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Abstract. We investigate stochastic reaction-diffusion equations on finite
metric graphs. On each edge in the graph a multiplicative cylindrical Gaus-
sian noise driven reaction-diffusion equation is given. The vertex conditions are
the standard continuity and generalized, non-local Neumann–Kirchhoff-type law
in each vertex. The reaction term on each edge is assumed to be an odd de-
gree polynomial, not necessarily of the same degree on each edge, with possibly
stochastic coefficients and negative leading term. The model is a generalization
of the problem in [14] where polynomials with much more restrictive assumptions
are considered and no first order differential operator is involved. We utilize the
semigroup approach from [15] to obtain existence and uniqueness of solutions with
sample paths in the space of continuous functions on the graph.

1. Introduction

Throughout the paper G denotes a finite metric graph. Our terminol-
ogy follows [4, Ch. 1], we list here only the most important concepts. The
graph G consists of a finite set of vertices V = {v} and a finite set E = {e}
of edges connecting the vertices. We denote by m = |E| the number of edges
and by n = |V| the number of vertices. In general, a metric graph is assumed
to have directed edges; that is edges having an origin and a terminal vertex.
In our case, dealing with self-adjoint operators in the deterministic part of
our model, we can just consider undirected edges. Each edge is assigned a
positive length �e ∈ (0,+∞), and we denote by x ∈ [0, �e] a coordinate of G.
We assume that G is simple; that is, there are no multiple edges connecting
two vertices, and there are no loops at any of the vertices in G.

The metric graph structure enables us to speak about functions u on G,
defined along the edges such that for any coordinate x, the function takes
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its value u(x). If we emphasize that x is taken from the edge e, we write
ue(x). Hence, a function u on G can be regarded as a vector of functions
that are defined on the edges, therefore we will also write

u = (ue)e∈E ,

and consider it as an element of a product function space.
To write down the vertex conditions in the form of equations, for a given

function u on G and for each v ∈ V, we introduce the following notation. For
any v ∈ V, we denote by Ev the set of edges incident to the vertex v, and
by dv = |Ev| the degree of v. Let ue(v) denote the value of u in v along the
edge e, in the case e ∈ Ev. Let Ev = {e1, . . . , edv

}, and define

(1.1) U(v) = (ue(v))e∈Ev
=

⎛⎝ue1(v)
...

uedv (v)

⎞⎠ ∈ R
dv ,

the vector of the function values in the vertex v.
Let Iv be the bi-diagonal matrix

Iv =

⎛⎝1 −1
. . . . . .

1 −1

⎞⎠ ∈ R
(dv−1)×dv .

It is easy to see that if we set

(1.2) IvU(v) = 0Rdv−1 ,

this means that all the function values coincide in v. If this is the case, we
simply write u(v) for this common vertex value.

Definition 1.1. If the function u is continuous on the edges, that is,
ue is continuous on e for each e ∈ E and (1.2) is satisfied for each vertex
v ∈ V, then we call the function u continuous on G.

We define the operator with domain consisting of continuous functions
on G as

(1.3)
D(L) :=

{
u ∈

∏
e∈E

C[0, �e] : IvU(v) = 0, v ∈ V

}
,

Lu := (u(v))
v∈V ∈ R

n for u ∈ D(L).

That is, L assigns to each function u that is continuous on G the (n dimen-
sional) vector of the vertex values of u.
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For T > 0 given we consider the stochastic system written formally as

u̇e(t, x)=(ceu′e)
′(t, x)+de(x) ·u′e(t, x)−pe(x)ue(t, x)+fe(t, x, ue(t, x))(1.4a)

+ he(t, x, ue(t, x))
∂we

∂t
(t, x), x∈(0, �e), t∈(0, T ], e∈E,

0 = IvU(t, v), t ∈ (0, T ], v ∈ V,(1.4b)

0 = MLu(t) + Cu(t), t ∈ (0, T ],(1.4c)

ue(0, x) = u0,e(x), x ∈ [0, �e], e ∈ E.(1.4d)

Here u̇e and u′e denote the time and space derivatives, respectively, of ue.
The functions ce are (variable) diffusion coefficients or conductances, and

we assume that

0 < ce ∈ C[0, �e], e ∈ E.

We assume

de ∈ Lip[0, �e], e ∈ E.

The functions pe are nonnegative, bounded functions, hence

(1.5) 0 ≤ pe ∈ L∞(0, �e), e ∈ E.

The reaction terms fe are assumed to be odd degree polynomials, with
possible different degree on different edges, and with possibly stochastic coef-
ficients and negative leading term, see (3.16). The coefficients he are assumed
to be locally Lipschitz continuous and satisfy appropriate growths conditions
(3.19), depending on the maximum and minimum degrees of the polynomi-
als fe on the edges. These become linear growth conditions when the de-
grees of the polynomials fe on the different edges coincide. The (we(t))t∈[0,T ]
are independent cylindrical Wiener-processes defined in the Hilbert spaces
L2(0, �e), e ∈ E.

For each t ∈ [0, T ], by u(t) we mean

u(t) = u(t, ·) = (ue(t, ·))e∈E

the function on G defined as ue(t, ·) on the edge e.
In (1.4b), 0 denotes the constant 0 vector of dimension dv − 1 for v ∈ V,

and U(t, v) is defined by (1.1) for the function u(t). Hence, these equations
express that u(t) is continuous on G for each t ∈ (0, T ], cf. Definition 1.1.

In (1.4c), 0 denotes the constant 0 vector of dimension n, M is an n× n
matrix, satisfying certain conditions that we specify later, see Assumption
2.1, and L is the operator from (1.3).
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To define the so-called feedback operator C, for each v ∈ V we set

Cvu :=
∑
e∈Ev

ce(v) · u′e(v),

where the derivatives are taken in the directions away from the vertex v

(i.e. into the edge), see [4, Sect. 1.4]. Let now

D(C) :=
∏
e∈E

C1[0, �e],

Cu := (Cvu)v∈V ∈ R
n for u ∈ D(C).

Hence, equation (1.4c) expresses a (generalized) Neumann–Kirchhoff-type
condition in the vertices.

It is clear by definition, that (1.4b) consists of∑
v∈V

(dv − 1) = 2m− n

equations. At the same time, (1.4c) consists of n equations. Hence, we have
altogether 2m (boundary or vertex) conditions in the vertices.

In equation (1.4d) we pose the initial conditions on the edges.
In the literature stochastic (reaction-)diffusion equations on networks are

treated e.g. in [5], [6], [8], [9] and [15]. In the first four papers the semigroup
approach is utilized in a Hilbert space setting. In the recent work [15] a
much more general problem is treated with multiplicative Wiener-type noise
on the edges as well as in the vertices and with locally Lipschitz contin-
uous diffusion coefficients satisfying appropriate growths conditions. This
paper uses an entirely different tool-set based on the semigroup approach
for stochastic evolution equations in Banach spaces from [7], [16], [17] and
[24]. This approach makes also possible to consider polynomial nonlinearities
with different degrees on different edges.

In the current paper we consider a generalization of the stochastic
reaction-diffusion problem on a metric graph from [13]. In [13] the results
are proved under rather restrictive conditions on the polynomial nonlinear-
ities, namely, they have the same degree on the edges and their coefficients
should be contained in the space B of continuous functions on the graph G,
see (3.6). Now we consider general nonlinearities of odd-degree polynomials,
with possible different degree on different edges and with possibly stochastic
coefficients, see (3.16). We also add a first-order term in (1.4a), and consider
different edge lengths.

