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Abstract For capacity planning issues in health care, such as the allocation of hospital beds,
the admissions rate of patients is commonly assumed to be constant over time. In addition to
the purely random fluctuations, there is also typically a predictable pattern in the number of
arriving patients. For example, roughly 2/3 of the admitted patients at an Intensive Care Unit
arrives during office hours. Also, most of the scheduled admissions occur during weekdays
instead of during the weekend.

Using approximations based on the infinite-server queue, we analyze an M,/H/s/s
model to determine the impact of the time-dependent arrival pattern on the required number
of operational beds and fraction of refused admissions for clinical wards. In particular, the
results show that the effect of the daily pattern is rather limited for clinical wards in contrast
to the week-weekend pattern, for which the difference in the fraction of refused admissions
across the week is considerable. We also show that an increased variability in length of stay
distribution has a stabilizing effect on the time-dependent required number of beds. Finally,
we demonstrate a method to determine the required number of beds across the week.

Keywords Hospital capacity planning - Daily and weekly admission patterns -
Time-dependent arrivals - Refused admissions - Infinite-server queues -
Modified-offered-load approximation

1 Introduction
The subject of bed capacity planning for health care facilities has already received quite

some attention in the operations research literature. Such capacity issues are commonly
addressed by using either simulation or queueing models. Within the queueing literature
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on bed capacity in health care, the M /M /s queue is often applied. This model assumes a
Poisson arrival process of patients, exponentially distributed lengths of stay, s operational
beds, and an infinitely large waiting room for patients that are waiting until a bed becomes
available. Some recent studies (de Bruin et al. 2008; McManus et al. 2004) show that the
M/G/s/s queue (or Erlang loss model) often accurately describes the number of patients
present at a ward. In the M /G /s /s model, there is no waiting room for patients. Patients that
arrive when all beds are occupied are blocked and thus not admitted to this clinical ward.

A severe restriction for the queueing models mentioned above, is that patients are as-
sumed to arrive uniformly over time. It has been widely recognized that this will typically
not be the case for most clinical wards. For instance, across a single day there is an evi-
dent peak in the arrival rate during office hours, see e.g. de Bruin et al. (2007), Green et
al. (2007). Furthermore, a structural pattern exists for the number of admissions across the
week; the average number of admissions (per day) during the weekdays will generally be
larger than the average number of admissions (per day) during the weekends, in particular
if the proportion of scheduled arrivals is large. Depending on the operating days of surgical
specialists, there may also be a structural difference in the number of admissions for every
weekday.

The main goal of this paper is to analyze the impact of a predictable patient arrival pat-
tern on the performance and bed capacity requirements of a clinical ward. To do this, we
assume that patients arrive according to a time-dependent Poisson process. We employ a
loss model based on de Bruin et al. (2008) in which patients who find all beds occupied are
refused. One of our main interests is in the impact of the weekend on the bed occupancy
and proportion of refused admissions across the week. Other issues concern the effect of
structural fluctuations across the day, the operating room schedule, and the variability of the
length of stay distribution. Finally, to exploit the predictable fluctuations in admissions, we
consider the case in which the number of operational beds is more flexible.

There already exists a vast body of literature on queueing models with a time-dependent
Poisson arrival process. In case the number of servers (beds) is infinite, tractable expressions
for the distribution of the number of patients exist, see e.g. Eick et al. (1993a, 1993b). For
a finite number of beds, closed-form results are considerably more difficult; results com-
monly involve numerical results (Davis et al. 1995; Green et al. 1991, 2001) or approxima-
tions (Green et al. 2001; Massey and Whitt 1994) (see Eick et al. 1993b for an overview of
approximations based on infinite-server queues).

The effect of time-varying arrivals on the system performance has also been addressed
in the literature. In Green et al. (1991, 2001), various effects are considered for the case
of multi-server Markovian queues with infinite waiting room capacity and the arrival rate
following a sine function. These effects include the amplitude of the arrival rate function and
the frequency of events. In Davis et al. (1995), the sensitivity to the service time distribution
of the blocking probability in a non-stationary loss model is investigated, mainly focusing
on a sine function for the arrival rate again. The quality of various approximations for the
offered load are considered in Eick et al. (1993b) for sinusoidal arrival rates. We also refer
to Feldman et al. (2008), Green et al. (2007) for the application of such queueing models for
determining staffing requirements in service systems.

Although there are various papers on multi-server queues with non-stationary Poisson ar-
rivals, the impact on the performance for clinical wards has not yet been structurally studied.
For example, the assumption of a sinusoidal arrival rate makes it difficult to model the week-
end effect. Also, the implications of the variability of the length of stay for clinical wards is
not yet fully understood. In this paper, we analyze the performance of an M,/H /s /s queue-
ing model (where H is the acronym for the hyperexponential distribution), where the arrival
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rate is piecewise constant. This choice of arrival rate pattern allows for both a flexible set-up
as well as tractable approximating results, which can be easily calculated using a spread-
sheet. The performance is determined using approximations based on the infinite-server
queue (see Massey and Whitt 1994 for a rigorous basis for this type of approximation); for
supplementary simulation results we refer to Bekker and de Bruin (2009). The approxima-
tions give valuable insights into the offered load and the variability and structural pattern
of the fraction of refused admissions. The simulation results show identical patterns for the
fraction of refused admissions and a somewhat larger variability. The approximations can
also be directly applied to determine the time-dependent number of beds, for which the
fraction of refused admissions remains relatively stable.

This paper is organized as follows. The loss (or blocking) model for clinical wards is
described in Sect. 2 along with the determination of the length of stay distribution. Also, in
Sect. 2.1 we describe a basic clinical ward that serves as a reference example for numerical
results throughout the paper. In Sect. 3, some preliminary results regarding infinite server
queues, (modified-offered-load) approximations, and square-root staffing formulas are pre-
sented. The analysis of the M,/H /s /s approximation, where the arrival rate is piecewise
constant, can be found in Sect. 4. The impact of varying arrival rates is presented in Sect. 5
and includes: predictable fluctuations across the day and week, the effect of different op-
erating days, the impact of the length of stay distribution, and a method to determine the
required number of beds across the week. The paper is concluded in Sect. 6.

