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Abstract. We construct examples of bounded below, noncontractible,
acyclic complexes of finitely generated projective modules over some rings S, as
well as bounded above, noncontractible, acyclic complexes of injective modules.
The rings S are certain rings of infinite matrices with entries in the rings of com-
mutative polynomials or formal power series in infinitely many variables. In the
world of comodules or contramodules over coalgebras over fields, similar exam-
ples exist over the cocommutative symmetric coalgebra of an infinite-dimensional
vector space. A simpler, universal example of a bounded below, noncontractible,
acyclic complex of free modules with one generator, communicated to the author
by Canonaco, is included at the end of the paper.

Introduction

Bounded above acyclic complexes of projective objects are contractible.
So are bounded below acyclic complexes of injective objects. On the other
hand, there is an easy, thematic example of a doubly unbounded, acyclic,
noncontractible complex of finitely generated projective-injective modules
over the algebra of dual numbers R = k[ε]/(ε2) (over any field k):

(1) · · · −→ R
ε∗
−→ R

ε∗
−→ R −→ · · · .

We refer to [9, Prologue], [10, Sections 7.4–7.5] and the references therein for
a discussion of the role of the complex (1) in the context of derived Koszul
duality and derived categories of the second kind.
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Do there exist bounded below, noncontractible, acyclic complexes of pro-
jective modules; and if so, under what rings? Dual-analogously, are there
any bounded above, noncontractible, acyclic complexes of injective mod-
ules? These questions were posed, in the context of potential applications
to the Finitistic Dimension Conjecture, in the recent preprint of Shaul [16].
According to [16, Theorem 5.1], nonexistence of such complexes of projec-
tive/injective modules over a two-sided Noetherian ring S with a dualizing
complex would imply finiteness of the finitistic dimensions of S.

The aim of the present paper is to show that, over certain rather big
rings S, such complexes do exist. The examples of rings S which we obtain
are certainly noncommutative and non-Noetherian. The more explicit ones
among them are rings of column-finite or row/column-zero-convergent infi-
nite matrices with entries in the rings of commutative polynomials or formal
power series in infinitely many variables.

On the other hand, in the world of coalgebras over fields, we demonstrate
examples of bounded above, acyclic, noncontractible complexes of injective
comodules and bounded below, acyclic, noncontractible complexes of projec-
tive contramodules over certain cocommutative coalgebras dual to algebras
of formal power series in infinitely many variables. These examples go back
to [6, Section 0.2.7], where they were very briefly discussed in the context of
semi-infinite homological algebra and derived comodule-contramodule cor-
respondence.

Almost all the examples presented in this paper are based on one idea,
namely, that of the dual Koszul complex of the ring of polynomials in in-
finitely many variables. A straightforward realization of this idea is possible
in the worlds of comodules and contramodules, but we need an additional
trick with a passage to infinite matrices in order to produce examples of
complexes of projective/injective modules. The only exception is the (much
simpler) universal example, communicated to the author by A. Canonaco.
We reproduce it at the end of the paper in Example 8.4.

The approach to the Finitistic Dimension Conjecture developed in [15,16]
goes back to Rickard’s paper [14], where it was shown that if the injective
modules over a finite-dimensional algebra generate its unbounded derived
category as a triangulated category with coproducts, then the finitistic di-
mension is finite. A counterexample in [14, Theorem 3.5] shows that for the
ring of commutative polynomials in infinitely many variables, the generation
property fails. Our examples in this paper follow in the footsteps of [6, Sec-
tion 0.2.7] and [14, Theorem 3.5]. We also provide some details of the claims
in [6, Section 0.2.7] which were skipped in the book [6].

1. Projective, flat, and injective bounded acyclicity problems

The general convention in this paper is that complexes are presumed to
be cohomologically graded, so the differential raises the degree. A complex
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C• = (Cn, dn : Cn → Cn+1) is called bounded above if Cn = 0 for n � 0, and
C• is bounded below if Cn = 0 for n � 0. In this notation, it is a standard
fact that every bounded above acyclic complex of projective modules/objects
(in an abelian or exact category) is contractible, and every bounded below
acyclic complex of injective modules/objects is contractible. When we occa-
sionally consider homologically graded complexes, we use the notation with
lower indices, P

•
= (Pn, dn : Pn → Pn−1).