Our equations differ from those in [15] since we have no dynamics, and
correspondingly no noise in the vertices. Hence, in contrary to [15], the
state space of the problem will consist of functions on the edges and no
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boundary space is included. To work in this new setting we have to introduce
the product space of continuous functions on the edges Ec, see (3.5) and
verify results concerning this space. A crucial point is to prove Proposition
3.9 claiming the existence of continuous, dense embeddings of the fractional
domain spaces of the generators Ap (see (2.8)) into the space B. In contrary
to [15, Lemma 4.2], we do not have isometry here. Techniques and results
from [15] make us possible to show in Theorem 3.14 that for any initial value
from Ec problem (1.4) admits a unique mild solution with trajectories in the
space B which is a more general result than obtained in [13, Thm. 3.15] for
the Allen–Cahn type nonlinearities.

The paper is organized as follows. In Section 2 we collect known semi-
group results for the linear deterministic version of (1.4) and generalize them
for the case of different edge lengths. Section 3 contains the core of the pa-
per. In Subsection 3.1 we recall from [15] an abstract result regarding the
stochastic abstract Cauchy problem (SCP) on Banach spaces. In Subsec-
tion 3.2 we introduce the spaces Ec and B in Definitions 3.5 and 3.7, and
prove the embedding results Proposition 3.9 and Corollary 3.10. Proposition
3.6 states that the semigroup governing the linear deterministic problem is
analytic on Ec, while Proposition 3.8 claims that the semigroup is strongly
continuous on B. In Subsection 3.3 we first make the necessary assumptions
on the reaction terms in (3.16) and on the diffusion coefficients in (3.19).
We then rewrite (1.4) in the form of a stochastic abstract Cauchy problem
(SCPn) and prove the main existence and uniqueness result in Theorem 3.14
and a space-time regularity result in Theorem 3.16.

Notation 1.2. The following notations are used throughout the article
with �e > 0.

• By C[0, �e] we denote the space of continuous functions on the (com-
pact) interval [0, �e], and by C1[0, �e] we denote such functions from C[0, �e]
that are continuously differentiable on [0, �e]. These are Banach spaces sup-
plied with the usual maximum-norm. For λ ∈ (0, 1), we mean by Cλ[0, �e]
the space of λ-Hölder-continuous functions with the usual norm.

• By Lp(0, �e), 1 ≤ p < ∞ we denote the Banach space of measurable
functions for which the p-th power of the absolute value is Lebesgue in-
tegrable (where functions which agree almost everywhere are identified),
supplied with the usual Lp-norm. L∞(0, �e) denotes the space of measur-
able functions which are bounded almost everywhere, supplied with the
supremum-norm.

• For k ∈ N, 1 ≤ p < ∞, W k,p(0, �e) is defined as the subset of functions
u in Lp(0, �e) such that u and its weak derivatives up to order k have a finite
Lp-norm

‖u‖pW k,p(0,�e)
:=

∑
0≤j≤k

∥∥u(j)∥∥p
Lp(0,�e)

,

where u(j) denotes the jth derivative of u. Let Hk(0, �e) := W k,2(0, �e).
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• By W
k,p
0 (0, �e) we mean the closure of the space of infinitely many

times differentiable functions having compact support in (0, �e) with respect
to the W k,p(0, �e)-norm. We define Hk

0 (0, �e) := W
k,2
0 (0, �e).

• For s > 0, 1 ≤ p < ∞ we define

W s,p(0, �e) :=
{
u ∈ W �s�(0, �e) :

∣∣u(�s�)∣∣
θ,p,(0,�e)

< ∞
}
,

where �s� denotes the integer part of s, θ = s− �s� and

|u|pθ,p,(0,�e) :=
∫ �e

0

∫ �e

0

|u(x)− u(y)|p

|x− y|1+θ·p
dx dy.

Furthermore,

‖u‖W s,p(0,�e) := ‖u‖W �s�,p(0,�e) +
∣∣u(�s�)∣∣

θ,p,(0,�e)
.

Hs(0, �e) := W s,2(0, �e).
• Similarly as above we can define W

s,p
0 (0, �e) for s > 0 and 1 ≤ p < ∞

as the closure of the space of infinitely many times differentiable functions
having compact support in (0, �e) with respect to the W s,p(0, �e)-norm, and
Hs

0(0, �e) := W s,2(0, �e).

2. Well-posedness of the deterministic problem

We start with the deterministic problem

u̇e(t, x) = (ceu′e)
′(t, x)− pe(x)ue(t, x), x ∈ (0, �e), t > 0, e ∈ E,(2.1a)

0 = IvU(t, v), t > 0, v ∈ V,(2.1b)

0 = MLu(t) + Cu(t), t > 0,(2.1c)

ue(0, x) = u0,e(x), x ∈ [0, �e], e ∈ E,(2.1d)

see also [19], [20].
In the rest of the paper we set the following assumptions on the ma-

trix M .

Assumption 2.1. The matrix M = (bik)n×n is
(1) real, symmetric,
(2) for i �= k, bik ≥ 0, that is, M has positive off-diagonal;
(3)

bii +
∑
k 	=i

bik < 0, i = 1, . . . , n.
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We would like to rewrite our system in the form of an abstract Cauchy
problem. First we consider the Hilbert space

E2 :=
∏
e∈E

L2(0, �e)

as the state space of the edges, endowed with the natural inner product

〈u, v〉E2
:=

∑
e∈E

∫ �e

0
ue(x)ve(x)dx, u, v ∈ E2.

On E2 we define the operator

Amax := diag
( d

dx

(
ce

d

dx

)
− pe

)
e∈E

with maximal domain

(2.2) D(Amax) :=
{
u ∈

∏
e∈E

H2(0, �e) : 0 = IvU(v), v ∈ V

}
containing only the continuity condition in its domain.

With these notations, we can rewrite (2.1) in form of an abstract Cauchy
problem in the same way as in [13, (2.8)]. Define

(2.3) A2 := Amax, D(A2) :=
{
u ∈ D(Amax) : 0 = MLu+ Cu

}
.

Using this, (2.1) becomes

(2.4) u̇(t) = A2u(t), t > 0, u(0) = u0,

with u0 = (u0,e)e∈E.
In what follows the notion of semigroup and its generator is understood in

the sense of [3, Def. 3.2.5]. That is a strongly continuous function T : (0,∞)
→ L(E) (where E is a Banach space and L(E) denotes the bounded linear
operators on E) satisfying

(a) T (t+ s) = T (t)T (s), s, t > 0,
(b) there exists c > 0 such that ‖T (t)‖ ≤ c for all t ∈ (0, 1],
(c) T (t)x = 0 for all t > 0 implies x = 0

is called a semigroup. By the proof of [3, Thm. 3.1.7] there exist constants
M,ω ≥ 0 such that ‖T (t)‖ ≤ M eωt for all t > 0. From [3, Prop. 3.2.4] we
obtain that there exists a unique operator A with (ω,∞) ⊂ ρ(A) and

R(λ,A) =
∫ ∞

0
e−λtT (t) dt (λ > ω),

REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS WITH EDGE NOISE 301
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and we call (A,D(A)) the generator of T . The semigroup T is strongly con-
tinuous or C0, that is T : [0,∞) → L(E) is a strongly continuous function
satisfying the property

T (t+ s) = T (t)T (s), s, t ≥ 0, T (0) = Id

if and only if its generator is densely defined, see [3, Cor. 3.3.11]. According
to [3, Def. 3.7.1], we call the semigroup analytic or holomorphic if there
exists θ ∈ (0, π2 ] such that T has a holomorphic extension to the sector

Σθ :=
{
z ∈ C \ {0} : |arg z| < θ

}
which is bounded on Σθ′ ∩{z ∈ C : |z| ≤ 1} for all θ′ ∈ (0, θ). We say that an
analytic semigroup is contractive when the semigroup operators considered
on the positive real half-axis are contractions. We call a semigroup bounded
analytic or bounded homomorphic of angle θ ∈ (0, π2 ] if it has a bounded
holomorphic extension to Σθ′ for all θ′ ∈ (0, θ).