2 Model and data analysis

In this paper, we consider the following structural model for the patient flow through a single
clinical ward. Patients randomly arrive at the ward. These patients can either be scheduled
(elective) or unscheduled (urgent/emergent). A patient is only admitted if an operational bed
is available and refused otherwise. Admitted patients occupy a bed for a random amount of
time, the length of stay (LOS). We abbreviate the overall average length of stay by ALOS.
To determine appropriate assumptions regarding the arrival process of patients and the
LOS distribution, we considered 24 clinical wards of a university medical center, see de
Bruin et al. (2008) for details. Based on these data, we make the following assumptions:

Arrivals It has been widely accepted that unscheduled arrivals occur roughly according
to a Poisson process, see e.g. Young (1965). From de Bruin et al. (2008) it follows that
the number of unscheduled patient admissions per day can also be well approximated by a
Poisson distribution in case we distinguish between weekdays and weekends. Motivated by
this observation, we here assume that patients arrive according to a time-dependent Poisson
process. Besides the weekend effect, the arrival rate may also depend on the day of the week,
or the time of day.

LOS As noted in de Bruin et al. (2008) the ALOS ranges from 1.5 to 7.8 days for the 24
clinical wards.! More insights into the LOS characteristics and its relation to the required bed
capacity can be obtained by Lorenz curves and Gini coefficients, see de Bruin et al. (2008) or
Sect. 2.2 below. Note that there is a discrepancy between the actual (observed) LOS and the
medical required LOS. There are several reasons for this discrepancy, including congestion

I These numbers are based on data of 2006, but the fi gures for 2004 and 2005 were analyzed and are compa-
rable.
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at the subsequent ward (chain effects), no discharges during the night, and less discharges
during the weekend.

We use the fact that the LOS distribution can be approximated by a two-phase hyper-
exponential distribution (H,). Intuitively, the H, assumption indicates that patients can be
roughly divided into two different groups, each having an exponential LOS. These groups
may for instance represent patients with a short (or normal) LOS and patients with pro-
longed hospital stay, see also Harrison (2001), Taylor et al. (2000). We refer to Sect. 2.2 for
details on the choice of parameters for the H, LOS distribution function.

Beds The capacity of a ward is given by the number of operational beds. In our case,
bed capacity is limited by either the available nursing staff or physical constraints. We refer
to Sect. 6 for a brief discussion on nurse staffing. The number of staffed beds fluctuates in
practice (illness, deliberately closing beds during the weekends), thus a more flexible setting
in which the number of beds may (to some extent) vary over time may be advantageous, see
Sect. 5.5. Unless explicitly stated, we however assume that the capacity is fixed at s.

Motivated by the observations above, we use an M,/ H,/s /s queue to describe the number of
patients at a clinical ward. A formal description of this queueing model and an approxima-
tion of its performance can be found in Sect. 4. Next, in Sect. 2.1, we describe a basic clinical
ward that is used as an example throughout the paper and detail on the H, distribution for
the LOS in Sect. 2.2.

2.1 Basic scenario for clinical wards

To demonstrate the effects of time-dependent arrival patterns, we use a basic scenario that
represents a typical clinical ward at the university medical center. In particular, we assume
that the ALOS is 4 days, which corresponds to the overall average length of stay of the
24 wards that we analyzed. Moreover, we take an average number of arrivals of 6 per day,
yielding an average load of 6 x 4 = 24. This means that when all patients would be admitted,
on average 24 beds would be required. A common mistake is to size clinical wards on this
average number. This results in operational problems, such as the occurrence of refused
admissions.

In Sect. 5, we consider various modifications of this basic clinical ward. To make good
comparisons, we keep the average offered load fixed at 24 in all examples. Unless explic-
itly stated, we also assume that the number of operational beds is 28. Using the Erlang
loss model, the proportion of refused admissions is 6.7% (e.g., use (4) below) and the bed
occupancy is (6 x (1 —0.067) x 4)/28 x 100% ~ 80%.

We note that these figures also roughly describe the situation at the Intensive Care Unit
of the corresponding hospital.

2.2 LOS and hyperexponential distributions

A good approximation for the LOS is a two-phase hyperexponential distribution function
(see also Harrison 2001; Taylor et al. 2000 for the occurrence of hyperexponential LOS in
health care). Let p; be the probability that the patient is of type i and let 1/u; be the average
length of stay for type i, i = 1, 2. Since p; + p, = 1, the H, distribution is characterized by
three parameters. Often, one parameter is eliminated by assuming that p;/u; = pa2/u, (bal-
anced means); i.e., the total capacity for both type of patients is equal. Below, we describe
a two-parameter fit based on the Gini coefficient (G) and a case where a three-parameter fit
is required.
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Two-parameter fit As mentioned, a two parameter fit is often used in combination with
balanced means, i.e., u; = E[S]/(2p1), where E[S] is the ALOS. In the literature, the pa-
rameters are usually determined based on the first two moments (or squared coefficient of
variation). An elegant alternative is to use Gini coefficients. The Gini coefficient, tradition-
ally used as a measure of the inequality in wealth, is here used as a measure of dispersion
for the inequality in bed capacity. Specifically, a relatively large Gini coefficient (i.e., close
to 1) indicates that a disproportional part of the bed capacity is used by a small fraction of
the patients, whereas a Gini coefficient of 0 implies that all patients exactly use the same
amount of bed capacity. The Gini coefficient thus provides insight into the bed capacity
required for patients with prolonged hospital stay. We refer to de Bruin et al. (2008) for a
formal definition.

The Gini coefficient for an H, distribution does not have a very tractable form in general,
but under the assumption of balanced means we have G = 0.75 — p; p,, see Appendix.
Hence, 0.5 < G < 0.75 (for py, p> > 0). Using p, =1 — p;, we obtain

—1+,/G !
P1—2 o

The other parameters follow straightforwardly from the assumption of balanced means.

For our university medical center, 22 out of the 24 considered clinical wards have a Gini
coefficient between 0.5 and 0.75. For most wards (19 out of the 22), the two-parameter fit
gives a good approximation for the LOS distribution. An alternative for the remaining wards,
based on a three-parameter fit, is given below.

