
Ann Oper Res (2016) 237:219–236
DOI 10.1007/s10479-014-1625-3

Portfolio optimization with a copula-based extension
of conditional value-at-risk

Adam Krzemienowski · Sylwia Szymczyk

Published online: 26 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The paper presents a copula-based extension of Conditional Value-at-Risk and its
application to portfolio optimization. Copula-based conditional value-at-risk (CCVaR) is a
scalar risk measure for multivariate risks modeled by multivariate random variables. It is
assumed that the univariate risk components are perfect substitutes, i.e., they are expressed
in the same units. CCVaR is a quantile risk measure that allows one to emphasize the con-
sequences of more pessimistic scenarios. By changing the level of a quantile, the measure
permits to parameterize prudent attitudes toward risk ranging from the extreme risk aversion
to the risk neutrality. In terms of definition, CCVaR is slightly different from popular and
well-researched CVaR. Nevertheless, this small difference allows one to efficiently solve
CCVaR portfolio optimization problems based on the full information carried by a multivari-
ate random variable by employing column generation algorithm.

Keywords Multivariate risk measures · Quantile risk measures · Portfolio optimization ·
Column generation algorithm

1 Introduction

In the business environment enterprises are forced to develop and implement enterprise-
wide integrated risk management systems. Risks have to be limited and managed from an
enterprise-wide portfolio perspective. The increasing amount of risks in today’s market has
increased the demand for risk measurement models and risk management tools. This paper
presents an analytic (quantitative) model for the optimization of a portfolio of risks based on
prudent and complete stochastic information.

The portfolio optimization problem considered in this paper relates to the original
Markowitz (1952) formulation. The original Markowitz portfolio optimization problem is
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modeled as a mean-risk bicriteria optimization problem where the portfolio mean rate of
return is maximized and the risk measured by standard deviation or variance is minimized.
Several other risk measures have been later considered thus creating the entire family of
mean-risk models (Mitra et al. 2003 and references therein). It is often argued that the vari-
ability of the rate of return above the mean should not be penalized, since the investors are
concerned with the underperformance rather than the overperformance of a portfolio. This
led Markowitz (1959) to propose downside risk measures such as (downside) semivariance
to replace variance as the risk measure. Consequently, one observes growing popularity of
downside risk models for portfolio selection (Bawa 1978; Fishburn 1977; Sortino and Forsey
1996).

This paper presents copula-based conditional value-at-risk (CCVaR) as a downside risk
measure. The measure is intended for multidimensional risk measurement, where the risk is
defined as a multivariate random vector whose elements (coordinates) represent risk com-
ponents. It is assumed that the risk components depend on each other in a stochastic sense
and their dependence structure is given by a copula function. It is also assumed that the risk
components are perfect substitutes, i.e., they are expressed in the same units (e.g. monetary).

In order to define the measure, the concept of multivariate quantile is introduced. The
multivariate quantile is defined as a cone covering the worst (smallest) realizations of a mul-
tivariate random variable with a total probability equaling the level of a quantile (throughout
the paper it is assumed that larger outcomes are preferred). CCVaR is a scalar risk measure
defined as the worst expectation within multivariate quantile of a given level. The measure
can be viewed as a prudent variant of multivariate conditional value at risk (MCVaR) intro-
duced by Prékopa (2012), where the conditional expectation of a scalarized random vector
is taken over the entire set of multivariate quantiles.

CCVaR allows one to parameterize prudent attitudes toward risk ranging from the extreme
risk aversion (worst case) to the risk neutrality (expectation) by changing the level of a
quantile. CCVaR is a pessimistic risk measure and it defines almost the same kind of risk
as popular and well-researched conditional value-at-risk (CVaR) (Rockafellar and Uryasev
2000). Specifically, in the univariate case both measures coincide, but in the multivariate
setting they differ due to the different definitions of quantiles. CCVaR uses cones as opposed
to CVaR which uses half-hiperplanes.

An important advantage of CCVaR is its portfolio optimization model which permits one
to efficiently solve real life problems based on the full information carried by a multivariate
random variable. For a discrete multivariate random vector, the CCVaR portfolio optimiza-
tion model is a linear program with an infinite number of constraints. However, the dual
formulation of this model can be efficiently solved by column generation algorithm based
on the Dantzig and Wolfe (1961) decomposition.

The paper is organized as follows. Section 2 presents the definition of CCVaR. Section 3
describes how the measure relates to Conditional Value-at-Risk. Section 4 shows some prop-
erties of the measure in terms of coherent risk measures (Artzner et al. 1997, 1999). Section 5
presents the portfolio optimization model of the measure. Section 6 describes the approx-
imate portfolio optimization algorithm. Section 7 presents the results of the computational
analysis. Finally, some concluding remarks are given.

