
Ann Oper Res (2012) 198:57–82
DOI 10.1007/s10479-011-0846-y

Time-limited polling systems with batch arrivals
and phase-type service times

Ahmad Al Hanbali · Roland de Haan ·
Richard J. Boucherie · Jan-Kees van Ommeren

Published online: 27 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this paper, we develop a general framework to analyze polling systems with
either the autonomous-server or the time-limited service discipline. According to the
autonomous-server discipline, the server continues servicing a queue for a certain period
of time. According to the time-limited service discipline, the server continues servicing a
queue for a certain period of time or until the queue becomes empty, whichever occurs first.
We consider Poisson batch arrivals and phase-type service times. It is known that these dis-
ciplines do not satisfy the well-known branching property in polling systems. Therefore,
hardly any exact results exist in the literature. Our strategy is to apply an iterative scheme
that is based on relating in closed-form the joint queue-lengths at the beginning and the end
of a server visit to a queue. These kernel relations are derived using the theory of absorbing
Markov chains.

Keywords Absorbing Markov chains · Matrix analytic solution · Polling system ·
Autonomous server discipline · Time limited discipline · Poisson batch arrivals ·
Phase-type service times · Iterative scheme · Performance analysis

1 Introduction

Polling systems have been extensively studied in the last years due to their vast area of
applications in production and telecommunication systems (Levy and Sidi 1990; Takagi
2000). They offer an adequate modeling framework to analyze systems in which a set of

A. Al Hanbali · R. de Haan · R.J. Boucherie · J.-K. van Ommeren (�)
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: J.C.W.vanOmmeren@utwente.nl

A. Al Hanbali
e-mail: a.alhanbali@utwente.nl

R. de Haan
e-mail: R.deHaan@utwente.nl

R.J. Boucherie
e-mail: R.J.Boucherie@utwente.nl

mailto:J.C.W.vanOmmeren@utwente.nl
mailto:a.alhanbali@utwente.nl
mailto:R.deHaan@utwente.nl
mailto:R.J.Boucherie@utwente.nl

58 Ann Oper Res (2012) 198:57–82

entities need certain service from a single resource. These entities are located at different
positions in the system awaiting their turn to receive service.

In queueing theory, a polling system is equivalent to a set of queues with exogenous
job arrivals all requiring service from a single server. The server serves each queue ac-
cording to a specific service discipline and after serving a queue he will move to a next
queue. A tractable analysis of a polling system is possible if the system satisfies the so-
called branching property (Resing 1993). This property states that each job present at a
queue at the arrival instant of the server will be replaced in an independent and identically
distributed manner by a random number of jobs during the course of the server’s visit. For
disciplines not satisfying this property hardly any exact results are known.

The two most well-known disciplines that satisfy the branching property are the exhaus-
tive and gated discipline. Exhaustive means that the server continues servicing a queue until
it becomes empty. At this instant the server moves to the next queue in his schedule. Gated
means that the server only serves the jobs present in the queue upon its arrival.

The drawback of the exhaustive and gated disciplines is that the server is controlled by the
presence of jobs in the queues. To reduce this control on the server, other types of service
disciplines were introduced such as the time-limited or the k-limited discipline. Accord-
ing to the time-limited discipline, the server continues servicing a queue for a certain time
period or until the queue becomes empty, whichever occurs first. Under the k-limited disci-
pline, the server continues servicing a queue until k jobs are served or the queue becomes
empty, whichever occurs first. Another discipline, evaluated more recently in the literature
and closely related to the time-limited discipline, is the so-called autonomous-server disci-
pline (Al Hanbali et al. 2008a; de Haan et al. 2009), where the server stays at a queue for a
certain period of time, even if the queue becomes empty. This discipline may also be seen as
the non-exhaustive time-limited discipline. We should emphasize that these latter disciplines
do not satisfy the branching property and thus hardly any closed-form results are known for
the queue-length distribution under these disciplines.

To circumvent this difficulty, researchers resort to numerical methods using for instance
iterative solution techniques or the power series algorithm. The power series algorithm
(Blanc 1992a, 1992b, 1998) aims at solving the global balance equations. To this end, the
state probabilities are written as a power series and via a complex computation scheme the
coefficients of these series, and thus the queue-length probabilities, are obtained. The iter-
ative techniques (Leung 1991, 1994) exploit the relations between the joint queue-length
distributions at specific instants, viz., the start of a server visit and the end of a server visit.
The relation between the queue-length at the start and end of a visit to a queue is established
via recursively expressing the queue-length at a job departure instant in terms of the queue-
length at the previous departure instant of a job. The complementary relation, between the
queue-length at the end of a visit to a queue and a start of a visit to a next queue, can easily
be established via the switch-over time. Starting with an initial distribution, the stationary
queue-length distribution is then obtained by means of iteration. For the autonomous server
discipline, the authors in de Haan et al. (2009) followed a similar iterative technique to those
in Leung (1991, 1994). For the k-limited discipline, the authors in van Vuuren and Winands
(2007) proposed an iterative approximation that is based on a matrix geometric method.
Although these methods offer a way to numerically solve intrinsically hard systems, their
solution provides little fundamental insight. Recently, the author in Van Houdt (2010) pro-
posed a numerical solution for the discrete-time Bernoulli polling systems that is based on
the iterative power method. The Bernoulli service discipline includes as a particular case the
exhaustive and k-limited discipline but not the time-limited discipline. In Sect. 7 we shall
show that the performance of the algorithm in Van Houdt (2010) when it is applied to the
exhaustive polling system is comparable to our numerical scheme.

Ann Oper Res (2012) 198:57–82 59

Under the assumption of exponential service times, we derived in Al Hanbali et al.
(2008b) a direct and more insightful relation between the joint number of jobs at the be-
ginning and end of a server visit to a queue for the autonomous-server, the time-limited, and
the k-limited discipline. This is done using a matrix analytic approach. In the same paper,
we also re-derived a result of Yechiali and Eliazar (1998) for the exhaustive time-limited
discipline for the special case of exponential service times. The latter article studied the ex-
haustive time-limited discipline with the preemptive service. Observing that upon successful
service completion at a queue the busy period in fact regenerates, the authors could obtain
a closed-form relation between the joint queue-lengths at the end and the beginning of a
server visit. In de Haan (2009, Chap. 5) all these results were extended by including routing
of jobs between the different queues. This is done by constructing Markov chains at specific
embedded epochs and subsequently relating the states at these epochs.

In this paper, we develop a framework to analyze the autonomous server and the time-
limited polling systems with Poisson batch arrivals and phase-type service times. Our frame-
work incorporates an iterative solution method which enhances the method introduced in Le-
ung (1991, 1994) and more recently in de Haan et al. (2009). More specifically, contrary to
that approach, we will establish a direct relation between the joint number of jobs at the be-
ginning and end of a server visit to a queue without conditioning on any intermediate events
that occur during a visit. To this end, we use the theory of absorbing Markov chains (AMC)
(Grinstead and Snell 1997; Neuts 1981). We construct an AMC whose transient states rep-
resent the states of the polling system. The event of the server leaving a queue is modeled
as an absorbing event. We will set the initial state of the AMC to the joint number of jobs at
the beginning of a service period of a queue. Therefore, to find the joint number of jobs at
the end of a service period, it is sufficient to keep track of the state from which the transition
to the absorption state occurs. The probability of the latter event is eventually determined
by first ordering the states in a careful way and consequently exploiting the structures that
arise in the generator matrix of the AMC. Following this approach, we relate in closed-form
the joint queue-length probability generating functions (p.g.f.) at the end of a visit period
to a queue to the joint queue-length p.g.f. at the beginning of this visit period. The major
part of this paper is devoted to deriving these kernel relations for the above-mentioned two
disciplines: autonomous-server and time-limited.

Once the kernel relations are obtained, the joint queue-length distribution at the server
departure instants is readily obtained via a numerical iterative scheme. In few words, the
numerical scheme works as follows. We start with an empty system. Second, we use the
kernel relations to numerically compute the joint queue-length generating function at the
server departure instant from a queue, say queue 1. Third, we numerically compute from
the last generating function the joint queue-length generating function at the beginning of
the server visit to queue 2 based on the Laplace-Stieltjes transform of the switch-over time.
Then, we repeat the second and the third step for queue 2, then 3, etc. Whenever the queue
index exceeds the number of queues in the system we re-initialize it to 1, and we say that
the scheme has completed one computation cycle. We repeat the computation cycle multiple
times until the system converges within a predefined numerical precision. When the conver-
gence occurs, our scheme yields the joint queue-length distribution at the server departure
instants from the queues. We numerically investigate the computational costs of the scheme
for different parameters settings. See Sects. 5 and 6 for more details.

Although we have developed our framework for the case of autonomous-server and time-
limited systems, our framework is generally applicable to analyze other branching and non-
branching type polling systems. The key step is the correct ordering of the states that allows
us to invoke the theory of absorbing Markov chains in order to relate in closed-form the joint
number of jobs in the system at the beginning and end of a server visit to a queue.

60 Ann Oper Res (2012) 198:57–82

The paper is organized as follows. In Sect. 2 we give a detailed description of the model
and the assumptions. Section 3 analyzes the autonomous-server discipline. In Sect. 4 we
study the time-limited discipline. In Sect. 5 we describe the iterative scheme that is important
to compute the joint queue-length distribution. Section 6 focuses on the scheme computation
cost as function of the system parameters. In Sect. 7 we compare the computation cost of
our scheme with other existing algorithm. Section 8 discusses some possible extensions of
the scheme. Finally, in Sect. 9, we conclude the paper and give some research directions.

