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Abstract. The sun dual space corresponding to a strongly continuous semi-
group is a known concept when dealing with dual semigroups, which are in general
only weak∗-continuous. In this paper we develop a corresponding theory for bi-
continuous semigroups under mild assumptions on the involved locally convex
topologies. We also discuss sun reflexivity and Favard spaces in this context,
extending classical results by van Neerven.

1. Introduction

Semigroup theory is a well-established tool in the abstract study of evo-
lution equations. Classically, strongly continuous semigroups of bounded
linear operators on Banach spaces (also called C0-semigroups) are consid-
ered, meaning that the semigroup is strongly continuous with respect to the
norm topology. This, however, limits the applicability of the theory in spaces
such as Cb(Rn) or L∞, ruling out interesting examples arising from (partial)
differential equations. This fact is underlined by Lotz’s result [42] asserting
that any strongly continuous semigroup on Grothendieck spaces with the
Dunford–Pettis property is automatically uniformly continuous.

On the other hand, it has long been known that strong continuity fails to
be preserved for the dual semigroup (T ′(t))t≥0 := (T (t)′)t≥0 in general, and
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merely translates into weak∗-continuity. Nevertheless, the strong continu-
ity of the “pre-semigroup” (T (t))t≥0 encodes enough structure to allow for
a rich theory. Following first results in the early days of semigroup theory;
by Phillips [48], Hille–Phillips [27], de Leeuw [12], see also Butzer–Berens
[5]; intensified research on dual semigroups was conducted in the 1980s cen-
tred around a “Dutch school” in a series of papers such as by Clément,
Diekmann, Gyllenberg, Heijmans and Thieme [6–9,14], de Pagter [13]. The
renewed interest in dual semigroups was partially driven by the interest from
applications in e.g. delay equations [15]. At a peak of these developments
van Neerven [57] finally provided a general comprehensive treatment of the
theory, together with many new results clarifying especially the topologi-
cal aspects, see also [54–56]. Since then, the interest in dual semigroups
which fail to be strongly continuous remained, and we name particularly
applications in mathematical neuroscience [52,53].

The key concept to compensate for the lack of strong continuity of dual
semigroups is the notion of the sun dual space and the related sun dual
semigroup. More precisely, given a strongly continuous semigroup (T (t))t≥0
on a Banach space X , the sun dual space X� consists of the elements x′ in
the continuous dual X ′ such that limt→0+ T ′(t)x′ = x′. As X� is closed and
T ′(t)-invariant, the restrictions of T ′(t) to X� define a strongly continuous
semigroup T�((t))t≥0 on X�, an object which is in many facets superior to
the dual semigroup.

Note that this approach can be viewed as a way to regain symmetry in
duality for continuity properties of the semigroup. While this holds triv-
ially for reflexive spaces X —in which case X� = X ′—, it is not surprising
that sun duality comes with an adapted notion of reflexivity, so-called sun
reflexivity (or �-reflexivity), which depends on the semigroup under con-
sideration. In particular, if X is �-reflexive with respect to the semigroup
(T (t))t≥0, then (T��(t))t≥0 can be identified with (T (t))t≥0 via the canon-
ical isomorphism j : X → (X�)′, x �→ (x� �→ 〈x�, x〉). That this framework
indeed leads to a meaningful theory is also reflected by the existence of an
Eberlein–Shmulyan type theorem due to van Neerven [55], and de Pagter’s
characterisation of sun reflexivity [13], which can be seen as a variant of
Kakutani’s theorem.

About ten years after this flourishing period of dual semigroups, semi-
groups which only satisfy weaker continuity properties were conceptual-
ized by Kühnemund [38,39] through the notion of bi-continuous semigroups.
More precisely, the strong continuity was relaxed to hold with respect to a
Hausdorff locally convex topology τ coarser than the norm topology on X .
Under the additional conditions that τ is sequentially complete on norm-
bounded sets and the dual space of (X, τ) is norming, an exponentially
bounded semigroup (T (t))t≥0 on X is called τ -bi-continuous if the trajecto-
ries T (·)x are τ -strong continuous and locally sequentially τ -equicontinuous
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on norm-bounded sets. Since the weak∗-topology shares these properties,
dual semigroups naturally fall in this framework. Thus the question be-
comes how the construction of the sun dual can be seen in this light. With
this paper we would like to answer this question and hence generalise exist-
ing results for strongly continuous semigroups in the presence of previously
missing topological subtleties.

The interest in bi-continuous semigroups goes beyond the above men-
tioned special case of dual semigroups, as they, for instance, naturally emerge
in the study of evolution equations on spaces of bounded continuous func-
tions, most prominently parabolic problems, see e.g. Farkas–Lorenzi [25],
Metafune–Pallara–Wacker [45]. In the last decades the abstract theory of
bi-continuous semigroups has been further developed and variants of the clas-
sical case have been established, such as for instance perturbation results;
Farkas [22,23], approximation results; Albanese–Mangino [2] and mean er-
godic theorems; Albanese–Lorenzi–Manco [1]. In [24] Farkas defined a proper
concept for a dual bi-continuous semigroup by considering a suitable sub-
space X◦ of X ′. In particular, the restriction of the dual semigroup on X◦

is again a σ(X◦,X)-bi-continuous dual semigroup under some additional
topological assumptions.

In this work we develop a sun dual theory for bi-continuous semigroups
and discuss its peculiarities with respect to properties of the present topolo-
gies. This generalises the classical case, i.e. strongly continuous semigroups
with respect to the norm topology; henceforth simply called “strongly contin-
uous”. Apart from the abstract interest in developing a sun dual framework
for bi-continuous semigroups, one of our main motivations to provide such
generalizations are open problems of the following kind: We aim to extend
the following theorem for strongly continuous semigroups to bi-countinuous
ones.

Theorem 1.1 [28, Theorem 2.9, p. 152]. Let (X, ‖ · ‖) be a Banach
space and (T (t))t≥0 a strongly continuous semigroup on X with generator
(A,D(A)). Then the following assertions are equivalent :

(i) Fav(T ) = D(A) and (T (t))t≥0 satisfies the C-maximal regularity prop-
erty.

(ii) A extends to a bounded operator from X to X .

Here Fav(T ) denotes the Favard space of (T (t))t≥0 given by

Fav(T ) := {x ∈ X | lim sup
t→0+

1
t
‖T (t)x− x‖ < ∞}

and C-maximal regularity refers to the property that

t �→

∫ t

0
T (t− s)f(s) ds ∈ C([0,∞);D(A)) for all f ∈ C([0,∞);X).

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 3



Analysis Mathematica

4 K. KRUSE and F. L. SCHWENNINGER

Note that [28, Theorem 2.9, p. 152] lists another equivalent condition, which
relates to control theory, see also [28, Remark 2.4, p. 148]. Following this,
the question whether Theorem 1.1 can be formulated for bi-continuous semi-
groups is relevant for studying generalizations of control theoretic notions
in non-strongly continuous semigroup settings. The concept of sun dual
spaces for strongly continuous semigroups is pivotal in the proof of the non-
trivial implication (i) ⇒ (ii) in Theorem 1.1. The argument is based, among
other tools, on two characterizations due to van Neerven, [57, Theorems
3.2.8, 3.2.9, p. 57]: The first stating that an element x ∈ X belongs to
Fav(T ) if and only if that there exists a bounded sequence (yn)n∈N in X
such that limn→∞R(λ,A)yn = x for some (all) λ in the resolvent set ρ(A) of
A where R(λ,A) := (λ id−A)−1. The second result claims that the property
Fav(T ) = D(A) is equivalent to the condition that R(λ,A)B‖·‖� is closed in
X for some (all) λ ∈ ρ(A) where B(X,‖·‖�) := {x ∈ X : ‖x‖� ≤ 1} is the unit
ball with respect to the norm

‖x‖� := sup
x�∈X�,‖x�‖X′≤1

|〈x�, x〉|, x ∈ X,

which is equivalent to ‖ · ‖ by [57, Theorem 1.3.5, p. 7]. As a stepping stone
towards a bi-continuous version of Theorem 1.1, in this work we provide
counterparts of [57, Theorems 3.2.8, 3.2.9, p. 57] for bi-continuous semi-
groups in Theorem 6.9 and Theorem 6.10. However, to even conclude a
bi-continuous variant of Theorem 1.1 from this, one would have to bypass
an argument, which was based on results by Bourgain–Rosenthal in the case
of strongly continuous semigroups in [28, Theorem 2.9, p. 152]. The study of
this gap goes beyond the scope of this paper and is subject to future work.

Let us briefly highlight some of our findings in the following. Starting
from Farkas’ dual space [24]

X◦ :=
{
x′ ∈ X ′ | x′ τ -sequentially continuous on ‖ · ‖-bounded sets

}
,

which is a closed subspace of X ′ and invariant under the dual semigroup,
we define the bi-sun dual space X• as the space of strong continuity for
the restricted dual semigroup T ◦(t) := T ′(t)|X◦ , t ≥ 0. Under the additional
assumptions that

(1) X◦ = (X, τ)′
‖·‖X′

,
(2) X◦ ∩ {x′ ∈ X ′ | ‖x′‖X′ ≤ 1} is sequentially σ(X◦,X)-complete, and

that
(3) every ‖ · ‖X′ -bounded σ(X◦,X)-null sequence in X◦ is τ -equicon-

tinuous on ‖ · ‖-bounded sets,
we can subsequently show that the norm defined by

‖x‖• := sup
x•∈X•,‖x•‖X′≤1

|〈x•, x〉|, x ∈ X,
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is equivalent to ‖ · ‖. This result, Theorem 4.3, naturally generalises the cor-
responding known fact for strongly continuous semigroups (see [57, Theorem
1.3.5, p. 7] and the discussion in the previous paragraph). Further, let us
point out that the assumptions (1)–(3) are fulfilled by Theorem 3.8 if (X,γ)
is a sequentially complete c0-barrelled Mazur space, e.g. a sequentially com-
plete Mackey–Mazur space, where γ := γ(‖ · ‖, τ) denotes the mixed topol-
ogy of Wiweger [61]. We henceforth say that X is •-reflexive with respect to
the τ -bi-continuous semigroup (T (t))t≥0 if the canonical map j : X → X•′

given by

〈j(x), x•〉 := 〈x•, x〉, x ∈ X,x• ∈ X•,

maps the space of strong continuity Xcont onto X••. Given the latter prop-
erty, we show that j : X → X•′ is surjective if and only if the unit ball
B(X,‖·‖•) = {x ∈ X : ‖x‖• ≤ 1} is σ(X,X•)-compact, see Theorem 6.12, im-
plying that Fav(T ) = D(A) if one (thus both) of the assertions holds. In
analogy to strongly continuous semigroups, we are able to show in The-
orem 6.10 that the domain of the semigroup generator equals the Favard
space if and only if the set R(λ,A)B(X,‖·‖•) is closed with respect to τ . The
main results are thoroughly laid out by various natural classes of examples.

The article is organized as follows. In the preparatory Section 2 we
set the stage by discussing the topological assumptions and recapping some
basics on bi-continuous semigroups as well as integral notions in this con-
text. With the level of detail we aim for making the presentation rather
self-contained, especially for readers less familiar with bi-continuous semi-
groups. In Sections 3 and 4 we present our approach to dual semigroups of
bi-continuous semigroups and the sun dual space, respectively. The short
Section 5 discusses the notion of sun reflexivity in this generalised context
and we finish with studying the relation of the obtained results to Favard
spaces, Section 6.

2. Notions and preliminaries

For a vector space X over the field R or C with a Hausdorff locally con-
vex topology τ we denote by (X, τ)′ the topological linear dual space and
just write X ′ := (X, τ)′ if (X, τ) is a Banach space. For two topologies τ1
and τ2 on a space X , we write τ1 ≤ τ2 if the topology τ1 is coarser than τ2.
Further, we use the symbol L(X;Y ) := L((X,‖ · ‖X); (Y,‖ · ‖Y )) for the space
of continuous linear operators from a Banach space (X, ‖ · ‖X) to a Banach
space (Y, ‖ · ‖Y ) and denote by ‖ · ‖L(X;Y ) the operator norm on L(X;Y ).
If X = Y , we set L(X) := L(X;X).

In the following, the mixed topology, [61, Section 2.1], and the notion of
a Saks space [11, I.3.2 Definition, p. 27–28] will be crucial.
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Definition 2.1 [36, Definition 2.2, p. 3]. Let (X, ‖ · ‖) be a Banach
space and τ a Hausdorff locally convex topology on X that is coarser than
the ‖·‖-topology τ‖·‖. Then

(a) the mixed topology γ := γ(‖ · ‖, τ) is the finest linear topology on X
that coincides with τ on ‖ · ‖-bounded sets and such that τ ≤ γ ≤ τ‖·‖,

(b) the triple (X, ‖ · ‖, τ) is called a Saks space if there exists a directed
system of seminorms Pτ that generates the topology τ such that

(1) ‖x‖ = sup
p∈Pτ

p(x), x ∈ X.

The mixed topology γ is Hausdorff locally convex and our definition is
equivalent to the one from the literature [61, Section 2.1] due to [61, Lemmas
2.2.1, 2.2.2, p. 51].

Definition 2.2 [37, Definition 2.2, p. 423]. We call a Saks space
(X, ‖·‖, τ) sequentially complete if (X, γ) is sequentially complete.

We recall the definition of the Pettis integral of a function with values
in a Hausdorff locally convex space, which we need later on and extends the
original definition for Banach-valued functions [47, Definition 2.1, p. 280].

Definition 2.3. Let (X, τ) be a Hausdorff locally convex space over the
field K := R or C, Ω ⊂ R a measurable set with respect to the Lebesgue mea-
sure λ and L1(Ω) the space of (equivalence classes of) absolutely Lebesgue
integrable functions from Ω to K. A function f : Ω → X is called weakly
measurable if the scalar-valued function 〈x′, f〉 := x′ ◦ f is Lebesgue measur-
able for all x′ ∈ (X, τ)′. A weakly measurable function is said to be weakly
integrable if x′ ◦ f ∈ L1(Ω) for all x′ ∈ (X, τ)′. A function f : Ω → X is called
τ -Pettis integrable on Ω in X if it is weakly integrable and

∃ xΩ(f) ∈ X ∀x′ ∈ (X, τ)′ : 〈x′, xΩ(f)〉 =
∫

Ω
〈x′, f(s)〉 dλ(s).

In this case xΩ(f) is unique due to X being Hausdorff and we define the
τ -Pettis integral of f on Ω in X by∫

Ω
f(s) dλ(s) := xΩ(f).

If Ω is an interval [a, b], a ≤ b, we usually write

∫ b

a

f(s) ds :=
∫

[a,b]
f(s) dλ(s).

K. KRUSE and F. L. SCHWENNINGER6
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Definition 2.4. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and Ω ⊂ R non-empty. We set

Cτ,b(Ω;X) :=
{
f ∈ C(Ω; (X, τ)) | ‖f‖∞ := sup

x∈Ω
‖f(x)‖ < ∞

}
where C(Ω; (X, τ)) is the space of continuous functions from Ω to (X, τ).

Proposition 2.5. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and a, b ∈ R with a < b.

(a) If f ∈ Cτ,b([a, b];X), then f is τ -Riemann integrable, γ-Riemann in-
tegrable, τ -Pettis integrable and γ-Pettis integrable on [a, b] in X and all four
integrals coincide.

(b) If f ∈ Cτ,b([a,∞);X) is improper τ -Riemann integrable on [a,∞)
such that even |〈x′, f〉| is improper Riemann integrable on [a,∞) for all
x′ ∈ (X, τ)′, then f is improper γ-Riemann integrable, τ -Pettis integrable
and γ-Pettis integrable on [a,∞) in X and all four integrals coincide.