Furthermore, we say that the operator (A,D(A)) is sectorial if there
exists θ ∈ (0, π2 ] such that

Σπ

2
+θ ⊂ ρ(A) and sup

λ∈Σπ
2

+θ−ε

‖λR(λ,A)‖ < ∞ for all ε > 0.

By [3, Thm. 3.7.11] we know that the generators of bounded analytic semi-
groups are exactly the sectorial operators.

In the same way as in [13] we can prove the following important result.

Proposition 2.2. The operator (−A2,D(A2)) in (2.3), is the operator
associated with the form

D(a) =
{
u ∈

∏
e∈E

H1(0, �e) : IvU(v) = 0, v ∈ V

}
,

a(u, v) =
∑
e∈E

∫ �e

0
ce · u

′
e · v

′
e +

∑
e∈E

∫ �e

0
pe · ue · ve − 〈MLu,Lv〉Rn

in the following sense:

D(A2)={u ∈ D(a) : ∃h ∈ E2 such that a(u, v) = 〈h, v〉E2
for all v ∈ D(a)},

−A2u = h.

The form (a,D(a)) is symmetric, densely defined, continuous, closed and ac-
cretive. The operator (A2,D(A2)) is densely defined, dissipative, sectorial
and self-adjoint with (0,+∞) ⊂ ρ(A2). The strongly continuous semigroup
(T2(t))t≥0 generated by (A2,D(A2)) is bonded analytic, positive and contrac-
tive.
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Proof. We can apply [19, Lemma 3.4] and [20, Lemma 3.3] directly
to obtain the first part of the statement. The properties of a follow by the
proofs of [19, Prop. 3.2 and Cor. 3.3] and [20, Lemma 3.2], using Assumption
2.1 and (1.5). The statements [21, Prop. 1.51 and Thm. 1.52] imply the
properties of the semigroup (T2(t))t≥0 generated by (A2,D(A2)). The self-
adjointness of A2 is true by [21, Prop. 1.24], the remaining properties follow
by standard semigroup theory, see e.g. [3, Thm. 3.4.5 and Thm. 3.7.11]. �

For our results regarding (1.4) we will need well-posedness of (2.4) not
only on the Hilbert space E2 but also on Lp-spaces. Therefore, we introduce
the following notions. Let

(2.5) Ep :=
∏
e∈E

Lp(0, �e), p ∈ [1,∞],

endowed with the norm

‖u‖pEp
:=

∑
e∈E

‖ue‖
p
Lp(0,�e)

, u ∈ Ep, p ∈ [1,∞)

‖u‖E∞
:= max

e∈E
‖ue‖L∞(0,�e), u ∈ E∞.

Proposition 2.3. The semigroup (T2(t))t≥0 extends to a family of an-
alytic, contractive, positive one-parameter semigroups (Tp(t))t≥0 on Ep for
1 ≤ p ≤ ∞, generated by (Ap,D(Ap)). These semigroups are strongly contin-
uous if p ∈ [1,∞) and consistent in the sense that if q, p ∈ [1,∞] and q ≥ p
then

(2.6) Tp(t)u = Tq(t)u for u ∈ Eq.

Proof. The proof can be carried out analogously to that of [15,
Prop. 2.4.2]. The main tool for obtaining the desired family of semigroups
(Tp(t))t≥0 is to prove that (T2(t))t≥0 is sub-Markovian and has Gaussian up-
per bound. The previous one can be verified in the same way as it has been
done in the proof of [15, Lemma B.1], using Assumption 2.1 and the proper-
ties of the form a from Proposition 2.2. For the existence of Gaussian upper
bound we use that by Assumption 2.1, −M is positive definite, and thus we
can apply [10, Thm. 4.1] directly. �

We also can prove that the generators (Ap,D(Ap)) for p ∈ [2,+∞) have
in fact the same form as A2 on E2, with appropriate domain. Let

(2.7)

Ap,max := diag
( d

dx

(
ce

d

dx

)
− pe

)
e∈E

,

D(Ap,max) :=
{
u ∈

∏
e∈E

W 2,p(0, �e) : 0 = IvU(v), v ∈ V

}
.
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Lemma 2.4. For all p ∈ [2,∞) the semigroup generators (Ap,D(Ap)) are
given by

(2.8) Ap = Ap,max, D(Ap) = {u ∈ D(Ap,max) : 0 = MLu+ Cu}.

Proof. For p = 2 the statement follows by (2.3). Let 2 < p < +∞. By
(2.6) we know that (T2(t))t≥0 leaves Ep invariant and Tp(t) = T2(t)|Ep

. Since
Ep ↪→ E2 holds and the semigroups are strongly continuous, we can apply
[11, Prop. II.2.3] and obtain that Ap is the part of A2 in Ep. Hence, a direct
computation yields (2.8). �

3. A stochastic reaction-diffusion equation on a metric graph

3.1. An abstract result for a stochastic reaction-diffusion equa-
tion. Let (Ω,F ,P) is a complete probability space endowed with a right
continuous filtration F = (Ft)t∈[0,T ] for a given T > 0. Let (WH(t))t∈[0,T ] be
a cylindrical Wiener process, defined on (Ω,F ,P), in some Hilbert space H
with respect to the filtration F; that is, (WH(t))t∈[0,T ] is (Ft)t∈[0,T ]-adapted
and for all t > s, WH(t)−WH(s) is independent of Fs.

We will cite a result from [15], concerning the following abstract equa-
tion:

(SCP)

{
dX(t) =

[
AX(t)+F (t,X(t))+F̃ (t,X(t))

]
dt+G(t,X(t))dWH(t),

X(0) = ξ.

In what follows let E be a real Banach space. Occasionally – without
being stressed – we have to pass to appropriate complexification (see e.g.
[18]) when we use sectoriality arguments.

If we assume that (A,D(A)) generates a strongly continuous, analytic
semigroup S on the Banach space E with ‖S(t)‖ ≤ M eωt, t ≥ 0 for some
M ≥ 1 and ω ∈ R, then for ω′ > ω the fractional powers (ω′ −A)α are well-
defined for all α ∈ (0, 1). In particular, the fractional domain spaces

(3.1) Eα := D((ω′ −A)α), ‖u‖α := ‖(ω′ −A)αu‖, u ∈ D((ω′ − A)α)

are Banach spaces. It is well-known (see e.g. [11, §II.4–5]), that up to equiv-
alent norms, these space are independent of the choice of ω′.

For α ∈ (0, 1) we define the extrapolation spaces E−α as the completion
of E under the norms ‖u‖−α := ‖(ω′ −A)−αu‖, u ∈ E. These spaces are
independent of ω′ > ω up to an equivalent norm.