2 Model

We consider a single-server polling model consisting of M first-in-first-out (FIFO) queues
with unlimited queue size. We refer to the ith queue as Qi , i = 1, . . . ,M . Jobs arrive to Qi

in batches according to a Poisson process of rate λi . The sequence of batch sizes consists
of independent and identically distributed random variables, which are independent of inter-
arrival times. Let us denote by Di the batch size at Qi with probability mass function Di(·)
and probability generating function D̂i(z), |z| ≤ 1. We assume that Di ≥ 1 for i = 1, . . . ,M .
The service time of a job at Qi is denoted by Bi . Bi is a phase-type random variable with
distribution function Bi(·) with mean bi and hi phases. That is, Bi is a mixture of hi expo-
nential random variables. We assume that the service times are independent and identically
distributed random variables and they are independent of the batch size and inter-arrival
time.

A phase-type distribution can be represented by an initial distribution vector π , a tran-
sient generator T, and an absorption rate vector T o, i.e., T−1T o = −eT , where eT is a column
vector with all entries equal to one. For more details we refer, e.g., to Neuts (1981, p. 44).
Then, it is well-known that the Laplace-Stieltjes transform (LST) Bi , the service times at Qi ,
can be written as

B̃i(s) = πi(sI − Ti)
−1T o

i , Re(s) ≥ 0. (1)

For later use, we need to introduce the LST of the residual (phase-type) service times.

Lemma 1 The LST of the residual service times at Qi is given by

B̃∗
i (s) = 1

bi

πi(sI − Ti)
−1eT , Re(s) ≥ 0. (2)

Proof The LST of the residual service times reads

B̃∗
i (s) = 1

bis
(1 − B̃i(s)) = − 1

bi

πiT−1
i (sT−1

i − I)−1T−1
i T o

i = 1

bi

πi(sI − Ti)
−1eT . �

We let Ni(t) denote the number of jobs in Qi , i = 1, . . . ,M , at time t ≥ 0 and it is as-
sumed that Ni(0) = 0, i = 1, . . . ,M . The server visits the queues in a cyclic fashion. After a
visit to Qi , the server incurs a switch-over time Ci from Qi to Qi+1. We assume that Ci is in-
dependent of the service requirement and follows a general distribution Ci(·) with mean ci ,
where at least one ci > 0. The service discipline at each queue is either autonomous-server
or time-limited. Under the autonomous-server discipline, the server remains at location Qi

an exponentially distributed time with rate αi before it migrates to the next queue in the
cycle. Under the time-limited discipline, the server departs from Qi when it becomes empty

Ann Oper Res (2012) 198:57–82 61

or when a timer of exponentially distributed duration with rate αi has expired, whichever
occurs first.

In case the server is active at the end of a server visit, which may happen under the
autonomous-server and time-limited disciplines, then the service will be preempted. At the
beginning of the next visit of the server, the service time will be re-sampled according to
Bi(·). This discipline is commonly referred to as preemptive-repeat-random.

It is assumed that the queues of the polling system are stable. In the following lemmas we
shall state the stability condition for both the autonomous-server and the time-limited sys-
tems. The proofs of these lemmas are straightforward extensions to those of Theorems 3.1
and 3.2 in de Haan (2009). We should note that the stability proof in de Haan (2009) relied
largely on the stability proof of Fricker and Jaibi (1994) for a class of polling systems with
non-preemptive and work-conserving service disciplines.

Lemma 2 (Autonomous-server discipline)

System is stable ⇐⇒ ρi < κi, i = 1, . . . ,M,

where

ρi = λiE[Di] · 1 − B̃i(αi)

αiB̃i(αi)
, κi = 1/αi

ct + ∑M

j=1 1/αj

, ct =
M∑

j=1

cj .

We note that (1 − B̃i(αi))/(αiB̃i(αi)) is the expected value of the effective service time
of a job in Qi which includes the work lost due to service preemptions. κi is the availability
fraction of the server at Qi .

Lemma 3 (Time-limited discipline)

System is stable ⇐⇒ ρ + max
i=1,...,M

(
λiE[Di]
E[G∗

i]
)

· ct < 1,

where

ρ =
M∑

j=1

λiE[Di](1 − B̃i(αi))

αiB̃i(αi)
, E[G∗

i] = B̃i(αi)

1 − B̃i(αi)
.

We note that ρ represents the total offered load to the system and E[G∗
i] the mean number

of served jobs at Qi during a cycle when Qi is saturated.
A word on notation. Given a random variable X, X(t) will denote its distribution func-

tion. We use I to denote an identity matrix of an appropriate size and use ⊗ as the Kronecker
product operator defined as follows. Let A and B be two matrices and a(i, j) and b(i, j)

denote the (i, j)-entries of A and B respectively then A ⊗ B is a block matrix where the
(i, j)-block is equal to a(i, j)B. We use e to denote a row vector of appropriate size with
entries equal to one and ei to denote a row vector of appropriate size with the ith entry equal
to one and the other elements equal to zero. Finally, vT will denote the transpose of vector v.

3 Autonomous-server discipline

In this section, we will relate the joint queue-length probabilities at the beginning and end of
a server visit to a queue for the autonomous-server discipline. Under the autonomous-server

62 Ann Oper Res (2012) 198:57–82

discipline, the server remains at location Qi for an exponentially distributed time with rate
αi before it migrates to the next queue in the cycle. It is stressed that even when Qi becomes
empty, the server will remain at this queue.

Without loss of generality let us consider a server visit to Q1. The number of jobs at the
various queues at the beginning of a server visit to Q1 is denoted by Nb

1 := (Nb
11, . . . ,N

b
M1);

let Ne
1 := (Ne

11, . . . ,N
e
M1) denote the queue-lengths at the end of such a visit. We assume that

the p.g.f. of the steady-state queue-length at the beginning of a server visit to Q1, denoted
by βA

1 (z) = E[zNb
1], is known, where z := (z1, . . . , zM) and |zi | ≤ 1 for i = 1, . . . ,M . The

aim is to derive the p.g.f. of the steady-state queue-length at the end of the server visit to Q1,
denoted by γ A

1 (z) = E[zNe
1].

Let N(t) := (PH1(t),N1(t), . . . ,NM(t)) denote the (M + 1)-dimensional, continuous-
time Markov chain with discrete state-space ξA = {0,1, . . . , h1} × {0,1, . . .}M ∪ {a}, where
Nm(t), m = 1, . . . ,M , represents the number of jobs in Qm and PH1(t) the phase of the job
in service at Q1 at time t . State {a} is absorbing. We refer to this absorbing Markov chain
by AMCA. The absorption of AMCA occurs when the server leaves Q1 which happens with
rate α1. Moreover, the initial state of AMCA at t = 0 is set to the system state at the server’s
arrival to Q1, i.e., Nb

1 = (i1, . . . , iM). Therefore, the probability that the absorption of AMCA

occurs from state (j1, . . . , jM) equals P(Ne
1 = (j1, . . . , jM)|Nb

1 = (i1, . . . , iM)).
We derive now P(Ne

1 = (j1, . . . , jM)|Nb
1 = (i1, . . . , iM)). During a server visit to Q1, the

number of jobs at Qm, m = 2, . . . ,M , may only increase. Therefore, P(Ne
1 = (j1, . . . , jM)|

Nb
1 = (i1, . . . , iM)) = 0 for jl < il , l = 2, . . . ,M . For sake of clarity, we shall first show in

detail the structure of AMCA in the case of 3 queues, i.e. for M = 3, and the procedure of
the proof of the desired result before considering the general case.

Case M = 3 Let us consider the transient states of AMCA, i.e., (ph1, n1, n2, n3) ∈
ξA \ {a}. We recall that we consider a server visit to Q1. The number of jobs at Q2

and Q3 may only increase during a server visit to Q1, while the number of jobs at Q1

may increase or decrease. To take advantage of this property, we will order the tran-
sient states of the AMCA as follows: (0,0,0,0), (1,0,0,0), . . . , (0,1,0,0), (1,1,0,0),

. . . , (0,0,1,0), (1,0,1,0), . . . ,(0,0,0,1), (1,0,0,1),. . ., i.e., lexicographically ordered
first according to n3, then n2, n1, and finally according to ph1. This ordering induces that
the generator matrix of the transitions between the transient states of AMCA for M = 3,
denoted by Q3, is an infinite upper-triangular block matrix with diagonal blocks equal to A3

and ith upper-diagonal blocks equal to λ3D3(i)I, i.e.,

Q3 =
⎛

⎜
⎝

A3 λ3D3(1)I λ3D3(2)I · · · · · · · · ·
0 A3 λ3D3(1)I λ3D3(2)I · · · · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎠ . (3)

We note that A3 denotes the generator matrix of the transitions which do not induce any
modification in the number of jobs at Q3. Moreover, λ3D3(i)I denotes the transition rate
matrix between the transient states (ph1, n1, n2, n3) and (ph1, n1, n2, n3 + i), i.e., the tran-
sitions that represent an arrival of a batch of size i to Q3. The block matrix A3 is also an infi-
nite upper-triangular block matrix with diagonal blocks equal to A2, and ith upper-diagonal
blocks equal λ2D2(i)I, i.e.,

A3 =

⎛

⎜
⎜
⎜
⎝

A2 λ2D2(1)I λ2D2(2)I · · · · · · · · ·
0 A2 λ2D2(1)I λ2D2(2)I · · · · · ·
...
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎠

, (4)

Ann Oper Res (2012) 198:57–82 63

where λ2D2(i)I denotes the transition rate matrix between the states (ph1, n1, n2, n3)

and (ph1, n1, n2 + i, n3). A2 is the generator matrix of the transition between the states
(ph1, n1, n2, n3) and (l, k, n2, n3) with k ≥ max(n1 − 1,0) and l ≤ h1, the total number of
phases in the service times. Observe that A2 equals the sum of the matrix −(λ2 + λ3 + α1)I
and the generator matrix of an MX/PH/1 queue with Poisson batch arrivals and phase-type
service times. Let A1 denote the generator of an MX/PH/1. It is readily seen that (see,
e.g., Neuts 1981, Chap. 3, Sect. 2)

A1 =

⎛

⎜
⎜
⎜
⎝

−λ1 λ1D1(1)π1 λ1D1(2)π1 · · · · · · · · ·
T o

1 T1 − λ1I λ1D1(1)I λ1D1(2)I · · · · · ·
0 T o

1 π1 T1 − λ1I λ1D1(1)I λ1D1(2)I · · ·
...
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎠

. (5)

We recall that T o
1 is a column vector and π1 is a row vector thus T o

1 π1 is a matrix
of rank one with (i, j)-entry representing the transition rate from state (i, n1, n2, n3) to
(j, n1 − 1, n2, n3).

