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Abstract TheROADEF/EUROchallenge is a contest jointly organized by the FrenchOpera-
tional Research andDecisionAid society (ROADEF) and the EuropeanOperational Research
society (EURO). The contest appears on a regular basis since 1999 and always concerns an
industrial optimization problem proposed by an industrial partner. Google proposed a subject
for the ROADEF/EURO challenge 2012 (http://challenge.roadef.org/2012/en/), presenting a
complex and large-scale machine reassignment problem, where a set of processes assigned to
a set of machines have to be reassigned (or moved) while balancing machine usage improve-
ment and moving costs, under resource (more precisely CPU, RAM, disk) and operational
constraints. The 2012 challenge edition has been an unprecedented success with 82 regis-
tered teams, 48 teams that actually sent a program for qualification, 30 qualified teams and
27 teams that sent a program for the final evaluation. This paper aims at introducing the
Annals of Operations Research special issue by presenting the ROADEF/EURO challenge
2012 subject, as well as the methods of the finalist teams and their results.

Keywords ROADEF/EURO challenge ·Operations research industrial challenge ·Machine
reassignment · Cloud computing

1 Introduction

Dillon et al. (2010), meeting the service level agreements is a major issue for cloud com-
puting providers and “effective decision models and optimization algorithms” for efficient
resource management are key factors to reach this goal. In this context, Google proposed a
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subject for the ROADEF/EURO challenge 2012 (http://challenge.roadef.org/2012/en/), pre-
senting a complex and large-scale machine reassignment problem, where a set of processes
assigned to a set of machines have to be reassigned (or moved) while balancing machine
usage improvement and moving costs, under resource (more precisely CPU, RAM, disk) and
operational constraints.

The ROADEF/EURO challenge is a contest jointly organized by the French Operational
Research and Decision Aid society (ROADEF) and the European Operational Research
society (EURO). The contest appears on a regular basis since 1999 and always concerns
an industrial optimization problem proposed by an industrial partner. For the 2012 edition,
registered participant teams had to send a first solution program for the qualification phase
that ended in December 2011. The programs were evaluated in a first set of training problem
instances, the “A” set. The best teams were then qualified for the subsequent stage and could
adjust their program to solve a more realistic set of instances that was made available to them,
the “B” set. They had to send the revised version of their program in June 2012. The programs
were evaluated both on the B set and on a set that was left unknown to the participant, the
“X” set. Prizes were awarded at the EURO 2012 conference in Vinius.

In terms of participation, the 2012 challenge edition has been an unprecedented success
with 82 registered teams, 48 teams that actually sent a program for qualification, 30 qualified
teams and 27 teams that sent a program for the final evaluation. Figure 1 is a map presenting
the registered and qualified teams distribution worldwide.

Special issues of journals have been devoted to the challenge since 2005: the car sequenc-
ing problem proposed by Renault (Solnon et al. 2008), the workforce scheduling problem
proposed by France Telecom (Artigues et al. 2009), the disruption management problem for
commercial airlines proposed by Amadeus (Artigues et al. 2012) and the large-scale electric-
ity production problem proposed by EDF (Özcan et al. 2013). This paper aims at introducing
this special issue by presenting the ROADEF/EURO challenge 2012 subject, as well as the
methods of the finalist teams and their results. Section 2 presents the problem, as defined

Fig. 1 Teams distribution map
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by Google. Related work in the literature is described in Sect. 3. The characteristics of the
problem instances provided by Google are detailed in Sect. 4. The results of the participant
teams for the qualification and for the final stages are analysed in Sect. 5.

2 Problem description

The aim of the addressed problem is to improve the usage of a set of machines related to
several resources, such as RAM andCPU, and processes consuming these resources. Initially
each process is assigned to a machine. In order to improve the machine usage, processes can
be moved from one machine to another. A solution to this problem is a new process-machine
assignment which satisfies all hard constraints and minimizes a given overall cost.
Let M be the set of machines and P the set of processes.

Definition 1 (Solution) A solution is an assignment of each process p ∈ P to one and only
one machine m ∈ M; this assignment is denoted by the mapping M(p) = m. The original
assignment of process p is denoted M0(p).

