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Abstract We study a single-router Network-on-Chip modelled as a tandem queueing net-
work. The first node is a geoK/D/1 queue (K fixed) representing a network interface, and
the second node is a ./G/1 queue representing the packet switch. If K > 1 we have train
arrivals at the second node. If K = 1 the arrival process of the second node reduces to a
Bernoulli process. In the latter case, routers have been studied extensively as part of ATM
and LAN networks under the assumption that the number of input ports N tends to infinity.
In Networks-on-Chips N is usually 4 or 5 and results for ATM and LAN routers lead to
inaccurate results. We introduce a new approximation scheme that yields accurate results
for small switches. In addition to this we analyse the tandem network, both for K = 1 and
K > 1, and we approximate the mean sojourn time in the switch and the mean end-to-end
delay. If N = 4 our approximation has a relative error of only 4.5% if K = 6 and 1% if
K = 1.

1 Introduction

Systems on Chips typically consist of on-chip modules such as processors, memories, etc.
These modules are traditionally connected via single buses. Because the wires cannot be
used by multiple modules simultaneously, communication difficulties arise as the number
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Fig. 1 The network model of this paper with N = 4 NIs. Packets arrive at the NIs according to a Bernoulli
process with parameter p and are sent to the switch flit-by-flit. The switch sends the flits of the packets to the
right output port using wormhole routing, with the restriction that each output port can only be used by one
flit at a time. Contention is resolved randomly

of modules increases. This is one of the reasons why Networks on Chips (NoCs) are emerg-
ing as a paradigm for the connection of on-chip modules (González Pestana et al. 2004;
Rădulescu et al. 2004; Rijpkema et al. 2003). In NoCs, routers are used to transmit packets
to their destination, and as such they resemble other packet-switching networks. For a more
elaborate introduction to NoCs, the interested reader is referred to Dally and Towles (2001).

In this paper we analyse the mean delay of a NoC consisting of N Network Interfaces
(NI, see Rădulescu et al. 2004) and an N ×N router, where each NI is connected to a unique
input port of the router (see Fig. 1). In NoCs, NIs act as bridges between on-chip modules
such as processors, memory modules, etc. and the routers of the NoC. We model one NI
and an input queue of the router together as a discrete-time tandem queue with two different
nodes: The first node represents the NI and the second node the router.

We assume that packets of fixed size K arrive at the NIs according to i.i.d. Bernoulli
processes with parameter p. The size of packets is measured in flits, where a flit is precisely
the amount of data that can be transmitted in one time slot. The arriving packets are stored
in the NIs and the flits are then sent to the switch one-by-one, so the NI can be seen as a
geoK/D/1 queue. In particular we stress that the output process of this queue (and thus the
input process of the switch) is an on-off process, whose on-period is equal to the busy period
of the geoK/D/1 queue. Arrival processes of this form are sometimes called ‘train arrivals’
(Xiong and Bruneel 1993).

The input ports of the switch are equipped with FIFO-queues to store incoming packets,
and we assume that these buffers are infinite. We say that the first position of the queue
is the HOL-position (Head-Of-Line position). Because of the FIFO policy only flits in the
HOL-positions of the queues can be sent to an output port. The probability that a packet
arriving at input port i has destination j is 1/N for all i and j . Note that each flit in a packet
has the same destination.

The switch of our model uses wormhole routing: If the first flit of a packet (the header)
is transmitted through a certain output port, that output port remains reserved until all flits
of the packet have been transmitted. Because each output port can only be used once per
time slot, contention occurs if there are multiple headers in HOL-positions with the same
destination. In this case, the switch selects one of the contending headers at random, each
with the same probability.

Because the switch transmits flits, it can be seen as a server. We therefore define the
service time of a flit as the time spent in the HOL-position. By doing so, we include the
amount of contention in the service time distribution. We stress that the service time of
a header is determined by the number of consecutive output conflicts plus its transmission
time of 1 slot, whereas the service time of a non-header flit is always equal to its transmission
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time of 1 slot. The service time is thus always at least equal to 1 slot. For example, if a flit
arrives at the HOL-position at the beginning of time slot (t, t + 1] and leaves the switch at
the end of time slot (u,u+ 1], we say that its service time is u+ 1 − t . Note that we assume
that flits arrive at the beginning of time slots, and leave at the end of them (the so-called
early-arrival model, see e.g. Gravey and Hébuterne 1992; Takagi 1993).