Now, we compute P(Ne
1 = (j1, j2, j3)|Nb

1 = (i1, i2, i3)) as function of the inverse of Q3,
A3 and A2 and later on we shall uncondition on Ne

13, then on Ne
12, and finally on Ne

11.
We emphasize that since Q3, A3 and A2 are all sub-generators with the sum of their row
elements strictly negative, these matrices are invertible. It shall become clear that in this
paper we do not need to determine these inverse matrices in closed-form. For convenience,
we abbreviate the condition Nb

1 = (i1, i2, i3) to Nb
1, e.g., P(Ne

1 = (j1, j2, j3)|Nb
1) denotes

P(Ne
1 = (j1, j2, j3)|Nb

1 = (i1, i2, i3)).
From the theory of absorbing Markov chains, given that AMCA starts in state Nb

1 =
(i1, i2, i3), the probability that the transition to the absorption state {a} occurs from state
(j1, j2, j3) reads (see, e.g., Gaver et al. 1984)

P
(
Ne

1 = (j1, j2, j3)|Nb
1

) = −α1c3(Q3)
−1d3, (6)

where c3 is the probability distribution vector of AMCA’s initial state which is given by

c3 := ei3 ⊗ ei2 ⊗ ei1 ⊗ π1,

and α1d3 is the transition rate vector to {a} given that (j1, j2, j3) is the last state visited
before absorption with

d3 := ej3 ⊗ ej2 ⊗ ej1 ⊗ e.

Note that the presence of π1 in c3 is due to the preemptive-repeat discipline, and e in d3 is
due to the un-conditioning on the phase of the service times in Q1 when the server leaves
the queue. By analogy with Guillemin and Simonian (1995), the absorption probability was
applied on infinite state space absorbing Markov chains.

For later use, let us define the following row vectors:

c2 := ei2 ⊗ ei1 ⊗ π1, d2 := ej2 ⊗ ej1 ⊗ e,

c1 := ei1 ⊗ π1, d1 := ej1 ⊗ e.

We are now ready to formulate our first result.

64 Ann Oper Res (2012) 198:57–82

Lemma 4 The conditional generating function of the queue-length of Q3 at the end of the
server visit to Q1 is given by

E
[
z
Ne

31
3 1{Ne

11=j1,Ne
21=j2)}|Nb

1

] = −α1z
i3
3 c2

(
λ3D̂3(z3)I + A3

)−1
dT

2 . (7)

Proof Multiplying (6) by z
j3
3 and summing these equations over j3 we find that

E
[
z
Ne

31
3 1{Ne

11=j1,Ne
21=j2)}|Nb

1

] = −α1c3(Q3)
−1

∑

j3≥i3

z
j3
3 (ej3 ⊗ d2)

T

= −α1c3(Q3)
−1

(∑

j3≥i3

z
j3
3 ej3 ⊗ d2

)T

= −α1

(∑

j3≥i3

z
j3
3 u3(j3)

)

dT
2 , (8)

where u3 = (u3(0), u3(1), . . .) := c3(Q3)
−1. First, let us derive

∑
j3≥i3

z
j3
3 u3(j3). Note that

u3Q3 = c3. Inserting Q3 given in (3) into the latter equation gives that

u3(0)A3 = 0, (9)

λ3

n−1∑

l=0

D3(n − l)u3(l)I + u3(n)A3 = 1{n=i3}c2, n ≥ 1. (10)

Note, since A3 is nonsingular, (9) yields that u3(0) = 0, i.e., u3(0) is a vector of zeros.
Inserting u3(0) = 0 into (10) with n = 1 yields that u3(1) = 0. Therefore, we deduce by an
induction argument that u3(n) = 0 for n = 0, . . . , i3 − 1. The latter system of equations now
rewrites

u3(i3)A3 = c2, (11)

λ3

n−1∑

l=i3

D3(n − l)u3(l) + u3(n)A3 = 0, n > i3. (12)

Multiplying (11) by z
i3
3 and (12) by zn

3 and summing these equations over n we find that

∑

j3≥i3

z
j3
3 u3(j3) = z

i3
3 c2

(
λ3D̂3(z3)I + A3

)−1
. (13)

Inserting (13) into (8) readily gives Lemma 4. �

Lemma 5 The conditional generating function of the joint queue-length of Q2 and Q3 at
the end of the server visit to Q1 is given by

E
[
z
Ne

21
2 z

Ne
31

3 1{Ne
11=j1}|Nb

1

] = −α1z
i2
2 z

i3
3 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1
dT

1 . (14)

Ann Oper Res (2012) 198:57–82 65

Proof Multiplying (7) by z
j2
2 and summing over j2 gives that

E
[
z
Ne

21
2 z

Ne
31

3 1{Ne
11=j1}|Nb

1

] = −α1z
i3
3 c2

(
λ3D̂3(z3)I + A3

)−1
(∑

j2≥i2

z
j2
2 ej2 ⊗ d1

)T

= −α1z
i3
3

(∑

j2≥i2

z
j2
2 u2(j2)

)

dT
1 , (15)

where u2 = (u2(0), u2(1), . . .) := c2(λ3D̂3(z3)I+A3)
−1. We emphasize that the matrices Q3

and (λ3D̂3(z3)I + A3) given in (3) and (4) have a similar structure. Therefore, by analogy
with the derivation of (8) in Lemma 4 we deduce that

∑

j2≥i2

z
j2
2 u2(j2) = z

i2
2 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1
. (16)

Inserting (16) into (15) readily gives the desired result. �

We are now ready to state our main result for the autonomous-server discipline in the
case M = 3.

Theorem 1 The generating function of the joint queue-length of Q1, Q2 and Q3 at the end
of the server visit to Q1 is given by

E
[
zNe

1
] = p(z)E

[
r1(z2, z3)

Nb
11z

Nb
21

2 z
Nb

31
3

] + q(z)E
[
z
Nb

11
1 z

Nb
21

2 z
Nb

31
3

]
, (17)

where z := (z1, z2, z3),

p(z) = α1

s1(r1(z2, z3), z2, z3)
× (z1 − 1)B̃1(s1(z1, z2, z3))

z1 − B̃1(s1(z1, z2, z3))
, (18)

q(z) = α1

s1(z1, z2, z3)
× z1(1 − B̃1(s1(z1, z2, z3)))

z1 − B̃1(s1(z1, z2, z3))
, (19)

s1(z1, z2, z3) = α1 + ∑3
i=1 λi(1 − D̂i(zi)), and where r1(z2, z3) is the root with smallest

absolute value of: (solving for z1)

z1 = B̃1

(
s1(z1, z2, z3)

)
.

Proof Multiplying (14) by z
j1
1 and summing over all values of j1 gives that

E
[
zNe

1 |Nb
1

] = E
[
z
Ne

11
1 z

Ne
21

2 z
Ne

31
3 |Nb

1

]

= −α1z
i2
2 z

i3
3 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1
(∑

j1≥0

z
j1
1 ej1 ⊗ e

)T

= −α1z
i2
2 z

i3
3

(∑

j1≥0

z
j1
1 u1(j1)

)

eT , (20)

66 Ann Oper Res (2012) 198:57–82

where u1 = (u1(0), u1(1), . . .) := c1(λ2D̂2(z2)I + λ3D̂3(z3)I + A2)
−1. Let us now derive∑

j1≥0 z
j1
1 u1(j1). Note that A2 = A1 − (λ2 + λ3 + α1)I and u1(λ2D̂2(z2)I + λ3D̂3(z3)I +

A2) = c1. Inserting A1 given in (5) into the latter equation gives that

−θu1(0) + u1(1)T 0
1 = 0, (21)

λ1D1(n)u1(0)π1 + λ1

n−1∑

l=1

D1(n − l)u1(l)I

+u1(n)(T1 − θI) + u1(n + 1)T 0
1 π1 = 1{n=i1}π1, n ≥ 1, (22)

where θ := α1 + λ1 + λ2(1 − D̂2(z2)) + λ3(1 − D̂3(z3)). By multiplying (21) by π1 and
adding it to the sum over n of (22) multiplied by zn

1 , we find that

∑

n≥1

u1(z1)z
n
1

[

T1 − (
θ − λ1D̂1(z1)

)
I + 1

z1
T 0

1 π1

]

= [
z
i1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1. (23)

Let R := [T1 − (θ − λ1D̂1(z1))I + 1
z1

T 0
1 π1]. Then,

∑

n≥1

u1(z1)z
n
1 = [

z
i1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1R−1. (24)

Inserting (24) into (20) we find that

E
[
z
Ne

1
1 z

Ne
2

2 z
Ne

3
3 |Nb

1

] = −α1z
i2
2 z

i3
3

(
u1(0) + [

z
i1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1R−1eT

)
. (25)

Now, we shall compute π1R−1e. For the ease of the notation, let us denote R1 := T1 − (θ −
λ1D̂1(z1))I. Therefore, R = R1 + 1

z1
T 0

1 π1. By the Sherman-Morrison formula, see (Bern-
stein 2005, Fact 2.14.2, p. 67), we have that

π1R−1eT = π1

[

R−1
1 − 1

z1 + π1R−1
1 T 0

1

R−1
1 T 0

1 π1R−1
1

]

eT

= π1R−1
1 eT

[

1 + B̃1(θ − λ1D̂1(z1))

z1 − B̃1(θ − λ1D̂1(z1))

]

= −1 − B̃1(θ − λ1D̂1(z1))