2.1 Constraints

A valid solution is composed of possible moves subject to a set of hard constraints, capacity,
spread, dependency and transient constraints.
LetR be the set of resources which is common to all the machines, C(m, r) be the capacity
of resource r ∈ R for machine m ∈ M and R(p, r) the requirement of resource r ∈ R for
process p ∈ P .

Definition 2 (Usage) Given an assignment M , the usage U of a machine m for a resource r
is defined as:

U (m, r) =
∑

p∈P, M(p)=m

R(p, r)

Constraint 1 (Capacity) A process can run on a machine if and only if the machine has
enough available capacity on every resource. A feasible assignment must satisfy:

∀ m ∈ M, r ∈ R, U (m, r) ≤ C(m, r)

Let S be a set of services which partition the processes.

Constraint 2 (Conflict) A service s ∈ S is a set of processes which must run on distinct
machines, i.e.

∀ s ∈ S, (pi , p j ) ∈ s2, pi �= p j ⇒ M(pi ) �= M(p j )

Let L be the set of locations, a location l ∈ L being a set of machines.

Constraint 3 (Spread) For each s ∈ S, let spreadMin(s) ∈ N be the minimum number of
distinct locations where at least one process of service s should run:

∀s ∈ S,
∑

l∈L
min

(
1,

∣∣∣∣{p ∈ s | M(p) ∈ l}
∣∣∣∣

)
≥ spreadMin(s)

Let N be the set of neighborhoods, a neighborhood n ∈ N being a set of machines.
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Fig. 2 A small problem instance

Constraint 4 (Dependency) If service sa depends on service sb, then each process of sa

should run in the neighborhood of a sb process:

∀ pa ∈ sa, ∃ pb ∈ sb and n ∈ N such that M(pa) ∈ n and M(pb) ∈ n

Let T R ⊆ R be the subset of resources which need transient usage.

Constraint 5 (Transient)Whenaprocess p ismoved fromonemachinem toanothermachine
m′ some resources are consumed twice; i.e. require capacity on both original assignment
M0(p) and current assignment M(p).

∀m ∈ M, r ∈ T R,
∑

p∈P, M0(p)=m ∨ M(p)=m

R(p, r) ≤ C(m, r)

Figure 2 displays a small problem instance with nine machines on which processes are
assigned and occupy a certain amount of resources (CPU, RAM and disk). Each process is a
colored rectangle and the color identifies the process service.Machines are doubly partitioned
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in locations (there are four locations) and neighborhoods (there are three neighborhoods).
There are also two dependencies.

2.2 Objectives

The aim of the problem is to improve the usage of a set of machines. To do so, a total objective
cost is built by combining a load cost, a balance cost and several move costs.
Let SC(m, r) be the safety capacity of a resource r ∈ R on a machine m ∈ M.

Cost 1 (Load) The load cost is defined per resource and corresponds to the used capacity
above the safety capacity; more formally:

loadCost (r) =
∑

m∈M
max

(
0,U (m, r) − SC(m, r)

)

Let B be a set of triples defined in R2 × N.

Cost 2 (Balance) For a given triple b = 〈r1, r2, target〉 ∈ B,

balanceCost (b) =
∑

m∈M
max

(
0, target × A(m, r1) − A(m, r2)

)

with A(m, r) = C(m, r) −U (m, r).

Let PMC(p) be the cost of moving the process p from its original machine M0(p).

Cost 3 (Process Move)

processMoveCost =
∑

p∈P such that
M(p)�=Mo(p)

PMC(p)

Cost 4 (Service Move)

serviceMoveCost = max
s∈S

(∣∣{p ∈ s | M(p) �= M0(p)}
∣∣
)

Let MMC(msource,mdestination) be the cost of moving any process p frommachinemsource

to machine mdestination .

Cost 5 (Machine move)

machineMoveCost =
∑

p∈P
MMC(M0(p),M(p))

2.2.1 Total objective cost

The objective is to minimize the weighted sum of all the previous cost components.

totalCost =
∑

r∈R
weightloadCost (r) · loadCost (r)

+
∑

b∈B
weightbalanceCost (b) · balanceCost (b)

+weightprocessMoveCost · processMoveCost

+weightserviceMoveCost · serviceMoveCost

+weightmachineMoveCost · machineMoveCost
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3 Related work

Cloud computing aims at enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal management effort or
service provider interaction (Dillon et al. 2010). The resource managers need to employ
fast and effective decision models and optimization algorithms. The topic proposed for the
ROADEF/EURO challenge aims at providing such algorithms. Some works have been con-
ducted in this area. We can quote the following works.