If the packet size K = 1, an interesting special case of our model arises; we no longer
have wormhole routing and the arrival process at the switch simplifies to a Bernoulli process.
Because of this, a distinction is made between the situations K = 1 and K > 1 throughout
this paper.

If K = 1 we have an ordinary packet switch with Bernoulli arrivals. Such packet switches
have been studied extensively because of their presence in ATM and LAN networks (see e.g.
Eng et al. 1989; Hluchyj and Karol 1988; Karol et al. 1987). In these studies, it is common
to assume that N → ∞, where N is the number of input and output ports of the switch. This
assumption is justified by the size of switches in LAN and ATM networks. For instance, in
Eng et al. (1989), the authors consider an ATM switch with N > 1000.

Two studies that deal with the case K = 1 are of particular importance for our paper, that
of Karol et al. (1987) and that of Kim et al. (2000). In Karol et al. (1987), the service time,
delay and throughput of a homogeneous switch is analysed, again under the assumption that
N → ∞, and the famous result that the asymptotic throughput is 2 − √

2 ≈ 0.586 is estab-
lished. Kim et al. (2000) also analyse the service time and delay of a homogeneous switch
for N → ∞, but they make an approximation assumption that the number of consecutive
output conflicts follows a geometric distribution. These studies will be discussed in more
detail in Sects. 2.1 and 2.2 respectively.

To summarise, the NoC can be modelled as a discrete-time tandem network with two
different nodes representing the NI and the router. The first node is a GeoK/D/1 queue with
unit service times, and the second node is a discrete-time ./G/1 with an unknown service
time distribution. The results of the studies of the case K = 1 would in principle allow
us to approximate the unknown service time distribution of the second node. However, in
NoCs the size of routers is often N = 4 or N = 5, and we will see in Sect. 5 that these
asymptotic approximations give significant errors. In order to obtain more accurate results,
we also devise a new approximation of the service time distribution specifically aimed at
small switches. Its results are compared favourably to the results of Karol et al. (1987) and
Kim et al. (2000).

The purpose of our paper is thus twofold: first, we provide a new approximation of the
service time distribution which is more accurate for small switches. Second, we analyse the
tandem network model and we use our service time approximation to approximate the delay
in this network.

The organisation of our paper is as follows: Sect. 2 is devoted to approximations for the
case K = 1. In Sects. 2.1 and 2.2 we describe the approximations of Karol et al. and Kim
et al. respectively. In Sect. 2.3 we introduce our new Geo/Geo/1 approximation. In Sect. 3
we extend this approximation to the case K > 1. In order to approximate the mean sojourn
time in the switch if K > 1 we analyse the tandem network in Sect. 4.

The second part of our paper contains more experimental results. First, we analyse the
performance of our approximation for K = 1 and K > 1 with respect to simulation out-
comes in Sect. 5. For K = 1, we also compare our approximation to that of Karol et al. and
Kim et al. Because we use a Geo/Geo/1 model for K = 1, we implicitly assume that the
number of output conflicts can be approximated by a geometric distribution. This particular
assumption is explored in more depth in Sect. 6. Finally, we present the conclusions of our
research in Sect. 7.
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Fig. 2 A switch in isolation with
N = 4. Packets of size 1 arrive at
the input queues of the switch
according to i.i.d. Bernoulli
arrival processes with
parameter p

Throughout this paper, standard results on the GeoX/G/1 queue will be used, see e.g.
Takagi (1993). For the sake of completeness, we will state the two most important results for
our paper here. We denote the waiting time by W , the service time by B , the sojourn time
by S, and the size of a batch by X. Note that we assume that a batch of size X arrives each
time slot (with P(X = 0) > 0), so the interarrival times of non-zero batches are geometri-
cally distributed with parameter P(X > 0). The mean waiting time of an arbitrary customer
is given by