θ − λ1D̂1(z1)
× z1

z1 − B̃1(θ − λ1D̂1(z1))
, (26)

where the second equality follows from (1) and the last equality from Lemma 1. Inserting
(26) into (25) yields that

E
[
z
Ne

1
1 z

Ne
2

2 z
Ne

3
3 |Nb

1

] = α1z1z
i2
2 z

i3
3 [1 − B̃1(s1(z1, z2, z3))][zi1

1 + u1(0)s1(z1, z2, z3)]
s1(z1, z2, z3)[z1 − B̃1(s1(z1, z2, z3))]

− α1z
i2
2 z

i3
3 u1(0), (27)

where s1(z1, z2, z3) = θ −λ1D̂1(z1). We shall show that for |z1| ≤ 1 the denominator of (27)
is not equal to zero except at one point. First, note that the real part of θ −λ1D̂1(z1) is strictly
positive for α1 > 0, |zi | ≤ 1, i = 1,2,3. Moreover, by Rouché’s theorem it is readily seen

Ann Oper Res (2012) 198:57–82 67

that z1 − B̃1(θ − λ1D̂1(z1)) = 0 has a unique root, r1(z2, z3), inside the unit disk. Note that
r1(z2, z3) is function of z2 and z3 due to θ that is function of z2 and z3. Since the l.h.s. in (27)
is a p.g.f., it is analytical for |z1| ≤ 1 we deduce that r1(z2, z3) is a removable singularity in
(27), which gives

u1(0) = − r1(z2, z3)
i1

θ − λ1D̂1(r1(z2, z3))
. (28)

Inserting u1(0) into (27) and removing the condition on Nb
1 readily gives E[zNe

1] in Theo-
rem 1. �

General case By analogy with the case of M = 3, we order the transient states of AMCA

first according to nM , then nM−1, . . . , n1, and finally according to ph1. During a server visit
to Q1, the number of jobs at Qj , j = 2, . . . ,M , may only increase. Therefore, similarly
to the case of M = 3, the generator matrix of AMCA of the transition rates between the
transient states of AMCA for the general case, denoted by QM , is an upper-triangular block
matrix with diagonal blocks equal to AM , and ith upper-diagonal blocks equal to λMDM(i)I.
Moreover, AM in turn is an upper-triangular block matrix with diagonal blocks equal to
AM−1, and ith upper-diagonal blocks equal to λM−1DM−1(i)I. We emphasize that Aj , j =
M, . . . ,3, all satisfy the previous property. Finally, the matrix A2 = A1 − (λ2 + · · · + λM +
α1)I, where A1 is the generator matrix of an MX/PH/1 queue, with Poisson batch arrivals
of inter-arrival rate λ1 and batch size distribution function D1(·).

By analogy with the M = 3 case, we find that the probability of Ne
i = (j1, . . . , jM), given

that Nb
1 = (i1, . . . , iM), reads

P
(
Ne

1 = (j1, . . . , jM)|Nb
1

) = −α1cM(QM)−1dM, (29)

where

cM := eiM ⊗ · · · ⊗ ei1 ⊗ π1, dM := ejM ⊗ · · · ⊗ ej1 ⊗ e.

Lemma 6 The conditional generating function of the joint queue-length of Q2, . . . , QM at
the end of the server visit to Q1 is given by

E

[
M∏

i=2

z
Ne

i1
i 1{Ne

11=j1}
∣
∣
∣Nb

1

]

= −α1

(
M∏

n=2

zin
n

)

c1

(
M∑

i=2

λiD̂i(zi)I + A2

)−1

dT
1 .

Proof Similar to the proof of Lemma 5. �

We are now ready to present our main result for the general case.

Theorem 2 (Autonomous-server discipline) The generating function of the joint queue-
length of Q1, . . . ,QM at the end of the server visit to Q1 is given by

γ A
1 (z) = pA

1 (z)βA
1 (z∗

1) + qA
1 (z)βA

1 (z), (30)

where z = (z1, . . . , zM), z∗
1 = (r1(z2, . . . , zM), z2, . . . , zM),

pA
1 (z) = α1

s1(z∗
1)

× (z1 − 1)B̃1(s1(z))

z1 − B̃1(s1(z))
, qA

1 (z) = α1

s1(z)
× z1(1 − B̃1(s1(z)))

z1 − B̃1(s1(z))
,

68 Ann Oper Res (2012) 198:57–82

s1(z) = α1 + ∑M

i=1 λi(1 − D̂i(zi)), and where r1(z2, . . . , zM) is the root with smallest ab-
solute value of: (solving for z1)

z1 = B̃1

(
s1(z)

)
.

Proof By analogy with the proof of Theorem 1. �

Equation (30) relates γ A
1 (z), the p.g.f. of the joint queue-length at the end of a server visit

to Q1, to βA
1 (z1), the p.g.f. of the joint queue-length at the beginning of a server visit to Q1.

From Theorem 2, we deduce that for a server visit to Qi , i = 1, . . . ,M ,

γ A
i (z) = pA

i (z)βA
i (z∗

i) + qA
i (z)βA

i (z), (31)

where z∗
i = (z1, . . . , zi−1, ri(z1, . . . , zi−1, zi+1, . . . , zM), zi+1, . . . , zM),

pA
i (z) = αi

si(z∗
i)

× (zi − 1)B̃i(si(z))

zi − B̃i(si(z))
, qA

i (z) = αi

si(z)
× zi(1 − B̃i(si(z)))

zi − B̃i(si(z))
,

where si(z) = αi + ∑M

j=1 λj (1 − D̂j (zj)), and where ri(z1, . . . , zi−1, zi+1, . . . , zM) is the
root with smallest absolute value of:

zi = B̃i

(
si(z)

)
. (32)

Finally, introducing the switch-over times from Qi−1 to Qi , thus by using that E[zNb
i] =

E[zNe
i−1]Ĉi−1(z), where Ĉi−1(z) = C̃i−1(

∑M

j=1 λj (1 − D̂j (zj))) is the p.g.f. of the number
of Poisson batch arrivals during Ci−1, we obtain

γ A
i (z) = pA

i (z)γ A
i−1(z

∗
i)Ĉ

i−1(z∗
i) + qA

i (z)γ A
i−1(z)Ĉ

i−1(z). (33)

Remark 1 In the particular case where D̂i(zi) = zi , i.e., the arriving batches are all of size
one, (31) agrees with de Haan (2009, Theorem 5.3).

Remark 2 The root ri(z1, . . . , zi−1, zi+1, . . . , zn) in (32) shall be computed numerically.
Note that since the service time distribution is phase-type ri(z1, . . . , zi−1, zi+1, . . . , zn) be-
comes the root with the smallest absolute value of a polynomial function of degree equal to
the total number of service phases. Note that an approximation for the root of the analytical
functions can be constructed using the Lagrange expansion theorem, see, e.g., Cohen (1982,
Appendix, Sect. 6).

Remark 3 The marginal queue length distributions with the autonomous-server discipline
can be readily obtained by analyzing each individual queue as a single-server queue with
vacation, see, e.g., Nakatsuka (2009). In this case, the vacation duration is equal to the
sum of the server visit time to the other queues plus the switch-over times between the
queues. It is clearly seen that this vacation duration is independent of the queue-length which
considerably facilitates the marginal analysis of the individual queues. Note that the previous
statement does not imply that the lengths of the queues are independent.

Ann Oper Res (2012) 198:57–82 69

4 Time-limited discipline

In this section, we will relate the joint queue-length probabilities at the beginning and end
of a server visit to a queue for the time-limited discipline. Under this discipline, the server
departs from Qi when it becomes empty or when a timer of exponentially distributed du-
ration with rate αi has expired, whichever occurs first. Moreover, if the server arrives to an
empty queue, he leaves the queue immediately and jumps to the next queue in the schedule.
For this reason, we should distinguish here between the two events where the server joins
an empty and non-empty queue.

We will follow the same approach as in Sect. 3. Thus, we first assume that there are
Nb

1 := (i1, . . . , iM) jobs in (Q1, . . . , QM), with i1 ≥ 1, at the beginning of a server visit
to Q1 and second there are Ne

1 := (Ne
11, . . . ,Ne

1M) = (j1, . . . , jM) jobs in (Q1, . . . ,QM) at
the end of a server visit to Q1. Note that if Q1 is empty at the beginning of a server visit,
i.e., i1 = 0, then P(Ne

1 = Nb
1) = 1. We shall exclude the latter obvious case from the analysis

in the following. However, we shall include it when the result is unconditioned on Nb
1.

Let N(t) := (PH1(t),N1(t), . . . ,NM(t)) denote the (M + 1)-dimensional, continuous-
time Markov chain with discrete state-space ξT = {1, . . . , h1} × {0,1, . . .}M ∪ {a}, where
Nj(t) represents the number of jobs in Qj at time t and at which Q1 is being served. State
{a} is absorbing. We refer to this absorbing Markov chain by AMCT . The absorption of
AMCT occurs when the server leaves Q1 which happens with rate α1 from all transient
states. The transient states of the form (ph1,1, n2, . . . , nM) have an additional transition
rate to {a} that is equal to the (ph1)-entry of T 0

1 which represents the departure of the last
job at Q1 from the service phase ph1.