Xu et al. (2014) review the state-of-the-art research onmanaging the performance overhead
of virtual machines, and summarize them under diverse scenarios of the Infrastructure-as-a-
Service (IaaS) cloud, ranging from the single-server virtualization, a single mega datacenter,
to multiple geodistributed datacenters. Specifically, they discuss the performance modeling
methods with a particular focus on their accuracy and cost, and compare the overheadmitiga-
tion techniques by identifying their effectiveness and implementation complexity. Yang and
Tate (2012) present a descriptive literature review and classification scheme for cloud com-
puting research that consists of four main categories: technological issues, business issues,
domains and applications, and conceptualising cloud computing. We can also mention the
review of Zhao et al. (2014) on the main challenges of the cloud computing paradigm.

Setzer and Stage (2010) propose a method that aims at the reduction of managerial
complexity of resource and workload management in data centers hosting thousands of
applications with varying workload behaviors. Their method is based on determining points
in time where migrations are likely to be beneficial for a given set of workloads.

Lin et al. (2011) consider that power consumption is one of the most critical problems in
data centers. One effective way to reduce power consumption is to consolidate the hosting
workloads and shut down physical machines which become idle after consolidation. They
show that server consolidation is an NP-hard problem. They propose a dynamic round-robin
algorithm, for energy-aware virtual machine scheduling and consolidation. Cambazard et al.
(2013) address the allocation of virtual machines to servers with time-variable resource
demands in data centers in order tominimize energy costswhile ensuring service quality. They
present a scalable constraint programming-based large neighborhood searchmethod. Kessaci
et al. (2013) propose amulti-objective genetic algorithm to optimize the energy consumption,
carbon dioxide emissions and the generated profit of a geographically distributed cloud
computing infrastructure.Wang et al. (2014) propose amulti-objective bi-level programming
model to improve the energy efficiency of servers. They combine an energy-aware data
placement policy and a locality-aware multi-job scheduling scheme. Chang et al. (2010)
formulate demand for computing power and other resources as a resource allocation problem
withmultiplicity, where computations that have to be performed concurrently are represented
as tasks and a later task can reuse resources released by an earlier task. They show that finding
a minimal allocation is NP-complete and present an approximation algorithm. Mezmaz et al.
(2011) investigate the problem of scheduling precedence-constrained parallel applications
on heterogeneous computing systems like cloud computing infrastructures. They propose a
parallel bi-objective hybrid genetic algorithm that takes into account, not only makespan, but
also energy consumption.

In this general context, the problem considered in the ROADEF/EURO challenge aims at
considering, at a single step, the dynamics of the virtual machine assignment process and,
more precisely, the benefit of machine reassignment.
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4 Instances

Tables 1 and 2 present the characteristics of data sets A, B and X. Data set A was used to
rank the participants during the qualification phase. Data sets B and X were used to rank
the participants for the final stage. Data set X has been kept unknown to the participants
throughout the competition. In dataset A, the number of machines range from 4 to 100 and
the number of processes range from 100 to 1000. In larger datasets B and X the number of
machines ranges from 100 to 5000 and the number of processes ranges from 5000 to 50,000.
There are ten instances per set. Note that each instance of the dataset X has exactly the same
parameter range that its corresponding B instance.