Proof. (a) It is a direct consequence of the proof of [33, Proposition
1.1, p. 232], the sequential completeness of the Saks space (X, ‖ · ‖, τ) and
[61, Corollary 2.3.2, p. 55] that f is τ -Riemann integrable. We note that
〈x′, f〉 is continuous on [a, b] and thus Borel-measurable for all x′ ∈ (X, τ)′
since f is τ -continuous. Further, the definition of the τ -Riemann integral
R-

∫ b

a
f(s) ds ∈ X by Riemann sums implies that

〈
x′,R -

∫ b

a

f(s) ds
〉

=
∫ b

a

〈x′, f(s)〉 ds =
∫

[a,b]
〈x′, f(s)〉 dλ(s)

for all x′ ∈ (X, τ)′. Thus f is τ -Pettis integrable on [a, b] in X and the
Riemann and the Pettis integral coincide.

Furthermore, the τ -Riemann integrability of f implies that the Riemann
sums are τ -convergent. They are even ‖ · ‖-bounded as f is ‖ · ‖-bounded.
It follows from [11, I.1.10 Proposition, p. 9] that the Riemann sums are γ-
convergent and their γ-limit coincides with their τ -limit because γ is stronger
than τ . Thus f is γ-Riemann integrable on [a, b] in X and this integral co-
incides with the τ -Riemann integral.

Now, we only need to prove that f : [a, b] → (X, γ) is continuous. Then
it follows as above that f is γ-Pettis integrable on [a, b] in X and that the
Riemann and the Pettis integral coincide. Let (xn)n∈N be a sequence in [a, b]
that converges to x0 ∈ [a, b]. Then the sequence (f(xn))n∈N converges to
f(x0) in (X, τ) and is ‖ · ‖-bounded since f ∈ Cτ,b([a, b];X). By [11, I.1.10
Proposition, p. 9] it follows that (f(xn))n∈N converges to f(x0) in (X, γ),
implying that f : [a, b] → (X, γ) is continuous.
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(b) The proof is analogous to (a). The condition that |〈x′, f〉| is improper
Riemann integrable on [a,∞) for all x′ ∈ (X, τ)′ guarantees that 〈x′, f〉 is
Lebesgue integrable on [a,∞) and∫ ∞

a

〈x′, f(s)〉 ds =
∫

[a,∞)
〈x′, f(s)〉 dλ(s)

for all x′ ∈ (X, τ)′ by [17, Satz 6.3, p. 153]. �

Using that a triple (X, ‖ · ‖, τ) fulfils [39, Assumptions 1, p. 206] if and
only if it is a sequentially complete Saks space (see [37, p. 423]), Defini-
tion 2.1(a), [26, Proposition 3.6(ii), p. 1137] in combination with [61, 2.4.1
Corollary, p. 56] and that a sequence in X is γ-convergent if and only if it
is τ -convergent and ‖ · ‖-bounded by [11, I.1.10 Proposition, p. 9], we may
rephrase the definition [39, Definition 3, p. 207] of a bi-continuous semigroup
on X in the following way.

Definition 2.6. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and γ := γ(‖ · ‖, τ). A family (T (t))t≥0 in L(X) is called a bi-continuous
semigroup on X if

(i) (T (t))t≥0 is a semigroup, i.e. T (t+ s) = T (t)T (s) and T (0) = id for
all t, s ≥ 0,

(ii) (T (t))t≥0 is γ-strongly continuous, i.e. the map Tx : [0,∞) → (X, γ),
Tx(t) := T (t)x, is continuous for all x ∈ X ,

(iii) (T (t))t≥0 is locally sequentially γ-equicontinuous, i.e. for every se-
quence (xn)n∈N in X , x ∈ X with γ- lim

n→∞
xn = x it holds that

γ- lim
n→∞

T (t)(xn − x) = 0

locally uniformly for all t ∈ [0,∞).

If we want to emphasize the dependence on the Saks space, we say that
(T (t))t≥0 is a bi-continuous semigroup on (X, ‖ · ‖, τ). [26, Proposition 3.6
(ii), p. 1137] in combination with [61, 2.4.1 Corollary, p. 56] gives that a bi-
continuous semigroup (T (t))t≥0 on X is exponentially bounded (of type ω),
i.e. there exist M ≥ 1 and ω ∈ R such that ‖T (t)‖L(X) ≤ Meωt for all t ≥ 0,
and we call

ω0 := ω0(T ) := inf
{
ω ∈ R | ∃ M ≥ 1 ∀ t ≥ 0 : ‖T (t)‖L(X) ≤ Meωt

}
its growth bound (see [38, p. 7]). Due to the exponential boundedness of a bi-
continuous semigroup and [11, I.1.10 Proposition, p. 9] we also may rephrase
the definition [21, Definition 1.2.6, p. 7] of the generator of a bi-continuous
semigroup in terms of the mixed topology.

K. KRUSE and F. L. SCHWENNINGER8
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Definition 2.7. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and (T (t))t≥0 a bi-continuous semigroup on X . The generator (A,D(A)) is
defined by

D(A) :=
{
x ∈ X | γ- lim

t→0+

T (t)x− x

t
exists in X

}
,

Ax := γ- lim
t→0+

T (t)x− x

t
, x ∈ D(A).

We recall that an element λ ∈ C belongs to the resolvent set ρ(A) of
the generator (A,D(A)) if λ− A : D(A) → X is bijective and the resolvent
R(λ,A) := (λ−A)−1 := (λ id−A)−1 ∈ L(X). For a linear subspace Y of X
we define the part A|Y of A in Y by

D(A|Y ) :=
{
y ∈ D(A) ∩ Y | Ay ∈ Y

}
,

A|Y y := Ay, y ∈ D(A|Y ).

Usually, it is required that Y is a ‖ · ‖-closed subspace (or a Banach space
norm-continuously embedded in X) which is (T (t))t≥0-invariant (see [18,
Ch. II, Definition, p. 60]), but this is not needed just for the sake of the
definition of A|Y . With these definitions at hand, we recall the following
properties of the generator of a bi-continuous semigroup given in [39, Defi-
nition 9, Propositions 10, 11, Theorem 12, Corollary 13, p. 213–215], which
are summarised in [4, Theorems 5.5, 5.6, p. 339–340], and may be rephrased
in terms of the mixed topology by [11, I.1.10 Proposition, p. 9] and Propo-
sition 2.5 as well.

Theorem 2.8. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space and
(T (t))t≥0 a bi-continuous semigroup on X with generator (A,D(A)). Then
the following assertions hold :

(a) The generator (A,D(A)) is sequentially γ-closed, i.e. whenever
(xn)n∈N is a sequence in D(A) such that

γ- lim
n→∞

xn = x and γ- lim
n→∞

Axn = y

for some x, y ∈ X , then x ∈ D(A) and Ax = y.
(b) The domain D(A) is sequentially γ-dense, i.e. for each x ∈ X there

exists a sequence (xn)n∈N in D(A) such that γ- limn→∞ xn = x.
(c) For x ∈ D(A) we have T (t)x ∈ D(A) and T (t)Ax = AT (t)x for all

t ≥ 0.
(d) For t > 0 and x ∈ X we have∫ t

0
T (s)xds ∈ D(A) and A

∫ t

0
T (s)xds = T (t)x− x

where the integrals are γ-Pettis integrals.

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 9



Analysis Mathematica

10 K. KRUSE and F. L. SCHWENNINGER

(e) For Reλ > ω0 we have λ ∈ ρ(A) and

R(λ,A)x =
∫ ∞

0
e−λsT (s)xds, x ∈ X,

where the integral is a γ-Pettis integral.
(f) For each ω > ω0 there exists M ≥ 1 such that

‖R(λ,A)k‖L(X) ≤
M

(Reλ− ω)k

for all k ∈ N and Reλ > ω, i.e. the generator (A,D(A)) is a Hille–Yosida
operator.

(g) Let Xcont be the space of ‖·‖-strong continuity for (T (t))t≥0, i.e.

Xcont := {x ∈ X | lim
t→0+

‖T (t)x− x‖ = 0}.

Then Xcont is a ‖·‖-closed, sequentially γ-dense, (T (t))t≥0-invariant linear

subspace of X . Moreover, Xcont = D(A)
‖·‖

and (T (t)|Xcont
)t≥0 is the ‖·‖-

strongly continuous semigroup on Xcont generated by the part A|Xcont
of A

in Xcont and

D(A|Xcont
) = {x ∈ D(A) | Ax ∈ Xcont}.

We added in part (g) that Xcont is sequentially γ-dense in X , which is a
consequence of (b).

3. Dual bi-continuous semigroups

We start this section by recalling the definition of the dual semigroup on
X◦ of a bi-continuous semigroup on X given in [24], where for a Saks space
(X, ‖ · ‖, τ) we set

X◦ :=
{
x′ ∈ X ′ | x′ τ -sequentially continuous on ‖ · ‖-bounded sets

}
.

Remark 3.1. Let (X,‖ ·‖, τ) be a Saks space. ThenX◦ is a closed linear
subspace of the norm dual X ′ and hence a Banach space by [24, Proposition
2.1, p. 314]. We note that it is assumed in [24, Proposition 2.1, p. 314] that
the Saks space (X,‖ · ‖, τ) is sequentially complete (see [24, Hypothesis A(ii),
pp. 310–311]) but an inspection of its proof shows that this assumption is
not needed.

If (X, ‖ · ‖, τ) is a sequentially complete Saks space and (T (t))t≥0 a bi-
continuous semigroup on X , then the dual map T ′(t) := T (t)′ belongs to
L(X ′) and leaves X◦ invariant for every t ≥ 0 by [24, Proposition 2.3, p. 315].
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Thus the restriction of the dual semigroup (T ′(t))t≥0 to X◦ forms a semi-
group (T ◦(t))t≥0 on X◦ given by T ◦(t)x◦ := T ′(t)x◦ for t ≥ 0 and x◦ ∈ X◦.
This semigroup is clearly exponentially bounded (with respect to ‖ · ‖L(X◦))
and σ(X◦,X)-strongly continuous, which implies that it is γ◦-strongly con-
tinuous by Definition 2.1(a) where γ◦ := γ(‖ · ‖X◦, σ(X◦,X)) and ‖ · ‖X◦

denotes the restriction of ‖ · ‖X′ to X◦. In order to get a bi-continuous
semigroup on (X◦, ‖ · ‖X◦ , σ(X◦,X)), this triple needs to be a sequentially
complete Saks space and (T ◦(t))t≥0 has to be locally sequentially γ◦-equicon-
tinuous. Obviously, σ(X◦,X) is a coarser Hausdorff locally convex topology
on X◦ than ‖ · ‖X◦ . Setting

pN (x◦) := sup
x∈N

|〈x◦, x〉|, x◦ ∈ X◦,

for finite N ⊂ B‖·‖, we get a directed system of seminorms that generates
the σ(X◦,X)-topology with

‖x◦‖X◦ = sup
{
pN (x◦) | N ⊂ B‖·‖ finite

}
for all x◦ ∈ X◦. Therefore (X◦, ‖ · ‖X◦, σ(X◦,X)) is a Saks space. The se-
quential completeness of (X◦, ‖ · ‖X◦ , σ(X◦,X)) is not automatically fulfilled
(see [24, Example 2.2, pp. 314–315]) and for the local sequential γ◦-equi-
continuity of (T ◦(t))t≥0 we need an additional assumption as well (see [24,
Hypothesis B and C, pp. 314–315]).

Definition 3.2. Let (X, ‖ · ‖, τ) be a triple such that (X, ‖ · ‖) is a Ba-
nach space, τ a Hausdorff locally convex topology on X that is coarser than
the ‖·‖-topology. We call (X,‖ · ‖, τ) dual-consistent, in short d-consistent, if

(i) X◦ ∩B‖·‖X′
is sequentially complete with respect to σ(X◦,X) where

B‖·‖X′
:= {x′ ∈ X ′ | ‖x′‖X′ ≤ 1},

(ii) every ‖ · ‖X′-bounded σ(X◦,X)-null sequence in X◦ is τ -equicon-
tinuous on ‖ · ‖-bounded sets.

Condition (i) of Definition 3.2 guarantees that (X◦, ‖ · ‖X◦, σ(X◦,X)) is
sequentially complete. Condition (ii) of Definition 3.2 gives the local sequen-
tial γ◦-equicontinuity of (T ◦(t))t≥0.

Proposition 3.3 [24, Proposition 2.4, p. 315], [3, Lemma 1, p. 6]. Let
(X, ‖ · ‖, τ) be a sequentially complete d-consistent Saks space, ‖ · ‖X◦ the re-
striction of ‖ · ‖X′ to X◦ and (T (t))t≥0 a bi-continuous semigroup on X with
generator (A,D(A)). Then the following assertions hold :

(a) The triple (X◦, ‖ · ‖X◦, σ(X◦,X)) is a sequentially complete Saks
space.

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 11
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(b) The operators given by T ◦(t)x◦ := T ′(t)x◦ for t ≥ 0 and x◦ ∈ X◦

form a bi-continuous semigroup on (X◦, ‖ · ‖X◦ , σ(X◦,X)) with generator
(A◦,D(A◦)) fulfilling

D(A◦) =
{
x◦ ∈ X◦ | ∃ y◦ ∈ X◦ ∀ x ∈D(A) : 〈Ax,x◦〉 = 〈x, y◦〉

}
, A◦x◦ = y◦.

Next, we take a closer look at the space X◦ and its relation to the dual
space (X, γ)′ where γ is the mixed topology of ‖ · ‖ and τ . Both spaces
coincide if (X, γ) is a Mazur space. This will be a quite helpful observation
in the next sections.

Definition 3.4 [60, p. 40]. A Hausdorff locally convex space (X,ϑ) with
scalar field K := R or C is called Mazur space if

(X,ϑ)′=
{
x′ : X → K | x′ linear and ϑ-sequentially continuous

}
=: X ′

seq-ϑ.

In the special case that ϑ = σ(X ′,X) a Banach space (X, ‖ · ‖) such that
(X ′, σ(X ′,X)) is a Mazur space is also called d-complete [32, p. 624] or a
μB space [60, p. 45] or having Mazur’s property [41, p. 51].

Remark 3.5. Let (X, ‖ · ‖, τ) be a Saks space. Then (X, γ)′ is a closed
linear subspace of X ′, in particular a Banach space, and

(X, γ)′ = (X, τ)′
‖·‖X′

by [11, I.1.18 Proposition, p. 15]. Furthermore, X◦ = X ′
seq- γ by [11, I.1.10

Proposition, p. 9] and since we always have X ′
seq- γ ⊂ X ′

seq- ‖·‖ = X ′. Thus
(X, γ) is a Mazur space if and only if

X◦ = (X, γ)′.

Proposition 3.6. Let (X, ‖ · ‖, τ) be a Saks space.
(a) If (X, τ) is a Mazur space and every τ -convergent sequence ‖ · ‖-

bounded, then (X, γ) is also a Mazur space.
(b) If (X, γ) is a C-sequential space, i.e. every convex sequentially open

subset of (X, γ) is already open (see [51, p. 273]), then (X, γ) is a Mazur
space.

Proof. Part (b) is a direct consequence of [60, Theorem 7.4, p. 52].
Let us turn to part (a). If x′ : X → K is linear and γ-sequentially continu-
ous, then it is τ -sequentially continuous on ‖ · ‖-bounded sets by [11, I.1.10
Proposition, p. 9] and thus τ -continuous as (X,τ) is a Mazur space and every
τ -convergent sequence ‖ · ‖-bounded. But this implies that x′ is γ-continuous
since τ is coarser than γ. �

Examples of C-sequential spaces (X, γ) are given in [36, 3.19, 3.20 Re-
marks, pp. 14–15] and [36, 3.23 Corollary (c), p. 16]. We fix the following
definition for the rest of the paper.
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Definition 3.7. We call a Saks space (X,‖ ·‖, τ) a Mazur space if (X,γ)
is a Mazur space.