We shall now derive the joint moment of the p.g.f. of Ne
1 and the event that the absorption

is due to timer expiration and later the joint conditional p.g.f. of Ne
1 and the event that the

absorption is due to Q1 empty. We set N(0) = (PH1(0),Nb
1), where PH1(0) is distributed

according to π1, i.e., preemptive repeat discipline. We order the transient states lexicograph-
ically first according to nM , then to nM−1, . . . , n1, and finally according to ph1. Similarly
to the autonomous-server discipline, during a server visit to Q1, the number of jobs at Qj ,
j = 2, . . . ,M , may only increase. It then follows that the transient generator of AMCT has
the same structure as the transient generator of AMCA, i.e. it is an upper-triangular Toeplitz
matrix of upper-triangular Toeplitz diagonal blocks. Therefore, by the same arguments as
for the autonomous-server, we find that the joint moment of the p.g.f. of Ne

1 and the event
that the absorption is due to timer expiration, denoted by {timer}, given N1(0), reads

E[zNe
1 1{timer}|Nb

1] = −α1

(
M∏

n=2

zin
n

)

c1

(
M∑

i=2

λiD̂i(zi)I + B2

)−1

g1(z1)
T , (34)

where B2 := B1 − (λ2 + · · · + λM + α1)I, B1 is the generator matrix of an MX/PH/1 queue
restricted to the states with the number of jobs strictly positive, i.e., B1 is obtained by delet-
ing the first row of blocks and column of the matrix A1 defined in (5), and where

g1(z1) :=
∑

j1≥1

z
j1
1 ej1 ⊗ e = (z1e, z

2
1e, . . .), c1 = ei1 ⊗ π1.

Let QT(z) = ∑M

j=2 λj (1 − D̂j (zj))I + B1.

70 Ann Oper Res (2012) 198:57–82

Lemma 7 The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due to

timer expiration, given Nb
1 = (i1, . . . , iM), is given by

E[zNe
1 1{timer}|Nb

1] = α1z1

(
M∏

n=2

zin
n

)
[zi1

1 − r1(z2, . . . , zM)i1][1 − B̃1(s1(z))]
s1(z)[z1 − B̃1(s1(z))]

, (35)

where r1(z2, . . . , zM) = B̃1(s1(r1(z2, . . . , zM), z2, . . . , zM)) and s1(z) = α1 + ∑M

j=1[λj (1 −
D̂j (zj))].

Proof Equation (34) yields that

E[zNe
1 1{timer}|Nb

1] = −α1

(
M∏

n=2

zin
n

)(
∑

j1≥1

z
j1
1 u1(j1)

)

eT , (36)

where u1 = (u1(1), u1(2), . . .) := c1(QT(z))−1. Note that u1QT(z) = c1. Inserting QT(z)
into the latter equation gives that

1{n≥2}λ1

n−1∑

l=1

D1(n − l)u1(l)I + u1(n)(T1 − θI) + u1(n + 1)T 0
1 π1 = 1{n=i1}π1, (37)

where n > 0 and θ = α1 +λ1 +∑M

j=2 λj (1 − D̂j (zj)). Multiplying (37) by zn
1 and summing

over n yields that
∑

n≥1

u1(z1)z
n
1 = [zi1

1 + u1(1)T 0
1]π1R−1. (38)

Inserting (38) into (36) we find that

E[zNe
1 1{timer}|Nb

1] = −α1

(
M∏

n=2

zin
n

)

[zi1
1 + u1(1)T 0

1]π1R−1eT

= α1z1

(
M∏

n=2

zin
n

)
[zi1

1 + u1(1)T 0
1][1 − B̃1(s1(z))]

s1(z)[z1 − B̃1(s1(z))]
, (39)

where the second equality follows from (26) and s1(z) = θ − λ1D̂1(z1). Because the
joint moment generating function E[zNe

1 1{timer}|Nb
1] in (39) has a singular point at z1 =

r1(z2, . . . , zM), |r1(z2, . . . , zM)| < 1, it should be removable. Thus,

u1(1)T 0
1 = −r1(z2, . . . , zM)i1 , (40)

where r1(z2, . . . , zM) = B̃1(s1(r1(z2, . . . , zM), z2, . . . , zM)). Inserting u1(1)T 0
1 into (39)

readily gives E[zNe
1 1{timer}|Nb

1]. �

Lemma 8 The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due to

empty Q1, given Nb
1 = (i1, . . . , iM), is given by

E[zNe
1 1{timer}|Nb

1] = r1(z2, . . . , zM)i1

M∏

n=2

zin
n , (41)

Ann Oper Res (2012) 198:57–82 71

where r1(z2, . . . , zM) = B̃1(s1(r1(z2, . . . , zM), z2, . . . , zM)) and s1(z) = α1 + ∑M

j=1[λj (1 −
D̂j (zj))].

Proof The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due to Q1

being empty, is given by

E[zNe
1 1{Q1 empty}|Nb

1] = −
M∏

n=2

(zin
n)c1QT(z)−1eT

1 ⊗ T 0
1

= −
M∏

n=2

(zin
n)u1(1)T 0

1

= r1(z2, . . . , zM)i1

M∏

n=2

zin
n ,

where u1 = c1(QT(z))−1 and the last equality follows from (40). �

Combining Lemmas 7 and 8 we obtain our main theorem for the time-limited discipline.

Theorem 3 (Time-limited discipline) The generating function of the joint queue-length of
Q1, . . . ,QM at the end of the server visit to Q1 is given by

γ T
1 (z) = pT

1 (z)βT
1 (z∗

1) + qT
1 (z)βT

1 (z),

where z = (z1, . . . , zM), z∗
1 = (r1(z2, . . . , zM), z2, . . . , zM),

pT
1 (z) = 1 − α1

s1(z)
× z1(1 − B̃1(s1(z)))

z1 − B̃1(s1(z))
, qT

1 (z) = α1

s1(z)
× z1(1 − B̃1(s1(z)))

z1 − B̃1(s1(z))
,

where s1(z) = α1 + ∑M

j=1 λj (1 − D̂j (zj)) and r1(z2, . . . , zM) is the root with smallest ab-
solute value of: (solving according to z1)

z1 = B̃1

(
s1(z)

)
.

We deduce that for a server visit to Qi , i = 1, . . . ,M ,

γ T
i (z) = pT

i (z)βT
i (z∗

i) + qT
i (z)βT

i (z), (42)

where z∗
i = (z1, . . . , zi−1, ri(z1, . . . , zi−1, zi+1, . . . , zM), zi+1, . . . , zM),

pT
i (z) = 1 − αi

si(z)
× zi(1 − B̃i(si(z)))

zi − B̃i(si(z))
, qT

i (z) = αi

si(z)
× zi(1 − B̃i(si(z)))

zi − B̃i(si(z))
,

where si(z) = αi + ∑M

j=1 λj (1 − D̂j (zj)), and where ri(z1, . . . , zi−1, zi+1, . . . , zM) is the
root with smallest absolute value of:

zi = B̃i

(
si(z)

)
. (43)

72 Ann Oper Res (2012) 198:57–82

Finally, introducing the switch-over times from Qi−1 to Qi , thus by using that E[zNb
i] =

E[zNe
i−1]Ĉi−1(z), where Ĉi−1(z) is the p.g.f. of the number of Poisson batch arrivals during

Ci−1, we obtain

γ T
i (z) = pT

i (z)γ T
i−1(z

∗
i)Ĉ

i−1(z∗
i) + qT

i (z)γ T
i−1(z)Ĉ

i−1(z). (44)

Remark 4 In the particular case where D̂i(zi) = zi , i.e. the arriving batches are all of size
one, (42) agrees with de Haan (2009, Theorem 5.10).

Remark 5 (Exhaustive discipline) Taking the limit of (42) for αi → 0 the time-limited dis-
cipline is equivalent to the exhaustive discipline. We find that

E
[
zNe

i

] = E
[
(z∗

i)
Nb

i

]
, (45)

where z∗
i := (z1, . . . , zi−1, yi, zi+1, . . . , zM) and yi is the root of

zi = B̃i

(
M∑

j=1

λj (1 − D̂j (zj))

)

. (46)

Equation (45) is equivalent to the well-known relation for the exhaustive discipline in (see,
e.g., (Eisenberg 1972, (24))).

5 Iterative scheme and implementation issues

In this section, we shall explain how to obtain the joint queue-length distribution embedded
at the server departure instants from the queues using an iterative scheme. This scheme is
similar for the autonomous-server and the time-limited discipline. For this reason, in the
following we shall drop the super-script of γ A

i (z) and γ T
i (z). Let γi(z) denote a generic

joint queue-length generating function embedded at the server departure instants from Qi ,
i = 1, . . . ,M . In the following, we first explain how to obtain γi(z) as function γi−1(z),
z = (z1, . . . , zM). Second, we describe in detail our iterative scheme.

Note that γi(z) is a function of γi−1(z) and γi−1(z∗
i) where z∗

i = (z1, . . . , zi−1, ri ,

zi+1, . . . , zM) with |zi | = 1, i = 1, . . . ,M and |ri | ≤ 1. Moreover, we note that ri is the
root defined in (32) and (43) that is a function of zl for all l = 1, . . . ,M and l �= i. Since
γi−1(z) is a p.g.f. it should be analytic in zi for all z1, . . . , zi−1, zi+1, . . . , zM . Hence, we can
write

γi−1(z) =
∞∑

m=0

gim(z1, . . . , zi−1, zi+1 . . . , zM)zm
i , |zi | ≤ 1, (47)

where gim(.) is again an analytic function that is given by

gim(z1, . . . , zi−1, zi+1 . . . , zM) = 1

2π i

∮

C

γi−1(z)

zm+1
i

dzi, m = 0,1, . . . , (48)

where C is the unit circle and i2 = −1. From complex function theory, it is well known that
(see, e.g., Titchmarsh 1976)

γi−1(z∗
i) = 1

2π i

∮

C

γi−1(z)
zi − ri

dzi, |ri | ≤ 1.

Ann Oper Res (2012) 198:57–82 73

These formulas show that we only need to know the p.g.f. γi−1(z) for all z with |zi | = 1, to
be able to compute γi(z).

When there is a switch-over time incurred from queue i − 1 to i the p.g.f. of the joint
queue-length at the end of the nth server visit to Qi , denoted by γ n

i (z), can be computed
as function of γ n

i−1(z), see (33) and (44). The kernel step is to iterate over all queues in
order to express numerically γ n+1

i (z) as function of γ n
i (z). When this is done we say that

the algorithm has completed one computational cycle, i.e., it has started at Qi with an initial
value of γ n

i (z) and passed to Qi+1 to compute γ n
i+1(z), then to Qi+2 to compute γ n

i+2(z), and
so on until it returns to Qi . After ‘infinitely’ many cycles, we get γ ∞

i (z), the steady state
joint queue-length p.g.f. To find the joint queue-length probability distribution embedded at
the server departure from Qi we use

P
(
Ne

i = (n1, . . . , nM)
) = 1

(2π i)M

∮

C

. . .