Table 1 Characteristics of dataset A

a1_1 a1_2 a1_3 a1_4 a1_5 a2_1 a2_2 a2_3 a2_4 a2_5

#Machines 4 100 100 50 12 100 100 100 50 50

#Resources 2 4 3 3 4 3 12 12 12 12

#Transient 0 1 1 1 1 0 4 4 0 0

#Services (non unit) 10 10 100 100 10 0 100 125 125 125

#Neighborhoods 1 2 5 50 2 1 5 5 5 5

#Locations 4 4 25 50 4 1 25 25 25 25

#Dependencies 10 10 10 10 10 0 0 10 10 10

(max per service)

#Balance 1 0 0 1 1 0 0 0 1 0

Table 2 Characteristics of datasets B and X

1 2 3 4 5 6 7 8 9 10

#Machines 100 100 100 500 100 200 4000 100 1000 5000

#Resources 12 12 6 6 6 6 6 3 3 3

#Transient 4 0 2 0 2 0 0 1 0 0

#Services 500 500 1000 1000 1000 1000 1000 1000 1000 1000

(non unit)

#Neighborhoods 5 5 5 5 5 5 5 5 5 5

#Locations 10 10 10 50 10 50 50 10 100 100

#Dependencies 30 30 50 60 60 60 50 60 60 70

(max per service)

#Balance 0 1 0 1 0 1 1 0 1 1

#Average slack (%) 15 15 20 20 20 20 30 20 10 20

Turn down (%) 4 0 4 0 4 0 0.5 4 0 0.4
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Fig. 3 Rank of the teams for the qualification stage

5 Results and methods overview

5.1 Results

A trivial solution corresponds to the solution where no process is reassigned. We call this
solution the reference solution. For both the qualification and the final stages, teams were
ranked according to the same scheme. The score of a team for a given instance is given by
the gap of the team’s cost from the best cost divided by the cost of the reference solution.
For the qualification stage, the score of a team was the sum of its scores on all instances of
dataset A. For the final stage, the score of a team was the sum of its scores on all B and X
dataset instances.

For the qualification stage a threshold for the qualification has been set to a score of
100%. Figure 3 shows a chart displaying the score of each competing team and the qualified
teams. Team identifier either starts with an “S” (resp. “J”) for Senior (resp. Junior) team. The
condition for a team to be allowed to compete in the junior category is that it is made only by
students, without any completed PhD. Any other team is registered in the Senior category.
For more information on the registered teams, we refer to the 2012 challenge web site (http://
challenge.roadef.org/2012/en/). We give a more detailed description of the qualified team
composition and results for the qualification stage in Table 3. It is worth noticing that the
best team in the qualification stage was the junior team J17 (Wauter and Vancroonenburg).

For the final stage, the qualified participants had to deal with the much larger instances
(see Table 2). Among the qualified teams, 27 teams sent a program for evaluation. The results
of these 27 teams are summarized in Fig. 4 and in Table 4.

To evaluate the instance difficulty, with regard to the results of the participant methods,
Fig. 5 displays the percentiles among the participants of the score for each instance of the B
and X datasets. The figure shows that some instances were highly discriminating (e.g. B2,
X7).

5.2 Methods overview

Below we provide a brief description of the method of each participant team which clearly
illustrates the diversity of the proposed optimization approaches. We only mention quanti-
tative results for the teams that obtained the Best Known Solutions (BKS) on at least one
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Table 3 Results of the qualified teams for the qualification phase

