
Ann Oper Res (2008) 163: 49–62
DOI 10.1007/s10479-008-0335-0

Multiagent resource allocation in k-additive domains:
preference representation and complexity

Yann Chevaleyre · Ulle Endriss · Sylvia Estivie · Nicolas Maudet

Published online: 22 March 2008
© The Author(s) 2008

Abstract We study a framework for multiagent resource allocation where autonomous soft-
ware agents negotiate over the allocation of bundles of indivisible resources. Connections to
well-known combinatorial optimisation problems, including the winner determination prob-
lem in combinatorial auctions, shed light on the computational complexity of the framework.
We give particular consideration to scenarios where the preferences of agents are modelled
in terms of k-additive utility functions, i.e. scenarios where synergies between different re-
sources are restricted to bundles of at most k items.

Keywords Resource allocation · Negotiation · Multiagent systems · Preference
representation · Computational complexity

1 Introduction

Multiagent resource allocation (Chevaleyre et al. 2006) is an interdisciplinary field, located
at the intersection of computer science and artificial intelligence research on the one hand,

A preliminary version of this paper has been presented at the 1st DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory (Chevaleyre et al. 2004). We would like to thank the
anonymous reviewers for their helpful comments on the manuscript.

Y. Chevaleyre · N. Maudet
LAMSADE, Université Paris-Dauphine, Paris, France

Y. Chevaleyre
e-mail: yann.chevaleyre@lamsade.dauphine.fr

N. Maudet
e-mail: maudet@lamsade.dauphine.fr

U. Endriss (�)
ILLC, University of Amsterdam, Amsterdam, The Netherlands
e-mail: ulle@illc.uva.nl

S. Estivie
LAMIH, Université de Valenciennes, Valenciennes, France
e-mail: sylvia.estivie@univ-valenciennes.fr

mailto:yann.chevaleyre@lamsade.dauphine.fr
mailto:maudet@lamsade.dauphine.fr
mailto:ulle@illc.uva.nl
mailto:sylvia.estivie@univ-valenciennes.fr

50 Ann Oper Res (2008) 163: 49–62

and the socio-economic sciences on the other. It is concerned with the study of resource
allocation processes within systems of autonomous agents, that not only have preferences
over alternative allocations of resources but also actively participate in computing alloca-
tions. Special emphasis is put on the computational aspects of these processes (this is the
distinguishing feature that differentiates multiagent resource allocation from classical ques-
tions in microeconomics). The multiagent systems paradigm (Wooldridge 2002), developed
in artificial intelligence, provides a useful framework in which to study such resource al-
location problems. Furthermore, the way agents represent their individual preferences over
alternative bundles of resources is an important factor; this is where decision theory comes
into play.

Distributed systems in which autonomous software agents interact with each other,
in either cooperative or competitive ways, can often be usefully interpreted as societies
of agents; and we can employ formal tools from microeconomics to analyse such sys-
tems. If we model the interests of individual agents in terms of a notion of individual
welfare, then the overall performance of the system provides us with a measure of so-
cial welfare. Individual welfare may, for instance, be measured by defining a utility func-
tion mapping “states of affairs” (outcomes of an election, allocations of resources, agree-
ments on a joint plan of action, etc.) to numeric values. The concept of social welfare,
as studied in welfare economics, is an attempt to characterise the well-being of a so-
ciety in relation to the welfare enjoyed by its individual members (Arrow et al. 2002;
Moulin 1988).

In this paper, we study a framework for multiagent resource allocation where autonomous
agents agree on a sequence of multilateral deals to exchange sets of indivisible resources in
order to improve their respective levels of individual welfare. Recent results pertaining to
this framework concern the feasibility of ensuring convergence to an allocation of resources
that is optimal from a social point of view (Sandholm 1998; Endriss et al. 2006), as well as
(certain aspects of) the complexity of doing so, in terms of both computational costs (Dunne
et al. 2005) and the amount of communication required to enable negotiation (Endriss and
Maudet 2005).

A central parameter in a multiagent resource allocation problem is the language used to
represent the preferences of agents over alternative bundles of resources. In the framework
discussed here, we assume that agents use utility functions to model their preferences and
we are going to discuss two alternative languages for defining such functions. As we shall
argue, one of these, the so-called k-additive form, is particularly suitable in domains where
agents may be uncertain about their true preferences, as it provides a natural way of encoding
a hierarchy of progressively more and more accurate approximations to the agent’s complete
utility function.

In Sect. 2, after introducing the negotiation framework used in this paper, we briefly recall
two of the aforementioned convergence results. As we shall see, in cases where the utility
functions used by agents to model their preferences over alternative bundles of resources
are additive, it is sufficient to use very simple negotiation protocols that only cater for deals
involving a single resource at a time. This result suggests to investigate generalisations of the
notion of additivity, and hence we consider the case of k-additive functions, as studied, for
instance, in the context of fuzzy measure theory (Grabisch 1997). The notion of k-additivity
suggests an alternative representation of utility functions, which we introduce in Sect. 3.
We show that this representation is as expressive as the “standard” representation (which
involves listing the utility values for all possible bundles) and that it often allows for a more
succinct representation of preferences.