∮

C

γ ∞
i (z1, . . . , zM)

z
n1+1
1 · · · znM+1

M

dz1 · · ·dzM. (49)

Since we do not have an explicit analytical form for γ ∞
i (z) we resorted to the following

numerical integration

P
(
Ne

i = (n1, . . . , nM)
) ≈ 1

∏M

j=1 Nmax
j

Nmax
1 −1∑

k1=0

. . .

Nmax
M

−1∑

kM=0

γ ∞
i (w

k1
1 , . . . ,w

kM
M)

(w
k1
1)n1 · · · (wkM

M)nM

, (50)

for ni = 0, . . . ,Nmax
i − 1, where wi = exp(−2π i/Nmax

i) and Nmax
i is the number of discrete

points on C used to approximate the ith contour integral in (49), i = 1, . . . ,M . According
to the latter equation it is clearly seen that γ ∞

i (·) only needs to be evaluated at the discrete
points (w

k1
1 , . . . ,w

kM
M). For this reason, we shall restrict the computations during the cycles

to these discrete points. Note that the integration in (48) can be approximated using the same
set of discrete points. In the following, we shall explain how to find Nmax

i and when to stop
the iterations over the cycles.

We now give more details on our iterative scheme. The scheme runs over a number
of consecutive loops that each consists of multiple computational cycles. The loops are
introduced to find the best value of Nmax

i , i = 1, . . . ,M , that gives an accurate approximation
of the embedded joint queue-length probability distribution. At the beginning of a loop, we
shall enlarge the number of discrete points on C used to approximate the contour integral
in (49). Let us denote by Nmax

i,l , i = 1, . . . ,M , the number of these discrete points in the lth
loop. In the first loop, we set (Nmax

1,1 , . . . ,Nmax
M,1) to some initial value. Let Wl denote the set

of discrete points in the lth loop defined as follows,

Wl :=
{
(
w

k1
1 , . . . ,w

kM
M

) : wi = exp

(−2π i
Nmax

i,l

)

, ki = 0, . . . ,Nmax
i,l − 1, i = 1, . . . ,M

}

.

In the lth loop, we run the kernel step, explained previously, for multiple computational cy-
cles until the system converges. In the nth cycle of the lth loop, we shall compute a new ap-
proximation of the joint queue-length p.g.f. denoted as γ

l,n
i (w), w ∈ Wl and i = 1, . . . ,M .

The system converges when |γ l,n+1
i (w) − γ

l,n
i (w)| is small enough ∀w, i. As seen previ-

ously, in the kernel step we need to obtain γ
l,n
i−1(w

∗
i), w∗

i is the vector w ∈ Wl with the ith

entry replaced by r
ki

i , in order to compute γ
l,n
i (w). To do so, we find that it is numeri-

cally more stable to first use the inverse discrete fast Fourier transform (IFFT) of γ
l,n
i−1(w),

w ∈ Wl , along the ith dimension. This directly yields gim(w
k1
1 , . . . ,w

ki−1
i−1 ,w

ki+1
i+1 , . . . ,w

kM
M),

74 Ann Oper Res (2012) 198:57–82

m = 0, . . . ,Nmax
i,l , in (48). We then approximate γ

l,n
i−1(w

∗
i) as follows

γ
l,n
i−1(w

∗
i) =

Nmax
i,l

−1
∑

m=0

gim(w
k1
1 , . . . ,w

ki−1
i−1 ,w

ki+1
i+1 , . . . ,w

kM
M)rm

i .

For more details about the p.g.f. and the FFT we refer to, e.g., Tijms (2003, Appendix D).
We are now ready to explain our iterative scheme:

First loop We start with an empty system and set Nmax
i,1 , i = 1, . . . ,M , to some initial

values. Based on these values, we execute the kernel step explained previously, i.e., we
compute γ

1,1
i (w), γ

1,2
i (w), and so on, ∀w ∈ W1 and ∀i. The iteration over the cycles is

stopped whenever the system converges, i.e.,

|γ 1,n+1
i (w) − γ

1,n
i (w)| ≤ ε, i = 1, . . . ,M, ∀w ∈ W1, (51)

where ε > 0 is the convergence control parameter. There are two ways to find a new approx-
imation of the embedded joint queue-length distribution from γ

1,n+1
i (w) that satisfies the

last inequality. The first one is by directly applying (50) with γ ∞
i (w) replaced by γ

1,n+1
i (w).

The second way is to observe that (50) is nothing else than the inverse Fourier transform
equation of γ ∞

i (w). Therefore, applying the IFFT algorithm on γ
1,n+1
i (w), ∀i, yields in a

fast way the approximation of the embedded joint queue-length distribution, referred to as
P

1(Ne
i).

Main loop This loop will be executed several times before the algorithm converges. Let l

denote the number of times the main loop was executed. In the beginning, we need to check
the accuracy of the approximation of the joint queue-length distribution P

l−1(Ne
i) that was

computed at the end of the (l−1)st loop. To do so, we first enlarge Nmax
i,l , ∀i. To better reflect

the system characteristic, we selected the increments to be equal to Δ times the mean queue
length of an M/M/1 queue with load given by the system parameters, Δ ≥ 1. Second, we
initialize γ

l,1
i (w) to the FFT of P

l−1(Ne
i) using the new values of Nmax

i,l . Third, we repeat

the computations in a similar way to the first loop, i.e., we compute γ
l,2
i (w), γ

l,3
i (w), and

so on. This is done ∀w ∈ Wl and ∀i. The iteration over the cycles is stopped when a similar
condition to (51) is satisfied. By analogy with the first loop, inverting γ

l,n
i (w) using the

IFFT algorithm gives the steady state joint queue-length distribution at the server departure
instants from Qi , referred to as P

l (Ne
i), i = 1, . . . ,M . Finally, we check the number of

cycles required in the current loop to the system to converge. If it is equal to 1, we deduce
that γ

l,n
i (w) is the steady state embedded joint queue-length transform; otherwise, we repeat

the main loop.
We conclude that at the end of execution of our scheme we have the joint queue-length

distribution at the server departure instant from Qi , ∀i. In the following, we shall analyze
the computational costs of our proposed scheme.

Remark 6 According to (51) we determine the DFT points up to an error of order ε. In the
following, we shall prove that an error of order ε in the DFT points corresponds to an error
in the probabilities of order ε. Let us first introduce some notations. Let γ exact

i (z) denote the
exact DFT at point z = (z1, . . . , zM). Let γ

app

i (z) denote an approximation of the DFT at z
such that |γ exact

i (z) − γ
app

i (z)| < ε, ∀z and i. Using the inverse transform we have that the

Ann Oper Res (2012) 198:57–82 75

exact probability density of Ne
i at point (n1, . . . , nM) is equal to

P
exact

(
Ne

i = (n1, . . . , nM)
) = 1

∏M

j=1 Nmax
j

Nmax
1 −1∑

k1=0

. . .

Nmax
M

−1∑

kM=0

γ exact
i (w

k1
1 , . . . ,w

kM
M)

(w
k1
1)n1 · · · (wkM

M)nM

.

In addition, the approximate probability density of Ne
i at point (n1, . . . , nM) is given by

P
app

(
Ne

i = (n1, . . . , nM)
) = 1

∏M

j=1 Nmax
j

Nmax
1 −1∑

k1=0

. . .

Nmax
M

−1∑

kM=0

γ
app

i (w
k1
1 , . . . ,w

kM
M)

(w
k1
1)n1 · · · (wkM

M)nM

.

The difference between the exact and the approximate probability density of Ne
i at

(n1, . . . , nM) gives,
∣
∣Pexact

(
Ne

i = (n1, . . . , nM)
) − P

app
(
Ne

i = (n1, . . . , nM)
)∣
∣

<
1

∏M

j=1 Nmax
j

∣
∣
∣
∣

Nmax
1 −1∑

k1=0

. . .

Nmax
M

−1∑

kM=0

γ exact
i (z1, . . . , zM) − γ

app

i (z1, . . . , zM)

z
n1+1
1 · · · znM+1

M

∣
∣
∣
∣

<
1

∏M

j=1 Nmax
j

Nmax
1 −1∑

k1=0

. . .

Nmax
M

−1∑

kM=0

∣
∣
∣
∣
γ exact

i (z1, . . . , zM) − γ
app

i (z1, . . . , zM)

z
n1+1
1 · · · znM+1

M

∣
∣
∣
∣ ≤ ε.

Remark 7 Using the finite summations in (50) as an approximation of the multidimensional
contour integrations in (49) it is clear that an error is induced. This error is known in the
literature as the aliasing error. We refer the reader to Abate and Whitt (1992) and Daigle
(1989) for approaches to correct for these errors. We note that we did not apply these ap-
proaches in our algorithm. This is because we would like to keep our algorithm as simple
as possible. Moreover, the comparison between the simulation and our scheme of the mean,
the second moment, and the joint moment of the queue-length is giving a satisfactory result.

6 Computational costs

We measure the computational cost of our scheme in terms of the total number of cycles
and the total run (CPU) time required for the scheme to converge. In addition, we are also
interested in the number of points on the unit circle C used to approximate the multiple
contour integrations in (49) defined as:

S :=
M∏

i=1

Nmax
i,L ,

where Nmax
i,L is the number of points in the ith (dimension) summation in (50) when the

scheme converges in the last loop L. The number of points gives an indication on the amount
of computer memory required by the scheme to represent the multidimensional transforms
γ

L,n
i (w).