Now, let us revisit Definition 3.2 and give sufficient conditions in terms
of the mixed topology γ when the conditions of this definition are fulfilled.
For that purpose we recall that a Hausdorff locally convex space (X,ϑ) is
called c0-barrelled if every σ((X,ϑ)′,X)-null sequence in (X,ϑ)′ is ϑ-equi-
continuous (see [30, p. 249], or [59, Definition, p. 353] where such spaces are
called sequentially barrelled).

Theorem 3.8. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space and
X ′

γ := (X, γ)′.
(a) Let (X, γ) be a Mazur space. Then condition (i) of Definition 3.2 is

fulfilled if and only if (X ′
γ , τc(X ′

γ, (X, ‖ · ‖))) is sequentially complete where

τc(X ′
γ, (X, ‖ · ‖)) is the topology of uniform convergence on compact subsets

of (X, ‖ · ‖).
(b) If (X,γ) is a c0-barrelled Mazur space, then (X,‖·‖, τ) is d-consistent.

In particular, if (X, γ) is a Mackey–Mazur space, then (X, ‖ · ‖, τ) is d-con-
sistent.

Proof. (a) We have X ′
γ = X◦ by Remark 3.5 and so the triple

(X ′
γ, ‖·‖X′

γ
, σ(X ′

γ ,X))

is a Saks space by our considerations above Definition 3.2. Our claim fol-
lows from [61, 2.3.2 Corollary, p. 55] since condition (i) of Definition 3.2
is equivalent to the sequential completeness of (X◦, ‖ · ‖X◦, σ(X◦,X)), and
γ◦ = τc(X ′

γ , (X, ‖ · ‖)) by [36, 3.22 Proposition (a), p. 16].
(b) From [11, I.1.7 Corollary, p. 7], [11, I.1.10 Proposition, p. 9] and

(X,γ) being a Mazur space, we deduce that condition (ii) of Definition 3.2 is
equivalent to the condition that every γ◦-null sequence in X ′

γ is γ-equicon-
tinuous. Since every γ◦-null sequence is a σ(X ′

γ ,X)-null sequence, it follows
from (X, γ) being c0-barrelled that condition (ii) of Definition 3.2 is satis-
fied. From [59, Proposition 4.4, p. 354] we deduce that (X ′

γ , σ(X
′
γ ,X)) is

sequentially complete and thus condition (i) of Definition 3.2 is also fulfilled
by part (a) if (X, γ) is a c0-barrelled Mazur space.

If (X,γ) is a Mackey–Mazur space, then it is c0-barrelled by [59, Propo-
sition 4.3, p. 354] because (X, γ) is sequentially complete. �

Let us come to some examples of sequentially complete d-consistent
Mazur–Saks spaces. First, we recall some notions from general topology.
A completely regular space Ω is called kR-space if any map f : Ω → R whose
restriction to each compact K ⊂ Ω is continuous, is already continuous on Ω
(see [46, p. 487]). In particular, locally compact Hausdorff spaces clearly
are Hausdorff kR-spaces. In addition Polish spaces, i.e. separably completely
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metrisable spaces, are Hausdorff kR-spaces by [29, Proposition 11.5, p. 181]
and [19, 3.3.20, 3.3.21 Theorems, p. 152]. We recall that a Hausdorff space Ω
is called hemicompact if there is a sequence (Kn)n∈N of compact sets in Ω
such that for every compact set K ⊂ Ω there is N ∈ N such that K ⊂ KN

(see [19, Exercises 3.4.E, p. 165]). For instance, σ-compact locally compact
Hausdorff spaces are hemicompact Hausdorff kR-spaces by [19, Exercises
3.8.C (b), p. 195]. Further, there are hemicompact Hausdorff kR-spaces that
are neither locally compact nor metrisible by [58, p. 267].

Second, let Cb(Ω) be the space of bounded continuous functions on a
completely regular Hausdorff space Ω and

‖f‖∞ := sup
x∈Ω

|f(x)|, f ∈ Cb(Ω).

We denote by τco the compact-open topology, i.e. the topology of uniform con-
vergence on compact subsets of Ω, which is induced by the directed system
of seminorms Pτco given by

pK(f) := sup
x∈K

|f(x)|, f ∈ Cb(Ω),

for compact K ⊂ Ω.
Let V denote the set of all non-negative bounded functions ν on Ω that

vanish at infinity, i.e. for every ε > 0 the set {x ∈ Ω | ν(x) ≥ ε} is compact.
Let β0 be the Hausdorff locally convex topology on Cb(Ω) that is induced
by the seminorms

|f |ν := sup
x∈Ω

|f(x)|ν(x), f ∈ Cb(Ω),

for ν ∈ V . Due to [50, Theorem 2.4, p. 316] we have γ(‖ · ‖∞, τco) = β0. Let
Mt(Ω) denote the space of bounded Radon measures on a completely regular
Hausdorff space Ω and ‖ · ‖Mt(Ω) be the total variation norm (see e.g. [40,
pp. 439–440] where Mt(Ω) is called M0(Ω)). By [50, Theorem 4.4, p. 320]
it holds Mt(Ω) = (Cb(Ω), β0)′.

Furthermore, a Banach space (X, ‖ · ‖) is called weakly compactly gen-
erated (WCG) if there is a σ(X,X ′)-compact set K ⊂ X such that X =
span(K) where span(K) denotes the ‖ · ‖-closure of span(K) (see [20, Def-
inition 13.1, p. 575]). A Banach space (X, ‖ · ‖) is called strongly weakly
compactly generated space (SWCG) if there exists a σ(X,X ′)-compact set
K ⊂ X such that for every σ(X,X ′)-compact set L ⊂ X and ε > 0 there is
n ∈ N with L ⊂ (nK + εB‖·‖) by [49, p. 387]. In particular, every SWCG
space is a WCG space by [49, Theorem 2.5, p. 390]. Examples of SWCG
spaces are reflexive Banach spaces, separable Schur spaces (i.e. weakly con-
vergent sequences are convergent [20, p. 253]), the space N (H) of trace class
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operators for a separable Hilbert space H and the space L1(Ω, ν) with re-
spect to a σ-finite measure ν by [49, 2.3 Examples, pp. 389–390]. Further
examples of WCG spaces are separable Banach spaces and the space c0(Γ)
of all real (or complex) valued bounded functions on a non-empty set Γ that
vanish at infinity by [20, Examples, pp. 575–576]. The spaces �∞ and �1(Γ)
for an uncountable set Γ are not WCG by [20, Examples (iv), p. 576] and
there exist examples of WCG spaces that are not SWCG by [49, 2.6 Ex-
ample, p. 391]. Moreover, we recall that a Banach space (X, ‖ · ‖) has an
almost shrinking basis if it has a Schauder basis such that its associated se-
quence of coefficient functionals forms a Schauder basis of (X ′, μ(X ′,X))
where μ(X ′,X) is the Mackey topology on X ′ (see [31, p. 75]).

Example 3.9. (a) Let (X, ‖ · ‖) be a Banach space and τ‖·‖ be the
‖·‖-topology. Then γ(‖ · ‖, τ‖·‖) = τ‖·‖ by Definition 2.1(a), the barrelled
space (X, τ‖·‖) is a C-sequential Mackey space, in particular Mazur. Thus
(X, ‖·‖, τ‖ · ‖) is a sequentially complete d-consistent Mazur–Saks space by
Theorem 3.8(b).

(b) Let Ω be a hemicompact Hausdorff kR-space, or a Polish space. Then

γ(‖ · ‖∞, τco) = β0 = μ(Cb(Ω),Mt(Ω))

and (Cb(Ω), β0) is a C-sequential Mackey space by [36, 3.20 Remark (a),
p. 15]. Hence (Cb(Ω), ‖ · ‖∞, τco) is a sequentially complete Mazur–Saks
space by [36, p. 19] and d-consistent by Theorem 3.8(b).

(c) Let H∞ denote the Hardy space of bounded holomorphic functions
on the open unit disc D ⊂ C and β1 := γ(‖ · ‖∞|H∞, τ‖·‖1

) where τ‖·‖1
is the

topology induced by the norm ‖ · ‖1 given by

‖f‖1 := sup
0<r<1

∫ 2π

0
|f(reiθ)|dθ, f ∈ H∞.

Then (H∞, β1) is a C-sequential Mackey space by [11, V.2.14 Corollary,
p. 239] and [35, Proposition 5.7, pp. 2681–2682]. Thus (H∞, ‖ · ‖∞|H∞ , τ‖·‖1

)
is a sequentially complete Mazur–Saks space by [11, V.2.5 Proposition,
p. 234] and d-consistent by Theorem 3.8(b).

(d) Let (X0, ‖ · ‖0) be a WCG-Schur space. Then (X ′
0, ‖ · ‖X′

0
, σ(X ′

0,X0))
is a sequentially complete Saks space and γ(‖ · ‖X′

0
, σ(X ′

0,X0)) = τc(X ′
0,X0)

by [61, Example E), p. 66] and [36, p. 21]. Since (X0, ‖ · ‖0) is a WCG space,
(X ′

0, σ(X
′
0,X0)) is a Mazur space by [60, Corollary 3.5, p. 46]. It follows

that (X ′
0, τc(X

′
0,X0)) is a Mazur space by Proposition 3.6(a) because every

σ(X ′
0,X0)-convergent sequence is ‖ · ‖X′

0
-bounded by the uniform bounded-

ness principle. It is also a Mackey space by [43, Theorem 3.2, p. 85], in
particular τc(X ′

0,X0) = μ(X ′
0,X0), because (X0, ‖ · ‖0) is a Schur space. We

deduce from Theorem 3.8(b) that (X ′
0, ‖ · ‖X′

0
, σ(X ′

0,X0)) is d-consistent.
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(e) Let (X0, ‖ · ‖0) be a Banach space and
(i) (X0, ‖ · ‖0) be an SWCG space, or
(ii) (X0, ‖ · ‖0) have an almost shrinking basis and let (X0, σ(X0,X

′
0))

be sequentially complete.
Then γ(‖ · ‖X′

0
, μ(X ′

0,X0)) = μ(X ′
0,X0) and (X ′

0, μ(X
′
0,X0)) is a C-

sequential Mackey space in both cases by [36, 3.19 Remark (c), p. 14]
and [36, 3.20 Remark (c), p. 15]. Therefore (X ′

0, ‖ · ‖X′
0
, μ(X ′

0,X0)) is a
sequentially complete Mazur–Saks space by [36, p. 22] and d-consistent by
Theorem 3.8(b).

(f) Let H be a separable Hilbert space and N (H) the space of trace class
operators in L(H) = N (H)′. Let τsot∗ be the symmetric strong operator
topology, i.e. the Hausdorff locally convex topology on L(H) generated by
the directed system of seminorms

pN (R) := max
(
sup
x∈N

‖Rx‖H , sup
x∈N

‖R∗x‖H
)
, R ∈ L(H),

for finite N ⊂ H where R∗ is the adjoint of R. We denote by βsot∗ the
mixed topology γ(‖ · ‖L(H), τsot∗). The triple (L(H), ‖ · ‖L(H), τsot∗) is a se-
quentially complete Saks space, βsot∗ = μ(L(H),N (H)) and (L(H), βsot∗) is
a C-sequential Mackey space by [36, 4.12 Example, pp. 24–25]. We derive
from Theorem 3.8(b) that (L(H), ‖ · ‖L(H), τsot∗) is d-consistent.

That (X, ‖ · ‖, τ‖·‖) in Example 3.9(a) is a sequentially complete d-
consistent Mazur–Saks space is well-known (see [38, Proposition 3.18, p. 78]).
That the triple (Cb(Ω), ‖ · ‖∞, τco) in Example 3.9(b) is a sequentially com-
plete d-consistent Mazur–Saks space is contained in [24, p. 318] if Ω is a
σ-compact locally compact Hausdorff space, or a Polish space. In regard to
example (c) we note that the space H∞ equipped with the induced mixed
topology β̃0 := γ(‖ · ‖∞|H∞ , τco|H∞) = β0|H∞ by [11, I.4.6 Proposition, p. 44]
is not a Mackey space by [11, V.2.7 Corollary, p. 235]. Concerning example
(e), there are spaces which fulfil condition (ii) but not condition (i) by [49,
Example 2.6, p. 391] and [36, p. 15].

4. Sun duals for bi-continuous semigroups

Let us consider a special case of Proposition 3.3, namely, Example 3.9(a).
Let (X, ‖ · ‖) be a Banach space and (T (t))t≥0 a ‖ · ‖-strongly continuous
semigroup on X . Choosing τ as the ‖·‖-topology, we deduce that X◦ = X ′,
σ(X◦,X) = σ(X ′,X) and that the dual semigroup (T ◦(t) = T ′(t))t≥0 on X ′

is bi-continuous on (X ′, ‖ · ‖X′ , σ(X ′,X)) (cf. [38, Proposition 3.18, p. 78]).
For such a semigroup the notion of the sun dual X� was introduced (see
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[57, p. 5]), namely, the subspace of X ′ on which the dual semigroup acts
‖ · ‖X′-strongly, i.e.

X� :=
{
x′ ∈ X ′ | lim

t→0+

‖T ′(t)x′ − x′‖X′ = 0
}
.

The generator (A�,D(A�)) of the restriction (T�(t))t≥0 := (T ′(t)|X�)t≥0 is
the part of A′ in X� by [57, Theorem 1.3.3 p. 6]. We generalise this notion to
the semigroup (T ◦(t))t≥0 from Proposition 3.3, so we introduce the subspace
of X◦ on which the semigroup (T ◦(t))t≥0 acts ‖ · ‖X′-strongly and get the
following corollary, which generalises [57, Theorems 1.3.1, 1.3.3 pp. 5–6].

Corollary 4.1. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Saks space, ‖ · ‖X◦ the restriction of ‖ · ‖X′ to X◦ and (T (t))t≥0 a bi-
continuous semigroup on X with generator (A,D(A)). We define the bi-sun
dual

X• := {x◦ ∈ X◦ | lim
t→0+

‖T ◦(t)x◦ − x◦‖X′ = 0}.

Then the space X• is a ‖ · ‖X◦-closed, sequentially γ(‖ · ‖X◦, σ(X◦,X))-

dense, (T ◦(t))t≥0-invariant subspace of X◦. Further, X• = D(A◦)
‖·‖X◦

and
(T •(t))t≥0 := (T ◦(t)|X•)t≥0 is the ‖ · ‖X◦-strongly continuous semigroup on
X• generated by the part A• of A◦ in X• as well as ω0(T •) ≤ ω0(T ).

Proof. We only need to prove ω0(T •) ≤ ω0(T ). The rest of the corol-
lary is a direct consequence of Theorem 2.8 (g) and Proposition 3.3. We
note that

‖T •(t)‖L(X•) = sup
x•∈X•

‖x•‖X′≤1

‖T •(t)x•‖X′ = sup
x•∈X•

‖x•‖X′≤1

sup
x∈X
‖x‖≤1

|〈T •(t)x•, x〉|

= sup
x•∈X•

‖x•‖X′≤1

sup
x∈X
‖x‖≤1

|〈x•, T (t)x〉| ≤ sup
x•∈X′

‖x•‖X′≤1

sup
x∈X
‖x‖≤1

|〈x•, T (t)x〉|

= sup
x∈X
‖x‖≤1

‖T (t)x‖ = ‖T (t)‖L(X)

for all t ≥ 0, yielding ω0(T •) ≤ ω0(T ). �

Remark 4.2. Let (X, ‖ · ‖) be a Banach space. For a ‖ · ‖-strongly
continuous semigroup (T (t))t≥0 on X we have X• = X�, (T •(t))t≥0 =
(T�(t))t≥0 and A• = A�.

Let us turn to a generalisation of [57, Theorem 1.3.5, p. 7] (see also [27,
Theorem 14.2.1, p. 422–423]).
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Theorem 4.3. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . We set

‖x‖• := sup
x•∈X•

‖x•‖X′≤1

|〈x•, x〉|, x ∈ X.