Three-parameter fit  In case patients with prolonged stay require a very large part of the bed
capacity, which is not uncommon in a university medical center, the assumption of balanced
means may not always be appropriate. A prominent example is the ICU. Roughly, we may
state that the two-parameter fit is not always satisfactory when the Gini coefficient grows,
say, to around 0.7.

An elegant alternative is given in Whitt (1984), where the parameters are based on the
ALOS, squared coefficient of variation, and the proportion of the total mean in the compo-
nent with the smaller mean, defined as

_ P/
P/ + pa/us

Note that r = 0.5 corresponds to balanced means. In case of disproportional capacity re-
quirements for prolonged hospital stay, r will typically be smaller than 0.5.

In Fig. 1, the LOS approximation based on » = 0.5 and r = 0.15 are depicted, along with
the observed cumulative LOS for the ICU surgical based on data of 2005. From the figure,
it can be immediately concluded that » = 0.15 gives a large improvement and a satisfactory
LOS approximation.

3 Preliminaries and queueing approximations
Exact results for queueing models with time-dependent arrival patterns are generally diffi-
cult to obtain. In this section we define approximations for the M,/ G /s /s models, which

are employed in Sect. 4 for the special case of an M,/H /s /s model with a piecewise con-
stant arrival rate. In particular, in this subsection, we first review the infinite-server queue
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Fig.1 H, approximations for the LOS at the ICU surgical

M,/ G /oo with a time-dependent arrival rate, since for that case exact results exist. Second,
based on the infinite-server queue, we consider a convenient approximation for the loss frac-
tion (i.e., fraction of refused admissions) in a corresponding loss model. Finally, we discuss
some intuitively appealing results on setting staffing levels in service systems.

Before presenting the preliminary results, we first introduce some notation. We assume
that customers (patients) arrive according to a time-dependent Poisson process with rate A(z)
at time ¢. Let S denote a generic service time (LOS) with mean 1/x. The number of servers
(beds) is denoted by s (the infinite-server queue then corresponds to s = 00).

Infinite-server queues To determine the time-dependent offered load and loss fraction, we
rely on approximations based on the infinite-server queue. Using infinite-server queues, we
directly obtain the offered load in case there is sufficient bed capacity. Moreover, various
performance measures in such M,/G /oo queues have a tractable form. For instance, the
number of customers in the M,/G /oo queue has a Poisson distribution function with a
time-dependent mean m(¢); i.e., see Eick et al. (1993a) and references therein,

PO*@®) =k) = () e, ey

where Q°(¢) denotes the number of customers (patients) at time ¢ when the number of beds
is s (s = oo in this case). The mean of the number of customers (patients) in the system at
time ¢ can be expressed as

m()=E |:/ A(u)du:| =E[X@E - S)HIE[S], 2)
t—S

where S, denotes the random variable with the stationary excess distribution of S, i.e.,
1 t
P(S, <1)= —— / P(S > u)du.
E[S] Jo
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Using this definition, (2) can be directly rewritten as
o0
m(t) =/ At —v)P(S > v)dv. 3)
v=0

In case of a cyclic arrival rate, we let a denote the length of a cycle. Also, define K=
(1/a) foa A(2)dr as the average arrival rate, p = AE[S] as the average instantaneous load, and
m as the average offered load. It follows from (3) and interchanging integrals that, for cyclic

arrival rates,
1 a
m=— / m(t)dt

/ / At — v)P(S > v)dvdrt

/ P(S >v)— / A(t —v)drdv
0

:/ P(S > v)Adv =/
0

The expression (3) for the time-dependent mean has an even more tractable form in
various special cases. The case in which A(¢) is a sine function has been analyzed in, e.g.,
Eick et al. (1993b). A disadvantage of a sine (or cosine) function is that cyclic periods that
do not have some kind of symmetric behavior are difficult to analyze. As an example, it
is not straightforward to take a weekday-weekend pattern into account with this setup. In
Sect. 4, we therefore assume that A(¢) is piecewise constant.

Modified-Offered-Load (MOL) approximation Based on the infinite-server queue, there
are different approximations for the time-dependent loss system M,/ G/s/s. In Massey and
Whitt (1994), the authors show that the so-called Modified-Offered Load (MOL) approxi-
mation performs well, especially when the blocking probability is not too large.

In case the arrival rate is constant, the fraction of refused admissions (also called blocking
probability) is given by the well-known Erlang pure loss model

PE*=0) =s) _ _ p'/s!
P(Q®(t) <s) D popPt/k!

B(s, p) = “4)
With MOL, we use the same stationary loss model, but replace the instantaneous offered
load by the “modified” offered load m(¢) of the infinite-server model with time-dependent
arrivals. Denote the approximate blocking probability at time ¢ by B;. The MOL approxi-
mation then reads, see Massey and Whitt (1994),

m(t)*/s!
Z}izom(t)"/k!'

Number of hospital beds Determining the number of operational beds is closely related to
staffing issues in service systems, such as call centers. In the latter case, the staffing level
is in terms of the number of required agents. In particular, for large call centers intuitively
appealing results have appeared on optimal staffing levels, see Borst et al. (2004), Whitt
(1992).

B, ~ B(s,m(1)) = (&)
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Let us assume for now that the arrival rate is fixed at A and the offered load is p =1 /. If
the offered load and number of agents are large enough, the staffing level can be determined
by the so-called square-root staffing rule, § € R,

s=p+BP. ©)

For actual staffing, the obtained s can be rounded to the nearest integer. Obviously, at least
p agents are required to be able to handle all arriving traffic, explaining the first term on the
right-hand-side of (6). The second term 8,/p gives the safety staffing, where the parameter
B determines the service level. From this formula, the economies of scale become obvious;
as the offered load grows, the safety staffing only grows by the square root of the offered
load (times B). We refer to Borst et al. (2004) for a more elaborate discussion. In Sect. 5.5,
we present a procedure based on the square-root staffing rule to easily determine appropriate
staffing levels in case of time-dependent arrivals.