We fix E0 := E.

Remark 3.1. If ω = 0 (hence, the semigroup S is bounded), then by
[12, Prop. 3.1.7] we can choose ω′ = 0. That is,

Eα ∼= D((−A)α), α ∈ [0, 1),
when D((−A)α) is equipped with the graph norm.
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Let Z be a Banach space. For u ∈ Z we define the subdifferential of the
norm at u as the set

(3.2) ∂‖u‖ :=
{
u∗ ∈ Z∗ : ‖u∗‖Z∗ = 1 and 〈u, u∗〉 = 1

}
which is not empty if u �= 0 by the Hahn–Banach theorem.

We now introduce the following assumptions for the operators in (SCP),
see [15, Ass. 3.7]. Here, unless stated otherwise, ‖ · ‖ will denote the norm
of Z.

Assumptions 3.2.

(1) Let E be a UMD Banach space of type 2 and (A,D(A)) a densely
defined, closed and sectorial operator on E.

(2) We have continuous (but not necessarily dense) embeddings for some
θ ∈ (0, 1)

Eθ ↪→ Z ↪→ E.

(3) The strongly continuous analytic semigroup S generated by (A,D(A))
on E restricts to an analytic, contractive semigroup, denoted by Sz on Z,
with generator (Az,D(Az)).

(4) The map F : [0, T ] × Ω× Z → Z is continuous in the first variable
and locally Lipschitz continuous in the third variable in the sense that for
all r > 0, there exists a constant L(r)

F such that

‖F (t, ω, u)− F (t, ω, v)‖ ≤ L
(r)
F ‖u− v‖

for all ‖u‖, ‖v‖ ≤ r and (t, ω) ∈ [0, T ] × Ω and there exists a constant CF,0
≥ 0 such that

‖F (t, ω, 0)‖ ≤ CF,0, t ∈ [0, T ], ω ∈ Ω.

Moreover, for all u ∈ Z the map (t, ω) �→ F (t, ω, u) is strongly measurable
and adapted.
Finally, for suitable constants a′, b′ ≥ 0 and N ≥ 1 we have

〈Au+ F (t, ω, u+ v), u∗〉 ≤ a′(1 + ‖v‖)N + b′‖u‖

for all u ∈ D(A|Z), v ∈ Z, ω ∈ Ω and u∗ ∈ ∂‖u‖, see (3.2).
(5) There exist constants a′′, b′′, k, K > 0 with K ≥ k such that the func-

tion F : [0, T ]× Ω× Z → Z satisfies

〈F (t, ω, u+ v) − F (t, ω, v), u∗〉 ≤ a′′(1 + ‖v‖)K − b′′‖u‖k

for all t ∈ [0, T ], ω ∈ Ω, u, v ∈ Z and u∗ ∈ ∂‖u‖, and

‖F (t, ω, v)‖ ≤ a′′(1 + ‖v‖)K

for all v ∈ Z., , ω ∈ Ω.
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(6) For some constant κF̃ ≥ 0, the map F̃ : [0, T ]×Ω×Z → E−κF̃ is glob-
ally Lipschitz continuous in the third variable, uniformly with respect to the
first and second variables. Moreover, for all u ∈ Z the map (t,ω) �→ F̃ (t,ω,u)
is strongly measurable and adapted.
Finally, for some d′ ≥ 0 we have∥∥F̃ (t, ω, u)

∥∥
E

−κ
F̃
≤ d′ (1 + ‖u‖)

for all (t, ω, u) ∈ [0, T ] × Ω× Z.

(7) Let γ(H,E−κG) denote the space of γ-radonifying operators from the
Hilbert space H to E−κG for some 0 ≤ κG < 1

2 (see e.g. [16, Sect. 3.1]). Then
the map G : [0, T ]× Ω× Z → γ(H,E−κG) is locally Lipschitz continuous in
the sense that for all r > 0, there exists a constant L(r)

G such that

‖G(t, ω, u) −G(t, ω, v)‖γ(H,E−κG ) ≤ L
(r)
G ‖u− v‖

for all ‖u‖, ‖v‖ ≤ r and (t, ω) ∈ [0, T ]× Ω. Moreover, for all u ∈ Z and h
∈ H the map (t, ω) �→ G(t, ω, u)h is strongly measurable and adapted.
Finally, for suitable constant c′,

‖G(t, ω, u)‖γ(H,E−κG ) ≤ c′ (1 + ‖u‖)
k

K

for all (t, ω, u) ∈ [0, T ] × Ω× Z.

Remark 3.3. In Assumptions 3.2(3) we use the fact that since S is an-
alytic on E and by Assumptions 3.2(2), D(A) ⊂ Eθ ↪→ Z holds, S leaves Z
invariant. Hence, the restriction Sz of S on Z makes sense, and by assump-
tion, Sz is an analytic contraction semigroup on Z.

Note that since Sz is not necessarily strongly continuous, Az is not nec-
essarily densely defined. However, one can prove that (Az,D(Az)) is the
part of (A,D(A)) in Z, see [15, Rem. 3.4].

We recall that a mild solution of (SCP) is a solution of the following
integral equation

X(t) = S(t)ξ +
∫ t

0
S(t− s)

(
F (s,X(s)) + F̃ (s,X(s))

)
ds(3.3)

+
∫ t

0
S(t− s)G(s,X(s)) dWH(s)

=: S(t)ξ + S ∗ F (·,X(·))(t) + S ∗ F̃ (·,X(·))(t) + S �G(·,X(·))(t)

where

S ∗ f(t) =
∫ t

0
S(t− s)f(s) ds
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denotes the “usual” convolution, and

S � g(t) =
∫ t

0
S(t− s)g(s) dWH(s)

denotes the stochastic convolution with respect to WH . We also implicitly
assume that all the terms on the right-hand side of (3.3) are well-defined.

We now cite the claim of [15, Thm. 3.10] that will be crucial for the proof
of our results. For a fixed T > 0 and q ≥ 1, define the space

(3.4) VT,q := Lq
(
Ω;C((0, T ];Z) ∩ L∞(0, T ;Z)

)
being a Banach space with the norm

‖u‖qVT,q
:= E sup

t∈[0,T ]
‖u(t)‖q, u ∈ VT,q.

Theorem 3.4 [15, Theorem 3.10]. Let T > 0, 2 < q < ∞ and suppose
that Assumptions 3.2 hold with

θ + κF̃ < 1, θ + κG <
1
2
−

1
q
.

Then for all ξ ∈ Lq(Ω,F0,P;Z) there exists a global mild solution X ∈ VT,q

of (SCP). Moreover, for some constant Cq,T > 0 we have

‖X‖qVT,q
≤ Cq,T (1 + E‖ξ‖q) .

3.2. Preparatory results. To be able to verify our main results we
need to prove some preliminary results regarding the setting of Section 2.
We make use of the fact that the semigroups involved here all leave the
corresponding real spaces invariant, see [15, Sect. 4.1].

Definition 3.5. We denote by

(3.5) Ec :=
∏
e∈E

C[0, �e]

the product space of continuous functions on the edges (not necessarily con-
tinuous in the vertices in the sense of Definition 1.1). The norm is defined
as usual with

‖u‖Ec := max
e∈E

‖ue‖C[0,�e], u ∈ Ec.