Rank Team id Team members Score

1 J17 T. Wauter, W. Vancroonenburg (Belgium) 1.73

2 S25 A. Gharbi (Saudi Arabia) M. Haouari (Tunisia), M. Mrab
(Saudi Arabia) M. Kharbeche (Qatar)

3.58

3 S38 D. Mehta, B. O’sulluvan, H. Simonis (Ireland) 5.92

4 S23 M. Ritt, L.S. Buriol, G. Portal, L. Borba, A.J. Benavides
(Brazil)

9.55

5 S21 S. Hanafi, M. Vasquez, Y. Vimont (France), M. Yagiura,
H. Haschimoto, K. Nonobe (Japan)

10.97

6 J12 W. Jaśkowski, P. Gawron, M. Szubert, B. Wieloch (Poland) 14.58

7 S4 A. Bloemen (Netherlands) 22.06

8 S5 C. Gogos, C. Valouxis, P. Alefragis, E. Housos (Greece) 27.98

9 S37 Z. Lu, T. Ye, Z. Whang (China) 28.37

10 J38 N. Catusse (France) 36.64

11 J6 H. Dudebout, R. Masson, J. Michallet (France),
P.H.V. Petrucci, A. Subramanian (Brazil), T. Vidal
(France)

37.32

12 S43 D. Chemla, B. Gacias, P. Gianessi (France) 40.49

13 S34 M. Pécot (France) 40.61

14 S26 L. Alfandari, F. Butelle, C. Coti, L. Finta, G. Plateau,
F. Roupin, A. Rozencnop (France)

41.30

15 J14 M. Ruiz (France) 42.44

16 J33 A. Sansoterra, L. Ferruci, N. Calcaveccia, F. Sironi (Italy) 43.79

17 S1 J. Peekstok, E. Kuipers (Netherlands) 47.35

18 J25 F. Brandt, M. Völker, J. Speck (Germany) 50.59

19 S41 M. Buljabašić, E. Demirović, H. Gavranović (Bosnia) 51.15

20 J10 M. Larose, M. Posta (Canada) 52.90

21 S27 C. de Oliveira,R.P. Lopes, T.F. de Noronha, V.W. de Morais,
V.A.A. de Souza (Brazil)

59.81

22 S14 N. Teypaz (France) 59.82

23 J29 J. Holzer, L. Tang, Y. Liu, A. Gore, L. Watkins (USA) 60.74

24 J30 S. Pirkwieser, R. Steiner (Austria) 72.17

25 S6 T. Benoist, B. Estellon, F. Gardi, R. Megel, J. Darlay,
K. Nouioua (France)

72.43

26 J19 S. Zaourar, M. Gabay (France) 74.60

27 S11 F. Clautiaux, A. Liefooghe, F. Legillon, E.-G. Talbi (France) 80.11

28 J5 K. Tierney, A. Delgado, D. Pacino, Y. Malitsky (Denmark) 80.77

29 J21 V. Chiraphadhanakul, C. Figueroa (USA) 92.60

30 S40 B. Jarbou (Tunisia), N. Mladenovic (United Kingdom) 99.63

instance, or a gap close to the best known results on some instances. We also underline that,
due to the exceptional participation rate, being in this short list was a real challenge. Table 5
gives a short and rought overview of the components of each medhod where the columns
refer to the following components: LB (a Lower Bound method was inculded), LS (Local
search, other than LNS, HH, GRASP, TS, SA and VNS was used), LNS (Large Beigh-
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Fig. 4 Final ranking

borhood Search), HH (Hyper-Heuristic), GRASP (Greedy Randomized Adaptive Search
Procedure), TS (Tabu Search), SA (Simulated Annealing), VNS (Variable Neighborhood
Search), LA (Late Acceptance heuristic), PR (Path-Relinking), CP (Constraint Program-
ming), (MI)LP (Mixed-Integer Linear Programming or Linear Programming was used),
DP (Dynamic Programming), PS (a Parallel Search component was a key element of the
method).

Buljabašić, Demirović and Gavranović, (winning team S41, paper in this special issue)
propose two lower bounds based on load and balance costs to evaluate the quality of their
local search algorithm. The method exploits four neighbourhoods: shift, swap, Big Process
Rearrangement (BPR) and chain shift. They claim that BPR influences the objective function
much more than the small process rearrangement. To choose a good set of processes, they
construct an auxiliary directed weighted graph where each node represents a process. They
find two BKS in dataset X and three BKS in dataset B.

Mehta, O’Sullivan and Simonis (Team S38) (Mehta et al. 2012; Malitsky et al. 2013)
present a Constraint Programming (CP) model with large neighbourhood search. At each
iteration of the algorithm, a subset of processes to be reassigned is selected and the variable
domains of the CP model is updated. The resulting CP is solved with a threshold on the
number of failures and the best solution is kept for the following iteration. They also propose
lower bounds summing load and balance costs and report 0.26% of gap. They find two BKS
in dataset X and one BKS in dataset B.

The method of Jaśkowski, Gawron, Szubert and Wieloch (Team J12, paper in this special
issue) consists in combining a mixed integer linear programming and a heuristic approach.
The method has three phases: a greedy hill climber to obtain a good starting solution with
moves on processes and machines, a hyper-heuristic approach based on several low-level
heuristics and finally a Mixed Integer linear Programming (MIP) with randomized moves.
The MIP heuristic iteratively selects a small subset of machines and reassigns optimally the
processes to the subset of machines using a MIP solver. The choice of the machine subset
can be randomized or decided by a dynamic programming. This method finds one BKS in
dataset X.