Ann Oper Res (2008) 163: 49–62 51

Nevertheless, it turns out that the positive result on the structural complexity of deals
obtained for additive functions cannot be generalised in the expected manner. Counterex-
amples are given in Sect. 4. In Sect. 5, we discuss connections between our framework and
some well-known combinatorial optimisation problems (Ausiello et al. 1999). These can be
used to prove NP-hardness results for the decision problem associated with the task of find-
ing a socially optimal resource allocation. We prove complexity results with respect to both
the standard representation of utility functions and the representation based on k-additivity.
In this context, we also discuss connections of our optimisation problem to the winner deter-
mination problem in combinatorial auctions (Cramton et al. 2006). We are going to point out
connections between different ways of representing utility functions and different bidding
languages for such auctions along the way. Our conclusions are presented in Sect. 6.

2 Negotiating over indivisible resources

An instance of our negotiation framework consists of a finite set of (at least two) agents A
and a finite set of indivisible resources R. A resource allocation A is a partitioning of the set
R amongst the agents in A. For instance, given an allocation A with A(i) = {r3, r7}, agent i

would own resources r3 and r7. Given a particular allocation of resources, agents may agree
on a (multilateral) deal to exchange some of the resources they currently hold. In general,
a single deal may involve any number of resources and any number of agents. It transforms
an allocation of resources A into a new allocation A′; that is, we can define a deal as a pair
δ = (A,A′) of allocations (with A �= A′).

Each agent i ∈ A is equipped with a utility function ui mapping bundles of resources
(subsets of R) to rational numbers (note that we do not impose any restrictions on utility
functions). A deal may be coupled with a number of monetary side payments to compensate
some of the agents involved for an otherwise disadvantageous deal. We call a deal rational
if and only if it results in a gain in utility (or money) that strictly outweighs a possible loss
in money (or utility) for each of the agents involved in that deal (Endriss et al. 2006). This
notion of rationality can be formalised using the concept of a payment function p mapping
agents to rational numbers. Such a function has to satisfy the side constraint

∑
i∈A p(i) = 0,

i.e. the overall amount of money in the system remains constant. If p(i) > 0, then agent i

pays the amount of p(i), while p(i) < 0 means that it receives the amount of −p(i).

Definition 1 (Rational deals) A deal δ = (A,A′) is rational if and only if there exists a
payment function p such that ui(A

′(i)) − ui(A(i)) > p(i) for all i ∈ A, except possibly
p(i) = 0 for agents i with A(i) = A′(i).

While individual agents have their own interests, as a system designer, we are interested
in the social welfare associated with a given allocation.

Definition 2 (Social welfare) The social welfare sw(A) of an allocation A is defined as
follows:

sw(A) =
∑

i∈A
ui(A(i)).

This is the utilitarian definition of social welfare. We should stress that other notions of
social welfare have been developed as well (Arrow et al. 2002; Moulin 1988).

52 Ann Oper Res (2008) 163: 49–62

What is the connection between the “local” notion of rationality and the “global” notion
of social welfare? As shown in previous work (Endriss et al. 2006), a deal is rational if
and only if it results in an increase in social welfare. The following result, due to Sandholm
(1998), goes even further by establishing that any sequence of rational deals is bound to
converge to a socially optimal allocation:

Proposition 1 (Convergence) Any sequence of rational deals will eventually result in an
allocation of resources with maximal social welfare.

This means that (i) there can be no infinite sequence of deals all of which are rational,
and (ii) once no more rational deals are possible the agent society must have reached an allo-
cation that has maximal social welfare. The crucial aspect of this result is that any sequence
of deals satisfying the rationality condition will cause the system to converge to an optimal
allocation. That is, whatever deals are agreed on in the early stages of the negotiation, the
system will never get stuck in a local optimum and finding an optimal allocation remains an
option throughout.

A drawback of the general framework is that the above result only holds if deals in-
volving any number of resources and agents are admissible (Sandholm 1998; Endriss et al.
2006). In some cases this problem can be alleviated by putting suitable restrictions on the
utility functions agents may use to model their preferences. A particularly simple example
is the class of additive functions. A utility function is called additive if and only if the value
ascribed to a set of resources is always the sum of the values of its members. For additive
utilities, the following stronger convergence result is known (Endriss et al. 2006):

Proposition 2 (Additive domains) If all utility functions are additive, then any sequence of
rational deals involving only a single resource each will eventually result in an allocation of
resources with maximal social welfare.

This result is of great practical relevance, because it shows that it is sufficient to design
negotiation protocols for single resources (rather than sets) and thereby also just pairs of
agents (rather than larger groups) for applications in which preferences can be modelled in
terms of additive utility functions. In the next section, we are going to introduce a generali-
sation of this notion of additivity.

3 Preference representation

An agent’s utility function may be represented in different ways. This situation is similar,
for instance, to the case of combinatorial auctions, where one can use different bidding
languages to express the preferences of the participating agents (Nisan 2000; Sandholm
2002). Maybe the most intuitive representation of a utility function is the bundle form (or
explicit form), which amounts to listing all bundles of resources to which the agent assigns
a non-zero value, together with their value.