2 The definition of copula-based conditional value-at-risk

Let us consider an n-dimensional random vector R = (R1, . . . , Rn)
T whose each element

represents a risk component. We restrict the space of risks to R
n-valued random vectors
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R ∈ L1
n(�,F,P) and assume that the risk components are perfect substitutes, i.e., they are

expressed in the sameunits. Let Fi be the cumulative distribution function of Ri , i = 1, . . . , n,
i.e., FRi (η) = P(Ri ≤ η). The randomvariables Ri depend on each other in a stochastic sense
and their dependence structure is given by a copula function C . Specifically, H(ξ, . . . , ζ ) =
C(FR1(ξ), . . . , FRn (ζ )), where H is the joint cumulative distribution function ofR. Further,
let F (−1)

Ri
be the left-continuous inverse of FRi (usually termed as a quantile function), i.e.,

F (−1)
Ri

(p) = inf{η : FRi (η) ≥ p} for 0 < p ≤ 1. In order to define CCVaR, let us introduce
the β-set of univariate quantile levels for β ∈ (0, 1]:

Uβ = {u = (u1, . . . , un)
T : C(u1, . . . , un) = β}.

Definition 1 For a fixed tolerance level β ∈ (0, 1], we define CCVaR (CCVaRβ ) as

CCVaRβ(R) = 1

β
min
u∈Uβ

u1∫

0

· · ·
un∫

0

n∑
i=1

F (−1)
Ri

(pi ) dC(p1, . . . , pn).

Let us associate with any u ∈ Uβ a multivariate β-quantile of R:

Q(u) =
{
(q1, . . . , qn)

T : qi = F (−1)
Ri

(ui ) for i = 1, . . . , n
}
.

If there is no jump at the optimal multivariate β-quantile, CCVaR equals the minimum
expectation of the sum of risk components provided that R ≤ Q(u) for all u ∈ Uβ , i.e.,

CCVaRβ(R) = min
u∈Uβ

E(1TR|R ≤ Q(u)).

Note that CCVaRβ tends to inf(1TR) for β approaching 0 and R bounded from below, and
equals E(1TR) when β = 1. Hence, the measure covers the whole spectrum of prudent
attitudes toward risk ranging from the extreme risk aversion to the complete risk neutrality.

3 A relation to conditional value-at-risk

CVaR (Rockafellar and Uryasev 2000) is a univariate risk measure. For a fixed level
β ∈ (0, 1], we define CVaRβ as the mean within β-quantile, i.e.,

CVaRβ(R) = 1

β

β∫

0

F (−1)
R (p) dp. (1)

CVaR has been proved to be coherent (see, e.g., Pflug 2000), and several empirical analyses
(see, e.g., Andersson et al. 2001; Rockafellar and Uryasev 2002; Mansini et al. 2003) have
confirmed its applicability to various financial optimization problems.

In a multivarite setting, typically we take the sum of risks as an input random variable
passed to CVaR, i.e.,

CVaRβ(1TR) = 1

β

β∫

0

F (−1)
1TR

(p) dp. (2)

Note that although both measures compute the means within specified multivariate quantiles,
CVaR is more prudent than CCVaR. From the formulation (2) it follows that CVaR uses the
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Fig. 1 CVaRβ and CCVaRβ for
the bounded bivariate random
vector

half-hiperplane as a quantile and therefore it collects all the worst cases within a given
tolerance level of β. This is not true in the case of CCVaR which collects only some portion
of the worst cases within a given tolerance level of β, since according to the definition (1) it
uses the cone as a quantile. Therefore, the following assertion is valid.

Proposition 1 For any random vector R and β ∈ (0, 1]
CCVaRβ(R) ≥ CVaRβ(1TR).

Note that in the univariate case both measures coincide, i.e., for any random variable R and
β ∈ (0, 1]

CCVaRβ(R) = CVaRβ(R). (3)

Figure 1 presents the graphical comparison of CVaRβ and CCVaRβ for a bivariate random
vector R bounded from above and below.

Note that it is possible to represent CCVaR in terms of CVaR:

CCVaRβ(R) = 1

β
min
u∈Uβ

u1∫

0

· · ·
un∫

0

n∑
i=1

F (−1)
Ri

(pi ) dC(p1, . . . , pn)

= min
u∈Uβ

⎛
⎝ 1

β

u1∫

0

F (−1)
R1

(p1) dC(p1, . . . , un) + · · ·

+ 1

β

un∫

0

F (−1)
Rn

(pn) dC(u1, . . . , pn)

⎞
⎠

= min
u∈Uβ

n∑
i=1

CVaRβ(Ri ,u). (4)

In the above equation CVaRβ(Ri ,u) corresponds to CVaRβ(Ri ) calculated over some joint
probability depending on u and equaling β.
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4 The properties of copula-based conditional value-at-risk

In this section we state and prove some properties of CCVaR.

Proposition 2 CCVaRβ exhibits the following properties:

(i) CCVaRβ is translation-equivariant, i.e.,

CCVaRβ(R + c) = CCVaRβ(R) + 1T c.

(ii) CCVaRβ is positively homogenous, i.e.,

CCVaRβ(λR) = λCCVaRβ(R),

if λ > 0.
(iii) CCVaRβ in general is not monotonic, i.e., if

R1(ω) ≥ R2(ω) for all ω ∈ �

then not always

CCVaRβ(R1) ≥ CCVaRβ(R2).

(iv) CCVaRβ is superadditive in the following sense:

CCVaRβ(R) ≥
n∑

i=1

CCVaRβ(Ri ).