Another successful combination of a large neighbourhood search with a constraint pro-
gramming model is proposed by Brandt, Völker and Speck (Team J25, paper in this special
issue). Their hybrid method uses multiple threads. Iteratively, a subset of processes is chosen
by neighbourhood search and CP model reassigns these processes. At the end of each itera-
tion, the best solution of each thread is synchronized. On seven instances over ten of the X
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Table 4 Final scores

Rank Team id Team members Score

1 S41 M. Buljabašić, E. Demirović, H. Gavranović (Bosnia) 0.47

2 S38 D. Mehta, B. O’sulluvan, H. Simonis (Ireland) 0.62

3 J12 W. Jaśkowski, P. Gawron, M. Szubert, B. Wieloch (Poland) 1.72

4 J25 F. Brandt, M. Völker, J. Speck (Germany) 2.60

5 S14 N. Teypaz (France) 3.91

6 S34 M. Pécot (France) 4.32

7 S40 B. Jarbou (Tunisia), N. Mladenovic (UK) 4.56

8 S23 M. Ritt, L.S. Buriol, G. Portal, L. Borba, A.J. Benavides
(Brazil)

4.58

9 J33 A. Sansoterra, L. Ferruci, N. Calcaveccia, F. Sironi (Italy) 4.66

10 J17 T. Wauter, W. Vancroonenburg (Belgium) 4.95

11 S5 C. Gogos, C. Valouxis, P. Alefragis, E. Housos (Greece) 5.28

12 S25 A. Gharbi (Saudi Arabia) M. Haouari (Tunisia), M. Mrab
(Saudi Arabia) M. Kharbeche (Qatar)

6.41

13 S1 J. Peekstok, E. Kuipers (Netherlands) 7.49

14 S27 C. de Oliveira,R.P. Lopes, T.F. de Noronha, V.W. de Morais,
V.A.A. de Souza (Brazil)

8.34

15 S37 Z. Lu, T. Ye, Z. Whang (China) 9.60

16 J14 M. Ruiz (France) 10.66

17 S43 D. Chemla, B. Gacias, P. Gianessi (France) 11.23

18 J38 N. Catusse (France) 12.53

19 J6 H. Dudebout, R. Masson, J. Michallet (France), P.H.V.
Petrucci, A. Subramanian (Brazil), T. Vidal (France)

12.90

20 S26 L. Alfandari, F. Butelle, C. Coti, L. Finta, G. Plateau,
F. Roupin, A. Rozencnop (France)

13.16

21 J19 S. Zaourar, M. Gabay (France) 14.07

22 S21 S. Hanafi, M. Vasquez, Y. Vimont (France), M. Yagiura,
H. Haschimoto, K. Nonobe (Japan)

15.39

23 J5 K. Tierney, A. Delgado, D. Pacino, Y. Malitsky (Denmark) 54.46

24 S6 T. Benoist, B. Estellon, F. Gardi, R. Megel, J. Darlay,
K. Nouioua (France)

83.91

25 S11 F. Clautiaux, A. Liefooghe, F. Legillon, E.-G. Talbi (France) 99.16

26 J10 M. Larose, M. Posta (Canada) 140.05

27 J21 V. Chiraphadhanakul, C. Figueroa (USA) 336.19

dataset, they have less than 1.6% of gap from the BKS. However, on some instances like X3
and X5, they are very far from the best known solution, 1883.36 and 324.66% respectively.

Teypaz (TeamS14) also proposes an integration of an exact algorithmwith ametaheuristic.
The algorithm is a tabu search with two phases using matching moves. To evaluate these
moves, amaximumweight matching problem is solved by thewell-known blossom shrinking
algorithmofEdmonds. The tabu search uses two elementarymoves: a reassignment of process
and a swap of two processes. This algorithm is provided by the open source LEMON library
and finds one BKS in dataset X.

Another tabu search is proposed by Pécot (Team S34) with two neighbourhoods: insert
and switch. Instead of the whole neighbourhoods, only randomly picked subsets are used.
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Fig. 5 Percentiles for the final results

This simple method is very efficient and finds two BKS in the X instances and three BKS in
the B instances.