This space will play the role of the space Z in our setting.
In the rest of the paper we assume that p ≥ 2 holds. This is justified

by the fact that we will apply Theorem 3.4 and in Assumptions 3.2(1), E is
assumed to be a UMD Banach space of type 2.
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We first need that the semigroups (Tp(t))t≥0 restrict to the same analytic
semigroup of contractions on Ec.

Proposition 3.6. For all p ∈ [2,+∞], the semigroups Tp leave Ec in-

variant, and the restrictions Tp|Ec all coincide that we denote by Sc. The

semigroup Sc is analytic and contractive on Ec. Its generator (Ac,D(Ac))
coincides with the part (Ap|Ec ,D(Ap|Ec)) of the operator (Ap,D(Ap)) in Ec

for any p ∈ [2,∞].

Proof. First we show that for all p ∈ [2,+∞], D(Ap) ⊂ Ec holds. By
Lemma 2.4 and Sobolev embedding we have that D(Ap) ⊂ Ec holds if p ∈
[2,+∞). The inclusion D(A∞) ⊂ D(A2) ⊂ Ec and the rest of the proof can
be carried out in the same way as in the proof of [15, Prop. 4.4]. �

We remark that the semigroup Sc is not strongly continuous on Ec since
D(Ac) ⊂ D(A2) and D(A2) is not dense in Ec, see (2.2) and (2.3).

In our main results the following closed subspace of Ec plays a funda-
mental role.

Definition 3.7. We denote by

(3.6) B :=
{
u ∈

∏
e∈E

C[0, �e] : IvU(v) = 0, v ∈ V

}
,

the space of continuous functions on G, see Definition 1.1. The space B is
clearly a closed subspace of Ec, hence a Banach space with norm

(3.7) ‖u‖B = max
e∈E

‖ue‖C[0,�e] = ‖u‖Ec , u ∈ B.

Proposition 3.8. The part of the generator (Ap,D(Ap)) in B is the

same operator for each p ∈ [2,+∞] and this operator is the generator of a

positive, strongly continuous, analytic contraction semigroup on B.

Proof. In an analogous way as in the proof of Proposition 3.6 we can
verify that D(Ap) ⊂ B holds for p ∈ [2,+∞]. Using the analiticity of the
semigroups (Tp(t))t≥0 we obtain that the space B is Tp(t)-invariant. Apply-
ing the properties of the form a from Proposition 2.2 and the analyticity and
compatibility of the semigroups (Tp(t))t≥0 on the spaces Ep (see Proposition
2.3) we obtain in the same way as in the proof of [14, Prop. 2.1] that the part
of the generator (Ap,D(Ap)) in B is the same operator for each p ∈ [2,+∞]
and it generates a strongly continuous contraction semigroup on B. The an-
alyticity follows by observing that B is a closed subspace of Ec, and Sc is
analytic on Ec. �
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We recall that for p ∈ [2,+∞) the operators (Ap,D(Ap)) are generators
of strongly continuous analytic semigroups on the spaces Ep defined in (2.5)
(see Proposition 2.3).

For 0 ≤ θ < 1 let Eθ
p be defined as in (3.1) for the operator Ap(3.8)

on the space Ep.

We will need the following embedding result regarding the fractional do-
main spaces and the space B.

Proposition 3.9. Let Eθ
p defined in (3.8). Then for p ∈ [2,∞) and

θ > 1
2p the following continuous, dense embeddings are satisfied :

(3.9) Eθ
p ↪→ B ↪→ Ep.

Proof. In an analogous way as done in [13, Lemma 3.6], one can verify
that

(3.10) B ∼=
(∏

e∈E

C0[0, �e]
)
× R

n,

where C0[0, �e] denotes the space of continuous functions on [0, �e] that have
a value of 0 at the endpoints of the interval. By Proposition 2.3 the operator
(Ap,D(Ap)) generates a positive, contraction semigroup on Ep. It follows
from [2, Thm. in §4.7.3] and [2, Prop. in §4.4.10] that for the complex inter-
polation spaces

(3.11) D((λ−Ap)θ) ∼= [D(λ−Ap), Ep]θ

holds for any λ > 0. It is straightforward from [13, Lemma 3.5] that we have

(3.12) D(Ap,max) ∼=
(∏

e∈E

W
2,p
0 (0, �e)

)
× R

n,

see (2.7). Observe that by Lemma 2.4, for p ≥ 2, D(Ap) ↪→ D(Ap,max) holds.
Hence, from (3.11), (3.12) and general interpolation theory, see e.g. [22,
Sect. 4.3.3], we obtain in the same way as in the proof of [14, Cor. 3.1] that
for θ > 1

2p

(3.13) Eθ
p = D((λ− Ap)θ) ↪→

(∏
e∈E

W
2θ,p
0 (0, �e)

)
× R

n

is satisfied. Hence, by (3.10) and Sobolev embedding we have that

(3.14)
(∏

e∈E

W
2θ,p
0 (0, �e)

)
× R

n ↪→ B,
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thus

Eθ
p ↪→ B

holds with continuous embedding. Proposition 3.8 implies thatD(Ap), hence
Eθ

p
∼= D((−Ap)θ) is dense in B. Since

∏
e∈EC0[0, �e] ⊂ B is a dense subspace

of Ep, we obtain that B is continuously and densely embedded in Ep. �

As a corollary, we obtain the following chain of embeddings containing
the space Ec. It is important to remark that the embeddings are continuous
but the first one is not dense.

Corollary 3.10. For p ∈ [2,∞) and θ > 1
2p the following continuous

embeddings are satisfied :

Eθ
p ↪→ Ec ↪→ Ep.

Proof. Since B ⊂ Ec a (closed) subspace by definition and (3.9) holds,

Eθ
p ↪→ Ec

is satisfied as a continuous embedding. The claim follows by observing Ec

↪→ Ep with continuous, dense embedding. �

3.3. Main results. We now apply the results of the previous sections
to the following stochastic evolution equation, based on (2.1). We prescribe
stochastic noise on the edges of the network and add a nonlinear and a first
order term to the first equation of (2.1).

Let (Ω,F ,P) be a complete probability space endowed with a right-
continuous filtration F = (Ft)t∈[0,T ] for some T > 0 given. We consider the
problem

u̇e(t, x) = (ceu′e)
′(t, x) + de(x) · u′e(t, x)− pe(x)ue(t, x)(3.15a)

+fe(t, x, ue(t, x))+he(t, x, ue(t, x))
∂we

∂t
(t, x), x∈(0, �e), t∈(0, T ], e∈E,

0 = IvU(t, v), t ∈ (0, T ], v ∈ V,(3.15b)

0 = MLu(t) + Cu(t), t ∈ (0, T ],(3.15c)

ue(0, x) = u0,e(x), x ∈ [0, �e], e ∈ E.(3.15d)

The terms ∂we

∂t are independent space-time white noises on [0, �e], e ∈ E,
written as formal derivatives of independent cylindrical Wiener-processes
(we(t))t∈[0,T ], defined on (Ω,F ,P), in the Hilbert space L2(0, �e) with re-
spect to the filtration F.
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Assumptions 3.11. The functions fe : [0, T ]× Ω× [0, �e]× R → R are
polynomials of the form

(3.16) fe(t, ω, x, η) = −ae(t, ω, x)η2ke+1 +
2ke∑
j=0

ae,j(t, ω, x)ηj , η ∈ R, e ∈ E

for some positive integers ke, e ∈ E. For the coefficients we assume that there
are constants 0 < c ≤ C < ∞ such that

c ≤ ae(t, ω, x) ≤ C, |ae,j(t, ω, x)| ≤ C, for each e ∈ E, j = 0, . . . , 2ke,

for all (t, ω, x) ∈ [0, T ]× Ω× [0, �e]. Furthermore, we suppose that

ae(t, ω, ·), ae,j(t, ω, ·) ∈ C[0, �e], e ∈ E, j = 0, . . . , 2ke

and that the coefficients ae, ae,j : [0, T ]× Ω× [0, �e] → R are jointly measur-
able and adapted in the sense that for each e and j and for each t ∈ [0, T ], the
functions ae(t, ·), ae,j(t, ·) are Ft ⊗ B[0,�e]-measurable, where B[0,�e] denotes
the sigma-algebra of the Borel sets on [0, �e].