Proof The properties (i) and (ii) are obvious from the definition of CCVaRβ . Let us show the
counterexample for (iii). Let us consider two random vectors R1 and R2 with the following
distributions:

i R1(ωi ) R2(ωi ) P(ωi )

1 (1, 0)T (1, 0)T 0.1

2 (0, 1)T (0, 1)T 0.1

3 (2, 2)T (1, 1)T 0.8

One sees that R1(ω) ≥ R2(ω) for all ω ∈ �. Let us compute the value of CCVaR0.2(R1):

CCVaR0.2(R1) = 1

0.2

(
(1 + 0) · 0.1 + (0 + 1) · 0.1

)
= 1.

In the case of CCVaR0.2(R2), the probability atoms will split due to the fact that the points
(1,0), (0,1), and (1,1) lie along the perimeter of the cone (multivariate quantile). Therefore
CCVaR0.2(R2) can be obtained as the solution of the following optimization problem:

min
w1,w2

1

0.2

(
(1 + 0) · 0.1w1 + (0 + 1) · 0.1w2 + (1 + 1) · 0.8w1w2

)

s.t. 0.1w1 + 0.1w2 + 0.8w1w2 = 0.2,

0 ≤ wi ≤ 1 for i = 1, 2.

After solving we get CCVaR0.2(R2) = 13/9 > 1 = CCVaR0.2(R1) for either w1 = 1/9 and
w2 = 1, or w1 = 1 and w2 = 1/9. Thus CCVaR is not monotonic. In order to prove the
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property (iv) we use Proposition 1, the relation (3), and the fact that CVaR is supperadditive
when larger outcomes are preferred (see, e.g., Pflug 2000). Therefore we have

CCVaRβ(R) ≥ CVaRβ(1TR) ≥
n∑

i=1

CVaRβ(Ri ) =
n∑

i=1

CCVaRβ(Ri ).

��
Artzner et al. (1997, 1999) call a risk measure coherent, if it is translation-equivariant, posi-
tively homogenous, superadditive, and monotonic. One sees that CCVaRβ is not coherent in
this sense, since it is not monotonic.

Let us consider the following special case related to portfolio optimization further dis-
cussed in Sect. 5. We are interested in selecting the optimal portfolio of risk components Ri

scaled by portfolio weights xi , i.e., in maximizing CCVaRβ(x ◦R), where ◦ is the Hadamard
product operator. Under the above assumption the following assertion is valid.

Proposition 3 CCVaRβ is monotonic for linearly scaled random variables, i.e., if

x ◦ R(ω) ≥ R(ω) for all ω ∈ �

then

CCVaRβ(x ◦ R) ≥ CCVaRβ(R).

Proof Note that the assumption can hold only for x = (xP , xN )T , xP ≥ 1, xN ≤ 1, and
R = (RP ,RN )T , where P and N are index sets defined as follows: P = {i : Ri (ω) ≥ 0
for all ω ∈ �}, N = {i : Ri (ω) ≤ 0 for all ω ∈ �}. It follows from the definition of CCVaRβ

that

CCVaRβ

(
(xP , xN )T ◦ (RP ,RN )T

)
≥ CCVaRβ

(
(RP ,RN )T

)

for any xP ≥ 1 and xN ≤ 1.

��
Hence CCVaR preserves coherency in problems where linear combinations of risk compo-
nents are considered.

Finally, let us address the issue of accuracy of themeasure determined in the computational
process for risk components Ri initially modeled by continuous random variables. We will
consider the following approximations of continuous marginal distributions. Let [ai , bi ] ⊃
Ri , i = 1, . . . , n be the closed subsets partitioned with finite sequences ai = t (1)i < t (2)i <

· · · < t (k)i = bi for some k ∈ N. We will assume that P[ai , t ( j)i ] = FRi (t
( j)
i ) for 1 ≤ j ≤ k.

The approximate random variables will be further denoted by R(k) and random vectors by
R(k), respectively.

Proposition 4 For approximate random vectors we have the following relations:

CCVaRβ(R(k)) ≥ CCVaRβ(R) for any k ∈ N,

CCVaRβ(R(k)) → CCVaRβ(R) when k → +∞.

Proof According to the formula (4) we have:

CCVaRβ(R) = min
u∈Uβ

n∑
i=1

CVaRβ(Ri ,u).
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Note that CVaRβ(R(k)
i ,u) ≥ CVaRβ(Ri ,u) for any k ∈ N due to the fact that F (−1)

R(k)
i

(p) ≥
F (−1)
Ri

(p) for all p ∈ (0, 1]. These two functions coincide when k → +∞. ��

5 The portfolio optimization model

The portfolio optimization problem considered in this paper is based on a single periodmodel
of investment. Let x = (x1, . . . , xn)T denote a portfolio of assets with xi being the position
in an asset i . The portfolio x belongs to the feasible set P which in the simplest form is
defined as:

P =
{
x :

n∑
i=1

xi = 1, xi ≥ 0 for i = 1, . . . , n

}
. (5)

A decision maker usually needs to consider some other requirements expressed as a set of
additional side constraints. It is hereafter assumed that P is a general polyhedral set given in
a linear programming (LP) canonical form as a system of linear equations with nonnegative
variables:

P = {x : Ax = b, x ≥ 0},
where A is a given k × n matrix, and b = (b1, . . . , bk)T is a given right-hand side vector.
The rate of return of each asset is given by a random variable Ri . Let R denote a vector of
risk components represented by Ri .