Let S be an associative ring. The two “wrong-sided bounded projec-
tive/injective acyclicity problems” posed in [16, Theorem 5.1(4–5)] are:

• Is every bounded above acyclic complex of injective S-modules con-
tractible?

• Is every bounded below acyclic complex of projective S-modules con-
tractible?

In addition to the above two, we would like to ask a similar question
about flat S-modules. Here one has to be careful: even a two-sided bounded
acyclic complex of flat modules need not be contractible. However, such a
complex is always pure acyclic, or in other words, has flat modules of cocy-
cles. Thus we ask:

• Is every bounded below acyclic complex of flat S-modules pure acyclic?
Given a ring S and a left S-module M , the character module M+ =

HomZ(M,Q/Z) is a right S-module. The following lemma is well-known.

Lemma 1.1. A left S-module F is flat if and only if the right S-module

F+ is injective.

The next proposition explains the connection between the injective, flat,
and projective wrong-sided bounded acyclicity questions, and shows that
presenting a counterexample to the “projective” question is enough.

Proposition 1.2. Given a ring S, consider the following three proper-
ties:

(1) Every bounded above acyclic complex of injective right S-modules is
contractible.

(2) Every bounded below acyclic complex of flat left S-modules is pure
acyclic.

(3) Every bounded below acyclic complex of projective left S-modules is

contractible.
Then the implications (1) =⇒ (2) =⇒ (3) hold.

Proof. (1) =⇒ (2). Let F • = (0→ F 0 → F 1 → F 2 → · · · ) be a bounded
below acyclic complex of flat left S-modules. Then, by the direct implication
of Lemma 1.1, F •,+ = (· · · → F 2,+ → F 1,+ → F 0,+ → 0) is a bounded above
acyclic complex of injective right S-modules. A complex of injective mod-
ules is contractible if and only if its modules of cocycles are injective. If this
is the case for the complex F •,+, then the inverse implication of Lemma 1.1
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tells that the modules of cocycles of the complex F • are flat; so F • is a pure
acyclic complex of flat modules.

(2) =⇒ (3). By Neeman’s theorem [5, Theorem 8.6(iii) ⇒ (i)], any pure
acyclic complex of projective modules is contractible. (Cf. [16, proof of The-
orem A.7].) �

2. The injective construction of acyclic complex of projectives

Let k be a field, (xα)α∈A be an infinite set of variables, and R = k[xα :
α ∈ A] be the commutative ring of polynomials in the variables xα over k.
Endow the one-dimensional vector space k over k with the R-module struc-
ture by the obvious rule: all the elements xα ∈ R act by zero in k.

Theorem 2.1 (Rickard [14]). For any injective R-module J and all in-

tegers n ≥ 0, one has ExtnR(J, k) = 0.

Proof. For a countably infinite set of variables xα, this is formulated
and proved in [14, Theorem 3.5]. The general case of a possibly uncountable
index set A is similar. One represents A as the union of its finite subsets
B ⊂ A, so the ring R the direct limit of the related polynomial rings RB in
finitely many variables, considers the direct limit of finite Koszul complex
indexed by the finite subsets B ⊂ A, etc. (Cf. the proof of Theorem 3.1
below for some further details.) �

Let A be an additive category and M ∈ A be an object. Then we de-
note by add(M) the full subcategory in A formed by the direct summands
of finite direct sums of copies of M . The following lemma is a straight-
forward category-theoretic generalization of a well-known module-theoretic
observation going back to Dress [3].

Lemma 2.2. Let A be an idempotent-complete additive category and

M ∈ A be an object.
(a) Let S = HomA(M,M)op be the opposite ring to the endomorphism

ring of the object M ∈ A; so the ring S acts on the object M on the right.
Then the covariant functor HomA(M,−) : A → S–Mod restricts to an equiv-

alence of additive categories

HomA(M,−) : add(M) 	 S–modproj

between the full subcategory add(M) ⊂ A and the full subcategory of finitely

generated projective left S-modules S–modproj in the category of left S-mod-

ules S–Mod.
(b) Let S = HomA(M,M) be the endomorphism ring of the object M ∈ A;

so the ring S acts on the object M on the left. Then the contravariant func-
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tor HomA(−,M) : Aop → S–Mod restricts to an anti-equivalence of additive
categories

HomA(−,M) : add(M)op 	 S–modproj

between the full subcategory add(M) ⊂ A and the full subcategory of finitely
generated projective left S-modules S–modproj ⊂ S–Mod.