Remark 3.12. In [13, Ass. 3.10] we had to assume a much more restric-
tive condition on the polynomials in (3.16), namely that ke = k for all e ∈ E

and

(ae(t, ω, ·))e∈E , (ae,j(t, ω, ·))e∈E ∈ B

for j = 1, . . . , 2k, t ∈ [0, T ] and almost all ω ∈ Ω holds. In our case these
assumptions can be omitted.

Define now

(3.17) K := 2kmax + 1, k := 2kmin + 1,

where kmax = maxe∈E ke and kmin = mine∈E ke.
We suppose that

he : [0, T ]×Ω× [0, �e]×R → R, e∈E are locally Lipschitz continuous(3.18)
in the fourth variable, uniformly with respect to the first 3 variables,

|he(t, ω, x, η)| ≤ c(1+ |η|)
k

K for all (t, ω, x, η) ∈ [0, T ]×Ω× [0, �e]×R.(3.19)

We further assume that the functions he are jointly measurable and adapted
in the sense that for each e and t ∈ [0, T ], he(t, ·) is Ft ⊗ B[0,�e] ⊗ BR-
measurable, where B[0,�e] and BR denote the sigma-algebras of the Borel
sets on [0, �e] and R, respectively.
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We now rewrite system (3.15) in the form of an abstract stochastic
Cauchy-problem, see [15, p. 29]:

(SCPn)

{
dX(t) = [AX(t) + F (t,X(t)) + F̃ (t,X(t))]dt+G(t,X(t))dW (t)

X(0) = ξ.

The operator (A,D(A)) is (Ap,D(Ap)) for some large p ∈ [2,∞), where
p will be chosen later. Hence, by Proposition 2.3, A is the generator of the
strongly continuous analytic semigroup on the Banach space Ep, and Ep is
a UMD space of type 2, see [1, Sect. 6].

The function F : [0, T ]× Ω× Ec → Ec is defined as
(3.20)
F (t, ω, u) := (fe(t, ω, ·, ue(·)))e∈E , t ∈ [0, T ], ω ∈ Ω, u = (ue)e∈E ∈ Ec.

Let

(3.21) F̃ :
∏
e∈E

C1[0, �e] → Ep, p > 1, F̃ u := (de · u′e)e∈E.

To define the operator G we argue in analogy with [15, pp. 29–30], but
we have to change the argumentation at one point because in (3.13) we have
only (continuous) embedding but no isomorphism. We first define the mul-
tiplication operator Γ: [0, T ]× Ω× Ec → L(E2) as

(3.22) Γ(t, ω, u)y := diag (he(t, ω, ·, ue(·)))e∈E · y, u ∈ Ec, y ∈ E2.

Because of the assumptions on the he’s, Γ clearly maps into L(E2).
Let (A2,D(A2)) be the generator on E2, see Proposition 2.3, and pick

κG ∈
(1

4 ,
1
2

)
.

By (3.13), we have that there is a continuous embedding

ı : EκG

2 →

(∏
e∈E

H2κG

0 (0, �e)
)
× R

n =: H1.

Using (3.14) and (3.9), we obtain that for p ≥ 2 arbitrary there exists a
continuous embedding

j : H1 → Ep.

Let ν > 0 arbitrary and define now G by

(3.23) (ν−Ap)−κGG(t, ω, u)y := j ı (ν−A2)−κGΓ(t, ω, u)y, u ∈ Ec, y ∈ E2.

Lemma 3.13. (1) Let p > 1 arbitrary. Then the mapping defined in

(3.21) can be extended to a linear and continuous operator from Ec into E
− 1

2
p ,

that we also call F̃ .
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(2) Let p ≥ 2 and κG ∈ (1
4 ,

1
2) be arbitrary. The operator G defined in

(3.23) maps [0, T ]× Ω× Ec into γ(E2, E
−κG
p ).

Proof. (1) Let p > 1 arbitrary and define q := (1− 1
p)

−1. Proceeding
in the same way as in the proof of [15, Lemma 4.6.1] we obtain that there
exists a continuous extension of F̃

F̃1 : Ec →

(∏
e∈E

W
1,q
0 (0, �e)

)∗

.

By [23, Thm. 3.1.4] we have (
E

1

2
q

)∗ ∼= E
− 1

2
p .

By (3.13)

E
1

2
q ↪→

(∏
e∈E

W
1,q
0 (0, �e)

)
× R

n.

holds. Hence there exists a continuous embedding

ıp :
(∏

e∈E

W
1,q
0 (0, �e)

)∗

× R
n →

(
E

1

2
q

)∗ ∼= E
− 1

2
p .

Combining all these fact we obtain that

ıpF̃1 : Ec → E
− 1

2
p

is a continuous linear extension of F̃ .
(2) Using [24, Lemma 2.1(4)], we obtain in a similar way as in [24,

Cor. 2.2]) that j ∈ γ(H1, Ep), since 2κG > 1
2 holds. Hence, by the defini-

tion of G and the ideal property of γ-radonifying operators, the mapping G
takes values in γ(E2, E

−κG
p ). �

The driving noise process W is defined by

(3.24) W (t) = (we(t, ·))e∈E

and thus (W (t))t∈[0,T ] is a cylindrical Wiener process, defined on (Ω,F ,P),
in the Hilbert space E2 with respect to the filtration F.

Finally, let

ξ := u0.
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We recall that a mild solution of (SCPn) is a solution of the following
integral equation:

X(t) = S(t)ξ +
∫ t

0
S(t− s)(F (s,X(s)) + F̃ (s,X(s)))ds(3.25)

+
∫ t

0
S(t− s)G(s,X(s)) dW (s)

=: S(t)ξ + S ∗ F (·,X(·))(t) + S ∗ F̃ (·,X(·))(t) + S �G(·,X(·))(t)

where

S ∗ f(t) =
∫ t

0
S(t− s)f(s) ds

denotes the “usual” convolution, and

S � g(t) =
∫ t

0
S(t− s)g(s) dW (s)

denotes the stochastic convolution with respect to W and (S(t))t≥0 denotes
the strongly continuous semigroup generated by (A,D(A)). We also implic-
itly assume that all the terms on the right hand side of (3.25) are well-defined.

To state our the result regarding system (SCPn), we define to the anal-
ogy of VT,q (see (3.4)) for a fixed T > 0 and q ≥ 1

ṼT,q := Lq (Ω;C((0, T ];B) ∩ L∞(0, T ;B))

being a Banach space with the norm

‖u‖q
ṼT,q

:= E sup
t∈[0,T ]

‖u(t)‖qB, u ∈ ṼT,q.