An alternative representation is based on the notion of k-additive functions, which have
been studied in the context of fuzzy measure theory (Grabisch 1997). Given a natural num-
ber k, a utility function is called k-additive if and only if the utility assigned to a bundle of
resources R can be represented as the sum of basic utilities ascribed to subsets of R with
cardinality ≤ k. More formally, a utility function ui is k-additive iff there exists a set of

Ann Oper Res (2008) 163: 49–62 53

coefficients {αT
i |T ⊆ R} such that αT

i = 0 whenever |T | > k, and the following holds for
all R ⊆ R:

ui(R) =
∑

T ⊆R

αT
i . (1)

That is, agent i enjoys an increase in utility of αT
i when it owns all the items in T together,

i.e. αT
i represents the synergetic value of this bundle. If a utility function is defined in terms

of such coefficients, we say that it is given in k-additive form.
When describing examples, we are going to use a simplified notation (resembling that of

a polynomial with variables ri taking the values 0 or 1). For instance, ui = 3 · r1−2 · r2 · r3

represents a 2-additive utility function with two non-zero coefficients: α
{r1}
i =3 and α

{r2,r3}
i =

−2. In the bundle form, the definition of this function would require the specification of five
non-zero values (assuming R = {r1, r2, r3}): ui({r1}) = 3, ui({r1, r2}) = 3, ui({r1, r3}) = 3,
ui({r2, r3}) = −2, and ui({r1, r2, r3}) = 1.

Utility functions that are k-additive with k = 1 are like the additive functions discussed in
the previous section (except that they also allow for a non-zero utility value to be assigned to
the empty set). Hence, the concept of k-additivity is a generalisation of the familiar concept
of additivity. In fact, as we are going to show next, k-additive utility functions cover a whole
range of utility functions, from the very simple additive functions to the most general utility
functions without any restrictions whatsoever.

Proposition 3 (Expressive power) Any utility function can be represented as a k-additive
function with k = |R|.

Proof Let ui be any utility function mapping subsets of R to rational numbers. We recur-
sively define coefficients αR

i for R ⊆ R as follows:

α∅
i = ui(∅),

αR
i = ui(R) −

∑

T ⊂R

αT
i for all R ⊆ R with R �= ∅.

Hence, ui(R) = ∑
T ⊆R αT

i . This is a k-additive utility function for k = |R|. �

Given a utility function, we can also compute the values of the coefficients in the
k-additive form directly, using the so-called Möbius inversion (Rota 1964; Grabisch 1997).
Namely, the solution to (1) is given by the following formula:

αR
i =

∑

T ⊆R

(−1)|R\T | · ui(T).

In analogy to Proposition 3, clearly, the bundle form is also fully expressive, i.e. our two
ways of representing utility functions are equivalent in the sense that they can both express
any utility function over the set of resources R. Besides expressive power, another important
consideration concerns the succinctness of a representation. It turns out that neither of the
two forms of representation is more succinct in all cases. In fact, as we are going to see next,

54 Ann Oper Res (2008) 163: 49–62

there are cases where translating a utility function given in k-additive form into the bundle
form results in an exponential blow-up of the representation, and vice versa.1

To state these results, we use the concept of polynomial simulation. We say that one
representation language can polynomially simulate another language if and only if there is
a polynomial function f such that for any given utility function u, if � is the size of the
representation of u in the second language then the size of the representation of u in the first
language will be at most f (�).

Proposition 4 (Efficiency of the k-additive form) The bundle form cannot polynomially
simulate the k-additive form of representing utility functions.

Proof We prove the claim by giving an example for a utility function with a representation
that is linear in the size of R for the k-additive form, but exponential for the bundle form.
Consider a utility function ui that maps a bundle of resources to the number of elements
in that bundle. This is a 1-additive function, which requires the specification of exactly |R|
coefficients in the k-additive form (namely αR

i = 1 for all bundles R with |R| = 1). For the
bundle form, however, the specification of a utility value for each of the 2|R| − 1 non-empty
bundles is required. �

Proposition 5 (Efficiency of the bundle form) The k-additive form cannot polynomially
simulate the bundle form of representing utility functions.

Proof We give an example for a utility function with a representation that is linear in the
size of R for the bundle form, but exponential for the k-additive form. Consider a utility
function ui that assigns 1 to any bundle consisting of a single resource and 0 to any other
bundle. In the bundle form, ui requires the specification of a utility value for exactly |R|
bundles (namely those with just a single element). For the k-additive form, on the other
hand, the Möbius inversion shows that we have to set αR

i = |R| · (−1)|R|+1. This is different
from 0 for any of the 2|R| − 1 non-empty subsets of R. Hence, ui requires the specification
of an exponential number of coefficients in the k-additive form. �

Taken together, Propositions 4 and 5 show that the preference representation languages
given by the bundle form and the k-additive are incomparable in terms of succinctness. The
examples given in our two proofs are extreme cases, where one form of representation is
exponentially more succinct than the other. While the difference is not always going to be
this strong, choosing the right representation for a given problem domain is still important.
Broadly speaking, the k-additive form will typically be more succinct in cases where there
are only limited synergies between different items. This is likely to be the case for many
application domains, which makes this a useful language for expressing utilities in practice.

