyzed a model with a piecewise constant backorder cost, where a
significant fixed cost is incurred if the customerwaiting time exceeds a pre-specified threshold
value. This backorder cost structure was then generalized to a general non-linear backorder
cost as a function of the customer waiting time. As an example, we analyzed a model with
an exponentially increasing backorder cost as a function of the waiting time. Moreover, a
corresponding model with time window service levels was explored. As a final step, we
investigated how policy decisions affect, indirectly, the expected CO2 emissions related to
production waste. These kinds of indirect consequences of policy decisions, in terms of
expected CO2 emissions, have been largely ignored in the literature. Instead, most papers
have focused on CO2 emissions from a transportation point of view.

For all cases considered in this paper, we also developed optimization procedures for the
base-stock levels. Using these optimization procedures, we presented a numerical study in
order to investigate how the optimal policy (given the base-stock policy structure) behaves.
In particular, contrary to most results from multi-echelon inventory models, it is interesting
to notice that inventory should be pushed to the central warehouse in cases where the cost
for long waiting times are significantly larger than for short ones.

Possible future extensions may be to include some kinds of emergency supply in order
to avoid stops in production and production waste. Another line of research would be to
generalize to more complex demand structures, such as compound Poisson demand. Such
an extension would be rather straight-forward by keeping track of all individual items in an
ordered batch. Admittedly, the computational effort associatedwith obtaining exact inventory
level distributions would, however, be significant.
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Appendix

Proof of Proposition 1 Consider the integral in (6). We have:

∫ L0

0
P{I Li = k|Z = z} fZ (z)dz =

∫ L0

0

(λi (Li + z))Si−k

(Si − k)! e−λi (Li+z)

· λS0
0 e−λ0(L0−z) (L0 − z)S0−1

(S0 − 1)! dz = λ
Si−k
i

(Si − k)! · λ
S0
0

(S0 − 1)!e
−λi Li−λ0L0

∫ L0

0
(Li + z)Si−k(L0 − z)S0−1e(λ0−λi )zdz

Now, for notational purposes we set n := Si − k, m := S0 − 1, and μ := λ0 − λi ≥ 0.
Then, the well known binomial theorem (see any textbook in Calculus) gives,

(Li + z)n(L0 − z)m =
n∑

k1=0

m∑

k2=0

(
n

k1

)
Lk1
i zn−k1

(
m

k2

)
Lk2
0 (−z)m−k2 .

Hence, we have the integral

A
∫ L0

0
(Li + z)Si−k(L0 − z)S0−1eμzdz

= A
∫ L0

0

⎛

⎝
n∑

k1=0

m∑

k2=0

(
n

k1

)
Lk1
i zn−k1

(
m

k2

)
Lk2
0 (−z)m−k2

⎞

⎠ eμzdz

= A
n∑

k1=0

m∑

k2=0

(−1)m−k2

(
n

k1

)(
m

k2

)
Lk1
i Lk2

0

∫ L0

0
zm+n−k1−k2eμzdz,

where

A = λ
Si−k
i

(Si − k)! · λ
S0
0

(S0 − 1)!e
−λi Li−λ0L0 .

What remains is to calculate the integral � = ∫ L0
0 zm+n−k1−k2eμzdz. For this task, let

us first consider an arbitrary positive integer M and a constant a ≥ 0. Then, by successive
integration by parts we obtain the following indefinite integral

∫
zMeazdz = zM

a
eaz − M

a

∫
zM−1eazdz = · · · = eazM !

M∑

j=0

(−1)M− j

aM− j+1 · z
j

j ! . (27)
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Hence, by using (27), we have the following definite integral

� =
∫ L0

0
zm+n−k1−k2eμzdz

= eμL0(m + n − k1 − k2)!
m+n−k1−k2∑

j=0

[
(−1)m+n−k1−k2− j

μm+n−k1−k2− j+1 · L
j
0

j !

]

− (−1)m+n−k1−k2(m + n − k1 − k2)!
μm+n−k1−k2+1 .

To conclude,

P{I Li = k} = (λi Li )
Si−k

(Si − k)! e−λi LiP{Z = 0} + A
n∑

k1=0

m∑

k2=0

(−1)m−k2

(
n

k1

)(
m

k2

)
Lk1
i Lk2

0 �.

��
Proof of Proposition 2 Consider the integral in (11), and let us once again define μ :=
λ0 − λi ≥ 0. Denoting this integral as I, we get:

I =
∫ L0

0
P{Xi < Li + z − ωi } fZ (z)dz

=
∫ L0

0

⎛

⎝1 −
Si−1∑

n=0

e−λi (Li+z−ωi )
(λi (Li + z − ωi ))

n

n!

⎞

⎠ · λ
S0
0 e−λ0(L0−z) (L0 − z)S0−1

(S0 − 1)! dz

=
∫ L0

0
fZ (z)dz −

∫ L0

0

Si−1∑

n=0

λni

n! · λ
S0
0

(S0 − 1)! e
−λi (Li−ω)−λ0L0 (Li + z − ωi )

n(L0 − z)S0−1eμzdz.

By defining the function �(n) as,

�(n) = λni

n! · λ
S0
0

(S0 − 1)!e
−λi (Li−ω)−λ0L0 ,

we obtain a similar solution as in the proof of Proposition 1:

I = 1 − P{Z = 0} −
Si−1∑

n=0

�(n)

∫ L0

0
(Li + z − ωi )

n(L0 − z)S0−1eμzdz

= 1 − P{Z = 0} −
Si−1∑

n=0

�(n)

⎛

⎝
n∑

k1=0

S0−1∑

k2=0

(−1)S0−1−k2

(
n

k1

)(
S0 − 1

k2

)
(Li − ωi )

k1Lk2
0

·
∫ L0

0
zn+S0−1−k1−k2eμzdz

)
. (28)

By using (27), the integral in (28) becomes
∫ L0

0
zn+S0−1−k1−k2eμzdz = eμL0 (n + S0 − 1 − k1 − k2)!

n+S0−1−k1−k2∑

j=0

[
(−1)n+S0−1−k1−k2− j

μn+S0−k1−k2− j
· L

j
0

j !

]
− (−1)n+S0−1−k1−k2(n + S0 − 1 − k1 − k2)!

μn+S0−k1−k2
.
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To conclude,

P{Yi > ωi } = P{Xi < Li − ωi }P{Z = 0} + I.

��
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