We implemented our scheme in Matlab version 7.8.0 release 2009a where we extensively
used its multidimensional FFT package. We performed the experiments on an Intel dual core
computer of a processor speed 2.8 GHz and 3 GB memory RAM.

76 Ann Oper Res (2012) 198:57–82

6.1 Scenario

In the following, we shall consider a polling system operating under the autonomous-server
discipline, which consists of three queues, i.e., M = 3. At the end of this section we shall
discuss the impact of M on the computational costs. The arrivals to Qi , i = 1,2,3, are
Poisson batch processes with inter-arrival rate λi and geometrically distributed batch size
with success probability p = 0.95 and with batch size strictly positive. The service time
distribution of the jobs in Qi follows a two-phase Coxian distribution with mean 1/μi and
squared coefficient of variation c2

s . We shall consider an asymmetric case in which λ1 =
λ2 = λ3 = λ, μ1 = 1/μ, μ2 = 2/μ and μ3 = 3/μ, and the rates of the server visit time to
Qi , i = 1,2,3, are equal to α1 = 0.4α, α2 = 1.0α, and α3 = 0.7α. The switch-over times
between the queues are deterministic and equal to 1. We define the average load per queue
as follows:

ρ̄ :=
∑M

i=1 ρi/κi

M
,

where ρi and κi are given in Lemma 2. According to the previous parameters setting we find
that ρ1/κ1 ≈ 1.9ρ3/κ3 and ρ2/κ2 ≈ 2.4ρ3/κ3. Therefore, Q3 has the smallest load and Q2

has the highest load. Finally, we set the convergence control parameter ε to 10−6 and the
initial number of points (Nmax

1,1 ,Nmax
2,1 ,Nmax

3,1) = (10,10,10). We note that as ε decreases the
joint probability distribution becomes more precise but this comes at the expense of a higher
computational cost.

In the following section, we shall evaluate the computation complexity of the scheme as
function of: (1) the service rate μi , (2) the arrival rate λ, (3) the server visit rate αi , (4) the
squared coefficient of variation of the service times.

6.2 Evaluation

Let us first focus on the impact of the service rate on the computation complexity of the
scheme. We vary μ ∈ [0.2,2.0] and fix λ = 0.08 and α = 1. We set c2

s to 0.5 for all the
queues. In Fig. 1, we show the run time, the number of cycles and the number of points,∏M

i=1 Nmax
i,L , for different values of Δ. Recall that Δ is the increment multiplier of Nmax

i,l

after each loop (see the main loop just before Remark 6). Observe that the computation
complexity of the scheme tends to increase monotonically as function of the average load
per queue, ρ̄. We shall discuss later the behavior of the number of points S. Note that for
ρ̄ ≤ 0.4 the parameter Δ has a minor impact on the computation complexity in contrast
to the case where the average load is between [0.4,0.6]. In this case, the value of Δ = 6
achieves the best performance especially in term of the run time.

Observe that the scheme experiences different convergence behavior for different load,
which explains the reason that in Fig. 1(c) the number of points drops for Δ = 3,4,6 and ρ̄

between 0.57 and 0.61. More precisely, Table 1 shows the convergence results with Δ = 4
and for ρ̄ equal to 0.57 and 0.61. In the case with higher load the scheme requires six loops
to converge. We now discuss this result. Recall that in the first loop the number of points is
equal to Nmax

1,1 ∗Nmax
2,1 ∗Nmax

3,1 = 10 ∗ 10 ∗ 10 = 1000. Moreover, after the lth loop we enlarge
Nmax

i,l , ∀i, l, by an amount that is equal to Δ times the mean queue length of an M/M/1
with a load equal to ρi/κi . Therefore, we find that for Δ = 4 and ρ̄ = 0.57 the increment
vector of Nmax

i,l , i = 1,2,3, is equal to (7,15,2) and for ρ̄ = 0.61 it is equal to (8,21,3).
Comparing the number of points in both cases we find that in the 8th loop for ρ̄ = 0.57 it
is equal to Nmax

1,8 ∗ Nmax
2,8 ∗ Nmax

3,8 = 59 ∗ 115 ∗ 24 = 162840 and in the 6th loop for ρ̄ = 0.61

Ann Oper Res (2012) 198:57–82 77

Fig. 1 Scheme computational cost in terms of the run time (a), the total number of cycles (b) and the
number of points (c), as function of ρ̄, the average load per queue, and for different values of Δ obtained with
λ = 0.08, μ ∈ [0.2,2.0], α = 1 and c2

s = 0.5. Note that an average load per queue ρ̄ = 0.61 corresponds to
the load in (Q1,Q2,Q3) that is equal to (0.64,0.83,0.35)

Table 1 Scheme convergence behavior for different values of ρ̄ with Δ = 4, λ = 0.08, α = 1 and c2
s = 0.5.

These results are complementary to those in Fig. 1(c)

Avg. load (ρ̄) No. of cycles in the consecutive loops Total cyc.

0.57 60 248 383 372 232 16 8 1 1320
0.61 63 381 638 608 305 1 1996

it is equal to Nmax
1,6 ∗ Nmax

2,6 ∗ Nmax
3,6 = 50 ∗ 115 ∗ 25 = 143750. Since Q2 is the queue with the

highest load we deduce that Nmax
2,l ≥ 115 is a sufficient condition for the convergence in both

cases. Since the increment for Nmax
2,l for ρ̄ = 0.57, which is 15, is much smaller than that for

78 Ann Oper Res (2012) 198:57–82

Fig. 2 Scheme computational cost in terms of the run time (a), the total number of cycles (b) and the
number of points (c), as function of ρ̄ for different values of Δ obtained with λ = [0.03,0.17], μ = 1, α = 1
and c2

s = 0.5. Note that ρ̄ = 0.59 corresponds to the load in (Q1,Q2,Q3) that is equal to (0.62,0.80,0.35)

ρ̄ = 0.61, which is 21, this explains the larger number of loops required in the first case. In
addition, this comes with Nmax

1,8 = 59 for the case with ρ̄ = 0.57 compared to Nmax
1,6 = 50 for

ρ̄ = 0.57. On one hand this explains the reason that the number of points is smaller for load
0.61 compared to 0.57. On the other hand, the considerably smaller total number of cycles
in the case of 0.57, see Table 1, explains the reason that the run time is much smaller than
the case of 0.61. Similar results hold for Δ = 3 and Δ = 6.

In Fig. 2, we evaluate the algorithm complexity as function of the average load per queue
obtained by varying λ ∈ [0.03,0.18]. By analogy with the previous case of different values
of μ we find that: (1) the computation complexity of the scheme increases with the average
load per queue, (2) the computation complexity of the scheme is insensitive to the value of Δ

for average load smaller than 0.4, and (3) Δ = 6 yields the best performance especially when
the average load is high. Observe that the scheme in Fig. 1 requires less time to converge

Ann Oper Res (2012) 198:57–82 79

Table 2 Scheme convergence behavior with Δ = 6 for two different scenarios with the same ρ̄ equal to
0.5005

Q1, Q2, Q3 loads No. of cycles in the consecutive loops Total cyc. Run time

0.5286, 0.676, 0.2977 32 96 129 113 57 8 1 436 93.5 sec

0.5278, 0.684, 0.2891 58 170 194 130 8 1 561 71.4 sec

than in Fig. 2. This is because of the possibility that a different settings of the loads yield
the same average load per queue. To explain this issue let us consider the following settings.
We fixed α = 1 c2

s = 0.5 and first set λ to 0.144 and μ to 1, and second set λ to 0.08 and μ

to 1.691. These two settings yield an average load per queue equal to 0.5005. Note that in
the first setting the load in Q1, Q2, and Q3 are equal to 0.5287, 0.676 and 0.2977, however
in the second case the load in the queues are equal to 0.5278, 0.684 and 0.2891. Observe
that there is a slight difference of 0.008 especially for the load in Q2, which happens to be
the queue with the highest load in both settings. Table 2 shows the convergence sensitivity
to the small deviation in the loads in the two cases. Observe that in the second case with a
higher load in Q2 the scheme requires more cycles per loop in the starting phase but this
comes with a smaller total number of loops, which yields a smaller run time.

We note that we evaluated the impact of α on the scheme computation cost with λ =
0.1, μ = 1.2, c2

s = 0.5, Δ = 5 and α ∈ [0.4,1.5]. Observe that as α increases the server
visit time to Qi is smaller, which makes the loads in the queues increase. For this reason,
we numerically noticed that the computational cost of the scheme increases monotonically
with α. In addition, we evaluated the scheme run time as function of the squared coefficient
of variation, c2

s , with a fixed mean service time at Qi equal to 1/μi and different values
of λ, and for μ = α = 1. Observe that the run time tends to decrease as function of c2

s . On
the one hand, this is due to the preemptive discipline considered in this section that forces
the load to decrease as function of c2

s . On the other hand, as c2
s increases the queues become

more variable in size which compensates for the load reduction caused by a higher c2
s . For

example, an almost equal run time is experienced for c2
s = 1.5,2.5 with λ = 1.2.

We conclude that for an average load per queue smaller or equal to 0.5 the run time of
our scheme is smaller than 100 sec and the number of points is smaller than 150000.

7 Comparison with other numerical methods

In this paper we developed an iterative scheme to compute the joint queue-length distribution
at embedded epochs of the time-limited polling systems. This is done using the closed-form
relation between the p.g.f. of the joint queue-length at the beginning and the end of a server
visit to a queue. Another way to solve our problem is to represent our model as a finite-state
Markov chain and apply a numerical method to compute the steady-state probabilities. In
order to do so, it is necessary to assume that the switch-over times are distributed accord-
ing to a phase-type distribution. In addition, it is necessary to apply a dynamic approach
that requires multiple loops to truncate the queues at a proper value to satisfy a predefined
convergence criterion. This will result in a large, finite-state, structured Markov chain that
should be solved in each loop where the size of the queues is updated. The literature on
numerical solution of Markov chain is abundant. The most commonly used methods are
the iterative methods. For an overview on this topic see, e.g., Bolch et al. (2006, Chap. 3),
Malhis and Sanders (1996), Philippe et al. (1992) and Stewart (2009, Chap. 10).