E[W ] = ρ

1 − ρ

(
E[B2]
2E[B] − 1

2

)
+ 1

1 − ρ

(
E[X2]
2E[X] − 1

2

)
E[B], (1.1)

where ρ = E[X]E[B]. The waiting time of the first customer of a batch (W1) will also turn
out to be important, and its mean is given by

E[W1] = E[W ] −
(

E[X2]
2E[X] − 1

2

)
E[B]

= ρ

1 − ρ

(
E[B2]
2E[B] − 1

2

)
+ ρ

1 − ρ

(
E[X2]
2E[X] − 1

2

)
E[B]. (1.2)

The corresponding mean sojourn times can of course be found using S = W + B .

2 Approximations for K = 1

For now, we assume that the packet size K = 1. Most importantly, this entails that the NI
effectively only serves as a mechanism that stalls each flit for exactly one time slot and as
a result the output process of the NI is reduced to a Bernoulli process. We can therefore
model the input queue of the switch directly as a Geo/G/1 queue, with an a priori unknown
service time distribution.

This particular model of a packet switch has been studied before, by Karol et al. (1987)
and Kim et al. (2000). Both of these studies are based on the limit of N → ∞. The main dif-
ference is that in Karol et al. (1987) the first two moments of the service time are determined
exactly, whereas in Kim et al. (2000) a geometric distribution is assumed and fitted to the
mean determined in Karol et al. (1987). We will refer to the first model as the KHM model
and to the second model as the KKL model. Both of these models are briefly surveyed in
this section.

We also introduce a new approximation in which the service time is assumed to be geo-
metrically distributed, as in Kim et al. (2000), but we use a quadratic approximation of
the service rate based on light and heavy traffic limits. Because our model is not based on
N → ∞ we find a different mean service time and obtain better results for small switches.
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2.1 The KHM model

The crucial observation of Karol et al. is that for N → ∞ the number of packets with the
same destination arriving at the HOL-positions follows a Poisson(p) distribution. Because
the switch randomly selects flits, this selection process itself can be viewed as a queueing
process with random order of service and unit service times. In other words, the service time
of a flit is equal to the sojourn time in a GeoX/D/1 queue with random order of service and
batch arrivals governed by a Poisson distribution. Let S̃, B̃ , W̃ , and X̃ denote the sojourn
time, service time, waiting time, and batch size in this GeoX/D/1 queue. We thus have

B
D= S̃, (2.1)

where B is the service time in the switch and
D= denotes equality in distribution.

Because the mean service and sojourn time do not depend on the order of service, it
follows from (1.1) that

E[B] = E[S̃] = ρ̃

1 − ρ̃

(
E[B̃2]
2E[B̃] − 1

2

)
+ E[X̃(X̃ − 1)](EB̃)2

2E[X̃](1 − ρ̃)
+ E[B̃], (2.2)

where ρ̃ = E[X̃]E[B̃]. In our case, X̃ ∼ Poisson(p) and B̃ ∼ Det(1), which implies

E[B] = 2 − p

2(1 − p)
. (2.3)

The mean service time in a switch can thus be approximated by (2.3). In order to approx-
imate the mean sojourn time in a switch, we also need E[B2] = E[S̃2]. Karol et al. (1987)
provide a numerical procedure to find the distribution of S̃, which in particular allows us to
approximate E[S̃2]. Using this procedure we can approximate the mean sojourn time in the
switch by

E[S] = ρ

1 − ρ

(
E[B2]
E[B] − 1

2

)
+ E[B], (2.4)

where ρ = pE[B].

2.2 The KKL model

Kim et al. (2000) also model the switch as a Geo/G/1 model for N −→ ∞, but they assume
a geometric service time distribution with parameter q . We only briefly discuss the outcome
of the modelling here. For a more comprehensive analysis, the reader is referred to Kim et
al. (2000).