Following the seminal work by Markowitz (1952), the portfolio optimization problem is
modeled as a mean-risk bicriteria optimization problem. Below we present the most pru-
dent approach to portfolio optimization involving optimization of a risk measure only, which
allows one to determine the maximum safety portfolios. Thus, the following portfolio opti-
mization problem will be considered:

max{CCVaRβ(x ◦ R) : x ∈ P}. (6)

Based on the representation (4) and the fact that CVaR is positively homogenous (see, e.g.,
Pflug 2000), the problem (6) can be rewritten as:

max

{
min
u∈Uβ

n∑
i=1

xiCVaRβ(Ri ,u) : x ∈ P
}
.

The above problem for the simplest feasible set (5) leads to the following LP:

max
z,xi

z

s.t. z ≤
n∑

i=1

xiCVaRβ(Ri ,u j ) for all j : u j ∈ Uβ, (7)

n∑
i=1

xi = 1,

xi ≥ 0 for i = 1, . . . , n.

This representation is not well defined due to the fact that it uses an infinite number of
constraints to model CCVaRβ , since |Uβ | = +∞. At the optimum, the variable z takes the
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maximum value of CCVaRβ . Let us consider the following dual problem associated with the
LP (7):

min
v,s j

v

s.t. v ≥
∑

j :u j∈Uβ

s jCVaRβ(Ri ,u j ) for i = 1, . . . , n, (8)

∑
j :u j∈Uβ

s j = 1,

s j ≥ 0 for all j : u j ∈ Uβ .

The model (8) consists of an infinite number of variables and n+1 constraints. This structure
allows us to solve the problem (8) by column generation algorithm. The pricing subproblem
associated with the problem (8) can be stated as:

min
ui

n∑
i=1

πiCVaRβ(Ri , (u1, . . . , un)
T ) − πn+1

s.t. C(u1, . . . , un) = β, (9)

β ≤ ui ≤ 1 for i = 1, . . . , n,

where πi are dual prices determined by (8).
Before we continue with (9), let us recall the CVaR optimization model. The CVaR def-

inition (1) translates into the following optimization problem (Ogryczak and Ruszczyński
2002):

CVaRβ(R) = max
η∈R

{
η − 1

β
E(η − R)+

}
,

where (·)+ = max{·, 0}. The above problem for a discrete random variable R represented
by its realizations rt with probabilities pt , t = 1, . . . ,m, can be stated as:

CVaRβ(R) = max
η∈R

{
η − 1

β

m∑
t=1

max{η − rt , 0}pt
}
.

It corresponds to the following LP:

max
η,dt

η − 1

β

m∑
t=1

dt pt

s.t. dt ≥ η − rt , dt ≥ 0 for t = 1, . . . ,m,

where η is an auxiliary (unbounded) variable. The optimal value of η represents the value of
β-quantile of R. This representation uses m + 1 variables and m constraints to model CVaR.

Coming back to the formulation (9), let us assume that randomvariables Ri are represented
by the following discrete distributions:

P(Ri = ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi1, ξ = ri1
. . . , . . .

pit , ξ = rit
. . . , . . .

pim, ξ = rim,

(10)
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where ri1 ≤ · · · ≤ rit ≤ · · · ≤ rim . Let us initially assume that the conditional joint
probabilities associated with realizations rit are correctly given by the values qit . In this case,
the constraints in (9) are satisfied and do not need to be taken into account. The problem (9)
can be expressed then as the following LP:

max
ηi ,dit

n∑
i=1

πi

(
ηi − 1

β

m∑
t=1

ditqit

)
− πn+1

s.t. dit ≥ ηi − rit , dit ≥ 0 for i = 1, . . . , n and t = 1, . . . ,m. (11)

Note that the problem (11) is maximization one as opposed to (9) and the probabilities qit
need to be determined automatically by optimization. Moreover, the above problem is an LP
for given probabilities qit , whereas it becomes nonlinear for variable qit . All these difficulties
can be overcome by taking advantages of the LP dual to (11):

min
yit

n∑
i=1

m∑
t=1

rit yi t − πn+1

s.t.
m∑
t=1

yit = πi for i = 1, . . . , n, (12)

0 ≤ yit ≤ πi qit
β

for i = 1, . . . , n and t = 1, . . . ,m.

We can extend the problem (12) with the set of constraints that allow us to determine the
probabilities qit :

min
yit ,qit ,ui

n∑
i=1

m∑
t=1

rit yi t − πn+1

s.t.
m∑
t=1

yit = πi for i = 1, . . . , n,

0 ≤ yit ≤ πi qit
β

for i = 1, . . . , n and t = 1, . . . ,m, (13)

C(u1, . . . ,
t∑

j=1

pi j , . . . , un) −
t∑

j=2

qi, j−1 = qit

for i = 1, . . . , n and t = 1, . . . ,m,

C(u1, . . . , un) = β,

β ≤ ui ≤ 1 for i = 1, . . . , n.