Theorem 3.14. Let F , F̃ , G and W defined as in (3.20), (3.21),
(3.23) and (3.24), respectively. Let q > 4 be arbitrary. Then for every ξ ∈

Lq(Ω,F0,P; Ec) equation (SCPn) has a unique global mild solution in ṼT,q.

Proof. Using the assumption q > 4, we can choose 2 ≤ p < +∞, θ ∈
(0, 1

2 ) and κG ∈ (1
4 ,

1
2) such that

(3.26) θ >
1
2p

and 0 < θ + κG <
1
2
−

1
q
.

First we will apply Theorem 3.4 and show that there exists a unique global
mild solution in

V c
T,q := Lq (Ω;C((0, T ]; Ec) ∩ L∞(0, T ; Ec)) .
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For this purpose we have to show that Assumptions 3.2 are satisfied with
the following cast: E = Ep, H = E2, Z = Ec, A = Ap, the operators defined
in (3.20), (3.21), (3.23) and (3.24), for appropriate κF̃ and the constants p,
θ and κG chosen in (3.26).

(a) Assumption (1) is satisfied because of the generator property of Ap

on Ep, see Proposition 2.3 and since any Lp-space with p ∈ [2,∞) has type 2.
(b) Assumption (2) is satisfied since (3.26) holds and we can use Corollary

3.10.
(c) Assumption (3) is satisfied because of Proposition 3.6.
(d) To prove Assumptions (4) and (5) we can proceed in the same way

as in the proof of [15, Thm. 4.7] and obtain that (4) holds with N = K and
(5) with K and k defined in (3.17).

(e) To check Assumption (6) we refer to Lemma 3.13. This implies that
F̃ : Ec → E−κF̃ with κF̃ = 1

2 . Since F̃ is a continuous linear operator, the
rest of the statement also follows.

(f) To check Assumption (7) we can mimic the proof of [15, Thm. 4.7] in
a slightly modified way. First note that by Lemma 3.13, G takes values in
γ(E2, E

−κG
p ) with κG chosen above. We fix u, v ∈ Ec and let

R := max
{
‖u‖Ec , ‖v‖Ec

}
.

Furthermore, we denote the matrix from (3.22) by

MΓ(t, ω, u) := diag (he(t, ω, ·, ue(·)))e∈E for u ∈ Ec.

For R > 0 let

Lh(R) := max
e∈E

Lhe
(R),

where the positive constants Lhe
(R) are the Lipschitz constants of the func-

tions he, on the ball of radius R, see (3.18). From the right-ideal property
of the γ-radonifying operators and (3.23) we have∥∥(−Ap)−κG(G(t, ω, u)−G(t, ω, v))

∥∥
γ(E2,Ep)

≤
∥∥j ı (−A2)−κG

∥∥
γ(E2,E

−κG
p ) ·

∥∥Γ(t, ω, u) − Γ(t, ω, v)
∥∥
L(E2)

≤
∥∥j ı (−A2)−κG

∥∥
γ(E2,E

−κG
p ) ·

∥∥MΓ(t, ω, u) −MΓ(t, ω, v)
∥∥
L∞(

∏
e∈E

[0,�e],Rm)

≤
∥∥j ı (−A2)−κG

∥∥
γ(E2,E

−κG
p ) · Lh(R) · ‖u− v‖Ec .

Hence, we obtain that G : [0, T ]×Ec → γ(E2,E
−κG
p ) is locally Lipschitz con-

tinuous.
Using assumption (3.19) on the functions he and an analogous compu-

tation as above, we obtain that G grows as required in Assumption (7) as a
map [0, T ]× Ec → γ(E2, E

−κG
p ).
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Thus, we can apply Theorem 3.4 with κF̃ = 1
2 , θ and κG having the

properties (3.26), and obtain that (SCPn) has a unique global mild solution
in V c

T,q.
To prove the claim for ṼT,q recall from (3.25) that the solution in V c

T,q
satisfies the following implicit equation:

(3.27) X(t) = S(t)ξ+ S ∗F (·,X(·))(t)+ S ∗ F̃ (X(·))(t)+ S �G(·,X(·))(t),

where S denotes the semigroup generated by Ap on Ep. We only have to
show that for almost all ω ∈ Ω for the trajectories

(3.28) X(·) ∈ C((0, T ];B) ∩ L∞(0, T ;B)

holds. Then X ∈ ṼT,q is satisfied since the norms on Ec and B coincide and
X ∈ V c

T,q is true. Using Proposition 3.9, Assumptions 3.2 and techniques
from [24], we can proceed in the same way as in the proof of [15, Thm. 4.10]
to show (3.28) by showing it for all the four terms on the right-hand side of
(3.27). �

Notice that in the above theorem, for initial values from Ec we obtain
trajectories in the (smaller space) B.

Remark 3.15. If in Theorem 3.14 the initial condition satisfies ξ ∈
Lq(Ω,F0,P;B) for q > 4, then the global mild solution belongs even to
Lq(Ω;C([0, T ];B)) instead of ṼT,q. This follows from the fact that by Propo-
sition 3.8, the part of Ap in B generates a strongly continuous semigroup
on B.

In the following theorem we will state a result regarding Hölder regular-
ity of the mild solution of (SCPn).

Theorem 3.16. Let q > 4 be arbitrary, λ, η > 0 and p ≥ 2 such that

λ+ η > 1
2p . We assume that ξ ∈ LKq(Ω;Eλ+η

p ), where K is defined in (3.17).
If the inequality

(3.29) λ+ η <
1
4
−

1
q

is fulfilled, then the mild solution X of (SCPn) from Theorem 3.14 satisfies

X ∈ Lq(Ω;Cλ([0, T ], Eη
p )).

Proof. Using the continuous embedding (3.9), we have that

ξ ∈ LKq(Ω;B)

E. SIKOLYA316



Analysis Mathematica 50, 2024

REACTION-DIFFUSION EQUATIONS ON METRIC GRAPHS WITH EDGE NOISE 23

holds. Since Kq > 4, by Remark 3.15 there exists a global mild solution

(3.30) X ∈ LKq(Ω;C([0, T ],B)).

This solution satisfies the following implicit equation (see (3.25)):

(3.31) X(t) = S(t)ξ+S ∗F (·,X(·))(t)+S ∗ F̃ (·,X(·))(t)+S �G(·,X(·))(t),

where S denotes the semigroup generated by Ap on Ep, ∗ denotes the usual
convolution, � denotes the stochastic convolution with respect to W . We
are going to estimate the Lq(Ω;Cλ([0, T ],Eη

p ))-norm of X using the triangle-
inequality in (3.31).

For the first term we obtain in the same way as in the proof [13,
Thm. 3.14]

(3.32) E‖S(·)ξ‖qCλ([0,T ],Eη
p ) ≤ c · E‖(−Ap)λ+ηξ‖qEp

< ∞

by assumption.
To estimate the qth power of the second term

E‖S ∗ F (·,X(·))‖qCλ([0,T ],Eη
p )

we choose θ > 1
2p such that λ+ η + θ < 1− 1

q . Using [24, Lemma 3.6] with
this θ, α = 1, and q instead of p, and obtain that there exist constants C ≥ 0
and ε > 0 such that

(3.33) ‖S ∗ F (·,X(·))‖Cλ([0,T ],Eη
p ) ≤ CT ε‖F (·,X(·))‖Lq(0,T ;E−θ

p ).