Kim et al. use the mean service time found by Karol et al. (1987) as the parameter that
describes the geometric service time distribution. Thus,

q = 2(1 − p)

2 − p
= 1 − p

2 − p
.

For the Geo/Geo/1 model with arrival rate p and service rate q , the mean sojourn time
can be derived using (1.1), which results in

E[S] = 1 − p

q − p
.
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With our specific q , this implies

E[S] = (1 − p)(2 − p)

p2 − 4p + 2
.

Note that the model is based on a non-saturated switch, which means that the results are
only valid for p < 2 − √

2.

2.3 Geometric approximation

We propose a new approximation in which we assume that the service time is geometrically
distributed. In particular we want to apply this model to small switches, so an approximation
based on the limit of N → ∞ would give inaccurate results. Instead, we find an approxi-
mation q̂ of the service rate q and we use this approximation as the success probability of
the geometric distribution. We regard q̂ and q as functions of p, so we write q̂ = q̂(p) and
q = q(p) in this section.

The throughput of a switch will also play a key role in our approximation. It is defined as
the expected number of served flits per time slot, divided by N . It has been well established
that switches have a maximal throughput (Beekhuizen 2005; Boot 2005; Karol et al. 1987),
which we refer to as saturation throughput and denote by Tsat(N). The throughput of a
switch is independent of the packet size, as long as it is deterministic (see Sect. 3). Table 1
shows the saturation throughput for some values of N . For small N , the throughput can be
determined using a Markov chain approach. For large N we have to resort to simulation
approximations, or to its limiting value 2 − √

2 ≈ 0.586 (see Karol et al. 1987).
It readily follows that

q(p) = Tsat(N) for Tsat(N) ≤ p ≤ 1, (2.5a)

lim
p↓0

q(p) = 1, (2.5b)

where the latter expression follows from the observation that limp↓0 q(p) represents the
service rate if all flits arrive at an empty switch.

In order to derive a good approximation to q(p) for all p, we will interpolate between the
two values found in (2.5). It appeared that a linear interpolation does not yield a very good
approximation, so we propose a quadratic interpolation in which q ′(0) is also used. In order
to find such an approximation, we analyse the situation in which p > 0 is (arbitrarily) close
to zero, while neglecting O(p2) terms. If we neglect O(p2) we can determine the entire light
traffic service time distribution, which also gives us q = 1/E[B].

We consider an arbitrary time slot t and an arbitrary flit which we tag. Suppose that the
tagged flit arrives at a non-empty switch. Because there is at least one flit present from slot

Table 1 Saturation throughputs
for several N . Note that N = 1
represents a single wire, so
obviously Tsat(1) = 1

N Tsat(N) N Tsat(N)

2 0.75 8 0.6184

3 0.6825 9 0.6146

4 0.6552 10 0.6116

5 0.6399 11 0.6091

6 0.6302 12 0.6071

7 0.6238 ∞ 0.586
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t −1, there must have been at least two flits present in that time slot. This in turn implies that
at some point in time there must have been two simultaneous arrivals. Since this happens
with a probability of O(p2), we may ignore the situation in which a flit arrives at a non-
empty switch.

So we consider a tagged flit arriving at an empty system. The tagged flit is almost always
switched except if another flit arrives simultaneously with the same destination and wins
contention. Note that the probability of two or more other arrivals is O(p2), which we ne-
glect. The probability that one other flit arrives is (N −1)p+O(p2) because there are N − 1
remaining input streams and at each input stream an arrival happens with probability p. The
two flits have the same destination with probability 1

N
, in which case the tagged flit is not

switched with probability 1
2 . Multiplying these probabilities gives us that the tagged flit is

switched with probability 1 − 1
2

N−1
N

p + O(p2). Since another arrival in the next time slot
would induce another factor p, we know that the tagged flit is switched in time slot t + 1.
Altogether we obtain

B =
{

1 w.p. 1 − 1
2

N−1
N

p +O(p2),

2 w.p. 1
2

N−1
N

p +O(p2),
(2.6)

which implies that E[B] = 1 + 1
2

N−1
N

p +O(p2) and

q(p) = 1

E[B] = 1

1 + 1
2

N−1
N

p +O(p2)
= 1 − 1

2

N − 1

N
p +O(p2). (2.7)