Then ‖ · ‖• and ‖ · ‖ are equivalent norms on X .

Proof. It follows from the definition that ‖x‖• ≤ ‖x‖ for all x ∈ X .
For the converse estimate let ε > 0 and x ∈ X . We choose M ≥ 0 such that
supt∈[0,δ) ‖T (t)‖L(X) ≤ M for some δ > 0 by the exponential boundedness
of (T (t))t≥0. Let Pγ be a directed system of seminorms that generates the
mixed topology γ = γ(‖ · ‖, τ). For pγ ∈ Pγ there is x◦ ∈ X◦ = (X, γ)′ such
that 〈x◦, x〉 = pγ(x) and |〈x◦, z〉| ≤ pγ(z) for all z ∈ X by Remark 3.5 and
the Hahn–Banach theorem. For any x◦ ∈ (X, γ)′ and t > 0 we observe that
the map s �→ T (s)x is γ-Pettis integrable on [0, t] by Theorem 2.8(d) and∣∣∣∣

〈
x◦,

1
t

∫ t

0
T (s)xds− x

〉∣∣∣∣ ≤ 1
t

∫ t

0

∣∣〈x◦, T (s)x− x〉
∣∣ds(2)

≤ sup
s∈[0,t]

|〈x◦, T (s)x− x〉|,

which yields

pγ

(
1
t

∫ t

0
T (s)xds− x

)
≤ sup

s∈[0,t]
pγ(T (s)x− x)

for any pγ ∈ Pγ by [44, Proposition 22.14, p. 256]. Hence it follows from the
γ-strong continuity of (T (t))t≥0 that γ-limt→0+

1
t

∫ t

0 T (s)xds− x = 0. Thus
for pγ there is some 0 < t0 < δ such that pγ( 1

t0

∫ t0
0 T (s)xds− x) ≤ εpγ(x).

We deduce that∣∣∣∣
〈

1
t0

∫ t0

0
T ◦(s)x◦ ds, x

〉∣∣∣∣ =
∣∣∣∣
〈
x◦,

1
t0

∫ t0

0
T (s)xds

〉∣∣∣∣
≥ |〈x◦, x〉| −

∣∣∣∣
〈
x◦,

1
t0

∫ t0

0
T (s)xds− x

〉∣∣∣∣
≥ pγ(x)− pγ

(
1
t0

∫ t0

0
T (s)xds− x

)
≥ (1− ε)pγ(x).

We have 1
t0

∫ t0
0 T ◦(s)x◦ ds ∈ D(A◦) ⊂ X• by Theorem 2.8(d), Proposition

3.3(b) and Corollary 4.1 and we note that ‖ 1
t0

∫ t0
0 T ◦(s)x◦ ds‖X′ ≤ M , which

implies that ‖x‖• ≥ M−1(1− ε)pγ(x). As ε > 0 is arbitrary, we obtain

‖x‖• ≥ M−1pγ(x).
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By [35, Lemma 5.5(a), p. 2680] and [36, Remark 2.3(c), p. 3] we may choose
Pγ such that ‖x‖ = suppγ∈Pγ

pγ(x) for all x ∈ X and hence we get

‖x‖• ≥ M−1 sup
pγ∈Pγ

pγ(x) = M−1‖x‖. �

The proof shows that we actually have ‖x‖• ≤ ‖x‖ ≤ M‖x‖• for all
x ∈ X with M := lim supt→0+ ‖T (t)‖L(X).

Remark 4.4. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Saks space, (T (t))t≥0 a bi-continuous semigroup on X with generator
(A,D(A)) and set X•′ := (X•)′, T •′(t) := (T •)′(t) for t ≥ 0 and A•′ := (A•)′.
Then (T •′(t))t≥0 is a bi-continuous semigroup on (X•′, ‖ · ‖X•′ , σ(X•′,X•))
by [38, Proposition 3.18, p. 78] and Corollary 4.1 and we define the bi-sun-
sun dual

X•• := {x•′ ∈ X•′ | lim
t→0+

‖T •′(t)x•′ − x•′‖X•′ = 0}.

Then X•• is a ‖ · ‖X•′ -closed, sequentially τc(X•′,X•)-dense, (T •′(t))t≥0-

invariant subspace of X•′. Moreover, X•• = D(A•′)
‖·‖X•′

and (T ••(t))t≥0 :=
(T •′(t)|X••)t≥0 is the ‖ · ‖X•′-strongly continuous semigroup on X•• gener-
ated by the part A•• of A•′ in X•• by Theorem 2.8 (g), Corollary 4.1 and
since

γ(‖ · ‖X•′ , σ(X•′,X•)) = τc(X•′,X•)

by [61, Example E), p. 66]. If τ coincides with the ‖·‖-topology, then X•• =
X��, which is the sun-sun dual (see [57, p. 7]).

Let us comment on the definition of X•• and its relation to X•◦ := (X•)◦
and (X•)•.

Remark 4.5. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Saks space and (T (t))t≥0 a bi-continuous semigroup on X . The triple

(X•, ‖ · ‖X•, σ(X•,X•′))

is a Saks space, where ‖ · ‖X• denotes the restriction of ‖ · ‖X′ to X•, and
we have

X•◦ = {x•′ ∈ X•′ | x•′ σ(X•,X•′)-sequentially continuous

on ‖ · ‖X•-bounded sets}.

For x•′ ∈ X•′ we note that

|〈x•′, x•〉| = sup
y∈{x•′}

|〈y, x•〉| =: p{x•′}(x
•)
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for all x• ∈ X•, which means that x•′ is σ(X•,X•′)-continuous. This implies
X•◦ = X•′. Setting

T •◦(t) := T •′(t)|X•◦ = T •′(t)|X•′ = T •′(t)

for all t ≥ 0, we see that

(X•)• =
{
x•◦ ∈ X•◦ | lim

t→0+

‖T •◦(t)x•◦ − x•◦‖X•◦ = 0
}
= X••.

Like in [57, Corollary 1.3.6, p. 8] we can consider X as a subspace of X•′.

Corollary 4.6. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . Then the
canonical map j : X → X•′ given by

〈j(x), x•〉 := 〈x•, x〉, x ∈ X, x• ∈ X•,

is injective, j(Xcont) = X•• ∩ j(X) and

j ∈ L(X;X•′) := L((X, ‖ · ‖); (X•′, ‖·‖X•′))

with M−1 ≤ ‖j‖L(X;X•′) ≤ 1 where M := lim supt→0+ ‖T (t)‖L(X).

Proof. j is clearly linear. If j(x)=0 for some x∈X , then 〈x•, x〉=0 for
all x• ∈ X•, which implies that ‖x‖• = 0 and thus x = 0 by Theorem 4.3.

The inclusion j(Xcont) ⊂ (X•• ∩ j(X)) follows directly from the defini-
tions of Xcont (see Theorem 2.8 (g)) and X••. For the converse inclusion let
x ∈ X with j(x) ∈ X••. We note that for any t ≥ 0 and x• ∈ X•

〈T ••(t)j(x)− j(x), x•〉 = 〈T •′(t)j(x)− j(x), x•〉 = 〈j(x), T •(t)x• − x•〉

= 〈T ′(t)x• − x•, x〉 = 〈x•, T (t)x− x〉,

which implies ‖T (t)x− x‖• = ‖T ••(t)j(x)− j(x)‖X•′ and thus x ∈ Xcont as
‖ · ‖• and ‖ · ‖ are equivalent by Theorem 4.3.

Furthermore, we have

‖j‖L(X;X•′) = sup
x∈X
‖x‖≤1

‖j(x)‖X•′ = sup
x∈X
‖x‖≤1

sup
x•∈X•

‖x•‖X′≤1

|〈x•, x〉| = sup
x∈X
‖x‖≤1

‖x‖•,

implying the rest of our statement because ‖x‖• ≤ ‖x‖ ≤ M‖x‖• for all
x ∈ X with M := lim supt→0+ ‖T (t)‖L(X). �

In our next theorem we investigate the relation between the resolvent sets
ρ(A), ρ(A•) and ρ(A•′) resp. the resolvents R(λ,A), R(λ,A•) and R(λ,A•′).
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Theorem 4.7. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Saks space and (T (t))t≥0 a bi-continuous semigroup on X with generator
(A,D(A)). For λ ∈ ρ(A) we set R(λ,A)• := R(λ,A)′|X• .

(a) If λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•), then we have λ ∈ ρ(A•)
and R(λ,A)• = R(λ,A•).

(b) If (X, γ) is a Mazur space and λ ∈ ρ(A•), then we have λ ∈ ρ(A).
(c) We have ρ(A•) = ρ(A•′) and R(λ,A•)′ = R(λ,A•′) for all λ ∈ ρ(A•).

If λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•), then we have j(R(λ,A)x) =
R(λ,A•′)j(x) for all X with the canonical map j : X → X•′.

Proof. (a) Let λ ∈ ρ(A). For any x ∈ X and x• ∈ D(A•) we have
A•x• = A◦x• ∈ X• since A• is the part of A◦ in X• by Corollary 4.1, and

〈R(λ,A)•(λ−A•)x•, x〉 = 〈R(λ,A)′(λ− A◦)x•, x〉

= 〈x•, (λ−A)R(λ,A)x〉 = 〈x•, x〉,

which implies R(λ,A)•(λ− A•)x• = x•. From the assumption R(λ,A)•X•

⊂ D(A•) and Corollary 4.1 we deduce that (λ−A•)R(λ,A)•x• ∈ X• and for
any x ∈ D(A) we have

〈(λ−A•)R(λ,A)•x•, x〉 = 〈(λ−A◦)R(λ,A)′x•, x〉

= 〈x•, R(λ,A)(λ −A)x〉 = 〈x•, x〉.

As (λ− A•)R(λ,A)•x•, x• ∈ X• ⊂ X◦ and D(A) is sequentially γ-dense by
Theorem 2.8(b), we get (λ−A•)R(λ,A)•x• = x• from the definition of X◦.
Hence we obtain λ ∈ ρ(A•) and R(λ,A)• = R(λ,A•).

(b) Conversely, let λ ∈ ρ(A•). If (λ−A)x = 0 for some x ∈ D(A), then
for all x◦ ∈ D(A◦) we have

〈(λ−A◦)x◦, x〉 = 〈x◦, (λ−A)x〉 = 0,

which means that x annihilates the range of λ− A◦. In particular, x an-
nihilates (λ−A•)D(A•) = X• by Corollary 4.1 because λ ∈ ρ(A•). Thus
we have ‖x‖• = 0 and so x = 0 by Theorem 4.3, implying the injectivity of
λ−A.

Next, we show that the range of λ−A is ‖ ·‖-dense and ‖ ·‖-closed, which
then implies the surjectivity of λ−A. Suppose that the range of λ−A is
not ‖ · ‖-dense. Then there is some x◦ ∈ X◦ with x◦ �= 0 such that for any
x ∈ D(A) we have

〈(λ−A)x, x◦〉 = 0

since X◦ separates the points of X . It follows that 〈Ax, x◦〉 = 〈x, λx◦〉 for
all x ∈ D(A) and so x◦ ∈ D(A◦) by Proposition 3.3(b). We deduce that
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(λ−A◦)x◦ = 0 as D(A) is sequentially γ-dense by Theorem 2.8(b), which
yields A◦x◦ = λx◦ ∈ D(A◦) ⊂ X•. Thus x◦ ∈ D(A•) because A• is the part
of A◦ in X• by Corollary 4.1. We conclude that

(λ− A•)x◦ = (λ−A◦)x◦ = 0

with x◦ �= 0, which contradicts λ ∈ ρ(A•).
Let us turn to the ‖ · ‖-closedness of the range of λ−A. Let x ∈ D(A).

By Theorem 4.3 there is x• ∈ X• with ‖x•‖X′ ≤ 1 such that |〈x•, x〉| ≥ 1
2‖x‖

•

due to (X, γ) being a Mazur space. Setting C := ‖R(λ,A•)‖−1
L(X•), we note

that

‖(λ−A)x‖• ≥ C|〈R(λ,A•)x•, (λ−A)x〉|(3)

= C|〈(λ− A•)R(λ,A•)x•, x〉| = C|〈x•, x〉| ≥
C

2
‖x‖•.

Now, if (xn)n∈N is a sequence in D(A) such that ‖·‖-limn→∞(λ−A)xn = y
for some y ∈ X , we derive from the estimate above that (xn)n∈N is a ‖ · ‖-
Cauchy sequence, say with limit z ∈ X , because ‖ · ‖ and ‖ · ‖• are equiva-
lent norms on X by Theorem 4.3. Since (A,D(A)) is sequentially γ-closed
by Theorem 2.8(a), in particular ‖ · ‖-closed as γ is coarser than the ‖·‖-
topology, we get z ∈ D(A) and y = (λ−A)z. Hence λ−A is bijective and
(3) yields that (λ−A)−1 ∈ L(X) as well.

(c) By [57, Lemma 1.4.1, p. 9] and Corollary 4.1 it holds ρ(A•) = ρ(A•′)
and R(λ,A•)′ = R(λ,A•′) for all λ ∈ ρ(A•). Now, let λ ∈ ρ(A) such that
R(λ,A)•X• ⊂ D(A•). Then it follows from part (a) that λ ∈ ρ(A•) and
R(λ,A)• = R(λ,A•). Thus we have

〈j(R(λ,A)x), x•〉 = 〈x•, R(λ,A)x〉 = 〈R(λ,A)•x•, x〉 = 〈R(λ,A•)x•, x〉

= 〈j(x), R(λ,A•)x•〉 = 〈R(λ,A•)′j(x), x•〉 = 〈R(λ,A•′)j(x), x•〉

for all x ∈ X and x• ∈ X•, meaning j(R(λ,A)x) = R(λ,A•′)j(x) for all
x ∈ X . �

Let us turn to sufficient conditions for R(λ,A)•X• ⊂ D(A•) to hold in
Theorem 4.7(a).

Proposition 4.8. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Saks space and (T (t))t≥0 a bi-continuous semigroup on X with generator
(A,D(A)).

(a) If Reλ > ω0(T ), then we have λ ∈ ρ(A) and R(λ,A)•X• ⊂ D(A•).
(b) If (X, γ) is a Mazur space and λ ∈ ρ(A) such that R(λ,A) : (X, γ)

→ (X, γ) is continuous, then we have R(λ,A)•X• ⊂ D(A•).
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(c) If (X,γ) is a C-sequential space, then {R(λ,A) | Reλ ≥ α} is γ-equi-
continuous for all α > ω0(T ). Especially, R(λ,A) : (X, γ) → (X, γ) is con-
tinuous for all Reλ > ω0(T ).

Proof. (a) Let Reλ > ω0(T ). Then we have Reλ > ω0(T •) by Corol-
lary 4.1 and thus λ ∈ ρ(A) ∩ ρ(A•) by Theorem 2.8(e) as well as

〈R(λ,A)•x•, x〉 = 〈x•, R(λ,A)x〉 =
〈
x•,

∫ ∞

0
e−λsT (s)xds

〉

=
∫ ∞

0
e−λs〈x•, T (s)x〉 ds =

∫ ∞

0
e−λs〈T •(s)x•, x〉 ds

=
〈∫ ∞

0
e−λsT •(s)x• ds, x

〉
= 〈R(λ,A•)x•, x〉

for all x• ∈ X• and x ∈ X . This yields R(λ,A)•x• = R(λ,A•)x• ∈ D(A•)
for all x• ∈ X•.