In general, either representation may require the specification of up to 2|R| values. How-
ever, for utility functions that are k-additive for some value of k, the k-additive form requires
at most

∑k

i=0

(|R|
i

)
coefficients to be specified. This is equal to 2|R| for k = |R|, but less for

lower values of k.
In many application domains, it will be reasonable to assume that utility functions are

k-additive with a relatively small value of k. Indeed, the larger a bundle of resources, the

1Nisan (2000) proves a number of similar separation results for different types of bidding languages for
combinatorial auctions and Coste-Marquis et al. (2004) do the same for a number of logic-based languages
for expressing ordinal preferences.

Ann Oper Res (2008) 163: 49–62 55

more difficult would it be for an agent to estimate the additional benefit incurred by owning
all the resources in that bundle together (i.e. beyond the benefit incurred by the relevant
subsets). Our analysis shows that this cognitive argument in favour of the k-additive form
is further supported by computational arguments (small values of k allow for a succinct
representation in the k-additive form, but not necessarily in the bundle form). By the same
argument, even when k is not very small, the utility function we obtain by disregarding the
coefficients associated with the largest bundles will often serve as a good approximation
to an agent’s true preferences (the larger a bundle, the less likely that bundle will incur a
significant benefit beyond the value derived from its subsets).

The bundle form corresponds to the so-called XOR-language for expressing bids in com-
binatorial auctions (Nisan 2000; Sandholm 2002). The potential benefits of exploiting the
k-additive form in the context of combinatorial auctions, however, appears not to have been
recognised until very recently (Conitzer et al. 2005). Still, there are also some interesting
parallels between the k-additive form and the “Toolbox DNF” bidding language (Zinkevich
et al. 2003). Indeed, the definitions of both languages seem almost identical. The crucial
difference is that the ToolBox DNF is parametrised by the number of coefficients, while the
k-additive form is parametrised by the maximal cardinality of bundles with non-zero coef-
ficients. The ToolBox DNF will be useful in domains where there are a (relatively small)
number of specific bundles that have cumulative value. The k-additive form will be useful
in situations where no fixed set of valuable bundles can be specified a priori, but where cog-
nitive or computational arguments can be given that support the assumption that no bundle
exceeding a certain cardinality could possibly incur any additional synergetic value. Also
note that, while the k-additive form naturally gives rise to a meaningful hierarchy of utility
functions (from the 1-additive to the |R|-additive functions), this is not the case for the Tool-
Box DNF. The connections between our negotiation framework and combinatorial auctions
will be further explored in Sect. 5.

4 Structural complexity of deals

Recall that Proposition 2 has shown that it is always possible to negotiate a socially optimal
allocation of resources by means of rational deals involving only a single resource at a
time whenever the utilities of all the agents involved are additive. Intuitively, we could have
expected a similar result for k-additive utilities with k ≥ 2 (i.e. a result that states that rational
deals involving at most k resources at a time are sufficient to reach optimal allocations
whenever all utility functions are k-additive). However, as we are going to show next, this
turns out not to be the case. The deals required to reach allocations with maximal social
welfare in the k-additive case are much more complex.

Proposition 6 (Insufficiency of restricted deals) Even if all utility functions are k-additive
for some k ≥ 2, a deal involving the complete set of resources may be necessary to reach an
allocation with maximal social welfare by means of a sequence of rational deals.

Proof To prove the claim, we construct an example with 2-additive utility functions in which
a deal involving all resources in R is needed. Consider two agents sharing n resources
R = {r1, r2, . . . , rn}, with the following 2-additive utility functions:

u1 = 0,

u2 = r1 − r1 · r2 − r1 · r3 − r1 · r4 − · · · − r1 · rn.

56 Ann Oper Res (2008) 163: 49–62

Let Ainit be the initial allocation describing which agent owns which resource before nego-
tiation commences, and let Amax be the allocation maximising social welfare:

Ainit Amax

Agent 1: {r1} {r2, r3, . . . , rn}
Agent 2: {r2, r3, . . . , rn} {r1}

Here, sw(Ainit) = 0 and sw(Amax) = 1. In fact, the only allocation which has a social welfare
greater than sw(Ainit) is Amax . Recall that a deal increases social welfare if and only if it is
a rational deal (Endriss et al. 2006). Thus, the only rational deal here is δ = (Ainit ,Amax),
which is a bilateral deal involving all n resources at the same time. �

A possible objection to the example used in our proof may be that it is rather artifi-
cial. Utility functions that also have some additional properties, such as being monotonic,2

besides being k-additive may be more relevant in practice. To show that the problem of re-
quiring complex deals persists even when we make such additional assumptions, we give a
further, similarly simple, example that demonstrates that also for k-additive functions that
are monotonic, rational deals involving no more than k resources do not always suffice to
negotiate socially optimal allocations. Consider the case of three agents and four resources
with the following utility functions:

u1 = 4 · r1 · r3, u2 = 3 · r1 · r2, u3 = 2 · r3 · r4.

Let Ainit be the initial allocation and let Amax be the optimal allocation with maximal social
welfare:

Ainit Amax

Agent 1: {r1, r3} ∅
Agent 2: {r2, r4} {r1, r2}
Agent 3: ∅ {r3, r4}

We get sw(Ainit) = 4 and sw(Amax) = 5. Clearly, the only rational deal (i.e. the only deal
increasing social welfare) is δ = (Ainit ,Amax), which is a deal involving 3 (rather than just 2)
resources at the same time.