As a result q ′(0) = − 1
2

N−1
N

, which results in the following quadratic approximation:

q̂(p) =
{

1 − 1
2

N−1
N

p + ( (
1 + 1

2
N−1
N

)
Tsat(N) − 1

)
p2

(Tsat(N))2 , for 0 ≤ p < Tsat(N)

Tsat, for p ≥ Tsat(N).
(2.8)

As stated in the introduction, the switch is modelled as a Geo/Geo/1 queue, for which

E[S] = 1 − p

q − p
, (2.9)

where S is the sojourn time. Of course the mean service time is given by

E[B] = 1

q
. (2.10)

Both quantities can be approximated by substituting q̂ for q .

Remark 2.1 Perhaps the accuracy of the approximation of q can be improved by taking
higher order terms into account. Most importantly, however, this would prevent us from con-
sidering only flits that arrive at an empty system, which complicates the analysis. Although
incorporating higher order terms constitutes an interesting research option, the present ap-
proximation is sufficiently accurate for our purposes, as is shown in Sect. 5.

3 Approximation for K > 1

In this section we extend our approximation to the case K > 1. From the analysis of simu-
lation results, we can infer that there is a certain periodicity in the service time distribution.
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Fig. 3 Simulation results for the distribution of the header service time, denoted by BH. Note that p = 0.1
means that on average 0.6 flits arrive at the switch per time slot, which is close to the saturation value of
0.655242 flits per time slot

Fig. 4 Alignment of packets. In the pictures the packets arrive at the switch in their entirety but this does not
fundamentally change the alignment concept

This periodicity is perhaps best explained in Fig. 3 where the service time distribution is
plotted for K = 6. There are large peaks for i = 1,7,13,19, . . . , especially for p = 0.1,
while for i = 2, . . . ,6, i = 8, . . . ,12, i = 14, . . . ,18, and i = 20, . . . ,24, the service proba-
bilities seem to be uniform. Note that on average Kp flits arrive at the switch per time slot,
so p = 0.1 implies that the arrival rate is close to the saturation value of 0.655242.

Visual simulation output provided a very good explanation for this periodicity. Because
the packet sizes are the same for all inputs, the services of the packets become gradually
aligned, as shown by Fig. 4. Once the packets are aligned, the alignment can only be broken
if one of the queues gets empty, which explains why the phenomenon is more apparent for
large p.
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The alignment phenomenon also implies that the throughput does not depend on K . If
the load exceeds the saturation load the packets remain aligned because the queues do not
become empty with probability 1. In this case K is effectively only a time scaling factor.
Because the throughput is defined as the expected number of switched flits in steady state,
this implies that the throughput is equal for all values of K as long as K is deterministic.

As a result of the alignment, we know that the geometric approximation of K = 1 is
equivalent to that of K > 1 once alignment has occurred. We therefore extend the geometric
approximation by ignoring the possibility that packets are not aligned and by maintaining the
assumption that the number of successive output conflicts is geometrically distributed. How-
ever, the parameter of the geometric distribution may depend on K , so we denote it by qK .
Because of the equivalence when alignment occurs, we approximate qK by q̂K = q̂(Kp),
with q̂ as in (2.8).

By assuming this geometric distribution of the number of successive output conflicts,
we in fact assume that an output conflict is lost with probability 1 − qK , and won with
probability qK . If an output conflict is lost, the flit has to wait for an additional K time units,
until the other packet has fully completed its transition. After this, the header of the packet is
again switched with probability qK and so on. Recall that wormhole routing is used, so non-
header flits are always immediately switched. The resulting distribution of BH, the service
time of a header, can thus be characterised as follows:

P(BH = mK + 1) = qK(1 − qK)m for m ≥ 0. (3.1)

We approximate this by substituting q̂K for qK .
In (3.1) we essentially ignore the possibility that the service time of a header is not of the

form mK + 1, with m ∈ N. This is obviously not entirely realistic, but in Sect. 5 it is shown
that the probability that the service time is not of the form mK + 1 is rather small.