(b) Let λ ∈ ρ(A) such that R(λ,A): (X,γ) → (X,γ) is continuous. First,
we show that R(λ,A)•D(A◦) ⊂ D(A•). Let x◦ ∈ D(A◦) ⊂ X• ⊂ X◦ and Pγ

be a directed system of seminorms that generates the mixed topology γ.
Since X◦ = (X, γ)′ by Remark 3.5, there are pγ ∈ Pγ and C ≥ 0 such that

|〈R(λ,A)•x◦, x〉| = |〈x◦, R(λ,A)x〉| ≤ Cpγ(R(λ,A)x)

for all x ∈ X . Due to the continuity of R(λ,A) : (X, γ) → (X, γ), there are
p̃γ ∈ Pγ and C̃ ≥ 0 such that

|〈R(λ,A)•x◦, x〉| ≤ CC̃p̃γ(x)

for all x ∈ X , implying R(λ,A)•x◦ ∈ (X, γ)′ = X◦. For any x ∈ D(A) we
have

〈Ax,R(λ,A)•x◦〉 = 〈R(λ,A)Ax, x◦〉 = 〈λR(λ,A)x− x, x◦〉.

For any x ∈ X we note that

|y◦(x)| := |〈λR(λ,A)x− x, x◦〉| ≤ Cpγ(λR(λ,A)x− x)

≤ CC̃|λ|p̃γ(x) + Cpγ(x),

which means that y◦ ∈ (X, γ)′ = X◦. Thus we have

〈Ax,R(λ,A)•x◦〉 = 〈x, y◦〉

for all x ∈ D(A), i.e. R(λ,A)•x◦ ∈ D(A◦) by Proposition 3.3(b). Further,
we observe that for any x ∈ D(A)

〈A◦R(λ,A)•x◦, x〉 = 〈x◦, R(λ,A)Ax〉
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= 〈x◦, λR(λ,A)x − x〉 = 〈λR(λ,A)•x◦ − x◦, x〉.

The sequential γ-density of D(A) by Theorem 2.8(b) and A◦R(λ,A)•x◦ ∈
X◦ as well as λR(λ,A)•x◦ − x◦ = y◦ ∈ X◦ imply that for any x ∈ X

(4) 〈A◦R(λ,A)•x◦, x〉 = 〈λR(λ,A)•x◦ − x◦, x〉.

Thus we have for any x ∈ D(A)

〈Ax,A◦R(λ,A)•x◦〉 = 〈Ax, λR(λ,A)•x◦ − x◦〉

= 〈λR(λ,A)Ax, x◦〉 − 〈x,A◦x◦〉 = 〈λ2R(λ,A)x− λx, x◦〉 − 〈x,A◦x◦〉.

For any x ∈ X we remark that

|z◦(x)| := |〈λ2R(λ,A)x− λx, x◦〉|

≤ Cpγ(λ2R(λ,A)x− λx) ≤ CC̃|λ|2p̃γ(x) + C|λ|pγ(x),

yielding z◦ ∈ (X, γ)′ = X◦. It follows that z◦ −A◦x◦ ∈ X◦ and

〈Ax,A◦R(λ,A)•x◦〉 = 〈x, z◦ −A◦x◦〉

for all x ∈ D(A), i.e. A◦R(λ,A)•x◦ ∈ D(A◦) by Proposition 3.3(b). We con-
clude that R(λ,A)•x◦ ∈ D(A•) since A• is the part of A◦ in X• by Corol-
lary 4.1. Thus we have shown that R(λ,A)•D(A◦) ⊂ D(A•). Now, we show
that R(λ,A)•X• ⊂ D(A•). First, we observe that for any x• ∈ X•

‖R(λ,A)•x•‖X′ = sup
x∈X
‖x‖≤1

|〈x•, R(λ,A)x〉| ≤ ‖R(λ,A)‖L(X)‖x
•‖X′ ,

implying that R(λ,A)• ∈ L(X•;X ′). Since R(λ,A)•x◦ ∈ D(A•) for any
x◦ ∈ D(A◦), we have

〈A•R(λ,A)•x◦, x〉 = 〈A◦R(λ,A)•x◦, x〉

=
(4)

〈λR(λ,A)•x◦ − x◦, x〉 = 〈x◦, λR(λ,A)x− x〉

for all x ∈ X . We deduce that

(5) ‖A•R(λ,A)•x◦‖X′ ≤ |λ|‖R(λ,A)‖L(X)‖x
◦‖X′ + ‖x◦‖X′

for all x◦ ∈ D(A◦). Let x• ∈ X•. Due to Corollary 4.1 it holds X• =

D(A◦)
‖·‖X◦

= D(A◦)
‖·‖X′

and thus there is a sequence (x◦n)n∈N in D(A◦)
which ‖ · ‖X′-converges to x•. From R(λ,A)• ∈ L(X•;X ′) we derive that
the sequence (R(λ,A)•x◦n)n∈N in D(A•) ‖ · ‖X′ -converges to R(λ,A)•x•

∈ D(A◦)
‖·‖X′

= X•. The estimate (5) implies that (A•R(λ,A)•x◦n)n∈N is
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a ‖ · ‖X′-Cauchy sequence in X•. The space X• is ‖ · ‖X′-complete by
Corollary 4.1, which yields that (A•R(λ,A)•x◦n)n∈N ‖ · ‖X′-converges to
some w• ∈ X•. In combination with the ‖ · ‖X′-closedness of the gener-
ator (A•,D(A•)) by Corollary 4.1 we get R(λ,A)•x• ∈ D(A•) and w• =
A•R(λ,A)•x•.

(c) If (X, γ) is C-sequential, then [34, Condition C, pp. 165–166] is ful-
filled by [34, Proposition 7.3, p. 179] and [60, Theorem 7.4, p. 52]. Further,
(T (t))t≥0 is an SCLE-semigroup with respect to γ in the sense of [34, p. 160],
i.e. strongly continuous with respect to γ and locally equicontinuous with
respect to γ, by [34, Theorem 7.4, p. 180]. Therefore {R(λ,A) | Reλ ≥ α}
is γ-equicontinuous for all α > ω0(T ) by [34, Theorem 6.4(a)⇔(c), p. 176].
�

Part (a) shows that the continuity of R(λ,A) : (X, γ) → (X, γ) need not
be a necessary condition for R(λ,A)•X• ⊂ D(A•) for all Reλ > ω0(T ). This
is an open question. Another open question is whether one actually has
R(λ,A)•X• ⊂ D(A•) for all λ ∈ ρ(A) in general. The answer is affirmative
if τ coincides with the ‖·‖-topology. Because then γ also coincides with
the ‖·‖-topology, which gives that R(λ,A) : (X, γ) → (X, γ) is continuous
for all λ ∈ ρ(A). Therefore Proposition 4.8(b) and Theorem 4.7 imply [57,
Theorem 1.4.2, p. 10] (see also [27, Theorem 14.3.3, p. 425]).

Let us come to an application of Proposition 4.8(b) where we do not
need the restriction that Reλ > ω0(T ) or that τ coincides with the ‖·‖-
topology. We note that Cb(N) = �∞ and Mt(N) = �1 (see e.g. [10, p. 477]),
implying β0 = γ(‖ · ‖∞, τco) = μ(�∞, �1) by Example 3.9(b). Further, it fol-
lows from [36, p. 22] (or Example 3.9(e)) that the triple (�∞,‖ · ‖∞, μ(�∞, �1))
is a sequentially complete Saks space and hence from Definition 2.1(a) that
a bi-continuous semigroup on (�∞, ‖ · ‖∞, τco) is a bi-continuous semigroup
on (�∞, ‖ · ‖∞, μ(�∞, �1)) as well.

Example 4.9. Let q : N → C be such that supn∈NRe q(n) < ∞, and
let (T (t))t≥0 be the bi-continuous multiplication semigroup on (�∞, ‖·‖∞,
μ(�∞, �1)) given by

T (t)x := (eq(n)txn)n∈N, x ∈ �∞, t ≥ 0.

Then the generator (A,D(A)) of (T (t))t≥0 is the multiplication operator
A: D(A)→ �∞, Ax = qx, with domainD(A) = {x ∈ �∞ | (q(n)xn)n∈N ∈ �∞}

by [4, pp. 353–354]. Furthermore, we have σ(A) := C \ ρ(A) = q(N) by [18,
Ch. I, 4.8 Exercises (1), p. 30] and

R(λ,A)x = (λ−A)−1x =
( 1
λ− q(n)

xn

)
n∈N

, x ∈ �∞, λ �∈ σ(A).
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Next, we show that R(λ,A) is μ(�∞, �1)-continuous for all λ ∈ ρ(A). Due to
[16, Theorem III.2.15, p. 76] a set M ⊂ �1 is σ(�1, �∞)-compact if and only
if M is ‖ · ‖�1-bounded and uniformly absolutely summable, i.e.

∀ ε > 0 ∃ δ > 0 ∀ Ω ⊂ N, |Ω| < δ, y ∈ M :
∑
n∈Ω

|yn| < ε,

where |Ω| denotes the cardinality of Ω. Let M ⊂ �1 be σ(�1, �∞)-compact
and absolutely convex. Then we have

(6) sup
y∈M

|〈R(λ,A)x, y〉| = sup
y∈M

∣∣∣∣∑
n∈N

1
λ− q(n)

xnyn

∣∣∣∣ = sup
y∈Mλ

|〈x, y〉|

for all x ∈ �∞ and λ �∈ σ(A) where

Mλ :=
{( 1

λ− q(n)
yn

)
n∈N

| y ∈ M
}
.

Now, we only need to show that Mλ is σ(�1, �∞)-compact and absolutely
convex. First, we note that Cλ := supn∈N

1
|λ−q(n)| < ∞ for all λ �∈ σ(A) =

q(N) and∥∥∥∥( 1
λ−q(n)

yn

)
n∈N

∥∥∥∥
�1
=

∑
n∈N

1
|λ−q(n)|

|yn| ≤ sup
n∈N

1
|λ−q(n)|

‖y‖�1 = Cλ‖y‖�1

for all y ∈ M , which implies that Mλ is ‖·‖�1-bounded because M is ‖·‖�1-
bounded. Due to the characterisation of σ(�1, �∞)-compactness above it re-
mains to show that Mλ is uniformly absolutely summable. Let ε > 0. Since
M is uniformly absolutely summable, there is δ > 0 such that for all Ω ⊂ N

with |Ω| < δ and all y ∈ M it holds

∑
n∈Ω

∣∣∣ 1
λ− q(n)

yn

∣∣∣ ≤ Cλ

∑
n∈Ω

|yn| < Cλ
ε

Cλ
= ε,

yielding that Mλ is uniformly absolutely summable. Thus Mλ is σ(�1, �∞)-
compact. Further, it is easy to check that Mλ is absolutely convex be-
cause M is absolutely convex. Hence R(λ,A) is μ(�∞, �1)-continuous by
(6) for all λ ∈ ρ(A). Therefore Example 3.9(b) and Proposition 4.8(b) yield
R(λ,A)•X• ⊂ D(A•) for all λ ∈ ρ(A). We conclude thatR(λ,A)• = R(λ,A•)
for all λ ∈ ρ(A) and

ρ(A) = ρ(A•) = C \ q(N)

by Theorem 4.7(a) and (b).
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Our interest in the example above comes from [28, Example 2.3, p. 147]
(and its role in [28]) where we replaced the space c0 by �∞. Next, we gener-
alise [57, Proposition 2.1.1, p. 19].

Proposition 4.10. Let (X, ‖ · ‖, τ) be a sequentially complete d-con-
sistent Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X
with generator (A,D(A)). For G ⊂ X and t > 0 we set G0 := G and Gt :=
{1
t

∫ t

0 T (s)g ds | g ∈ G}. Then we have

G
σ(X,X•)

⊂
⋂
t>0

⋃
0≤r≤t

Gr

σ(X,X◦)
.

In particular, if G =
⋂

t>0
⋃

0≤r≤tGr
σ(X,X◦)

, then G is σ(X,X•)-closed.

Proof. Let x �∈
⋂

t>0
⋃

0≤r≤tGr
σ(X,X◦)

. We have to show that x �∈

G
σ(X,X•). By assumption there is some t0 > 0 such that

x �∈
⋃

0≤r≤t0

Gr

σ(X,X◦)
.

Since the complement of the latter set is σ(X,X◦)-open, there are some
n ∈ N and x◦i ∈ X◦, 1 ≤ i ≤ n, and ε > 0 such that the σ(X,X◦)-neighbour-
hood V of x given by

V := V (x◦1, . . . , x
◦
n; ε;x) :=

{
y ∈ X | ∀ 1 ≤ i ≤ n : |〈x◦i , x− y〉| < ε}

is disjoint from
⋃

0≤r≤t0
Gr

σ(X,X◦)
.

Since X◦ = (X, γ)′ by Remark 3.5, for every 1 ≤ i ≤ n there are Ci>0
and pγi

∈ Pγ such that |〈x◦i , z〉| ≤ Cipγi
(z) for all z ∈ X where Pγ is a di-

rected system of seminorms that generates the mixed topology γ. From Pγ

being directed it follows that there are C ≥ 1 and pγ ∈ Pγ such that |〈x◦i , z〉|
≤ Cpγ(z) for all z ∈ X and 1 ≤ i ≤ n. By the proof of Theorem 4.3 we know
that γ-limt→0+

1
t

∫ t

0 T (s)xds− x = 0. Thus there is some 0 < t1 ≤ t0 such
that

(7) pγ

(
1
t1

∫ t1

0
T (s)xds− x

)
<

ε

2C
.

We claim that Ṽ ∩G = ∅ where

Ṽ := V

(
1
t1

∫ t1

0
T ◦(s)x◦1 ds, . . . ,

1
t1

∫ t1

0
T ◦(s)x◦n ds;

ε

2
;x
)
.
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Indeed, for g ∈ G there is some 1 ≤ i0 ≤ n such that∣∣∣∣
〈
x◦i0 , x−

1
t1

∫ t1

0
T (s)g ds

〉∣∣∣∣ ≥ ε

because V ∩Gt1 = ∅. Then we have∣∣∣∣
〈

1
t1

∫ t1

0
T ◦(s)x◦i0 ds, x− g

〉∣∣∣∣ =
∣∣∣∣
〈
x◦i0 ,

1
t1

∫ t1

0
T (s)xds−

1
t1

∫ t1

0
T (s)g ds

〉∣∣∣∣
≥

∣∣∣∣
〈
x◦i0 , x−

1
t1

∫ t1

0
T (s)g ds

〉∣∣∣∣−
∣∣∣∣
〈
x◦i0 ,

1
t1

∫ t1

0
T (s)xds− x

〉∣∣∣∣
≥ ε− Cpγ

(
1
t1

∫ t1

0
T (s)xds− x

)
≥ ε− C

ε

2C
=

ε

2
,

which shows that Ṽ ∩G = ∅ and proves the claim. However, 1
t1

∫ t1
0 T ◦(s)x◦i ds

∈ D(A◦) ⊂ X• for all 1 ≤ i ≤ n by Theorem 2.8(d) and Corollary 4.1. Thus
Ṽ is σ(X,X•)-open and Ṽ ∩G

σ(X,X•) = ∅. Due to (7) we have x ∈ Ṽ and
hence x �∈ G

σ(X,X•). �

Now, we generalise the definition of (weak) equicontinuity with respect
to a norm-strongly continuous semigroup from [57, p. 25] and [57, Proposi-
tion 2.2.2, p. 26] to the bi-continuous setting.

Definition 4.11. Let (X,‖·‖, τ) be a sequentially complete d-consistent
Saks space and (T (t))t≥0 a bi-continuous semigroup on X . We say that a set
G ⊂ X is γ-(T (t))t≥0-equicontinuous if the set {t �→ T (t)g | g ∈ G} is γ-equi-
continuous at t = 0. We say that G is σ(X,X◦)-(T (t))t≥0-equicontinuous if
for each x◦ ∈ X◦ the set {t �→ 〈x◦, T (t)g〉 | g ∈ G} is equicontinuous at t = 0.

Remark 4.12. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Saks space, G ⊂ X and (T (t))t≥0 a bi-continuous semigroup on X .

(a) If (X, γ) is a Mazur space and G γ-(T (t))t≥0-equicontinuous, then
G is σ(X,X◦)-(T (t))t≥0-equicontinuous as X◦ = (X, γ)′ by Remark 3.5.