First, we note that the square-root staffing rule is based on an asymptotic result as both the
offered load and the number of agents (servers) go to infinity (Halfin and Whitt 1981). How-
ever, this staffing rule also performs well in case the offered load (and number of servers) are
not so large. Second, we note that the probability of delay can be held more or less constant
in the M/M /s queue for different (large) values of p under square-root staffing, see e.g.
Borst et al. (2004). Although this appealing property is lost for the M/G/s/s loss model,
the scaling in (6) is still of great interest, see e.g. Jansen et al. (2008). As already indicated
in Brockmeyer et al. (1948), the blocking probability can then be approximated by

$(B)
®(B)/p'

where ®(-) and ¢(-) are the cumulative distribution function and density of the standard
Normal distribution.

Given an offered load p and desired blocking probability «, the approximation in (7)
gives an easy way to determine an appropriate S, i.e., the § that satisfies (7). In case the
offered load is small, the approximation (7) is not very accurate. The staffing level can then
obviously still be determined by

B(s, p) ~ @)

s* =argmin{s € N, : B(s, p) <a}, ®)

with B(s, p) given by (4). Routines to find the optimal s* are not difficult to implement.

4 Time-dependent approximations for clinical wards

In this section, we analyze a queueing model to obtain insights into the effects of time-
dependent patterns of arriving patients. The model considered is a special case of the one
in Sect. 3. More specifically, we consider approximations for the M;/H /s /s queue. That is,
patients arrive according to a time-dependent Poisson process with rate A(¢). The length of
stay has a hyperexponential distribution function consisting of K exponentials. Let 1/ be
the average length of stay and denote the probability of having an exponential LOS with rate
Wi by pi, ZlK:l p: = 1. The arriving amount of traffic at time ¢ is given by p(t) = A(t)/u.
Let X be the average arrival rate and denote the average offered load by 5 = A /1. Recall that
the number of operational beds is denoted by s and we assume that when a patient arrives
and all beds are occupied the arriving patient is refused (e.g., placed at another clinical ward

@ Springer



Ann Oper Res (2010) 178: 45-65 53

or moved to a different hospital). Note that we assume that once a patient is refused it has
no future effect on the considered ward.

To analyze the effects of time-dependent arrivals in clinical wards, we use a more specific
arrival rate function. Naturally, we need the arrival rate to be periodic. For both a flexible and
tractable setup, we also assume that the arrival rate function is piecewise constant. Suppose
that one periodic cycle can be divided into n intervals where the arrival rate is constant.
Denote the cycle length by a and let 0 =ayp < a; < --- < a, = a be the switching points.
For convenience we assume that a periodic interval starts at time 0. Then, A() = A; if €
[ka + a;_1, ka + a;) for some integer k and i € {1, ...,n}.

Remark 1 The choice of a piecewise constant arrival rate is convenient for analyzing the
effects in different clinical wards. For instance, there can be specific patterns of arriving
patients over the day, but also across the week. Studies (de Bruin et al. 2007) indicate that
a day could be divided in three intervals where the arrival rate is more or less constant, in
which case n = 3. Depending on the LOS, it might be important to model the number of
patients on an hourly basis. This yields n = 24 and a; =i if the time unit is hours. The latter
can be important for Emergency Departments where the ALOS is measured in hours.

Another possibility is to let the arrival rate of patients depend on the day within a week,
yielding n = 7. In case the average number of admitted patients is constant during working
days and weekends, respectively, then a convenient choice is n =2, a; =5, and a, =7, if
the time unit is days.

Below, we first analyze the offered load in an M,/M /oo model indexed by a parameter
ke{l,..., K} representing K different service rates, i.e., we assume the LOS to be expo-
nentially distributed with parameter u;. Let ¢ € [a;_;, a;) for some i € {1, ..., n}. For model
k, in which case the ALOS is 1/u;, we denote the load of the system at time ¢ by m ().
Using (3), the exponential LOS, and conveniently splitting the integral, we obtain

t—aj_ (o]
my(t) = / rie M dy +/ At —v)e " dy
v

=0 v=t—a;_1
A e (r—ais i (t—a o _
I (1 — okl al*l)) e~ kli=ai-1) Aa;_y — u)e " du
Mk u=0
A —uk(t—aj_1) —ux(t—ai_1)
= — (1 — e mtmaD) 4 gDy (a;_y), ©))
Mk

where the second step follows from a change of variable and the third step follows from (3).
Using (9), my(a;) can be recursively expressed in m (0). In particular, applying (9) for
t=a,...,a; and some rewriting yields

1
my(a;) = Z ﬂe—uk(ai—aj) (1 _ e—Hk(Uj—”j—])) + e % (0).
= Mk
Assuming that the system is in a dynamic steady-state, as discussed in Heyman and
Whitt (1984) and references therein, we have my(a,) = m;(0). Hence, taking i = n and
some rewriting directly provides the remaining unknown

n A . _ o
E 1 I o~ Hkla al)(l — e Hklaj “171))
my(0) = J=1 ' w0

1 — e ta
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The offered load at time ¢ € [a;_, a;), for some i € {1, ..., n}, is thus given by

_ ﬁ _ ok (t—ai—y) |- )\_/ —w(t—aj) _ ,Hk(aj—aj_1) — Mkt

mi(n) = 2 (1—e )+;Mke (1—e )+ e M m(0),
where m; (0) is given by (10).

The system now considered is an M;/Hg /oo system, where the LOS is hyperexponen-
tially distributed with parameters py, p, kK € {1, ..., K}. The extension to LOS following
a hyperexponential distribution is straightforward. In particular, using the definition (3), we
directly obtain

00 K K
m(t):/ 0)»(t—v) (Zpke“k”> dv:Zpkmk(t). (11)
v= k=1 k=1

This concludes the derivation of the time-dependent offered load.