In order to analyse the mean sojourn time in the switch we shall now analyse the tandem
network.

4 Network analysis

In this section we analyse the network under the assumption that K > 1. As a result, the
input process of the switch is no longer Bernoulli and the switch can therefore no longer
be seen as a Geo/G/1 queue. Instead, there are train arrivals where each train has a length
equal to the busy period in a Geo/D/1 queue. The number of empty slots between two
successive trains still follows a geometric distribution with parameter p.

This particular output process clearly complicates the analysis of the network. This com-
plication, however, can be circumvented by first regarding an artificial model in which pack-
ets arrive in their entirety at the switch. This model is studied in Sect. 4.1. The results of
Sect. 4.1 are then used to determine the mean sojourn time and end-to-end delay in the
switch in the original network in Sect. 4.2.

4.1 Arrivals at the switch

In this section we consider an artificial situation in which packets arrive at the switch in
their entirety. In other words, each time slot a packet of size K > 1 arrives at each input
queue according to i.i.d. Bernoulli processes with parameter p. The switch itself can now be
seen as a geo/G/1 queue. Because the results of this subsection will be used in the analysis
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of our network model in the next subsection, we denote all performance measures of this
subsection by tildes above the normal letters.

In Sect. 3 we assumed that

P(BH = mK + 1) = qK(1 − qK)m for m ≥ 0,

where BH denotes the service time distribution of a header. We cannot use this distribution
in the Geo/G/1 model directly, because the header is a special first customer in each batch;
the service time of each flit behind the header is always equal to 1 whereas the header suffers
from contention. This difficulty can be resolved by viewing the entire packet as one ‘super-
customer’.

The service time B̃ of a super-customer is equal to the time it takes the header to win the
output conflict and an additional K − 1 time slots for the non-header flits to be transmitted,
i.e. B̃ = BH + (K − 1). In other words

P(B̃ = mK) = qK(1 − qK)m−1 for m ≥ 1. (4.1)

Obviously, EB̃ = K/qK . For the second moment of B̃ , we get

E[B̃2] = 2 − qK

q2
K

K2.

The mean sojourn time ES̃ in the switch can be found by applying (1.1) and using S =
W + B:

E[S̃] = pK

qK − pK

(
K

qK

− 1

2
(K + 1)

)
+ K

qK

. (4.2)

4.2 Arrivals at the NI

We will now study the original model with arrivals at the NI again. Our goal is to deter-
mine the mean sojourn time in the switch (S) and the mean sojourn time of a packet in the
network (D). The sojourn time of a packet in the network (or delay) is defined as the time
between its arrival at the NI and the departure of its last flit from the switch.

The sojourn time of a packet in the network consists of the sojourn time of the header
in the NI, the sojourn time of the header in the switch, and the time difference between the
departures of the header and the last flit from the switch, which is equal to K − 1. We thus
obtain

D = SNI + S + (K − 1), (4.3)

where SNI is the sojourn time of a header in the NI.
It can easily be seen that D = S̃ + 1 where S̃ is the sojourn time in the switch in the

model of Sect. 4.1, so

E[D] = E[S̃] + 1 = pK

qK − pK

(
K

qK

− 1

2
(K + 1)

)
+ K

qK

+ 1. (4.4)

To find the mean sojourn time in the switch E[S] we thus only have to determine E[SNI].
Because packets arrive at the NI in batches of size K according to a Bernoulli process,

the NI itself can be seen as a GeoK/D/1 queue with unit service times. For the batch size �

we have

P(� = 0) = 1 − p,
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P(� = K) = p,

and the utilisation rate ρ = E[�] = pK . Furthermore, E[�2] = pK2. The mean waiting
time of a header in the NI is the mean waiting time of the first customer in a batch, which is
given by (1.2). Hence,

E[SNI] = E[WNI] + 1 = pK(K − 1)

2(1 − pK)
+ 1.