In summary, our results show, differently from what one might have expected, that the
restriction to utility functions that are k-additive for a given value of k does not, in general,
reduce the complexity of deals required to reach a socially optimal allocation of resources
in an agent society whose members follow a simple rational negotiation strategy.

To be able to use simple negotiation protocols efficiently, we need to make much stronger
assumptions on the utility functions used by agents. In a recent paper (Chevaleyre et al.
2005), we prove a generalisation of Propositions 1 and 2 and show that rational deals involv-
ing at most k items each are sufficient for convergence to an optimal allocation whenever
all utility functions are additively separable with respect to a common partition of R (i.e.
synergies across different parts of the partition are not possible and overall utility is defined

2A utility function is called monotonic if and only if the utility of a set of resources is never lower than the
utility assigned to any of its subsets.

Ann Oper Res (2008) 163: 49–62 57

as the sum of utilities for the different sets in the partition Fishburn 1970), and each set in
this partition has at most k elements.

5 Computational complexity results

In this section, we are going to analyse the computational complexity of the problem of
finding an allocation that maximises social welfare, both with respect to the bundle form
and with respect to the k-additive form of representing utility functions.3 In Sect. 3, we have
already mentioned the connection between different representations of utility functions (in
our case the bundle form and the k-additive form) in our distributed negotiation framework
and different bidding languages in combinatorial auctions. In what follows, we explore a
further connection between the two areas.

If we view the problem of finding an allocation with maximal social welfare as an
algorithmic problem faced by a central authority (rather than as a problem of design-
ing suitable negotiation mechanisms), then we can observe an immediate relation to the
so-called winner determination problem in combinatorial auctions (Cramton et al. 2006;
Rothkopf et al. 1998). In a combinatorial auction, bidders can put in bids for different bun-
dles of items (rather than just single items). After all bids have been received, the auctioneer
has to find an allocation for the items on auction amongst the bidders in a way that max-
imises his revenue. If we interpret the price offered for a particular bundle of items as the
utility the agent in question assigns to that set, then maximising revenue (i.e. the sum of
prices associated with winning bids) is equivalent to finding an allocation with maximal
utilitarian social welfare. This equivalence holds, at least, in cases where the optimal allo-
cation of items in an auction is such that all of the items on auction are in fact being sold
(so-called free disposal).

Winner determination in combinatorial auctions is known to be NP-complete (Rothkopf
et al. 1998).4 The quoted result applies to the case of the “standard” bidding language, which
allows bidders to specify prices for particular bundles and makes the implicit assumption that
they are prepared to obtain any number of disjoint bundles for which they have submitted
a bid (Nisan 2000 calls this the “OR language”). Our languages for expressing utilities are
more general than this (they can express a larger class of preference structures). The corre-
spondence to combinatorial auctions suggests that the problem of finding an allocation with
maximal social welfare is at least NP-hard. We can make this observation more precise by
showing how our problem relates to well-known NP-complete “reference problems” (Garey
and Johnson 1979; Ausiello et al. 1999). One such problem is SET PACKING. We use the
schema of Ausiello et al. (1999) to define combinatorial problems:

SET PACKING

Instance: Collection C of finite sets.
Solution: Collection of disjoint sets C′ ⊆ C.
Measure: Cardinality of C′.

3We assume familiarity with the basic concepts of complexity theory; the textbook by Papadimitriou (1994)
provides an excellent introduction to the subject.
4More precisely, the decision problem underlying the winner determination problem, i.e. the problem of
checking whether there exists an allocation that achieves at least a given minimal revenue K is NP-complete.
The concept of NP-completeness applies to decision problems rather than optimisation problems (Ausiello et
al. 1999). The winner determination problem is still NP-hard in the sense that solving it is at least as hard as
solving any NP-complete decision problem.

58 Ann Oper Res (2008) 163: 49–62

The optimisation problem known as MAXIMUM SET PACKING is the problem of finding
a solution C′ for which the cardinality of C′ is maximal. The underlying decision problem
is the problem of answering the question whether there exists a solution C′ for which the
cardinality exceeds a given threshold K . This decision problem is known to be NP-complete
in the size of the instance, i.e. with respect to the number of sets in C (Garey and Johnson
1979).

Proposition 7 (Complexity wrt. bundle form) The decision problem underlying the problem
of finding an allocation with maximal social welfare with utilities represented in bundle form
is NP-complete.

Proof NP-membership follows from the fact that the conditions imposed on valid solutions
can be checked in polynomial time. We prove NP-hardness by showing how to reduce SET

PACKING to our problem. Given an instance C of SET PACKING, consider the following
negotiation problem: R = ⋃

C∈C C; A = C∪{0}; uC(R) = 1 if R = C and uC(R) = 0 other-
wise; and u0(R) = 0 for all bundles R. That is, the elements of the sets in C are the resources
and there is one agent for every set in C, as well as an additional agent called 0. Every agent
values “its” bundle at 1 and every other bundle at 0. Agent 0 values all bundles at 0. Then for
every allocation A there exists an allocation A′ with at least the same social welfare that di-
rectly corresponds to a solution C′, i.e. each of the agents in C either owns (only) its favourite
bundle or no resources at all, and agent 0 owns all other resources. Hence, there exists an
allocation A with sw(A) > K if and only if there exists a solution C′ with |C′| > K . �

Dunne et al. (2005) have recently established a similar result. However, these authors
prove NP-hardness with respect to the number of resources in the system rather than with
respect to the combined size of the representations of utility functions (which will typically
be significantly higher), i.e. our lower complexity bound is sharper than that of Dunne et al.
On the other hand, the NP-membership result of Dunne et al. relies on the representation of
utility functions as programs, which is more succinct than the bundle form, i.e. their upper
complexity bound is sharper than the one reported here. Fargier et al. (2004) also prove a
similar result. In their resource allocation framework agents can, by default, share individual
resources, but if a particular resource can only be owned by one agent at a time, this can be
specified by giving additional constraints. Crucially, all these results relate to the complexity
of finding an optimal allocation by means of a centralised algorithm. For a discussion of the
aspects of complexity that are relevant in a distributed negotiation setting, we refer to Endriss
and Maudet (2005).

Our next aim is to establish the complexity of the same decision problem, but this time
with respect to the k-additive form rather than the bundle form of representing utility func-
tions. As the bundle form can be exponentially more succinct than the k-additive form,
NP-hardness with respect to the former does not necessarily imply NP-hardness with re-
spect to the latter. Nevertheless, as we are going to see, deciding whether there exists an
allocation of resources with a utilitarian social welfare that exceeds a given threshold is also
NP-complete. This time, we are going to use a reduction from another well-known combi-
natorial problem:

MAXIMUM 2-SATISFIABILITY

Instance: Set C of clauses (disjunctions of literals) of length 2.
Solution: Satisfiable set C′ ⊆ C.
Measure: Cardinality of C′.

Ann Oper Res (2008) 163: 49–62 59

The decision problem of checking whether there exists a solution C′ for which the cardinality
exceeds a given threshold K is known to be NP-complete (Garey and Johnson 1979). Note
that this is the case even when the length of clauses is required to be just 2 (the closely
related SAT problem, where we ask whether or not all clauses in C are satisfiable, only
becomes NP-hard for clauses with at least 3 literals).5

Proposition 8 (Complexity wrt. k-additive form) For any k ≥ 2, the decision problem un-
derlying the problem of finding an allocation with maximal social welfare with utilities rep-
resented in k-additive form is NP-complete.

Proof Again, NP-membership is straightforward. For the NP-hardness result it suffices to
consider the case k = 2; the problem for k > 2 is at least as hard. We show NP-hardness for
k = 2 by means of a reduction from MAXIMUM 2-SATISFIABILITY. Let C be an instance
of this problem. Now define R as the set of propositional letters occurring in C and let
A = {1,2}. We now define the utility function u1 of agent 1 using the 2-additive form. It is
the sum of the following 2-additive terms, one for each clause in C:

− pi for any clause of the form pi ∨ pi ;
− (1 − pi) for any clause of the form ¬pi ∨ ¬pi ;
− pi + pj − pi · pj for any clause of the form pi ∨ pj with i �= j ;
− pi + (1 − pj) − pi · (1 − pj) for any clause of the form pi ∨ ¬pj with i �= j ;
− (1 − pi) + (1 − pj) − (1 − pi) · (1 − pj) for any clause of the form ¬pi ∨ ¬pj with

i �= j .

For agent 2, define u2(R) = 0 for all bundles R. Every assignment of truth values to the
propositional letters corresponds to a resource allocation in the following sense: agent 1
owns resource p iff p is set to true. Then the number of clauses satisfied by a given assign-
ment is exactly the social welfare of the corresponding allocation. Hence, deciding whether
there exists an allocation with a social welfare exceeding a given threshold K is at least as
hard as MAXIMUM 2-SATISFIABILITY. �

Our proof shows that we get NP-hardness even for k = 2 and scenarios with just two
agents (with one agent using the trivial utility function mapping every bundle to 0). Other
refinements of the NP-hardness result can be achieved by exploiting the special character-
istics of the chosen NP-hard reference problem. Conitzer et al. (2005), for instance, show
that NP-hardness persists even when each agent may only use two non-zero coefficients to
represent its 2-additive utility function.

As a final complexity result, we are going to show that the problem of verifying that
a given allocation is socially optimal is coNP-complete. This holds for both the bundle
form and the k-additive form of representing utility functions and is a simple corollary to
Propositions 7 and 8.

Corollary 1 (Verifying optimality) The problem of verifying whether a given allocation has
got maximal social welfare is coNP-complete (for both forms of representation of utility
functions).

5The reduction from MAXIMUM 2-SATISFIABILITY has been suggested to us by Jérôme Lang; an alternative
proof, using a reduction from INDEPENDENT SET (Garey and Johnson 1979) together with a translation based
on an idea from pseudo-boolean optimisation (Boros and Hammer 2002) for the case k = 2, may be found in
Chevaleyre et al. (2004).