Now the problem (13) corresponds to the pricing subproblem (9) for random variables Ri

represented by the discrete distributions (10). At the optimum, the variables ui take the values
of cumulative distribution functions FRi . Note that the above model is no longer LP due to
the nonlinearity and non-convexity of a copula function C . If the value of the objective
function is less than 0, then the optimal values of 1

πi

∑m
t=1 rit yi t represent the coefficients

CVaRβ(Ri ,u j ) of the j-th column to be inserted to the restricted master problem (8) of
column generation algorithm. Otherwise the initial optimization problem (7) is solved. In the
latter case the optimal portfolio weights are represented by the coefficients πi , whereas the
optimal value of CCVaRβ is represented by the coefficient πn+1.
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6 The approximate portfolio optimization algorithm

Column generation algorithm requires a solution of the pricing subproblem (13) which is
difficult to solve due to the nonlinearity and non-convexity of a copula function C . We need
a heuristic that will allow us to efficiently solve the CCVaR portfolio optimization problem
(8). Let us rewrite the initial pricing subproblem (9):

min
ui

n∑
i=1

πiCVaRβ(Ri , (u1, . . . , un)
T ) − πn+1

s.t. C(u1, . . . , un) = β, (14)

β ≤ uτ(i) ≤ 1 for i = 1, . . . , n.

The last n constraints are ordered by πi in non-ascending order represented by a permutation
τ of the index set {i : 1, . . . , n}. The constraints of the problem (14) have to be satisfied.

Let us consider the following auxiliary optimization problem:

min
ui

(C(u1, . . . , un) − β)2

s.t. β ≤ uτ(i) ≤ min{b(i), 1} for i = 1, . . . , n. (15)

When the objective function of the problem (15) attains the value of zero, the level of a
quantile is equal to β. Our goal is to find a vector u� = (u1, . . . , un)T for which the value of
the objective function of the problem (14) is negative and as small as possible. The vector u�

can be found through the iterative solution of the problem (15) with the values of b(i) given
by the heuristic formula:

b(i) = β + shi f t + slope
(bulgei−1 − 1)(1 − β)

bulgen−1 − 1
, (16)

where shift, slope, and bulge are random parameters. For given sets of parameters shift ≥ 0,
slope ≥ 0, and bulge > 0, bulge �= 1, we obtain various values of b(i) ≥ β, as presented in
Fig. 2, and different vectors u at the optimum.

Note that the upper bounds in (15) defined by the function (16) ensure that the largest
πi -s in (14) representing nonnegative portfolio shares receive the smallest weights given by
CVaRβ(Ri ,u). For u� the value of the objective function of the problem (14) approximates
the minimum.

In order to determine the value of the objective function of the problem (14) we need
to calculate the values of CVaRβ(Ri ,u). The procedure that calculates the single value
of CVaRβ(Ri ,u) for a random variable Ri represented by the discrete distribution (10) is
summarized in Algorithm 1.

The above way of solving the initial pricing subproblem (9) does not guarantee achieving
the optimal result of the problem (7). But surely the calculated value is the upper bound of the
optimal value of the problem (7),which follows from the fact thatwe solve its dual formulation
(8). Below is the complete approximate algorithm for CCVaR portfolio optimization.

The approximate algorithm for CCVaR portfolio optimization

Step 1 Create i = 1, . . . , n initial vectors ui = (1, . . . , β, . . . 1)T with β placed on
the i-th position. Compute values of CVaRβ(Ri ,ui ) using Algorithm 1 and set up the
restricted master problem (8).
Step 2 Solve the restricted master problem (8) in order to determine the dual prices πi .

123



Ann Oper Res (2016) 237:219–236 229

Fig. 2 Values of b(i) for β = 0.1 and three different sets of parameters shift, slope, and bulge

Algorithm 1 Calculation algorithm for CVaRβ(Ri ,u)

Require: Tolerance level β ∈ (0, 1], discrete distribution for Ri , copula function C , C(u) = β

t ← 1
pi ← pit
qi ← 0
level ← β

sum ← 0
while level > 0 do
qit ← C(u1, . . . , pi , . . . , un) − qi
qi ← qi + qit
if qit < level then
sum ← sum + qit ri t

else
sum ← sum + level · rit

end if
t ← t + 1
pi ← pi + pit
level ← β − qi

end while
CVaRβ(Ri , u) ← sum

β

Step 3 Determine the values of the objective function of the problem (14) for several
different vectors u. Retain the smallest value of the objective function along with the
corresponding values of CVaRβ(Ri ,u) to be further inserted to the restricted master
problem (8) as a new column. In order to solve the problem (14), perform the following
steps:

1. Get a vector of u by solving the auxiliary optimization problem (15) for assumed
values of shift, slope, and bulge.

2. Determine the value of the objective function of the problem (14) using Algorithm 1.

Step 4 If the smallest value of the objective function of the problem (14) obtained in Step
3 is negative, insert a new column to the restricted master problem (8) and go to Step 2.
Otherwise the optimal value of CCVaRβ is represented by the coefficient πn+1, wheras
the optimal portfolio weights are represented by the coefficients πi .
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7 Computational results

The computational analysis has been conducted using the approximate algorithm for CCVaR
portfolio optimization, as described in the previous section, and the CVaR dual LP portfolio
optimization model developed by Ogryczak and Śliwiński (2011). Both approaches corre-
spond to each other, since they allow one to determine the maximum safety portfolios. The
CVaR dual portfolio optimization model for a random vector R represented by the discrete
distribution

P(R = r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1, r = (r11, . . . , ri1, . . . , rn1)T

. . . , . . .

pt , r = (r1t , . . . , rit , . . . , rnt )T

. . . , . . .

pm, r = (r1m, . . . , rim, . . . , rnm)T

takes the following form:
min
v,st

v

s.t. v −
m∑
t=1

rit st ≥ 0 for i = 1, . . . , n, (17)

m∑
t=1

st = 1,

0 ≤ st ≤ pt/β for t = 1, . . . ,m.