Now, the MOL approximation for the fraction of refused admissions at time ¢ (B;) for
the M;/Hg /s /s system is directly obtained by substituting m(t), as given in (11), in (5). To
determine the (long-run) average blocking probability B we have to take the average number
of arrivals during each interval into account. Since the blocking probabilities are statistically
identical during each cycle, this leads to the following weighted average:

_ 1 a
B:_—/ A(t)B,dt.
Aa Jo

5 Impact of varying arrival rates

In clinical wards the number of arriving patients strongly varies over time. We use a time-
dependent Poisson process to model this arrival pattern, where the arrival rate is assumed to
be constant on specific intervals. First, the queueing approximation of Sect. 4 is exploited
to analyze the consequences for the offered load in case of sufficient bed capacity. Then we
use the queueing model to approximate the long-run fraction of refused admissions and the
number of required hospital beds. The results in this section are based on the approximation.
We refer to Bekker and de Bruin (2009) for supplementary simulation results. We note that
the simulations give identical patterns for the fraction of refused admissions. The variation
in fraction of refused admissions turns out to be somewhat larger for the simulation results
than for the approximations. This can be explained by the fact that the approximation is
based on the infinite-server queue; finite-capacity systems are generally more responsive to
changing arrival rates.

The arrival pattern typically varies on different time scales. In Sect. 5.1, we consider the
daily variation of the arrival process. The behavior across the week is analyzed in Sect. 5.2
and the impact of different operating days is addressed in Sect. 5.3. For convenience, we as-
sume in Sects. 5.1-5.3 that the LOS distribution is exponential (in this case we only require
the ALOS as a parameter). In Sect. 5.4, we analyze the impact of different (hyperexponen-
tial) LOS distributions. Finally, we demonstrate a method to determine the required number
of beds across the week in Sect. 5.5.
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Fig. 2 The offered load and fraction of refused admissions (for s = 28) across the day

5.1 Variation across the day

In this subsection, we consider the effects of the daily variation in arrivals of patients. This
daily pattern has been analyzed in e.g. de Bruin et al. (2007), Green et al. (2007). We con-
sider an M,/M /s /s queue and assume, for convenience, that there are only two different
arrival rates over the day; during office hours (between 8:00 and 18:00 hours) the arrival rate
is A1, while the arrival rate is A, otherwise (that is, between 18:00 and 8:00 hours).

Based on data of the ICU, we assume that two out of three patients arrive during office
hours, thus A; = 14/5 x A,. To demonstrate the effect of the ALOS, we consider three
different scenarios that may typically occur in a hospital setting. For a fair comparison,
we use the same traffic load p(¢) for the three scenarios and assume that the average load
is 24 as in the basic scenario. For the different scenarios, we take an ALOS of 4 and 1.5
days, and 1.5 hours, respectively. An ALOS of 4 days corresponds to the overall ALOS,
while 1.5 days is the minimum ALOS for clinical wards in the hospital under consideration.
The third scenario is included to demonstrate the time-dependent effects that may occur at
an Emergency Department (ED), where treatment times are generally measured in hours,
indicating the shorter LOS. The resulting load and approximated blocking probabilities (for
s = 28) are depicted in Fig. 2. We note that the offered load (and thus the average bed
occupancy) is most relevant for clinical wards at this time scale. The fraction of refused
admissions at this small scale may also be affected by the time of discharges across the day
and nurse staffing, see also Remark 2 below.

Figure 2 clearly shows that the predictable daily fluctuation in arrival rate of patients
have a limited impact on clinical wards where the ALOS is about 4 days (or more). As the
ALOS decreases, the impact of variations across the day increases. Intuitively it follows
that if the ALOS is in the order of several days, which is the case at most clinical wards,
the daily variation in patient arrivals is averaged out. The case in which patients remain
in the hospital in the order of several hours is the most difficult case, since this requires a
full time-dependent analysis. As stated before, this has serious consequences for EDs where
fluctuations in workload are common.

Remark 2 Although the impact of the daily pattern is limited for the number of required
beds across the day, this does not imply that the number of nurses should be held fixed.
The staffing level of nurses is often determined using nurse-to-patient ratios, indicating the
number of patients a nurse can take care of per shift. This ratio generally differs across the
day. For instance, nurse-to-patient ratios during the night shift are often twice as large as the
ratios during the early shift, see e.g. Elkhuizen et al. (2007).
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Time-span and separation of time scales To theoretically support these observations, con-
sider the M,/M /oo queue described in Sect. 4 with n = 2. Clearly, the load attains its
minimum and maximum values at m(0) and m(a;), depending on which A;, i = 1,2, is
larger. For convenience, assume that A; > X,, in which case the load attains its minimum
at m(0) and its maximum at m(a;). Below, we analyze the difference between these loads
Mspan = m(ar) —m(0).

Taking t = a; in (9), m(a,) can be directly expressed in terms of m(0). Subtracting m (0),
using (10) for the case n = 2, and some rewriting, provides

Mgspan = (I— eiﬂal)(ﬁ - m(0)>
"

_ Al — Ao (1 —e7Hay (] — e*ﬂ(“*“l))

w 1 —ena
Define
(1 —eran)(1 — e—u(a—au))
Toya(1) = R : (12)
The difference between maximum and minimum load can be expressed as
Mgpan = ()Ol - IOZ)Tul,u (M) (13)

The first term of mp,, only relates to the difference in load between the two periods. The
second term, T}, ,(u), provides insight into the contribution of different time scales. To see
this, observe that 7, ,(u) only depends on a;, a, and the traffic load through ua; and pa,
that is, through the expected number of service times in the first and total period length.
For instance, when pua — 0 (and then also na; — 0) then the difference in load can be
neglected and the model can be approximated by the Simple Stationary Approximation.
The explanation for this is quite clear; as the average length of stay is relatively long, the
structural variations in the arrival rate occur at a much shorter time scale and average out.
A similar result was derived in Eick et al. (1993b), Green et al. (1991) for a sinusoidal arrival
pattern.

In case we fix the period length a and the ALOS 1/u, then it may be readily verified
that T, ,(w) is largest for a; = a/2, i.e., if the period lengths are equal. In that case, (12)
reduces to

1 — e ra/2

Ta/Z,a(M) = (14)

1+ e—ha/2 ’

which only depends on the value of wa/2.