80 Ann Oper Res (2012) 198:57–82

Recently, Van Houdt in Van Houdt (2010) proposed a numerical solution for the polling
systems. Van Houdt approach is based on the iterative method especially the so-called power
method. In Van Houdt (2010), the author studied a discrete-time Bernoulli polling systems
with zero switch-over times. The Bernoulli service discipline includes as a particular case
the exhaustive and k-limited discipline but not the time-limited discipline. In Van Houdt
(2010), it is proposed to truncate the queues in order to obtain a large, structured, finite
Markov chain. The analysis of the Markov chain relies on the power method together with
the shuffle algorithm and the Kronecker structure to speed up the computations. In addition,
they have a dynamic approach similar to us that requires multiple loops in order to truncate
the queues at a proper size. Our model is different from their model in the sense that we
have a continuous-time time-limited polling systems. Despite these facts, a comparison be-
tween the run time of our and their algorithm shows that both algorithms have a comparable
performance. More precisely, in Van Houdt (2010) it is reported there that the algorithm
requires less than 4 sec to converge with a total offered load equal to 0.7. This result is ob-
tained for the discrete-time, zero switch-over times, exhaustive polling system that consists
of four queues. We implemented exactly the same dynamic approach with a more precise
convergence parameter than the one in Van Houdt (2010), i.e. ε = 10−10 instead of ε = 10−7,
but for a continuous-time, zero switch-over times, exhaustive polling system that consists of
four queues. For the same offered load 0.7, our algorithm converges in less than 2 sec. This
comparison shows that both algorithms have a comparable result.

The advantage of our algorithm compared to the one in Van Houdt (2010) is that we can
consider an arbitrarily distributed switch-over time without the need to approximate it with
a phase-type distribution. Moreover, we believe that our algorithm can be extended for the
case with arbitrarily distributed service time. The advantage of the algorithm in Van Houdt
(2010) compared to our is that it is more generic. This is because our algorithm requires
the derivation beforehand of the relation between the p.g.f. of the joint queue-length at the
beginning and the end of a server visit to a queue.

8 Discussion

Let us discuss the impact of adding a queue in the system on the computation complexity
of the scheme. First, note that in this case the load in the queues increase. This is because
the availability of the server in the queues decrease. Second, the time required for a compu-
tational cycle increases linearly with the number of added queues. Third, the total number
of cycles increases monotonically because of the higher load in the queues. In the end, all
these increments add together to make the run time increase monotonically with a similar
form of those in Figs. 1 and 2(a) but in a much faster way.

We now discuss the assumption that the server visits time to the queues are exponentially
distributed. The general case with arbitrarily distributed visit time cannot be tackled with
our approach. However, as an approximation one can fit a phase-type distribution to (some)
moments of the general distribution. In this case, our approach can be modified as follows.
We embed the joint queue-length at the beginning instants of the visit phases. Extending the
kernel relation in Theorems 2 and 3 we can relate the queue-length p.g.f. at the beginning
and the end of a server visit to a queue. This is possible by conditioning on the phase of
the service time, of the customer in service, at the end of the phases of the server visit
to the queue. By analogy with the iterative scheme in Sect. 5 one can compute the joint
queue-length distribution embedded at the end of a server visit phase. We expect that the
computational costs will increase linearly with the number of the server visit phases.

Ann Oper Res (2012) 198:57–82 81

9 Conclusion

In this paper, we have developed a general framework to analyze polling systems with Pois-
son batch arrivals and phase-type service times for the autonomous-server and the time-
limited service discipline. The framework is based on the key idea of relating directly the
joint queue-lengths distribution at the beginning and the end of a server visit. In order to
do so, we used the theory of absorbing Markov chains. We have illustrated our framework
for the autonomous-server and the time-limited service discipline. The analysis presented in
this paper is restricted to the case of a single job service at a time. We emphasize that the
analysis can be extended to the more general batch service disciplines, see Cohen (1982,
Chap. III.2). For instance, Lemma 6 holds in this case, however, the matrix A2 becomes a
full block matrix.

In this paper we have shown that our framework is applicable to disciplines that do not
satisfy the branching property which are, in general, considered to be hard to analyze. Our
framework is also applicable to branching type polling systems such as the exhaustive and
the gated discipline.

Acknowledgements We first would thank the reviewers for their valuable comments which helped to im-
prove the paper. In the Netherlands, the 3 universities of technology have formed the 3TU.Federation. This
article is the result of joint research in the 3TU.Centre of Competence NIRICT (Netherlands Institute for Re-
search on ICT). The authors would also thank De Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) for their financial support.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Abate, J., & Whitt, W. (1992). Numerical inversion of probability generating functions. Operations Research
Letters, 12(4), 245–251.

Al Hanbali, A., de Haan, R., Boucherie, R. J., & van Ommeren, J.-K. (2008a). A tandem queueing model for
delay analysis in disconnected ad hoc networks. In LCNS: Vol. 5055. Proc. of ASMTA (pp. 189–205),
Nicosia, Cyprus, June 2008.

Al Hanbali, A., de Haan, R., Boucherie, R. J., & van Ommeren, J.-K. (2008b). Time-limited and k-limited
polling systems: a matrix analytic solution. In Proc. of SMCTools, Athens, Greece, Oct. 2008.

Bernstein, D. S. (2005). Matrix mathematics. Princeton: Princeton University Press.
Blanc, J. (1992a). An algorithmic solution of polling models with limited service disciplines. IEEE Transac-

tions on Communications, 40(7), 1152–1155.
Blanc, J. (1992b). Performance evaluation of polling systems by means of the power-series algorithm. Annals

of Operation Research, 35(3), 155–186.
Blanc, J. (1998). The power-series algorithm for polling systems with time limits. Probability in the Engi-

neering and Informational Sciences, 12, 221–237.
Bolch, G., Greiner, S., de Meer, H., & Trivedi, K. (2006). Queueing networks and Markov chains: modeling

and performance evaluation with computer science applications. New York/Oxford: Wiley/Blackwell.
Cohen, J. W. (1982). The single server queue. Amsterdam: North-Holland.
Daigle, J. (1989). Queue length distributions from probability generating functions via discrete Fourier trans-

forms. Operations Research Letters, 8(4), 229–236.
de Haan, R. (2009). Queueing models for mobile ad hoc networks. PhD thesis, Enschede, June 2009.

http://doc.utwente.nl/61385/.
de Haan, R., Boucherie, R. J., & van Ommeren, J.-K. (2009). A polling model with an autonomous server.

Queueing Systems, 62(3), 279–308.
Eisenberg, M. (1972). Queues with periodic service and changeover times. Operations Research, 20(2), 440–

451.

http://doc.utwente.nl/61385/

82 Ann Oper Res (2012) 198:57–82

Fricker, C., & Jaibi, M. (1994). Monotonicity and stability of periodic polling models. Queueing Systems,
15(1–4), 211–238.

Gaver, D. P., Jacobs, P. A., & Latouche, G. (1984). Finite birth-and-death models in randomly changing
environments. Advances in Applied Probability, 16, 715–731.

Grinstead, C., & Snell, J. (1997). Introduction to Probability. Providence: American Mathematical Society.
Guillemin, F., & Simonian, A. (1995). Transient characteristics of an M/M/1/infinity system. Advances in

Applied Probability, 27, 862–888.
Leung, K. (1991). Cyclic-service systems with probabilistically-limited service. IEEE Journal on Selected

Areas in Communications, 9(2), 185–193.
Leung, K. (1994). Cyclic-service systems with non-preemptive time-limited service. IEEE Transactions on

Communications, 42(8), 2521–2524.
Levy, H., & Sidi, M. (1990). Polling systems: applications, modeling, and optimization. IEEE Transactions

on Communications, 38(10).
Malhis, L., & Sanders, W. (1996). An efficient two-stage iterative method for the steady-state analysis of

Markov regenerative stochastic Petri net models. Performance Evaluation, 27, 583–601.
Nakatsuka, T. (2009). Queue length distribution in M/G/1, Mx /G/1 and their variants with completion time.

Journal of the Operations Research, 52(1), 11–34.
Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Baltimore:

Johns Hopkins University Press.
Philippe, B., Saad, Y., & Stewart, W. (1992). Numerical methods in Markov chain modeling. Operations

Research, 40(6), 1156–1179.
Resing, J. (1993). Polling systems and multitype branching processes. Queueing Systems, 13(10), 409–429.
Stewart, W. (2009). Probability, Markov chains, queues, and simulation: the mathematical basis of perfor-

mance modeling. Princeton: Princeton University Press.
Takagi, H. (2000). Analysis and application of polling models. In LNCS: Vol. 1769. Performance evaluation:

origins and directions (pp. 423–442). Berlin: Springer.
Tijms, H. (2003). A first course in stochastic models. New York: Wiley.
Titchmarsh, E. (1976). The theory of functions. Oxford: Oxford Science Publications.
Van Houdt, B. (2010). Numerical solution of polling systems for analyzing networks on chips. In Proc. of

NSMC, Virginia, USA.
van Vuuren, M., & Winands, E. (2007). Iterative approximation of k-limited polling systems. Queueing Sys-

tems: Theory and Applications, 55(3), 161–178.
Yechiali, U., & Eliazar, I. (1998). Polling under the randomly-timed gated regime. Stochastic Models, 14(1),

79–93.

	Time-limited polling systems with batch arrivals and phase-type service times
	Abstract
	Introduction
	Model
	Autonomous-server discipline
	Case M=3
	General case

	Time-limited discipline
	Iterative scheme and implementation issues
	First loop
	Main loop

	Computational costs
	Scenario
	Evaluation

	Comparison with other numerical methods
	Discussion
	Conclusion
	Acknowledgements
	References