Finally, we apply (4.3) to obtain

E[S] = E[D] − E[SNI] − (K − 1)

= pK

qK − pK

(
K

qK

− 1

2
(K + 1)

)
− pK(K − 1)

2(1 − pK)
+ K

qK

− (K − 1). (4.5)

5 Approximation comparison

In this section, the performance of the approximations of the previous sections is analysed.
First we look at the case K = 1 and we study the quality of q̂ , the approximation of q .
We will do so by analysing the approximations of the mean service time, see Fig. 5. It is
clear that our approximation (2.10) with q = q̂ performs much better than the other approx-
imations if N = 4. This result is not very surprising, as our approach is based on small N

rather than the limit of N → ∞. We furthermore see that for N = 128 our approximation is
equally accurate as the approximations based on N → ∞.

Perhaps an even more important performance measure is the mean sojourn time, which
is analysed in Fig. 6. From Fig. 6a it is again clear that for N = 4, approximation (2.9)
outperforms the other approximations. In Fig. 6b, the relative error of our approximation
is plotted. Until the system approaches saturation, there is a maximum relative error of
roughly 1%.

We also see that the asymptotic approximations saturate too early. This can easily be
understood if we observe that the asymptotic saturation point is 2 − √

2 ≈ 0.586 while the

Fig. 5 Mean service time approximations for N = 4 and N = 128. Recall that the mean service time ap-
proximations of the KKL and the KHM model are identical
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Fig. 6 Mean sojourn time approximations and the relative error of our approximation for N = 4

Fig. 7 Mean sojourn time
approximations with p fixed. Our
model clearly performs better for
small N , but the simulation
results seem to converge to the
KHM estimate as N → ∞. Note
that both the KKL and the KHM
model are based on N −→ ∞,
which explains the horizontal
line

saturation point for N = 4 is 0.655242 (see Table 1). This difference leads to very large
errors if p is close to saturation. For instance, for p = 0.5 the mean sojourn time approxi-
mation of Karol et al. has a relative error of roughly 70%.

In order to get some insight in the role of N , we look at the performance of the approx-
imations while fixing p and varying N . This has been done for p = 0.5 in Fig. 7. Most
importantly, we can conclude that our model is a considerable improvement over the other
models for small N . For large N , say N � 60, the numerical procedure of Karol et al. gives
the best approximation.

Interestingly enough, our approximation of the mean service time did give quite accurate
results for N = 128, whereas our mean sojourn time approximation gives a significant error.
Apparently the error we make in assuming that the service time distribution is geometric
becomes more important for larger N . This conclusion is also backed by the fact that the
KKL approximation is quite close to our approximation if N is large. In Sect. 6 we analyse
the consequences of our assumption that the service time distribution is geometric in more
detail.
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Fig. 8 The relative error of the mean delay and mean header service time approximations

Now that we have looked at the approximation available for the case K = 1, we study the
quality of our approximation for the case K > 1. In this case our approximation still gives
very good results as Fig. 8 illustrates: The relative error of the approximation of E[BH]
compared to simulation outcomes is maximally 3.5%.

The mean delay can be approximated by substituting q̂(Kp) for qK in (4.4). The relative
error of this approximation can be found in Fig. 8b. Our approximation still gives quite good
results since the relative error of the delay approximation is at most 4.5%.

6 Validation of the geometric distribution

In the analysis of Sect. 2.3, we assumed that the service time is geometrically distributed
with the service rate q as parameter, which we approximated by q̂ . In this section we try to
validate the assumption that the service time distribution is geometric. For the sake of clarity
we stress that q is defined as the service rate, and q̂ is our quadratic approximation given
by (2.8). Moreover,in this section all values of q have been determined via simulation.

It can rather easily be argued that the service time distribution is in fact not geometric;
the geometric distribution is memoryless, but the switching probability is not. For instance,
if all HOL-positions are occupied with packets with the same destination, each packet has
probability 1

N
of being switched. If the newly arriving packet has a different destination,

then for all remaining packets, the probability that they are switched in the next time slot is
1

N−1 , and so on. This immediately implies that there is some dependency on the history of
the process, yet the precise effect of this dependency is still unclear.