In the above formulation rit denotes the rate of return of the i-th asset for the realization t of
the random vector R, pt denotes the probability of the realization t , β denotes the tolerance
level of CVaR. The dual prices associated with the constraints (17) correspond to optimal
portfolio shares. Note that the abovemodel containsm constraints that take the form of simple
upper bounds (SUB) on st thus not affecting the problem complexity. Actually, the number
of constraints in (17) is proportional to the total number of assets n, thus it is independent
from the number of realizationsm of the random vectorR. Exactly, there arem+1 variables
and n + 1 constraints. This guarantees a high computational efficiency of the model even for
a very large number of realizations of the random vector R.

A PC with a 2 GHz Intel Core Duo processor and 2 GB RAM has been used to run an
application written in Matlab by using the Global Optimization Toolbox and the IBM ILOG
CPLEX optimizer version 12.2. The computations have been conducted for the following
marginal distributions: log-normal, Gaussian, and Student’s t with 4 degrees of freedom. The
values of realizations have been limited to the range [−1, 3] so as to cover the typical asset
returns. The distributions had different expectations and standard deviations.

CCVaR has been calculated for the parameter β ∈ {0.01, 0.1} and the following copula
functions: Clayton, Frank, and Gumbel. The marginal distributions have been approximated
by discrete distributions with 100 and 500 realizations. The pricing subproblem has been
evaluated 15 times in each iteration of column generation algorithm. In turn CVaR has been
calculated for identical betas and 100,000 randomvariates drawn from the considered discrete
multivariate distributions. Both measures have been used to determine optimal portfolios for
10 and 100 assets.

The results of CCVaR optimization for log-normal marginal distributions are shown in
Table 1. Table 1 consists of ten columns showing: the name and the parameter θ of a cop-
ula function, the parameter β of a risk measure, the number of assets (n), the number of
realizations of a marginal distribution (m), the value of CCVaR, the portfolio diversification
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Table 1 CCVaR optimization results for log-normal marginal distributions

Copula θ β n m CCVaR Div. Shares Time (s)

# Max Min

Clayton 2 0.1 10 100 0.234 3 0.950 0.018 6.0

100 100 0.322 2 0.530 0.470 54.3

100 500 0.251 11 0.099 0.084 267.7

0.01 10 100 0.160 1 1.000 1.000 1.3

100 100 0.163 2 0.862 0.138 46.6

100 500 0.100 4 0.289 0.213 222.5

10 0.1 10 100 0.218 2 0.661 0.339 1.0

100 100 0.239 1 1.000 1.000 22.8

100 500 0.213 1 1.000 1.000 109.2

0.01 10 100 0.120 1 1.000 1.000 0.7

100 100 0.160 1 1.000 1.000 17.7

100 500 0.103 1 1.000 1.000 81.3

Frank 9 0.1 10 100 0.265 6 0.256 0.088 10.9

100 100 0.327 8 0.160 0.099 57.5

100 500 0.322 15 0.074 0.061 292.0

0.01 10 100 0.195 8 0.207 0.044 8.0

100 100 0.286 11 0.128 0.073 58.5

100 500 0.279 16 0.070 0.055 286.4

Gumbel 5 0.1 10 100 0.215 3 0.705 0.107 5.8

100 100 0.268 3 0.428 0.280 48.1

100 500 0.243 7 0.174 0.118 237.9

0.01 10 100 0.092 3 0.540 0.144 6.5

100 100 0.175 3 0.597 0.195 37.2

100 500 0.125 7 0.154 0.135 178.9

(div.), the maximum and minimum share within the portfolio, and the computation time in
seconds. Similar results are presented in Table 2 for CVaR. The results for CVaR are averages
computed over 50 estimations. The results for Gaussian and Student’s t distribution for both
measures are reported in Appendix.

Analyzing the results one may observe that they are not consistent with Proposition 1. We
have got an opposite relation, i.e.,

CCVaRβ(R) < CVaRβ(1TR).

Note that the approximate algorithm for CCVaR portfolio optimization computes the upper
bound of CCVaRβ . Thus, the actual values of CCVaRβ could have been even lower than
those reported. Moreover, according to Proposition 4 the above relation is not caused by
the discretization of continuous marginal distributions. Sparse discretization would increase
the value of CCVaRβ as one can observe for n = 100 and m ∈ {100, 500}. The above
relation follows from the fact the CVaR underestimates risk, since its calculation is based on
an insignificant amount of information. Due to the computational limitations of the CVaR
dual portfolio optimization model, only 100,000 discrete realizations have been taken from
multivariate distributions consisting of mn realizations, where m ∈ {100, 500} and n ∈
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Table 2 CVaR optimization results for log-normal marginal distributions

Copula θ β n m CVaR Div. Time (s)