The simple expressions (12) and (14) quantify in which cases the structural variation in
arrival rates may be neglected compared to the differences in load. For this example, with
exponential LOS, using the upper bound (14), we have

Mspan = 005(101 - 102) for na = 0.199.
Thus, as a rule of thumb, we have that in case the ALOS is at least five times as large as
the length of the total period, the effect of variations during the cycle are relatively small

compared to the differences in instantaneously offered loads.
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Fig. 3 The offered load and the fraction of refused admissions (for s = 28) across the week

5.2 Variation across the week

The results of Sect. 5.1 demonstrate that the structural fluctuations in daily admission of
patients have a limited impact on the occupancy of most clinical wards. As discussed, this
follows from the fact that the ALOS is relatively large compared to the 24-hour cycle. For
the predictable variations across the week, the length of the cyclic period is commonly in
a similar range as the ALOS. Therefore, this weekly arrival pattern may have a significant
impact on the bed occupancy across the week and the staff scheduling.

To quantify this impact, we again consider our basic clinical ward. We analyze an
M,/M /s /s queue and assume that during weekdays on average 7.2 patients arrive per day,
while during the weekends 3 patients arrive on average per day. The ALOS is again 4 days.
These numbers are representative for a clinical ward at the university medical center, see
also Sect. 2.1.

From Fig. 3 it follows that the load on the system varies significantly over time. In case
the number of operational beds is fixed (say, at s) the fraction of refused patients also varies
to a large extent. The peak loss fraction based on the approximation is almost 11%. Towards
the end of the weekend, the average number of patients at the ward and the loss fraction are
relatively small, while these quantities might be undesirably large on Thursdays and Fridays.
The simulation results (Bekker and de Bruin 2009) show an identical pattern. The variation
in fraction of refused admissions across the week turns out to be even somewhat larger (e.g.,
the peak loss fraction then is well over 13%).

The variation in weekly demand also has a negative impact on the total number of refused
admissions; the weekly average loss fraction increases from 6.7% to 7.1% when incorporat-
ing the non-stationary arrival process. During weekdays, the average loss fraction is 7.4%
while it is 5.7% in the weekends.

Remark 3 Ross (1978) already conjectured that the loss fraction is larger for a non-
stationary arrival process than for a stationary arrival process. This conjecture turns out
not to be true in general, see Heyman (1982) for a counterexample involving determinis-
tic service times. Rolski (1984) showed that the conjecture is valid for exponential service
times and only one or two servers.

In the Pointwise Stationary Approximation (PSA) the offered load is approximated by the
instantaneous traffic load, i.e., m(t) = p(t), see e.g. Eick et al. (1993b), Green and Kolesar
(1991), Green et al. (2007). For the PSA, it is relatively easy to see that the loss fraction
increases by incorporating time-dependent arrivals. Fixing s, it has been shown that the
throughput ¥ (p) = pB(s, p) is a convex function, see e.g. Harel (1990), Krishnan (1990).
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Table 1 Fraction of admissions
(in % of total weekly admissions)
across the week

Mon Tue Wed Thu Fri Sat Sun

Overall 18.8% 16.8% 16.6% 169% 149% 7.1% 9.0%
ICU 17.1% 18.6% 16.7% 17.5% 160% 82% 6.0%

Since the ALOS is constant, using Jensen’s inequality, we have

1 1 [
B(s.5) = ~y (—/ p(u)du)
P alJo

11 ¢
:—/ ¥ (o(u))du
palo

IA

= Bpsa,

where Bpsy is the average loss fraction for the PSA.

Considering the convexity of v (p), the derivation suggests that the effects of a time-
varying arrival rate is largest for values of p where v (p) is relatively large. Depending on
the value of s, this typically happens for moderate to high values of the load (compared to s).
In case of our basic clinical ward (s = 28), WH (p) attains its maximum around 22.5. This
means that the sharpest increase in loss fraction occurs when the offered load is around 22.5,
in which case B(28,22.5) ~ 4.5%. For clinical wards these are typically the most relevant
cases.

To give a more precise description of the bed occupancy across the week, we now con-
sider the daily number of admissions. In Table 1, the proportion of admissions during each
day of the week are given for the overall average of the 24 clinical wards and the ICU. (See
Green and Nguyen 2001 for similar findings in a different hospital.)

As can be observed from Table 1, the number of admissions slightly varies across week-
days and days in the weekend. For weekdays, this can be explained by the Operating Room
scheduling of different disciplines. Also, note that the average number of admissions on Fri-
day is lower than on the other weekdays. For the average over the 24 wards, more patients
are admitted on Sundays than on Saturdays. This difference is likely to be caused by the fact
that patients having a scheduled surgery on Monday are sometimes admitted on Sunday.
Such patients are usually placed at a normal care facility, explaining the difference between
the overall average and the ICU during weekends.

To illustrate the impact of fluctuations in daily admissions, we consider our basic clinical
ward where the arrival pattern is as in Table 1 (with an average of 6 arrivals per day); see
Fig. 4 for the result. Note that the time-dependent offered load and loss fraction are very
similar to those in Fig. 3, indicating that the weekday-weekend pattern has a predominant
effect.

When the number of beds is fixed, then the time-dependent admissions have a clear
negative impact on the performance of clinical wards. However, the time-dependent pattern
can also be exploited for determining appropriate staffing levels. Since a large part of the
personnel might want to have days off during the weekend, the number of staffed beds could
be reduced during that period. The structural reduction of the number of operational beds
during the weekend is already standard procedure at the ICU of the considered university
medical center. This option is further exploited in Sect. 5.5.

Although we only presented one numerical example here, we note that this weekly be-
havior seems typical for many clinical wards, which is also recognized by hospital profes-
sionals.
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Fig. 4 The offered load and the fraction of refused admissions (for s = 28) for daily admissions

Table 2 Average number of

daily admissions Scenario Mon Tue Wed Thu  Fri Sat  Sun

Week-weekend 7.2 7.2 72 7.2 72 3.0 30
Mon, Tue 8.4 8.4 6.4 6.4 64 3.0 30
Thu, Fri 6.4 6.4 6.4 8.4 84 30 3.0

5.3 Operating Room schedule

The Operating Room (OR) schedule also has an effect on the number of arrivals to a clinical
ward across the week. In this subsection, we explore the impact of the OR schedule on the
occupancy of clinical wards.