(b) If G is γ-(T (t))t≥0-equicontinuous, then G
γ is γ-(T (t))t≥0-equicon-

tinuous which is easily seen.

(c) If G is σ(X,X◦)-(T (t))t≥0-equicontinuous, thenG
σ(X,X◦) is σ(X,X◦)-

(T (t))t≥0-equicontinuous which is easily seen as well.

Proposition 4.13. Let (X, ‖ · ‖, τ) be a sequentially complete d-consis-
tent Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . If
G ⊂ X is σ(X,X◦)-(T (t))t≥0-equicontinuous, then

G
σ(X,X◦) =

⋂
t>0

⋃
0≤r≤t

Gr

σ(X,X◦)
.
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Proof. The inclusion⊂ is clear sinceG0 = G. We prove the converse in-
clusion ⊃ by contraposition. Let x �∈ G

σ(X,X◦). We have to show that there is
some t0 > 0 such that x �∈

⋃
0≤r≤t0

Gr
σ(X,X◦)

. Like in Proposition 4.10 there
are some n ∈ N and x◦i ∈ X◦, 1 ≤ i ≤ n, and ε > 0 such that the σ(X,X◦)-
neighbourhood V of x given by

V := V (x◦1, . . . , x
◦
n; ε;x) := {y ∈ X | ∀ 1 ≤ i ≤ n : |〈x◦i , x− y〉| < ε}

is disjoint from G = G0.
By the σ(X,X◦)-(T (t))t≥0-equicontinuity there is t0 > 0 such that for

every 0 ≤ r ≤ t0, g ∈ G and 1 ≤ i ≤ n we have

|〈x◦i , T (r)g − g〉| <
ε

2
.

This yields for every 0 < r ≤ t0, g ∈ G and 1 ≤ i ≤ n that∣∣∣∣
〈
x◦i ,

1
r

∫ r

0
T (s)g ds− g

〉∣∣∣∣ ≤
(2)

ε

2
.

We derive that for every 0 < r ≤ t0, g ∈ G and 1 ≤ i ≤ n∣∣∣∣
〈
x◦i , x−

1
r

∫ r

0
T (s)g ds

〉∣∣∣∣
≥ |〈x◦i , x− g〉| −

∣∣∣∣
〈
x◦i , g −

1
r

∫ r

0
T (s)g ds

〉∣∣∣∣ ≥ ε−
ε

2
=

ε

2
.

We deduce that Ṽ ∩Gr = ∅ for all 0 < r ≤ t0 where Ṽ := V (x◦1, . . . , x
◦
n;

ε
2 ;x).

Since Ṽ ⊂ V and V ∩G0 = ∅, we obtain Ṽ ∩G0 = ∅ as well. The set Ṽ is
σ(X,X◦)-open, which implies

Ṽ ∩
⋃

0≤r≤t0

Gr

σ(X,X◦)
= ∅.

This finishes the proof because x ∈ Ṽ . �

As a direct consequence of Proposition 4.10 and Proposition 4.13 we
obtain the following corollary, which generalises [57, Corollary 2.2.3, p. 26].

Corollary 4.14. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . Then the
σ(X,X◦)- and the σ(X,X•)-closure of σ(X,X◦)-(T (t))t≥0-equicontinuous
sets coincide. In particular, σ(X,X◦)-closed σ(X,X◦)-(T (t))t≥0-equicon-
tinuous sets are σ(X,X•)-closed.
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The following two corollaries represent [57, Corollaries 2.2.4, 2.2.5 p. 26]
in the bi-continuous setting.

Corollary 4.15. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . Then the
relative σ(X,X◦)- and σ(X,X•)-topology coincide on σ(X,X◦)-(T (t))t≥0-
equicontinuous sets.

Proof. Let G ⊂ X be σ(X,X◦)-(T (t))t≥0-equicontinuous and suppose
that H ⊂ G is relatively σ(X,X◦)-closed. Denoting by H̃ the σ(X,X◦)-
closure of H in X , we have H̃ ∩G = H . Further, H̃ is σ(X,X◦)-(T (t))t≥0-
equicontinuous by Remark 4.12(c) and thus σ(X,X•)-closed by Corol-
lary 4.14, yielding that H = H̃ ∩G is relatively σ(X,X•)-closed in G. �

Corollary 4.16. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . Then a
σ(X,X◦)-(T (t))t≥0-equicontinuous sequence is σ(X,X◦)-convergent if and
only if it is σ(X,X•)-convergent.

Proof. The implication ⇒ is obvious because σ(X,X◦) is a finer topol-
ogy than σ(X,X•). Let us turn to the implication ⇐. Let (xn)n∈N
be a σ(X,X◦)-(T (t))t≥0-equicontinuous sequence in X that is σ(X,X•)-
convergent to some x ∈ X . Then the set G := {xn | n ∈ N} ∪ {x} is the
σ(X,X•)-closure of {xn | n ∈ N} and so its σ(X,X◦)-closure by Corol-
lary 4.14 as well. Hence G is also σ(X,X◦)-(T (t))t≥0-equicontinuous by
Remark 4.12(c). Let V be a σ(X,X◦)-open neighbourhood of x in X . Then
V ∩G is relatively σ(X,X◦)-open in G and thus relatively σ(X,X•)-open
in G by Corollary 4.15. This implies that all but finitely many xn lie in
(V ∩G) ⊂ V , which we had to show. �

Now, we give a class of sets to which the three preceding corollaries can
be applied due to Remark 4.12(a) if (X, γ) is a Mazur space.

Proposition 4.17. Let (X, ‖ · ‖, τ) be a sequentially complete d-consis-
tent Saks space and (T (t))t≥0 a bi-continuous semigroup on X with generator
(A,D(A)). If H is ‖ · ‖-bounded, then R(λ,A)H is γ-(T (t))t≥0-equicon-
tinuous for all λ ∈ ρ(A).

Proof. Let Pγ be a directed system of seminorms that generates the
mixed topology γ. Due to [35, Lemma 5.5 (a), p. 2680] and [36, Remark 2.3
(c), p. 3] we may choose Pγ such that ‖x‖ = suppγ∈Pγ

pγ(x) for all x ∈ X .
We start with noting that the map s �→ T (s)AR(λ,A)h is γ-Pettis integrable
on [0, t] and

T (t)R(λ,A)h− R(λ,A)h =
∫ t

0
T (s)AR(λ,A)h ds
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for all t > 0 and h ∈ H by Theorem 2.8(c) and (d). For any x′ ∈ (X, γ)′ we
get ∣∣∣∣

〈
x′,

∫ t

0
T (s)AR(λ,A)h ds

〉∣∣∣∣ ≤ t sup
s∈[0,t]

∣∣〈x′, T (s)AR(λ,A)h〉
∣∣,

resulting in

pγ

(∫ t

0
T (s)AR(λ,A)h ds

)
≤ t sup

s∈[0,t]
pγ(T (s)AR(λ,A)h)

≤ t sup
s∈[0,t]

‖T (s)AR(λ,A)h‖ ≤ t sup
s∈[0,t]

‖T (s)‖L(X)‖AR(λ,A)h‖

≤ tMe|ω|t‖AR(λ,A)‖L(X)‖h‖

for any pγ ∈ Pγ since (T (t))t≥0 is exponentially bounded and AR(λ,A) ∈
L(X) because AR(λ,A)x = λR(λ,A)x− x for all x ∈ X . Since H is ‖ · ‖-
bounded, there is C > 0 such that ‖h‖ ≤ C for all h ∈ H , which yields

pγ(T (t)R(λ,A)h− R(λ,A)h) ≤ tMCe|ω|t‖AR(λ,A)‖L(X)

for all t > 0 and pγ ∈ Pγ . This means that R(λ,A)H is γ-(T (t))t≥0-equicon-
tinuous at t = 0. �

Proposition 4.17 in combination with Remark 4.12(b) generalises [57,
Proposition 2.2.6, p. 27]. The next proposition transfers one direction of
[57, Corollary 2.2.8, p. 28] to the bi-continuous setting.

Proposition 4.18. Let (X, ‖ · ‖, τ) be a sequentially complete d-consis-
tent Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with
generator (A,D(A)). Let G ⊂ X be σ(X,X•)-compact. Then the following
assertions hold :

(a) G is ‖ · ‖-bounded.
(b) If λ∈ρ(A) is such that R(λ,A)•X• ⊂ X•, then R(λ,A)G is σ(X,X◦)-

compact. In particular, R(λ,A)G is σ(X,X◦)-compact if Reλ > ω0(T ) or
R(λ,A) is γ-continuous.

Proof. (a) Let G ⊂ X be σ(X,X•)-compact. We may regard G as a
subset of X•′ via the the canonical map j : X → X•′ from Corollary 4.6.
Then G is σ(X•′,X•)-compact and thus ‖ · ‖X•′ -bounded by the uniform
boundedness principle, implying the ‖ · ‖-boundedness by Corollary 4.6.

(b) The resolvent map R(λ,A) is σ(X,X•)-continuous since R(λ,A)•X•

⊂ X• by assumption and

〈x• ◦R(λ,A), x〉 = 〈R(λ,A)•x•, x〉
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for all x• ∈ X• and x ∈ X . So R(λ,A)G is σ(X,X•)-compact. Due to the
‖·‖-boundedness of G by part (a), Proposition 4.17 and Remark 4.12(a) we
have that R(λ,A)G is σ(X,X◦)-(T (t))t≥0-equicontinuous. We conclude that
R(λ,A)G is σ(X,X◦)-compact by Corollary 4.15.

The rest of statement (b) is a consequence of Proposition 4.8(a) and (b).
�

5. Bi-sun reflexivity

We recall from Corollary 4.6 that the canonical map j : X → X•′ given
by 〈j(x), x•〉 := 〈x•, x〉 is injective and j(Xcont) = X•• ∩ j(X) holds (under
the assumptions of Corollary 4.6). This leads to the following generalisation
of �-reflexivity with respect to a semigroup (see [57, p. 7]).

Definition 5.1. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . We say
that X is •-reflexive (or bi-sun reflexive) w.r.t. (T (t))t≥0 if j(Xcont) = X••.

Remark 5.2. (a) Let (X, ‖ · ‖) be a Banach space. For a ‖ · ‖-strongly
continuous semigroup (T (t))t≥0 on X we have Xcont = X and X•• = X��.
Thus X is •-reflexive with respect to (T (t))t≥0 if and only if it is �-reflexive
with respect to (T (t))t≥0.

(b) One might object to coining the property j(Xcont) = X•• by “•-reflex-
ivity”, as it is not symmetric. However, our main point in studying this
property lies in its value for describing the Favard space Fav(T ) and its re-
lation to the generator (A,D(A)) of (T (t))t≥0 (and by part (a), it is indeed
a reasonable name for this property).

First, we study the relation between a bi-continuous semigroup and its
restriction to its space of strong continuity with regard to (bi-)sun reflexivity.

Proposition 5.3. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . Then the
following assertions hold :

(a) T ••j(x) = j(T (t)x) for all t ≥ 0 and x ∈ Xcont.
(b) The maps

ι : X• → X�
cont, ι(x•) := x•|Xcont

and κ : X��
cont → X••, κ(y) := y ◦ ι

are well-defined, linear and continuous, and ι is injective. In particular, we
have the continuous embeddings X• ↪→ X�

cont and (X��
cont/ ker(κ)) ↪→ X••.

(c) κ ◦ j0 = j on Xcont where j0 : Xcont → X�
cont

′
is the canonical map

given by 〈j0(x), x�〉 := 〈x�, x〉.
(d) If X is •-reflexive with respect to (T (t))t≥0, then κ is surjective.
(e) If ι is surjective, then κ is injective.
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Proof. (a) We note that j(Xcont) ⊂ X•• by Corollary 4.6 and T (t)Xcont
⊂ Xcont for all t ≥ 0 by Theorem 2.8 (g), which implies

〈T ••(t)j(x), x•〉 = 〈j(x), T •(t)x•〉 = 〈T •(t)x•, x〉

= 〈x•, T (t)x〉 = 〈j(T (t)x), x•〉

for any t ≥ 0, x ∈ Xcont and x• ∈ X•.
(b) Due Theorem 2.8 (g) and Remark 3.5 Xcont is sequentially γ-dense

in X and X◦ = X ′
seq- γ . Thus the continuous linear map ι0 : (X◦, ‖ · ‖X◦) →

(X ′
cont, ‖ · ‖X′

cont
), x◦ �→ x◦|Xcont

, is injective and we note that ι = ι0|X• . From
T ◦(t)x◦ = T ′(t)x◦ for all t ≥ 0 and x◦ ∈ X◦ it follows ι0(X•) ⊂ X�

cont. Thus
we get y ◦ ι ∈ X•′ for any y ∈ X�

cont
′ and

〈T •′(t)(y ◦ ι), x•〉 = 〈y, T •(t)x•〉 = 〈y, T ◦(t)x•〉 = 〈y, T ′(t)x•〉

= 〈y, (T|Xcont
)�(t)x•〉 = 〈(T|Xcont

)�′(t)y, x•〉

for any t ≥ 0, y ∈ X�
cont

′ and x• ∈ X•, implying κ(y) ∈ X•• for all y ∈ X��
cont.

Further, the estimate ‖ι(x•)‖X�

cont
≤ ‖x•‖X• for all x• ∈ X• yields ‖κ(y)‖X••

≤ ‖y‖X��

cont
for all y ∈ X��

cont, which finishes the proof of part (b).
(c) We note that j0(Xcont) ⊂ X��

cont by [57, p. 7]. Let x ∈ Xcont. Then
we have j0(x) ∈ X��

cont and

〈κ(j0(x)), x•〉 = 〈j0(x), ι(x•)〉 = 〈ι(x•), x〉 = 〈x•, x〉 = 〈j(x), x•〉

for all x• ∈ X•.
(d) This follows from (c) since X•• = j(Xcont) and j0(Xcont) ⊂ X��

cont.
(e) If ι is surjective, then ι(X•) = X�

cont and thus ker(κ) = {0}. �

Proposition 5.4. Let (X,‖·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X . If X
is •-reflexive with respect to (T (t))t≥0 and ι(X•) = X�

cont with ι : X• →
X�

cont from Proposition 5.3(b), then Xcont is �-reflexive with respect to
(T (t)|Xcont

)t≥0, the map κ : X��
cont → X•• from Proposition 5.3(b) is a topo-

logical isomorphism and

D(A)
‖·‖

= Xcont = X��
cont = X••

where we identified X��
cont with a subspace of X•• via κ and Xcont with a

subspace of X•• via the canonical map j : X → X•′, which fulfils j = κ ◦ j0
with the canonical map j0 : Xcont → X�

cont
′
by Proposition 5.3(c).

Proof. First, we show that j0(Xcont) = X��
cont. Let y ∈ X��

cont. Then
there is x ∈ Xcont such that κ(y) = j(x) since X is •-reflexive. For any
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x� ∈ X�
cont there exists x

• ∈ X• such that ι(x•) = x� because ι(X•) = X�
cont.

Hence we get

〈j0(x), x�〉 = 〈x�, x〉 = 〈ι(x•), x〉 = 〈x•, x〉 = 〈j(x), x•〉

= 〈κ(y), x•〉 = 〈y, ι(x•)〉 = 〈y, x�〉

for all x� ∈ X�
cont, implying that y = j0(x) ∈ j0(Xcont) and so the �-reflex-

ivity of Xcont since j0(Xcont) ⊂ X��
cont always holds.

Second, it follows from the open mapping theorem and Proposition 5.3(b),

(d) and (e) that κ is a topological isomorphism. The observation D(A)
‖·‖

=
Xcont by Theorem 2.8 (g) finishes the proof. �

The next proposition generalises [57, Corollary 1.3.2, p. 6], namely, that
a reflexive Banach space X is �-reflexive.