Mean Max Min Mean

Clayton 2 0.1 10 100 0.771 0.773 0.769 10.0 24.6

100 100 1.320 1.334 1.230 95.0 197.8

100 500 1.316 1.317 1.314 100.0 182.1

0.01 10 100 0.559 0.561 0.556 10.0 6.2

100 100 1.175 1.177 1.172 99.0 78.5

100 500 1.178 1.181 1.173 100.0 79.8

10 0.1 10 100 1.014 1.015 1.009 10.0 27.4

100 100 1.441 1.443 1.440 100.0 202.2

100 500 1.303 1.304 1.302 100.0 196.9

0.01 10 100 0.742 0.749 0.738 10.0 6.2

100 100 1.294 1.299 1.291 100.0 82.4

100 500 1.168 1.170 1.165 100.0 77.9

Frank 9 0.1 10 100 0.816 0.818 0.813 100.0 29.8

100 100 1.236 1.237 1.235 100.0 182.1

100 500 1.200 1.201 1.199 100.0 196.6

0.01 10 100 0.620 0.624 0.615 10.0 6.8

100 100 1.108 1.111 1.105 100.0 74.2

100 500 1.073 1.074 1.072 100.0 76.6

Gumbel 5 0.1 10 100 0.863 0.865 0.859 10.0 30.6

100 100 1.326 1.327 1.325 100.0 204.7

100 500 1.331 1.333 1.329 100.0 206.9

0.01 10 100 0.630 0.633 0.624 10.0 6.3

100 100 1.200 1.203 1.196 100.0 79.1

100 500 1.174 1.177 1.169 100.0 74.9

{10, 100}. In order to experimentally show the validity of Proposition 1, additional tests
have been carried out for smaller problems with n = 5 and m = 10 covering all the discrete
realizations of a multivariate random variable. The results presented in Table 3 show that in
this case the relation between measures is consistent with Proposition 1.

Another observation is an excessive diversification of CVaR portfolios, which is not the
case for CCVaR. For each multivariate distribution the mean diversification of CVaR portfo-
lios is almost 100 %.

Table 3 CVaR and CCVaR
optimization results for n = 5
and m = 10

Measure β Value Div. # Time (s)

CVaR 0.1 −0.077 5 7.8

CCVaR 0.235 5 3.2

CVaR 0.01 −0.340 5 4.1

CCVaR −0.261 4 1.9

CVaR 0.001 −0.508 5 3.8

CCVaR −0.391 3 1.4
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The computation time has also been taken into account as an important performance
criterion. The CCVaR optimal portfolios for the largest tested multivariate distributions (n =
100 and m = 500) have been determined in 3.5 min on average. The computation time for
all the tested CCVaR models never exceeded 12 min.

8 Concluding remarks

In this paper, we presented an analytic model for the optimization of a portfolio of risks based
on prudent and complete stochastic information. The model uses a copula-based extension
of CVaR. CVaR gained popularity in many practical applications, because it is coherent and,
as a downside risk measure, allows one to emphasize the consequences of more pessimistic
scenarios. In portfolio selection problems, CVaR leads to linear programming optimization
models. In typical real life problems, the high computationally efficient formulations of these
models can account only for a small amount of information upon which decisions are made,
and consequently, theymay be far frombeing optimal. CCVaR solves this problem as it allows
one to efficiently determine the optimal portfolio of risks based on the full information carried
by a multivariate random variable.
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Appendix: CCVaR nad CVaR optimization results for Gaussian and Student’s
t marginal distributions

See Tables 4, 5, 6 and 7.

Table 4 CCVaR optimization results for Gaussian marginal distributions

Copula θ β n m CCVaR Div. Shares Time (s)

# Max Min

Clayton 2 0.1 10 100 −0.692 7 0.202 0.030 13.9

100 100 −0.487 5 0.211 0.192 53.3

100 500 −0.490 5 0.204 0.192 249.9

0.01 10 100 −0.970 6 0.242 0.047 5.1

100 100 −0.939 5 0.210 0.190 43.9

100 500 −0.917 3 0.352 0.300 205.2

10 0.1 10 100 −0.602 1 1.000 1.000 1.0

100 100 −0.554 1 1.000 1.000 17.0

100 500 −0.596 2 0.507 0.493 74.7

0.01 10 100 −0.973 1 1.000 1.000 0.7

100 100 −0.962 1 1.000 1.000 4.3

100 500 −0.935 1 1.000 1.000 10.7
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Table 4 continued

Copula θ β n m CCVaR Div. Shares Time (s)

# Max Min

Frank 9 0.1 10 100 −0.489 8 0.178 0.034 10.7

100 100 −0.336 12 0.089 0.080 58.8

100 500 −0.304 8 0.129 0.121 670.5

0.01 10 100 −0.653 5 0.267 0.006 4.6

100 100 −0.460 11 0.097 0.076 57.2

100 500 −0.428 9 0.122 0.103 275.6

Gumbel 5 0.1 10 100 −0.632 3 0.371 0.303 5.6

100 100 −0.558 4 0.262 0.241 51.3

100 500 −0.512 3 0.349 0.325 233.0

0.01 10 100 −0.942 7 0.169 0.076 3.7

100 100 −0.878 11 0.098 0.076 36.6

100 500 −0.864 5 0.222 0.176 168.6

Table 5 CVaR optimization results for Gaussian marginal distributions

Copula θ β n m CVaR Div. Time (s)