60 Ann Oper Res (2008) 163: 49–62

Proof Checking that an allocation A is not optimal involves computing sw(A), which can
be done in polynomial time, and then solving the decision problem “is there an allocation
A′ with sw(A′) > sw(A)?”. The latter is NP-complete according to Proposition 7 (Proposi-
tion 8) for the bundle (k-additive) form. Hence, the complementary problem must be coNP-
complete. �

Related to this result, Dunne et al. (2005) have shown that the problem of checking
whether a given allocation of resources is Pareto optimal is also coNP-complete.6 Related
complexity results have also been obtained by Bouveret and Lang (2005), who study the
computational complexity of deciding whether a given resource allocation scenario admits
a solution that is both Pareto optimal and envy-free.7

What is the practical relevance of the connections between our negotiation framework
and the combinatorial optimisation problems discussed in this section? In the proof of Propo-
sition 8, for instance, we have reduced MAXIMUM 2-SATISFIABILITY to a very specific
class of instances of the problem of finding a suitable allocation of resources. While this
reduction has been useful to establish our NP-hardness result, it does not provide us with
much helpful information on how to find an optimal allocation in practice. Here, the oppo-
site direction, i.e. reductions from resource allocation problems to standard combinatorial
optimisation problems may be more attractive. Obvious candidates would be the weighted
variants of problems such as SET PACKING. Such a reduction would allow us to exploit
existing algorithms, including highly optimised approximation algorithms (Ausiello et al.
1999), to find optimal (or near-optimal) allocations of resources. We should, however, stress
that, of course, this would be a methodology for a centralised approach to finding optimal
resource allocations. It is not immediately applicable to negotiation, which is a distributed
process. Nevertheless, the techniques used to design optimisation and approximation algo-
rithms may still inspire useful mechanisms for distributed resource allocation.

6 Conclusion

We have further analysed a framework for multiagent resource allocation previously stud-
ied by several authors (Sandholm 1998; Endriss et al. 2006; Dunne et al. 2005; Endriss and
Maudet 2005). In particular, we have investigated scenarios where agents use k-additive util-
ity functions to represent their preferences, which is possible whenever synergies between
different resources are restricted to bundles of at most k items. We see the work presented
in this paper as part of a wider research trend, which brings together ideas from different
areas including microeconomics, operations research, decision theory, game theory, social
choice, artificial intelligence, complexity theory, and algorithm design (Papadimitriou 2001;
Lang 2005; Chevaleyre et al. 2006).

Our results presented in Sect. 4 show that, despite the positive expectations raised by the
result on negotiation in additive domains (Proposition 2), the structural complexity of the
negotiation protocol required to agree on a socially optimal allocation does not necessar-
ily decrease for problems with k-additive utility functions when k gets smaller (as long as

6An allocation is called Pareto optimal if and only if there is no other allocation that would be better for at
least one of the agents without being worse for any of the others. For further results on negotiating Pareto
optimal allocations we refer to Endriss et al. (2006).
7An allocation A is called envy-free if and only if no agent would rather have the bundle allocated to one of
the other agents (Brams and Taylor 1996); that is, if and only if ui(A(i)) ≥ ui(A(j)) for all agents i, j ∈ A.

Ann Oper Res (2008) 163: 49–62 61

k > 1). On the other hand, as we have seen in Sect. 3, representing utility functions in the
k-additive form rather than the bundle form can be significantly more succinct, particularly
in cases where a representation with a small value for k is possible.

We have also explored connections to well-known combinatorial optimisation problems,
which has allowed us to establish complexity results for the problem of finding a socially
optimal allocation with respect to different representations of utility functions (Sect. 5).
In this context, we have also briefly discussed the relation of our negotiation framework
to combinatorial auctions for different kinds of bidding languages. While our negotiation
framework is clearly not an auction (it is, for instance, not concerned with the aspect of
agreeing on the price for a set of items), the abstract “centralised” problem of finding a
socially optimal allocation (which is not itself a problem faced by the agents participat-
ing in a negotiation process) directly corresponds to the winner determination problem in
combinatorial auctions. Under this view, the languages used to represent utility functions
correspond to bidding languages for such auctions. As regards our complexity results, it is
important to stress that the high complexity of the distributed negotiation framework does
not, at least not necessarily, mean that it cannot be usefully applied in practice. This view
is supported by the fact that, in recent years, several algorithms for winner determination in
combinatorial auctions (a problem of comparable complexity to the problems arising here)
have been proposed and applied successfully (Rothkopf et al. 1998; Fujishima et al. 1999;
Sandholm 2002).

One important aspect of modelling preferences that we have not discussed in this pa-
per concerns the elicitation of preferences (Keeney and Raiffa 1993; Boutilier et al. 1997;
Gonzales and Perny 2004). The very natural representation of utility functions in the
k-additive form suggests that it would also be particularly suited to elicitation, certainly
from a cognitive point of view. Note that, if elicitation is understood in purely compu-
tational terms (“how many queries of a certain type do we need to ask to be able to
fully specify a preference structure?”), then elicitation complexity is closely related to
succinctness (see, for instance, the discussion of elicitation complexity in the combinato-
rial auction literature Sandholm and Boutilier 2006). For example, the query type corre-
sponding to the bundle form is the simple “value query” (Sandholm and Boutilier 2006;
Zinkevich et al. 2003) which asks for the utility associated with a given bundle, while a
query language corresponding to the k-additive form would allow us to ask for the coeffi-
cient αR associated with a given bundle of resources R.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Arrow, K. J., Sen, A. K., & Suzumura, K. (Eds.) (2002). Handbook of social choice and welfare (Vol. 1),
Amsterdam: North-Holland.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (1999). Com-
plexity and approximation: combinatorial optimization problems and their approximability properties.
Berlin: Springer.

Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1–3),
155–225.

Boutilier, C., Brafman, R. I., Geib, C., & Poole, D. (1997). A constraint-based approach to preference elici-
tation and decision making. In Proc. AAAI spring symposium on qualitative decision theory.

Bouveret, S., & Lang, J. (2005). Efficiency and envy-freeness in fair division of indivisible goods: logical
representation and complexity. In Proc. 19th international joint conference on artificial intelligence
(IJCAI-2005). San Mateo: Morgan Kaufmann.

62 Ann Oper Res (2008) 163: 49–62

Brams, S. J., & Taylor, A. D. (1996). Fair division: from cake-cutting to dispute resolution. Cambridge:
Cambridge University Press.

Chevaleyre, Y., Endriss, U., Estivie, S., & Maudet, N. (2004). Multiagent resource allocation with k-additive
utility functions. In Proc. DIMACS-LAMSADE workshop on computer science and decision theory.
Annales du LAMSADE 3.

Chevaleyre, Y., Endriss, U., Lang, J., & Maudet, N. (2005). Negotiating over small bundles of resources. In
Proc. 4th international joint conference on autonomous agents and multiagent systems (AAMAS-2005).
New York: ACM Press.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., Padget, J., Phelps, S.,
Rodríguez-Aguilar, J. A., & Sousa, P. (2006). Issues in multiagent resource allocation. Informatica,
30, 3–31.

Conitzer, V., Sandholm, T. W., & Santi, P. (2005). Combinatorial auctions with k-wise dependent valuations.
In Proc. 20th national conference on artificial intelligence (AAAI-05). Menlo Park: AAAI Press.

Coste-Marquis, S., Lang, J., Liberatore, P., & Marquis, P. (2004). Expressive power and succinctness of
propositional languages for preference representation. In Proc. of the 9th international conference on
principles of knowledge representation and reasoning (KR-2004). Menlo Park: AAAI Press.

Cramton, P., Shoham, Y., & Steinberg, R. (Eds.) (2006). Combinatorial auctions. Cambridge: MIT Press.
Dunne, P. E., Wooldridge, M., & Laurence, M. (2005). The complexity of contract negotiation. Artificial

Intelligence, 164(1–2), 23–46.
Endriss, U., & Maudet, N. (2005). On the communication complexity of multilateral trading: extended report.

Journal of Autonomous Agents and Multiagent Systems, 11(1), 91–107.
Endriss, U., Maudet, N., Sadri, F., & Toni, F. (2006). Negotiating socially optimal allocations of resources.

Journal of Artificial Intelligence Research, 25, 315–348.
Fargier, H., Lang, J., Lemaître, M., & Verfaillie, G. (2004). Partage équitable de ressources communes: (2)

Éléments de complexité et d’algorithmique. Technique et Science Informatique, 23(9), 1219–1238.
Fishburn, P. C. (1970). Utility theory for decision making. New York: Wiley.
Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational complexity of combina-

torial auctions: optimal and approximate approaches. In Proc. 16th international joint conference on
artificial intelligence (IJCAI-1999). San Mateo: Morgan Kaufman.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-com-
pleteness. New York: Freeman.

Gonzales, C., & Perny, P. (2004). GAI networks for utility elicitation. In Proc. of the 9th international con-
ference on principles of knowledge representation and reasoning (KR-2004). Menlo Park: AAAI Press.

Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Sys-
tems, 92, 167–189.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs.
Cambridge: Cambridge University Press.

Lang, J. (2005). Some representation and computational issues in social choice. In Proc. 8th European confer-
ence on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU-2005). Berlin:
Springer.

Moulin, H. (1988). Axioms of cooperative decision making. Cambridge: Cambridge University Press.
Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In Proc. ACM conference on electronic

commerce (EC-2000). New York: ACM Press.
Papadimitriou, C. H. (1994). Computational complexity. Reading: Addison-Wesley.
Papadimitriou, C. H. (2001). Algorithms, games, and the Internet. In Proc. 33rd annual ACM symposium on

theory of computing (STOC-2001). New York: ACM Press.
Rota, G. C. (1964). On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2(4), 340–368.
Rothkopf, M. H., Pekec̆, A., & Harstad, R. M. (1998). Computationally manageable combinational auctions.

Management Science, 44(8), 1131–1147.
Sandholm, T. W. (1998). Contract types for satisficing task allocation: I. Theoretical results. In Proc. AAAI

spring symposium: satisficing models.
Sandholm, T. W. (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial

Intelligence, 135(1–2), 1–54.
Sandholm, T. W., & Boutilier, C. (2006). Preference elicitation in combinatorial auctions. In P. Cramton et al.

(Eds.), Combinatorial auctions. New York: MIT Press.
Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.
Zinkevich, M. A., Blum, A., & Sandholm, T. W. (2003). On polynomial-time preference elicitation with value

queries. In Proc. ACM conference on electronic commerce (EC-2003). New York: ACM Press.

	Multiagent resource allocation in k-additive domains: preference representation and complexity
	Abstract
	Introduction
	Negotiating over indivisible resources
	Preference representation
	Structural complexity of deals
	Computational complexity results
	Conclusion
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