Proposition 5.5. Let (X,‖·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space. If (X, γ) is semi-reflexive, then X• = X◦ = (X, γ)′, the
canonical map j : X → X•′ is surjective and X is •-reflexive with respect to
any bi-continuous semigroup (T (t))t≥0 on X .

Proof. The spaceX◦ = (X,γ)′ is a closed subspace of the Banach space
(X ′, ‖ · ‖X′) by Remark 3.5. Due to (X, γ) being semi-reflexive, [11, I.1.18
Proposition (i), p. 15] and the Mackey–Arens theorem we have

(X◦, ‖ · ‖X◦)′ = X = (X◦, σ(X◦,X))′

where ‖ · ‖X◦ is the restriction of ‖ · ‖X′ to X◦ We deduce that for the bi-sun
dual X• with respect to a τ -bi-continuous semigroup (T (t))t≥0 it holds

X• = X•‖·‖X◦

= X•σ(X◦,X) = X◦

by [30, 8.2.5 Proposition, p. 149] because X• is a ‖ · ‖X◦ -closed, σ(X◦,X)-
dense linear subspace of X◦ by Corollary 4.1. It follows that X•′ = X◦′ = X
since (X, γ) is semi-reflexive, implying

Xcont = X•• ∩X = X•• ∩X•′ = X••

by Corollary 4.6 where we identified Xcont and X with subspaces of X•′

via j. �

Let (X, ‖ · ‖) be a Banach space, τ a Hausdorff locally convex topol-
ogy on X which is coarser than the ‖·‖-topology, and let γ := γ(‖ · ‖, τ)
be the mixed topology. Then the space (X, γ) is semi-reflexive if and only
if B‖·‖ is σ(X, (X, τ)′)-compact by [11, I.1.21 Corollary, p. 16]. Moreover,
(X, γ) is a semi-Montel space, thus semi-reflexive, if and only if B‖·‖ is τ -
compact by [11, I.1.13 Proposition, p. 11]. This second condition is fulfilled
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for the triple (Cb(Ω), ‖ · ‖∞, τco) from Example 3.9(b) if, in addition, Ω is
discrete by [11, II.1.24 Remark 4), pp. 88–89]. The first condition is ful-
filled for the Saks spaces from Example 3.9(c), (d), (e) and (f). It is ful-
filled in example (c) by [11, V.2.6 Proposition, p. 234] and in the latter
examples since (X ′

0, μ(X
′
0,X0))′′ = X ′

0 by the Mackey–Arens theorem and
(L(H), βsot∗)′′ = N (H)′ = L(H) for any Banach space X0 and any separable
Hilbert space H . In combination with Theorem 2.8 (g) and Proposition 5.5
we obtain the following.

Corollary 5.6. (X, γ) is a semi-reflexive Mackey–Mazur space where
γ := γ(‖ · ‖, τ) is the mixed topology, X is •-reflexive with respect to any bi-
continuous semigroup (T (t))t≥0 on X with generator (A,D(A)) and

X• = X◦ = (X, γ)′ as well as D(A)
‖·‖

= Xcont = X••

for each of the triples (X, ‖ · ‖, τ) from Example 3.9(c), (d), (e), (f) and
(a) if (X, ‖ · ‖) is reflexive,
(b) if Ω is discrete.

Due to Example 4.9, Proposition 5.4 and Corollary 5.6(b) we have the
following example.

Example 5.7. Let q : N → C \ {0} such that supn∈N Re q(n)<∞ and
( 1
q(n))n∈N ∈ c0, and let (T (t))t≥0 be the bi-continuous multiplication semi-

group on (�∞, ‖ · ‖∞, μ(�∞, �1)) from Example 4.9 given by

T (t)x := (eq(n)txn)n∈N, x ∈ �∞, t ≥ 0,

with generator A : D(A) → �∞, Ax = qx, on the domain

D(A) =
{
x ∈ �∞ | (q(n)xn)n∈N ∈ �∞

}
.

Due to [4, p. 354] we have (�∞)cont = c0 since ( 1
q(n))n∈N ∈ c0. Further, we

note that �∞ = Cb(N) is •-reflexive with respect to (T (t))t≥0, c0 is �-reflex-
ive with respect to (T (t)|c0)t≥0 and

(�∞)• = (�∞)◦ = Mt(N) = �1

as well as

D(A)
‖·‖∞ = (�∞)cont = c0 = c��

0 = (�∞)••

since c�0 = �1 = (�∞)• by [18, Ch. I, 4.11 Proposition, p. 32].

In [57, Example 1.3.10, p. 9] it is observed that c0 is �-reflexive with
respect to (T (t)|c0)t≥0 for q(n) := −n, n ∈ N.
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6. The Favard space

We begin this section with the definition of the Favard space.

Definition 6.1. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and (T (t))t≥0 a bi-continuous semigroup on X . Then the Favard space
(class) of (T (t))t≥0 is defined by

Fav(T ) :=
{
x ∈ X

∣∣ lim sup
t→0+

1
t
‖T (t)x− x‖ < ∞

}
.

Remark 6.2. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space and
(T (t))t≥0 a bi-continuous semigroup on X .

(a) It is obvious from the definition of the generator (A,D(A)) that D(A)
⊂ Fav(T ).

(b) From ‖T (t)x− x‖ = t1
t
‖T (t)x− x‖ for all t > 0 and x ∈ X , we ob-

tain Fav(T ) ⊂ Xcont where Xcont is the space of ‖ · ‖-strong continuity of
(T (t))t≥0 from Theorem 2.8 (g).

Our goal is to characterise those bi-continuous semigroups onX for which
Fav(T ) = D(A) holds. A class of bi-continuous semigroups for which this
holds are the dual semigroups of norm-strongly continuous semigroups.

Example 6.3. Let (X, ‖ · ‖) be a Banach space and (S(t))t≥0 a ‖·‖-
strongly continuous semigroup on X with generator (A,D(A)). Then
(S′(t))t≥0 is a bi-continuous semigroup semigroup on (X ′, ‖ · ‖X′ , σ(X ′,X))
by [38, Proposition 3.18, p. 78] with generator (A′,D(A′)) and

Fav(S′) = D(A′) = Fav(S•) = Fav(S�)

by [57, Theorem 1.2.3, p. 4], [57, Theorem 3.2.1, p. 54] and [57, Corollary
3.2.2, p. 55].

We note the following generalisation of [18, Ch. II, Proposition, Corol-
lary, pp. 60–61] for restrictions of bi-continuous semigroups which helps
to explain when the equation Fav(T ) = D(A) is inherited by restricted bi-
continuous semigroups.

Proposition 6.4. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space,
(T (t))t≥0 a bi-continuous semigroup on X with generator (A,D(A)), Y a
(T (t))t≥0-invariant sequentially γ-closed linear subspace of X and denote
by ‖·‖Y and τY the restrictions of ‖·‖ and τ to Y , respectively. Then the
following assertions hold :

(a) The triple (Y, ‖ · ‖Y , τY ) is a sequentially complete Saks space and
(T (t)|Y )t≥0 is a bi-continuous semigroup on (Y, ‖ · ‖Y , τY ).
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(b) The generator of (T (t)|Y )t≥0 is the part A|Y of A in Y , i.e.

A|Y y = Ay, y ∈ Y,

with domain D(A|Y ) = D(A) ∩ Y.

Proof. (a) The triple (Y,‖·‖Y , τY ) is a sequentially complete Saks space
because (X, ‖ · ‖, τ) is a sequentially complete Saks space and Y a sequen-
tially γ-closed, in particular ‖ ·‖-closed, linear subspace ofX . Since (T (t))t≥0
is a bi-continuous semigroup on (X, ‖ · ‖, τ), and Y is (T (t))t≥0-invariant, it
follows from [39, Definition 3, p. 207] that (T (t)|Y )t≥0 is a bi-continuous
semigroup on (Y, ‖ · ‖Y , τY ).

(b) Let (C,D(C)) be the generator of (T (t)|Y )t≥0. If y ∈ D(C) ⊂ Y ,
then

sup
t∈(0,1]

∥∥∥∥T (t)y − y

t

∥∥∥∥ = sup
t∈(0,1]

∥∥∥∥T (t)|Y y − y

t

∥∥∥∥
Y

< ∞

and

Y � Cy = τY - lim
t→0+

T (t)|Y y − y

t
= τ - lim

t→0+

T (t)y − y

t
= Ay

which yields D(C) ⊂ (D(A)∩Y ) and thus D(C) ⊂ D(A|Y ). For the converse
inclusion choose λ > max(ω0(T ), ω0(T|Y )) and note that

R(λ,C)y =
∫ ∞

0
e−λsT (s)y ds = R(λ,A)y, y ∈ Y,

by Theorem 2.8(e) and part (a). For x ∈ D(A|Y ) this yields

x = R(λ,A)(λ−A)x = R(λ,C)(λ−A)x ∈ D(C)

and therefore D(A|Y ) ⊂ D(C).
We have D(A|Y ) ⊂ (D(A) ∩ Y ) by definition. Let x ∈ D(A) ∩ Y . Then

T (t)x ∈ Y for all t ≥ 0 and

X � Ax = τ - lim
t→0+

T (t)x− x

t
= γ- lim

t→0+

T (t)x− x

t
,

which implies Ax ∈ Y as Y is sequentially γ-closed in X . Hence we have
x ∈ D(A|Y ) and so (D(A) ∩ Y ) ⊂ D(A|Y ). �

Corollary 6.5. Let (X, ‖ · ‖, τ) be a sequentially complete Saks space
and (T (t))t≥0 a bi-continuous semigroup on X with generator (A,D(A)).
If Y is a (T (t))t≥0-invariant sequentially γ-closed linear subspace of X and
Fav(T ) = D(A), then Fav(T|Y ) = Fav(T ) ∩ Y = D(A|Y ).
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Proof. The inclusion D(A|Y ) ⊂ Fav(T|Y ) always holds and we have
D(A|Y ) = D(A) ∩ Y by Proposition 6.4. Clearly, Fav(T|Y ) = Fav(T ) ∩ Y
holds as well. Let x ∈ Fav(T|Y ). Then x ∈ (D(A) ∩ Y ) = D(A|Y ) since
Fav(T ) = D(A). �

Next, we present a proposition that extends [57, Theorem 3.2.3, p. 55]
to the bi-continuous setting.

Proposition 6.6. Let (X,‖ ·‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gen-
erator (A,D(A)). Then Fav(T ) = D(A•′) ∩Xcont = D(A•′) ∩X .

Proof. Due to Corollary 4.1 (A•,D(A•)) is the generator of the ‖ · ‖X′ -
continuous semigroup (T •(t))t≥0 on X•. Hence it follows from [5, Corol-
lary 2.1.5(b), p. 92] with X∗

0 = X•• and (T ••(t))t≥0 = (T •′(t)|X••)t≥0 by Re-
mark 4.4 that Fav(T ••) = D(A•′). The definitions of the Favard space and
of T •• yield that

Fav(T ) ∩X•• = Fav(T ••) ∩X

where X is identified with its image j(X) in X•′ by Corollary 4.6. Since
Xcont=X••∩X by Corollary 4.6 again and Fav(T ) ⊂ Xcont by Remark 6.2(b),
the statement is proved. �

In the •-reflexive resp. semi-reflexive case we have the following corollary
of Proposition 6.6, which generalises [57, Corollary 3.2.4, p. 55].

Corollary 6.7. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gener-
ator (A,D(A)). If X is •-reflexive with respect to (T (t))t≥0, then Fav(T ) =
D(A•′). If (X, γ) is semi-reflexive, then Fav(T ) = D(A).

Proof. Since D(A•′) ⊂ X•• by Remark 4.4, the first part of our state-
ment follows from Proposition 6.6. Let us consider the second part. Let
(X, γ) be semi-reflexive. Then X is •-reflexive with respect to (T (t))t≥0
by Proposition 5.5 and X = X•′ via the canonical map j. Hence we
have Fav(T ) = D(A•′) by the first part of our statement. As D(A) ⊂
Fav(T ) by Remark 6.2(a), we only need to prove that D(A•′) ⊂ D(A). Let
Reλ > ω0(T ). Then it follows from Theorem 4.7(c) and Proposition 4.8(a)
that R(λ,A)x = R(λ,A•′)x for all x ∈ X . Let y ∈ D(A•′). Then there is
x•′ ∈ X•′ = X such that R(λ,A•′)x•′ = y and

y = R(λ,A•′)x•′ = R(λ,A)x•′ ∈ D(A),

proving D(A•′) ⊂ D(A). �

Let us turn to a generalisation of [57, Lemma 3.2.7, p. 57].
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Lemma 6.8. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gen-
erator (A,D(A)). Then we have

R(λ,A)B(X,‖·‖•)
γ
⊂ (R(λ,A•′)BX•′ ∩X) ⊂

⋃
n∈N

nR(λ,A)B(X,‖·‖•)
seq- γ

for all λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•), where R(λ,A)B(X,‖·‖•)
seq- γ

is the sequential γ-closure of R(λ,A)B(X,‖·‖•).

Proof. Due to Theorem 4.7(c) it holds ρ(A•′) = ρ(A•) and R(λ,A•′) =
R(λ,A•)′ for all λ ∈ ρ(A•). Now, let λ ∈ ρ(A) such that R(λ,A)•X•

⊂ D(A•). Then it follows from Theorem 4.7(c) again that j(R(λ,A)x) =
R(λ,A•′)j(x) for all x ∈ X with the map j : X → X•′, 〈j(x), x•〉 = 〈x•, x〉,
from Corollary 4.6. j is an isometry as a map from (X,‖·‖•) to (X•′,‖·‖X•′).
We deduce that R(λ,A)B(X,‖·‖•) ⊂ (R(λ,A•′)BX•′ ∩X). Since BX•′ is
σ(X•′,X•)-weakly compact by the Banach–Alaoglu theorem and the resol-
vent R(λ,A•′) is σ(X•′,X•)-continuous, the set R(λ,A•′)BX•′ is σ(X•′,X•)-
weakly compact as well. Further, j as map from (X, γ) to (X•′, σ(X•′,X•))
is continuous because X• ⊂ X◦ = (X,γ)′ by Remark 3.5. Together with the
σ(X•′,X•)-weak closedness of R(λ,A•′)BX•′ this implies the first inclusion.

Next, we show that the second inclusion is a consequence of the equation

1
t

∫ t

0
T (s)xdx = R(λ,A)(λ−A)

1
t

∫ t

0
T (s)xdx(8)

= R(λ,A)
(
λ

t

∫ t

0
T (s)xdx−

1
t
(T (t)x− x)

)
,

for all t > 0 and x ∈ X , which we get from Theorem 2.8(d). Indeed, take
x ∈ R(λ,A•′)BX•′ ∩X . Due to Proposition 6.6 we have

(9) (R(λ,A•′)BX•′ ∩X) ⊂ (D(A•′) ∩X) = Fav(T ).

So, since x ∈ Fav(T ), (T (t))t≥0 is exponentially bounded, ‖·‖ = suppγ∈Pγ
pγ

on X for some directed system of seminorms Pγ that generates γ, and ‖·‖•

is equivalent to ‖·‖ by Theorem 4.3, the right-hand side of (8) remains ‖·‖•-
bounded as t → 0+ whereas the left-hand side γ-converges to x (as a sequence
with t = tn for any (tn)n∈N with tn → 0+) by the proof of Theorem 4.3. Thus
there is n ∈ N such that x ∈ nR(λ,A)B(X,‖·‖•)

seq- γ
. �

Due to the equivalence of ‖ · ‖• and ‖ · ‖ there is M ≥ 0 such that B‖·‖

⊂ B(X,‖·‖•) ⊂ MB‖·‖, which yields that the lemma above is still valid if ‖ · ‖•
is replaced by ‖ · ‖. The next theorem is a generalisation of [57, Theorem
3.2.8, p. 57] and describes the space Fav(T ) in terms of approximation by
elements of D(A).