Mean Max Min Mean

Clayton 2 0.1 10 100 0.204 0.215 0.196 10.0 29.4

100 100 0.821 0.823 0.820 100.0 206.4

100 500 0.490 0.492 0.489 100.0 198.3

0.01 10 100 −0.315 −0.306 −0.327 10.0 6.3

100 100 0.661 0.666 0.658 100.0 73.5

100 500 0.333 0.336 0.330 100.0 111.0

10 0.1 10 100 −0.199 −0.055 −0.834 10.0 20.5

100 100 0.479 0.481 0.477 100.0 173.2

100 500 0.083 0.084 0.080 100.0 196.8

0.01 10 100 −0.509 −0.498 −0.518 10.0 5.6

100 100 0.332 0.336 0.325 100.0 77.6

100 500 −0.073 −0.068 −0.077 100.0 105.8

Frank 9 0.1 10 100 −0.309 −0.307 −0.313 10.0 31.6

100 100 0.782 0.783 0.778 100.0 177.1

100 500 −0.103 −0.102 −0.104 100.0 186.2

0.01 10 100 −0.624 −0.618 −0.628 10.0 6.8

100 100 0.638 0.641 0.636 100.0 71.7

100 500 −0.221 −0.217 −0.224 100.0 89.8

Gumbel 5 0.1 10 100 −0.105 −0.102 −0.110 10.0 27.2

100 100 −0.157 −0.156 −0.157 100.0 191.3

100 500 0.239 0.240 0.237 100.0 174.2

0.01 10 100 −0.451 −0.441 −0.454 10.0 5.3

100 100 −0.253 −0.251 −0.254 100.0 98.9

100 500 0.070 0.074 0.066 100.0 74.2
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Table 6 CCVaR optimization results for Student’s t marginal distributions

Copula θ β n m CCVaR Div. Shares Time (s)

# Max Min

Clayton 2 0.1 10 100 −0.725 3 0.706 0.007 6.3

100 100 −0.631 5 0.266 0.121 50.2

100 500 −0.696 8 0.136 0.107 255.8

0.01 10 100 −0.876 2 0.531 0.469 1.6

100 100 −0.827 2 0.554 0.446 35.4

100 500 −0.944 5 0.256 0.137 174.0

10 0.1 10 100 −0.755 2 0.561 0.439 2.2

100 100 −0.570 1 1.000 1.000 11.7

100 500 −0.784 2 0.507 0.493 53.5

0.01 10 100 −0.840 1 1.000 1.000 0.5

100 100 −0.760 1 1.000 1.000 2.9

100 500 −0.942 1 1.000 1.000 7.1

Frank 9 0.1 10 100 −0.652 6 0.233 0.028 10.3

100 100 −0.447 7 0.191 0.109 53.9

100 500 −0.571 15 0.074 0.059 282.9

0.01 10 100 −0.757 7 0.204 0.071 8.6

100 100 −0.589 14 0.082 0.063 52.7

100 500 −0.655 18 0.063 0.050 267.2

Gumbel 5 0.1 10 100 −0.723 3 0.420 0.228 5.2

100 100 −0.683 4 0.327 0.205 37.0

100 500 −0.907 4 0.330 0.213 124.8

0.01 10 100 −0.954 5 0.259 0.083 6.1

100 100 −0.823 3 0.564 0.189 25.9

100 500 −0.707 5 0.232 0.173 180.9

Table 7 CVaR optimization results for Student’s t marginal distributions

Copula θ β n m CVaR Div. Time (s)

Mean Max Min Mean

Clayton 2 0.1 10 100 −0.710 −0.706 −0.714 10.0 28.4

100 100 −0.282 −0.280 −0.284 100.0 179.4

100 500 −0.238 −0.236 −0.241 100.0 210.4

0.01 10 100 −1.053 −1.046 −1.059 10.0 5.2

100 100 −0.427 −0.423 −0.429 100.0 84.1

100 500 −0.371 −0.367 −0.374 100.0 78.0

10 0.1 10 100 −0.822 −0.817 −0.828 10.0 27.3

100 100 −0.224 −0.223 −0.225 100.0 180.7

100 500 −0.197 −0.196 −0.198 100.0 173.8

0.01 10 100 −1.248 −1.241 −1.253 10.0 5.2

100 100 −0.343 −0.340 −0.345 100.0 82.3

100 500 −0.312 −0.308 −0.315 100.0 75.4
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Table 7 continued

Copula θ β n m CVaR Div. Time (s)

Mean Max Min Mean

Frank 9 0.1 10 100 −0.860 −0.855 −0.865 9.7 27.6

100 100 −0.139 −0.138 −0.140 98.4 175.4

100 500 −0.253 −0.251 −0.255 100.0 175.5

0.01 10 100 −1.274 −1.261 −1.283 10.0 6.2

100 100 −0.255 −0.253 −0.257 99.7 86.2

100 500 −0.380 −0.377 −0.383 100.0 73.8

Gumbel 5 0.1 10 100 −0.720 −0.714 −0.723 10.0 29.2

100 100 −0.274 −0.273 −0.275 100.0 187.2

100 500 −0.266 −0.264 −0.266 100.0 179.1

0.01 10 100 −1.116 −1.111 −1.123 100.0 4.6

100 100 −0.404 −0.400 −0.407 100.0 90.1

100 500 −0.389 −0.386 −0.392 100.0 75.6
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