We have to estimate the expectation of the qth power on the right-hand side
of (3.33). By Corollary 3.10 we obtain

Ec ↪→ Ep ↪→ E−θ
p ,

since θ > 1
2p holds and (ω′ −Ap)−θ is an isomorphism between E−θ

p and Ep

for any ω′ > 0. Using this and Assumptions 3.2(5) with K (which holds by
the proof of Theorem 3.14), we have

E‖F (·,X(·))‖q
Lq(0,T ;E−θ

p )
= E

∫ T

0
‖F (s,X(s))‖q

E−θ
p

ds

� E

∫ T

0
‖F (s,X(s))‖qEc ds � E

∫ T

0
(1 + ‖X(s)‖Kq

Ec ) ds

� 1 + E sup
t∈[0,T ]

‖X(t)‖Kq
B ,
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where � denotes that the expression on the left-hand side is less or equal to
a constant times the expression on the right-hand side. In the last inequality
we could write the B-norm of X(t) since by (3.30), we have X(t) ∈ B and
the Ec-norm coincides with the B-norm on B, see (3.7).

This implies that for each T > 0 there exists CT > 0 such that

(3.34) (E‖S ∗F (·,X(·))‖qCλ([0,T ],Eη
p ))

1/q
≤ CT ·(1+‖X(t)‖KLKq(Ω;C([0,T ],B))),

and the right-hand side is finite by (3.30).
To estimate the qth power of the third term

E
∥∥S ∗ F̃ (·,X(·))

∥∥q
Cλ([0,T ],Eη

p )

we use that by assumption, 1
2 > 1

2p and λ+ η + 1
2 < 1− 1

q hold. Applying
[24, Lemma 3.6] with θ = 1

2 , α = 1, and q instead of p, and obtain that there
exist constants C ≥ 0 and ε > 0 such that

‖S ∗ F̃ (·,X(·))‖Cλ([0,T ],Eη
p ) ≤ CT ε‖F̃ (·,X(·))‖Lq(0,T ;E−1/2

p ).

We will use that by the proof of Theorem 3.14, Assumptions 3.2(6) holds
with κF̃ = 1

2 . Hence, we obtain

E‖F̃ (·,X(·))‖q
Lq(0,T ;E−1/2

p )
= E

∫ T

0
‖F̃ (s,X(s))‖q

E−1/2
p

ds

� E

∫ T

0
(1 + ‖X(s)‖qEc) ds � 1 + E‖X(t)‖qC([0,T ],B)),

where we have used (3.30) again. This implies that for each T > 0 there
exists C ′

T > 0 such that
(3.35)

(E‖S ∗ F̃ (·,X(·))‖qCλ([0,T ],Eη
p ))

1/q
≤ C ′

T · (1+‖X(t)‖LKq(Ω;C([0,T ],B)))
K
,

and the right-hand side is finite by (3.30).
To estimate the stochastic convolution term in (3.31) we first fix 0<α< 1

2
such that

λ+ η +
1
4
< α−

1
q

holds. We now choose κG ∈ (1
4 ,

1
2) such that

λ+ η + κG < α−
1
q

is satisfied.
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In the following we proceed similarly as done in the proof of [13,
Thm. 3.14]. Using that Assumptions 3.2(7) holds by the proof of Theo-
rem 3.14, we obtain

E
∥∥S �G(·,X(·))

∥∥q
Cλ([0,T ],Eη

p )

≤ T εq

(∫ T

0
t−2α dt

)q/2

E

∫ T

0

∥∥G(t,X(t))
∥∥q
γ(E2,E

−κG
p )

dt

≤ T ( 1

2
−α+ε)q(c′)q · E

∫ T

0

(
1 + ‖X(t)‖Ec

) k

K
q
dt

≤ T ( 1

2
−α+ε)q(c′)q · E

∫ T

0

(
1 + ‖X(t)‖B

)q
dt

� T ( 1

2
−α+ε)q+1(c′)q · (1 + E‖X(t)‖qC([0,T ],B)),

where we have used that by (3.17), k
K ≤ 1 and the Ec- and B-norms coincide

on B. Hence, for each T > 0 there exists constant C ′′
T > 0 such that

(3.36)

(E
∥∥S �G(·,X(·))

∥∥q
Cλ([0,T ],Eη

p ))
1/q

≤ C ′′
T (1+‖X(t)‖LKq(Ω;C([0,T ],B)))

K
< +∞.

In summary, by (3.32), (3.34), (3.35) and (3.36), we obtain that

X ∈ Lq(Ω;Cλ([0, T ], Eη
p ))

holds, hence the proof is completed. �

Remark 3.17. Our assumptions on the polynomials fe are satisfied
e.g. for the functions coming from the classical FitzHugh–Nagumo problem
(see e.g. [5])

(3.37) fe(η) := η(η − 1)(ae − η), e ∈ E

with ae ∈ (0, 1), and also for the Allen–Cahn type nonlinearities

(3.38) fe(η) := −η3 + β2
eη, e ∈ E

for some (positive) constants βe (see [13]). Using the theory from [13] we
wouldn’t have been able to treat nonlinearities of the form (3.37) at all. Even
to handle (3.38), the problem had to be rewritten in a tricky way, see [13,
(3.33)].

The theory developed here makes possible to treat the above cases di-
rectly, and even much more general nonlinearities. We could set e.g. a 3th
degree polynomial on one edge and a 5th degree one on an other edge, sat-
isfying Assumptions 3.11.
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We remark that in equation (3.15a) we could have prescribed coloured
noise instead of white noise on the edges of the graph, see [13, Sect. 3.4].
That is, we could set

u̇e(t, x) = (ceu′e)
′(t, x) + de(x) · u′e(t, x)− pe(x)ue(t, x)(3.39)

+fe(t, x, ue(t, x))+he(t, x, ue(t, x))Re

∂we

∂t
(t, x), x∈(0, �e), t∈(0, T ], e∈E,

with Re ∈ γ(L2(0, �e), Lp(0, �e)). Then we define

R := diag(Re)e∈E ∈ γ(E2, Ep)

with p ≥ 2 arbitrary. Using this, we can define the operator G : [0, T ] × Ec

→ γ(E2, Ep) as

G(t, u)y := Γ(t, u)Ry, y ∈ E2,

where the operator Γ: [0, T ]× Ec → L(E2) is defined in (3.22). It is easy to
see that G satisfies Assumptions 3.2(7) with κG = 0.

If we replace (3.15a) with (3.39), Theorem 3.14 remains true as stated;
that is, for q > 4, but one may use a simpler Hilbert space machinery; that
is, one may set p = 2 in the proof. However, in the coloured noise case,
Theorem 3.14 is true also for q > 2. But this can only be shown by choosing
p > 2 large enough in the proof and hence, in this case, the Banach space
arguments are crucial.

In Theorem 3.16, if one takes p = 2 (Hilbert space) and q > 4, then the
statement is true for λ+ η > 1

4 with

(3.40) λ+ η <
1
2
−

1
q

instead of (3.29). In this case R will be a Hilbert-Schmidt operator whence
the covariance operator of the driving process is trace-class. However, the
statement of the theorem remains true for q > 2 as well assuming (3.40)
instead of (3.29), but only for the Banach space Ep for p large enough so
that λ+ η > 1

2p .
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