In general, each surgical discipline gets one or more rooms assigned to for a fixed number
of days (referred to as OR sessions) during the week. In the medical center of this study, the
average number of OR sessions per surgical discipline is 5 per week. Note that this does
not necessarily mean that a surgical group gets 1 session assigned per weekday. Surgeons
in a university medical center have many obligations such as: teaching medical students,
appointments at the outpatient clinic, doing research and operating patients. This directly
leads to variability in the number of OR sessions per medical discipline across the week. As
patients are usually admitted the day of surgery or the day before, the number of arrivals is
directly affected by the OR schedule.

To investigate the impact of the OR schedules, we analyze an M,/M/s/s queue with
three scenarios as indicated in Table 2. The first scenario corresponds to the first scenario
of Sect. 5.2 with on average 7.2 and 3 arrivals per day during the week and weekend, re-
spectively, and is included for reference. The second and third scenario represent an OR
schedule which is heavy at the beginning and end of the week, respectively. The difference
of (on average) two patients on two weekdays, are based on practical experience in our
medical center.

The resulting offered load and proportion of refused admissions for 28 operational beds
can be found in Fig. 5. As can be observed from the figure, a busy OR schedule at the begin-
ning of the week (say, on Monday and Tuesday) leads to a more balanced required number
of operational beds across the week. In case the OR schedule becomes dense towards the
end of the week, there is a sharper peak in the loss fraction (and thus required number of
beds) on Thursday and Friday.

The above analysis only serves as an example of the impact of the OR schedule on clinical
wards for situations that often occur in practice. To determine the optimal OR schedule from
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Fig. 5 The offered load and the fraction of refused admissions (for s = 28) for different operating days

the perspective of clinical wards, many factors have to be taken into account, including a
thorough flow analysis of all surgical clinical wards. Most important is to be aware of the
impact of the OR schedule on offered load and refused admissions at clinical wards.

5.4 Variability in LOS

In Sects. 5.1-5.3, we assumed for convenience that the LOS follows an exponential distrib-
ution. In this subsection we analyze the impact of the LOS distribution, since an approxima-
tion based on the hyperexponential distribution is generally better. Specifically, we analyze
the M,/H /s /s queue.

We consider three different cases for the distribution of the LOS; (i) an exponential LOS,
(ii) a hyperexponential LOS with r = 0.5 and a squared coefficient of variation of 4, and
(iii) a hyperexponential LOS with » = 0.15 and the same squared coefficient of variation.
Cases (i) and (ii) typically correspond to clinical wards where the capacity for patients with
prolonged stay is low to moderate and case (iii) is typical for an ICU. We use again our basic
clinical ward with the weekday-weekend pattern of Sect. 5.2 as a reference scenario. That
is, the arrival rate is 7.2 during weekdays and 3 during weekends. The ALOS is equal to 4
days.

The offered load and proportion of refused admissions (for 28 beds) across the week for
the different LOS distributions are depicted in Fig. 6. In the left part of the figure, we also
included the offered load in case of a deterministic LOS (see Bekker and de Bruin 2009
for remarkable results for the fraction of refused admissions). The distribution has a clear
effect on the time-dependent performance. The differences in load are most extreme for the
case of a fixed (deterministic) LOS. Also observe the stabilizing effect of the patients with a
prolonged stay on the offered load and refused admissions across the week; the differences
in load and loss fraction across the week are smaller for the hyperexponential distribution,
than those for the exponential.

More generally, it can be observed from Fig. 6 that the peak loss fraction increases as
the variability in the LOS decreases, i.e., a more variable LOS has a stabilizing effect on the
time-dependent bed capacity. This follows from the approach to steady state, see Davis et
al. (1995). Intuitively, lower variability implies more responsiveness. For example, in case
of deterministic service times the offered load is adapting fastest to the changing arrival
rate. This observation stems from Davis et al. (1995) for the case of a sinusoidal arrival rate
function.

From the analysis above, it can be concluded that reducing the variability in LOS in-
creases the variability in bed occupancy. It should be noted though, that a reduction in the
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Fig. 6 The offered load and the fraction of refused admissions (for s = 28) for different LOS distributions

LOS variability is in practice often accompanied with a reduction in the average LOS. Sig-
nificant gains in terms of number of operational beds can be obtained by such a reduction in
the ALOS.

Remark 4 The difference between the maximum and minimum offered load can also easily
be analyzed for the hyperexponential distribution. In particular, for the case n = 2 and an
Hg LOS distribution, it follows from (11) and a similar analysis as for (13) that

K
Al Ao
mspan = E Pk <_ - _) Tal,a(/‘l/k)
k=1

1293 1223
o p
k
= (=42 Y T apti),
o1 Mk

with T, . () given by (12).
Fixing a,, a, it follows from Zf:] Pi/ ik =1/ and the convexity of T, ,(-) that

K

K
Pk 1 Dk 1
(A1 —22) E — Ty o) = (A1 — A2)— E — Ty o) < (M — A2) =Ty o ().
=1 Mk Mo Mk W

Hence, the variability in the offered load is smaller for a hyperexponential LOS than for an
exponential LOS, as we also observed in Fig. 6.

5.5 Number of operational beds

As shown in Sect. 5.2, the bed occupancy severely fluctuates in case the average number
of daily admissions varies across the week. If the number of staffed beds is kept fixed,
the fluctuations in bed occupancy can have an undesirable effect on the number of refused
admissions during congested periods. This effect can easily be resolved by allowing for a
more flexible staffing across the week. The analysis is based on an M,/H /s, /s, model.

Generally, the number of required beds can easily be determined by an application of the
Erlang loss formula. Another easy and insightful rule for determining the number of staffed
beds is the square-root staffing formula, see Sect. 3. The square-root staffing approximation
performs well if the number of beds is not too small and can therefore be used for reasonably
sized wards. Moreover, the square-root staffing formula can be easily applied when the
average bed occupancy is non-constant (as in the case of time-dependent arrivals).
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Fig. 7 The number of beds across the week based on the square-root staffing

As mentioned in Sect. 3, we first need to determine the parameter 8 corresponding to
the offered service level. The average number of available beds is usually a strategic de-
cision while the structural opening and/or closing of beds during the week is of a tactical
nature. Following this hierarchy the operational planning involves day-to-day decisions on
the number of beds. In particular, the first issue is typically a managerial trade-off between
service level and efficiency. The Erlang loss formula can often very well be applied to assign
numerical values to this trade-off, see de Bruin et al. (2008), McManus et al. (2004). This
trade-off also typically implies a decision on B; rewriting of (6) yields
s*¥—p

7

where s* is the average number of beds decided upon.