In order to study to what extent the service time distribution deviates from a geometric
distribution, we compare the service time distribution obtained via simulation to our geo-
metric approximation, both with parameter q and q̂ (see Fig. 9). From this figure it seems
that the difference between the approximated distribution and the simulation outcomes is
rather limited.

To confirm this suspicion, we look at the first and second moments and the squared coef-
ficient of variation in Table 2. In addition to this, Table 2 shows the value of E[B2]/2E[B]
which has a prominent influence on the mean sojourn time approximation. Note that
E[B2]/2E[B] + 1/2 is the mean residual service time in discrete-time.
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Fig. 9 The service time distribution approximated by a geo(q) and geo(̂q) distribution

Table 2 The approximations of
the first and second moments of
the service time, as well as the
coefficient of variation, and
E[B2]
2E[B] , compared to simulation
outcomes. In this comparison we
set N = 4 and N = 128 with
p = 0.55

Sim geo(̂q) geo(q)

(a) N = 4

E[B] 1.3649 1.3813 1.3649

E[B2] 2.4712 2.4346 2.3609

Var(B)

(EB)2
0.3265 0.2760 0.2673

E[B2]
2E[B] 0.9053 0.8813 0.8649

(b) N = 128

E[B] 1.4930 1.5049 1.4928

E[B2] 3.3362 3.0243 2.9641

Var(B)

(EB)2
0.4968 0.3355 0.3301

E[B2]
2E[B] 1.1173 1.0049 0.9928

We see in the table that the simulated values of these quantities lie closer to the geo(q̂)

distribution than to the geo(q) distribution, except for the mean service time. In other words,
the approximation with q̂ actually performs better than the approximation with q . In addition
to this, we see that the difference between the simulated service time distribution and the
geometric distributions becomes larger as N increases.

We also compare the mean sojourn time approximations if a geo(q) and geo(q̂) service
time distribution is assumed. In Fig. 10, the relative errors of these sojourn time approxima-
tions are plotted. We can clearly see the influence of the error in EB2; for a large range of p

(say p � 0.35), our approximation clearly performs better if q̂ is used instead of q . Appar-
ently the error in approximating q compensates to some extent for the error in the geometric
distribution assumption. This can be explained by the fact that assuming a geometric service
time distribution with parameter q leads to an underestimation of the E[B2] (see Table 2).
Because the second moment of a geometric distribution increases as its parameter decreases,
and because q is underestimated by q̂ , we again get a more accurate approximation.
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Fig. 10 Relative errors of
sojourn time approximations with
a geo(q) and geo(̂q) service time
distribution

Remark 6.1 For N = 2 under saturation, the service time distribution is geometric. It can
rather easily be argued that each flit has a probability of 3

4 of being switched, regardless of
what happened in previous time slots.

7 Conclusion

If K = 1, the service time distribution of the switch can be approximated by a geometric
distribution with parameter q̂ , where q̂ is a quadratic approximation of the service rate.
For small switches, such as those in Networks-on-Chips, this approximation is a significant
improvement over the approximations of Karol et al. (1987) and Kim et al. (2000). For
N = 4, our sojourn time approximation has a relative error of maximally 1% if the switch
is not saturated, whereas the KHM approximation already has a relative error of 70% for
p = 0.5 and N = 4. The approximation q̂ of the service rate q is very accurate in general,
even for large N . Nevertheless, the error of the mean sojourn time approximation becomes
larger if N increases. In particular, this is due to the fact that the service time distribution
becomes ‘less geometric’ if N increases.

If K > 1, we can maintain the geometric approximation because packets become
‘aligned’. The second complication that arises if K > 1 is that there are train arrivals at
the second node of our network. This can be overcome by analysing an artificial model in
which packets arrive in their entirety at the router. In this artificial model we can determine
the mean delay and sojourn time and using them we can determine the mean delay and
sojourn time in our original network. The resulting approximation also has a very small
relative error, of maximally 4.5% if N = 4 and K = 6.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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