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 39



Analysis Mathematica

40 K. KRUSE and F. L. SCHWENNINGER

Theorem 6.9. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gen-
erator (A,D(A)). Then the following assertions are equivalent for x ∈ X :

(i) x ∈ Fav(T )
(ii) For some (all) λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•) there exists

a ‖ · ‖-bounded sequence (yn)n∈N in X with γ-limn→∞R(λ,A)yn = x.
(iii) For some (all) λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•) there exist a

‖·‖-bounded sequence (yn)n∈N in X and k ∈ N0 with γ-limn→∞R(λ,A)k+1yn
= R(λ,A)kx.

Proof. (i) ⇒ (ii) Let x ∈ Fav(T ) and λ ∈ ρ(A) such that R(λ,A)•X•

⊂ D(A•). Since λ ∈ ρ(A•′) by Theorem 4.7(a) and (c), and

(10) (R(λ,A•′)X•′ ∩X) = (D(A•′) ∩X) = Fav(T )

by Proposition 6.6, there is m ∈ N such that x ∈ R(λ,A•′)mBX•′ ∩X . Due
to the second inclusion of Lemma 6.8 there is n ∈ N with

x ∈ mnR(λ,A)B(X,‖·‖•)
seq-γ

,

confirming the first implication.
The implication (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Let there exist a ‖ · ‖-bounded sequence (yn)n∈N in X and k

∈ N0 for which we have that γ-limn→∞R(λ,A)k+1yn = R(λ,A)kx for some
λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•). If k = 0, then (i) is implied by
the first inclusion of Lemma 6.8 and (9). Suppose that k > 0. Using (iii),
Theorem 4.7(a) and X• ⊂ X◦ = (X, γ)′ by Remark 3.5, we obtain

lim
n→∞

〈R(λ,A•)x•, R(λ,A)kyn〉 = lim
n→∞

〈R(λ,A)•x•, R(λ,A)kyn〉(11)

= lim
n→∞

〈x•, R(λ,A)k+1yn〉 = 〈x•, R(λ,A)kx〉

= 〈R(λ,A•)x•, R(λ,A)k−1x〉

for all x• ∈ X•. By Corollary 4.1 we know that R(λ,A•)X• = D(A•) and
that (A•,D(A•)) is the generator of a ‖ · ‖X′-strongly continuous semigroup
on X•. Thus D(A•) is ‖ · ‖X′-dense in X•. Let x• ∈ X•. Then there is a
sequence (z•m)m∈N in X• such that (R(λ,A•)z•m)m∈N converges to x• with
respect to ‖ · ‖X′ . We note that

|〈x•, R(λ,A)kyn −R(λ,A)k−1x〉|

≤ ‖x• − R(λ,A•)z•m‖X′‖R(λ,A)kyn −R(λ,A)k−1x‖

+ |〈R(λ,A•)z•m, R(λ,A)kyn −R(λ,A)k−1x〉|
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for all n,m ∈ N. Since (R(λ,A)kyn −R(λ,A)k−1x)n∈N is ‖ · ‖-bounded by
the ‖ · ‖-boundedness of (yn)n∈N, there is C > 0 such that

‖R(λ,A)kyn − R(λ,A)k−1x‖ ≤ C

for all n ∈ N. Due to ‖ · ‖X′-limm→∞R(λ,A•)z•m = x•, for any ε > 0 there
is M0 ∈ N such that ‖x• −R(λ,A•)z•m‖X′ ≤ ε

2C for all m ≥ M0. Then there
is N ∈ N such that |〈R(λ,A•)z•M0

, R(λ,A)kyn −R(λ,A)k−1x〉| ≤ ε
2 for all

n ≥ N by (11), which implies that

|〈x•, R(λ,A)kyn −R(λ,A)k−1x〉| ≤
ε

2C
C +

ε

2
= ε

for all n ≥ N . Thus we have

lim
n→∞

〈x•, R(λ,A)kyn〉 = 〈x•, R(λ,A)k−1x〉

for all x• ∈ X•, which means thatR(λ,A)kyn → R(λ,A)k−1x in the σ(X,X•)-
topology. Repeating this argument yields R(λ,A)yn → x in the σ(X,X•)-
topology. Therefore x is an element of the σ(X,X•)-closure of KR(λ,A)B‖·‖

for some K ≥ 0 by the ‖ · ‖-boundedness of (yn)n∈N. Due to Proposition 4.13
and Remark 4.12(a)KR(λ,A)B‖·‖ is σ(X,X◦)-(T (t))t≥0-equicontinuous and
hence we get

KR(λ,A)B‖·‖
σ(X,X•)

= KR(λ,A)B‖·‖
σ(X,X◦)

by Corollary 4.14. Since KR(λ,A)B‖·‖ is convex and (X,σ(X,X◦))′ = X◦ =
(X, γ)′, we obtain

KR(λ,A)B‖·‖
σ(X,X•)

= KR(λ,A)B‖·‖
σ(X,X◦)

= KR(λ,A)B‖·‖
γ
= KR(λ,A)B‖·‖

γ

by [30, 8.2.5 Proposition, p. 149]. In combination with the first inclusion of
Lemma 6.8 and (10) we conclude that x ∈ Fav(T ). �

Our next result generalises [57, Theorem 3.2.9, p. 57].

Theorem 6.10. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gen-
erator (A,D(A)). Then the following assertions are equivalent :

(i) Fav(T ) = D(A)
(ii) R(λ,A)B(X,‖·‖•) is γ-closed for some (all) λ ∈ ρ(A) such that it holds

R(λ,A)•X• ⊂ D(A•).
(iii) R(λ,A)B(X,‖·‖•) is sequentially γ-closed for some (all) λ ∈ ρ(A) such

that it holds R(λ,A)•X• ⊂ D(A•).
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Proof. (i)⇒ (ii) Suppose that Fav(T ) = D(A). Let λ ∈ ρ(A) such that
R(λ,A)•X• ⊂ D(A•) and y ∈ R(λ,A)B(X,‖·‖•)

γ
. By the first inclusion of

Lemma 6.8 there is x•′ ∈ BX•′ such that j(y) = R(λ,A•′)x•′. If follows
from (10) that y ∈ Fav(T ) and hence by our assumption that there is x ∈ X
such that R(λ,A)x = y. Due to Theorem 4.7(c) we have j(R(λ,A)x) =
R(λ,A•′)j(x) and the injectivity of R(λ,A•′) yields j(x) = x•′. But j is
an isometry as a map from (X, ‖ · ‖•) to (X•′, ‖ · ‖X•′), which implies
x ∈ B(X,‖·‖•). Therefore y ∈ R(λ,A)B(X,‖·‖•), meaning that R(λ,A)B(X,‖·‖•)
is γ-closed. This proves the first implication.

The implication (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Now, suppose that R(λ,A)B(X,‖·‖•) is sequentially γ-closed

for some λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•). Then we derive from

R(λ,A)B(X,‖·‖•)
seq- γ

= R(λ,A)B(X,‖·‖•)

and the second inclusion of Lemma 6.8 that

(R(λ,A•′)BX•′ ∩X) ⊂
⋃
n∈N

nR(λ,A)B(X,‖·‖•) = D(A).

This gives us Fav(T ) ⊂ D(A) by (10). The converse inclusion is also true by
Remark 6.2(a). �

Remark 6.11. We note that we may replace the (sequential) γ-closures
in Lemma 6.8 and the (sequential) γ-closedness in Theorem 6.10 as well as
the γ-limits in Theorem 6.9 by (sequential) τ -closures, (sequential) τ -closed-
ness and τ -limits, respectively, by Definition 2.1(a) and [11, I.1.10 Proposi-
tion, p. 9].

In the •-reflexive case we have the following generalisation of [57, Theo-
rem 3.2.12, p. 59].

Theorem 6.12. Let (X, ‖ · ‖, τ) be a sequentially complete d-consistent
Mazur–Saks space and (T (t))t≥0 a bi-continuous semigroup on X with gen-
erator (A,D(A)). Suppose that X is •-reflexive with respect to (T (t))t≥0.
Then the following assertions are equivalent :

(i) j : X → X•′ is surjective.
(ii) R(λ,A)B(X,‖·‖•) is σ(X,X◦)-compact for some (all) λ ∈ ρ(A) such

that R(λ,A)•X• ⊂ D(A•).
(iii) R(λ,A)B(X,‖·‖•) is σ(X,X•)-compact for some (all) λ ∈ ρ(A) such

that R(λ,A)•X• ⊂ D(A•).
(iv) B(X,‖·‖•) is σ(X,X•)-compact.
Each of the assertions (i)–(iv) implies Fav(T ) = D(A).

Proof. (ii) ⇒ (i) Condition (ii) implies that R(λ,A)B(X,‖·‖•) is γ-closed
for some λ ∈ ρ(A) such that R(λ,A)•X• ⊂ D(A•) because (X, γ)′ = X◦

K. KRUSE and F. L. SCHWENNINGER42



Analysis Mathematica

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 43

and the σ(X,X◦)-topology is coarser than γ. By Theorem 6.10 we ob-
tain Fav(T ) = D(A) and from the •-reflexivity of X we derive D(A•′)
⊂ X•• = Xcont. This implies

D(A•′) = D(A•′) ∩Xcont = Fav(T ) = D(A)

by Proposition 6.6 and thus

X•′ = (λ− A•′)D(A•′) = (λ−A•′)D(A) = (λ− A)D(A) = X,

yielding the desired result.
(i) ⇒ (iv) BX•′ is σ(X•′,X•)-compact by the Banach–Alaoglu theorem.

By assumption we may identify X and X•′ as well as BX•′ and B(X,‖·‖•) via
j because j is an isometry as a map from (X, ‖ · ‖•) to (X•′, ‖ · ‖X•′).

(ii) ⇔ (iii) R(λ,A)B(X,‖·‖•) is γ-(T (t))t≥0-equicontinuous by Proposi-
tion 4.17 and Theorem 4.3 and thus σ(X,X◦)-(T (t))t≥0-equicontinuous by
Remark 4.12(a). Due to Corollary 4.15 the relative σ(X,X◦)- and σ(X,X•)-
topology coincide on R(λ,A)B(X,‖·‖•), which implies the validity of the equiv-
alence (ii)⇔(iii).

(iv) ⇒ (ii) This follows from Proposition 4.18(b). �

Example 6.13. Let q : N → C such that supn∈NRe q(n) < ∞, and let
(T (t))t≥0 be the bi-continuous multiplication semigroup on (�∞, ‖·‖∞,
μ(�∞, �1)) from Example 4.9 given by

T (t)x := (eq(n)txn)n∈N, x ∈ �∞, t ≥ 0,

with generator A : D(A) → �∞, Ax = qx, on the domain

D(A) = {x ∈ �∞ | (q(n)xn)n∈N ∈ �∞}.

Furthermore, it holds

‖T (t)‖L(�∞) = et supn∈N
Re q(n), t ≥ 0,

which implies ω0(T ) = supn∈NRe q(n) andM := lim supt→0+ ‖T (t)‖L(�∞) = 1.
Therefore ‖ · ‖∞ = ‖ · ‖•∞ by Corollary 4.6. The space (�∞, μ(�∞, �1)) is
a semi-reflexive Mackey–Mazur space, in particular �∞ is •-reflexive with
respect to (T (t))t≥0, and j : �∞ → (�∞)•′ is surjective by Corollary 5.6
and Proposition 5.5. It follows from Example 4.9 and Theorem 6.12
that Fav(T ) = D(A) and R(λ,A)B(�∞,‖·‖•

∞) is σ(�∞, �1)-compact for all
λ ∈ ρ(A) = C \ q(N).

Of course, instead of the surjectivity of j : �∞ → (�∞)•′ one can also use
in the example above that B(�∞,‖·‖∞) is σ(�∞, �1)-compact by the Banach–
Alaoglu theorem and that ‖ · ‖∞ = ‖ · ‖•∞ to conclude that R(λ,A)B(�∞,‖·‖•

∞)
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is σ(�∞, �1)-compact for all λ ∈ ρ(A) and Fav(T ) = D(A) by Theorem 6.12.
Another way to prove Fav(T ) = D(A) by Example 6.3 is to observe that
(T (t))t≥0 is the dual semigroup of the ‖ · ‖�1-strongly continuous multipli-
cation semigroup (S(t))t≥0 on �1 given by S(t)x := (eq(n)txn)n∈N for x ∈ �1

and t ≥ 0.

References

[1] A. Albanese, L. Lorenzi and V. Manco, Mean ergodic theorems for bi-continuous semi-
groups, Semigroup Forum, 82 (2011), 141–171.

[2] A. Albanese and E. Mangino, Trotter–Kato theorems for bi-continuous semigroups
and applications to Feller semigroups, J. Math. Anal. Appl., 289 (2004), 477–
492.

[3] C. Budde, Positive Miyadera–Voigt perturbations of bi-continuous semigroups, Posi-
tivity, 25 (2021), 1107–1129.

[4] C. Budde and B. Farkas, Intermediate and extrapolated spaces for bi-continuous op-
erator semigroups, J. Evol. Equ., 19 (2019), 321–359.

[5] P. Butzer and H. Berens, Semi-groups of Operators and Approximation, Grundlehren
Math. Wiss., vol. 145, Springer (Berlin, 1967).

[6] P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturbation
theory for dual semigroups. I. The sun-reflexive case, Math. Ann., 277 (1987),
709–725.

[7] P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturba-
tion theory for dual semigroups. II. Time-dependent perturbations in the sun-
reflexive case, Proc. Roy. Soc. Edinburgh Sect. A, 109 (1988), 145–172.

[8] P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturbation
theory for dual semigroups. III. Nonlinear Lipschitz continuous perturbations
in the sun-reflexive [case], in: Volterra Integrodifferential Equations in Banach
Spaces and Applications, eds. G. Da Prato and M. Iannelli, Pitman Res. Notes
Math. Ser., vol. 190, Longman (Harlow, 1989), pp. 67–89.

[9] P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturbation
theory for dual semigroups. IV. The intertwining formula and the canonical
pairing, in: Semigroup Theory and Applications, eds. P. Clément, S. Invernizzi,
E. Mitidieri and I. Vrabie, Lecture Notes Pure Appl. Math., vol. 116, Marcel
Dekker (New York, 1989), pp. 95–116.

[10] J. Conway, The strict topology and compactness in the space of measures. II, Trans.
Amer. Math. Soc., 126 (1967), 474–486.

[11] J. Cooper, Saks Spaces and Applications to Functional Analysis, North-Holland Math.
Stud., vol. 28, North-Holland (Amsterdam, 1978).

[12] K. de Leeuw, On the adjoint semigroup and some problems in the theory of approxi-
mation, Math. Z., 73 (1960), 219–234.

[13] B. de Pagter, A characterization of sun-reflexivity, Math. Ann., 283 (1989), 511–518.
[14] O. Diekmann, M. Gyllenberg and H. Thieme, Perturbation theory for dual semi-

groups. V. Variation of constants formulas, in: Semigroup Theory and Evo-
lution Equations: the Second International Conference, eds. P. Clément,
B. de Pagter and E. Mitidieri, Lecture Notes Pure Appl. Math., vol. 135,
Marcel Dekker (New York, 1991), pp. 107–123.

[15] O. Diekmann, S. van Gils, S. Verduyn Lunel and H.-O. Walther, Delay Equations,
Appl. Math. Sci., vol. 110, Springer (New York, 1995).

[16] J. Diestel and J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc.
(Providence, RI, 1977).

K. KRUSE and F. L. SCHWENNINGER44



Analysis Mathematica

SUN DUAL THEORY FOR BI-CONTINUOUS SEMIGROUPS 45

[17] J. Elstrodt, Maß- und Integrationstheorie, Grundwissen Math., Springer (Berlin,
2011).

[18] K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,
Grad. Texts in Math., vol. 194, Springer (New York, 2000).

[19] R. Engelking, General Topology, Sigma Series Pure Math., vol. 6, Heldermann (Berlin,
1989).
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