The required number of beds across the week can now be directly determined by (6), i.e.,
s(t) =m(t) + B/m(t), with B given as above and s(¢) the number of beds at time ¢. For the
basic ward (s* = 28 and p = 24), we get B =~ 0.81. In Fig. 7, we consider the week-weekend
pattern as in Sect. 5.2, i.e., an average of 7.2 and 3 arrivals per day during the week and
weekends, respectively. In particular, we depicted the number of beds as prescribed by the
square-root staffing formula and the corresponding loss fraction for two LOS distributions:
(i) an exponential and (ii) a hyperexponential with r = 0.15 (corresponding to an ICU). For
both LOS distributions, the average number of beds roughly equals 28. For an exponential
LOS, the number of beds varies between 25 and 31. The time-dependent loss fraction lies
between 5.8% and 7.6% across the week, with an average of 6.7%. For an hyperexponential
distribution, the number of beds varies between 25 and 30 and the numbers for the loss
fraction are comparable.

For practical purposes, it might not always be desirable to change the actual number of
open beds multiple times during the week. The prescribed staffing levels should therefore
merely serve as a guideline.

/3:

Remark 5 Some care is required when applying the square-root staffing formula for Erlang
loss models. For Erlang delay models, square-root staffing allows for convenient interpreta-
tions in terms of keeping the probability of delay fixed. From (7) it easily follows that the
loss fraction decreases as p (and thus s) increase. When the fluctuations in the offered load
are not too large, which is typically the case for week-weekend patterns in clinical wards,
the differences in loss fractions remain however small.
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Remark 6 The range of different offered loads mgy,n (see Remark 4) directly provides an
indication to what extent the required number of beds may vary. In particular, if the offered
load is not too small and the load variations are not too large (such that the differences in
+/m(t) are small), the number of staffed beds can also be approximated by s = m(¢) + 8+/p.
In that case, mgp,, gives the difference between the maximum and minimum number of
required beds.

6 Conclusion and discussion

In this paper we considered the impact of predictable fluctuations in the average number
of arrivals over time for clinical wards. These predictable fluctuations include both daily
and weekly patterns. Using queueing approximations based on the infinite-server queue,
we showed that the daily pattern, in which most patients arrive during office hours, has a
limited impact on the average number of occupied beds at clinical wards. In contrast, the
daily fluctuations are crucial for capacity planning at the Emergency Department. As a rule
of thumb, we state that the impact of fluctuations is relatively small if the average length of
stay exceeds five times the cycle length at which these fluctuations occur. In that case, such
fluctuations average out.

From the queueing approximation it follows that the weekly pattern, in which most pa-
tients arrive during weekdays, has a significant impact on the required bed capacity at clin-
ical wards. The offered load and fraction of refused admissions may become undesirably
large towards the end of the week. From the approximation it also follows that an increased
variability in LOS has a stabilizing effect on the variability in refused admissions. Finally,
we indicated how flexible staffing can partly eliminate operational problems such as vari-
ability in refused admissions.

We like to stress that the presented numerical results should serve as an indication of
the impact of the predictable arrival pattern of patients. Depending on the characteristics
of a specific clinical ward, the queueing approximation can easily be implemented in an
Excel spreadsheet to give useful insight into the weekly variability in the offered load and
fraction of refused admissions. They also prescribe the required number of beds to keep the
user-defined fraction of refused admissions stable over time.

A subsequent step is to determine the required staffing level. This is typically accom-
plished by using a fixed ratio for the number of patients (beds) that a single nurse can take
care off during a shift, i.e., the nurse-to-patient ratio. The nurse-to-patient ratios generally
differ between different shifts across the day and between weekdays and weekends. We refer
to Elkhuizen et al. (2007) and references therein for a more elaborate discussion. Two recent
studies (Green and Yankovic 2008; de Véricort and Jennings 2008) propose to use queue-
ing models to determine appropriate staffing levels in order to provide timely responses to
patients needs. In particular, the study de Véricort and Jennings (2008) shows that using a
fixed ratio has undesirable effects. In this paper, we focus on the number of beds from which
appropriate staffing levels can be determined.

Furthermore, some data experiments indicate that the number of discharges also varies
across different days in the week. For an accurate modeling of the offered load and number
of refused admissions across the week, the discharge policy should be taken into account
as well. Therefore, the results in this paper mainly serve as an indication of the impact of
weekend effects on the number of beds required and to stress the importance of taking time-
dependent variations into account.
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Appendix: Gini coefficient and H, distributions

Let S be a random variable having a two-phase hyperexponential ( H,) distribution function,
which corresponds to the approximation of the LOS (see Sect. 2.2). Since the H, distribution
is piecewise differentiable, the Gini coefficient is given by

G=1 ! oo1P>(S )2d
=l—0== >y)-dy.
E[S] Jo
Using the H, excess distribution, we have
G=1- BRI (pre ™ + pze_"”)zdy
E[ST Jo
1 2 2 2
:1__<A+ﬁ+ﬂ), (15)
E[ST \2u1  2u2  py+ o

with E[S]= p1/p1 + p2/a.
Under the assumption of balanced means, i.e., p1 /i1 = p2/ 12, the above expression can
be simplified. In particular, for the final term in (15), we may write

2
2pipr P2 _ npEIST

= = 12 E[S].
mitpne  pr+iEpe o pitp

Using E[S]=2p, /w1 = 2p,/u, once more, (15) can be rewritten as

1 1
G=1- LS| (ZE[S] +P1pz]E[S]>
3

= e pPiD2.

Hence, in case of balanced means and p;, p, > 0, we have G € [0.5,0.75).
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