Jarbou and Mladenovic (Team S40) presents a three level Variable Neighborhood Search
(VNS) algorithm which decomposes problem into smaller size problems. The main struc-
ture, skewed variable neighborhood search, may accept slightly worse solutions, if they are
different enough from the incumbent solution. Thismethod finds twoBKS on the B instances.

The Simulated Annealing (SA) of Ritt, Buriol, Portal, Borba and Benavides (Team S23,
paper in this special issue) has two neighbourhoods (process reassignment and process swap)
which are selected randomly. Theypropose a particular data structurewhich allows to evaluate
moves and perform updates in constant time. On six instances of the X dataset, they have
less than 0.2% of gap from the BKS. Moreover, the maximum gap from the BKS is less than
50% (48.7% on instance X5).

Sansoterra, Ferruci, Calcaveccia and Sironi (Team J33) propose a parallel simulated
annealing and variable neighbourhood search, which run concurrently to exploit multiple
CPU cores. Communication between heuristics happens through a shared solution pool. This
solution pool provides a safe access to two separate solution sets, one with high quality
and the other with high diversity solutions. A path relinking procedure takes one solution
from each set with a probability of 50% and explores intermediate solutions. One BKS from
dataset X and one BKS from dataset B are found.

A late acceptance hill climbing metaheuristic with two simple and fast neighbourhood
functions is proposed by Vancroonenburg and Wauters (Team J17). This methods accepts a
new solution if it is better than the current solution of the last L iterations. As some of the
former teams, the two moves are process reassignment and swap machine neighbourhood.
Preliminary tests show that a greater value of L leads to a slower convergence but to a better
final solution. On six instances of set X, the maximum gap from the BKS is less than 1.5%
but on some instances such as X5, the gap can be very large.

A hybrid method combining integer programming and a late acceptance metaheuristic
with large variable neighbourhood search is proposed by Gogos, Valouxis, Alefragis and
Housos (Team S5). These components are cooperatively executed until the time limit. Even
if the team S5 finds no BKS in either sets, the maximum gap from the BKS is less than
234.94% in the worst case.

Team S25 (Gharbi, Haouari, Mrab and Kharbeche, in this special issue) proposes a mixed
integer linear model for the problem. However, because of the size of the instances, the MIP
is iteratively solved on small subsets of machines and assigned processes. The maximum gap
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ć
(B

os
ni
a)

�
�

D
.M

eh
ta
,B

.O
’s
ul
lu
va
n,

H
.S

im
on
is

(I
re
la
nd

)
�

�
�

W
.J
aś
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from the BKS on seven instances of the X dataset is less than 3.06% but the maximum gap
is significantly larger on some other instances.

A three phase algorithm combining a simulated annealing, steepest descent and linear
model is used by Peekstok and Kuipers (Team S1) Although the initial algorithm took into
account the infeasible solutions, with a penalty cost, because of the size of the solution space
implied, in the final form of the method only feasible solutions are considered. They obtain
one BKS on the instances of dataset X.

Another hybridization of integer programming with a metaheuristic is introduced by de
Oliveira, Lopes, de Noronha, de Morais and de Souza (Team S27). Their iterated local
search using variable neighbourhood descent has a perturbation procedure based on the IP
formulation. They report an average improvement of 63.97% of the initial solution.

A more classical iterated local search is proposed by the team Lu and Whang (Team S37)
exploring three neighbourhoods: process reassignment, 1-1 process swap and 1-2 process
swap. When the incumbent solution is not updated, a random number of moves is applied to
perturb the actual solution. On seven instances of set X, they have less than 4.83% of gap
from the BKS but the maximum gap on all X instances is very large.

Variable neighborhood descent of the Ruiz (Team J14) includes three descent algorithms
which are randomly applied. One of these algorithms is a MIP.

Chemla, Gacias and Gianessi (Team S43) use a local search algorithm that provides a
warm start to a MIP. For large instances, an aggregation phase is needed.

Catusse (Team J38) proposes a hill climbing heuristic using three neighborhoods: Move
changes the assignment of a process from one machine to other, Swap exchanges two
processes of two machines and 2-1 Swap exchanges 2 processes against 1. A new solution is
accepted if it improves the incumbent solution, but sometimes to accelerate the convergence,
a degrading solution may be accepted.

Dudebout, Masson, Michallet, P.H.V. Petrucci, A. Subramanian, T. Vidal (Team J6) give
a hybridization of a large neighborhood search and a local search. Local search uses two
basic moves: Relocation and swap of processes on the machines. The large neighborhood
search iteratively destroys and reconstructs large part of the solution. For the reconstruction,
a mixed integer program is executed.

Alfandari, Butelle, Coti, Finta, Plateau, Roupin and Rozencnop (Team S26, paper in this
special issue) run two heuristics, a large neighborhood search and a simulated annealing, each
one on a different thread, under a framework aiming at electing the best algorithm depending
of the feedback during search, based on ideas close to the hyper-heuristic concept.

Zaourar andGabay (Team J19, in this special issue) propose a greedy randomized adaptive
search procedure for the vector bin packing problem with heterogeneous bin sizes, which
uses a first fit decreasing greedy algorithm for the construction phase. They provide results
on instances of the vector bin packing and show how the heuristics can be adapted to the
challenge problem.

Hanafi, Haschimoto, Nonobe, Vasquez, Vimont andYagiura (Team S21) combine amixed
integer linear formulation and two metaheuristics: iterative local search and tabu search with
reverse eliminationmethod to maintain the tabu list. At each iteration, the incumbent solution
is replaced by the best solution in the union of two neighborhoods: Shift and Swap. A solution
is better if an aggregated objective value is less. Each component of the objective function is
weighted and the weights are updated when a local optimum is found.

Another parallel approach is developed by Tierney, Delgado, Pacino and Malitsky (Team
J5). They propose a large neighborhood search using a mixed integer model in a destruc-
tion/reconstruction principal. Randomly selected variables of the incumbent solution are
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relaxed and MIP is called as a local search operator to find the best values for relaxed vari-
ables. The iterations continue until a termination criteria is met.

Benoist, Estellon, Gardi, Megel, Darlay andNouioua (Team S6) translate the problem into
a binarymodel and run the default search of Local Solver; a commercial solver based on local
search which uses an adaptive simulated annealing as search heuristic. A move of the local
search consists of flipping the values of a certain number of binary variables and computing
the resulting objective function. All moves resulting to the violation of some constraint are
rejected. Other moves are accepted depending on their impact on the objective function.

Clautiaux, Liefooghe, Legillon and E.-G. Talbi (Team S11) propose a method divided into
two phases, applied one after the other, in a sequential way. In the first stage, an iterated local
search algorithm is performed. During the second phase, a heuristic aims at re-balancing the
overload cost over machines. They use an integer programming solver to improve locally the
incumbent solution.

Larose and Posta (Team J10) run a parallel version of the iterative local search on two
threads of the test machine.While iterative local search generates a pool of feasible solutions,
they are improved by a path-relinking phase. One iteration of the path relinking consists
in randomly selecting an initial and guiding solution from the pool. Then it generates a
neighborhood based on moving a process from machine to another.

Chiraphadhanakul and Figueroa (Team J21) decompose the problem into subproblems
to balance the load of a subset of machines and to swap processes following two selection
methods to minimize the overall costs, repeatedly. Each subproblem starts by solving a linear
relaxation of the unconstrained problem to obtain the reduced costs. Then, using the reduced
costs, they estimate how costly it is to assign a process on a particular machine.

6 Concluding remarks

As already mentioned the ROADEF/EURO challenge 2012 was a tremendous success-
ful scientific event. We believe that the numerous proposed methods that includes local
search, metaheuristics, matheuristics, hybrid constraint-programming and integer program-
ming components made a significant advance of the state of the art for industrial virtual
machine reassignment problem.

Further research should concentrate on the dynamic aspects of the problem considering
several reassignment steps over a delimited horizon. This questions predictability aspects and
makes it necessary to propose intelligent reactive procedures as well as robust optimization
methods.

Acknowledgments The authors warmly thank Emmanuel Guere, Google, for his high involvement in the
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