The following corollary sums up the “injective coresolution construction
of a bounded below acyclic complex of projective modules”.

Corollary 2.3. Let R = k[xα : α ∈ A] be the ring of polynomials in

infinitely many variables over a field k, and let

(2) 0 −→ k −→ J0 −→ J1 −→ J2 −→ · · ·

be an injective coresolution of the one-dimensional R-module k. Let J be an

injective R-module such that the R-module Jn is a direct summand of J for
all n ≥ 0. Let

(3) 0 −→ HomR(J, J0) −→ HomR(J, J1) −→ HomR(J, J2) −→ · · ·

be the complex obtained by applying the functor HomR(J,−) to the trun-
cated coresolution (2). Then (3) is a bounded below, noncontractible, acyclic
complex of finitely generated projective left modules over the ring S =
HomR(J, J)op.

Proof. The complex (3) is acyclic by Theorem 2.1. The left S-module
HomR(J, Jn) is a direct summand of the left S-module HomR(J, J) = S for
every n ≥ 0, since the R-module Jn is a direct summand of J . So (3) is even
a complex of cyclic projective left S-modules (i.e., projective S-modules with
one generator).

It remains to explain why the complex of S-modules (3) is not con-
tractible. For this purpose, one observes that, given a full subcategory B in
an additive category A, a complex C• in B is contractible in A if and only if
it is contractible in B. Indeed, any contracting homotopy for C• as a com-
plex in A would be a collection of morphisms in A between objects from B,
which means a collection of morphisms in B.

By Lemma 2.2(a) (for A = R–Mod and M = J), the functor HomR(J,−)
is an equivalence of categories add(J) 	 S–modproj. The truncated coresolu-
tion (2),

0 −→ J0 −→ J1 −→ J2 −→ · · ·

is a noncontractible (since nonacyclic) complex in R–Mod with the terms
belonging to add(J), so it is a noncontractible complex in add(J). Apply-
ing the equivalence of additive categories add(J) 	 S–modproj, we obtain a
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noncontractible complex (3) in S–modproj, which is consequently also non-
contractible in S–Mod. It is important for this argument that the functor
HomR(J,−) : add(J) → S–Mod is fully faithful. �

3. Dual Rickard’s acyclicity theorem

The aim of this section is to prove the following dual version of Rickard’s
theorem [14, Theorem 3.5].

Theorem 3.1. Let R = k[xα : α ∈ A] be the ring of polynomials in
infinitely many variables over a field k. As above, we endow the one-
dimensional k-vector space k with the obvious R-module structure. Then,
for any flat R-module P and all integers n ≥ 0, one has ExtnR(k, P ) = 0.

Proof. For every α ∈ A, consider the two-term Koszul complex of free
R-modules with one generator

(4) · · · −→ 0 −→ R
xα∗−→ R −→ 0 −→ · · ·

situated in the cohomological degrees −1 and 0. For every finite subset of
indices B ⊂ A, denote by KB

•
(R) the tensor product, taken over the ring R,

of the complexes (4) with α ∈ B. As a finite subset B ⊂ A varies, the com-
plexes KB

•
(R) form an inductive system, indexed by the poset of all finite

subsets B ⊂ A ordered by inclusion.
Put K

•
(R) = lim

−→B⊂A
KB

•
(R). Then K

•
(R) is a bounded above complex

of free R-modules. One has Kn(R) = 0 for n < 0, K0(R) = R, and Kn(R)
is a free R-module with a set of generators of the cardinality equal to the
cardinality of the set A for all n > 0. (More invariantly, Kn(R) is the free
R-module spanned by the set of all subsets in A of the finite cardinality n).

For any finite subset B ⊂ A, the complex KB
•
(A) is a finite resolution

of the R-module R/
∑

α∈B xαR by finitely generated free R-modules. Pass-
ing to the direct limit, one can easily see that K

•
(R) is a free R-module

resolution of the one-dimensional R-module k = R/
∑

α∈A xαR.
The following three lemmas are straightforward or standard.

Lemma 3.2. Let R be an associative ring, Ξ be a directed poset, and
(Fξ)ξ∈Ξ be an inductive system of projective R-modules whose direct limit
F = lim−→ξ∈Ξ

Fξ is also a projective R-module. Let P be an arbitrary R-module.
Then the higher derived inverse limit functors vanish on the projective system
HomR(Fξ, P )ξ∈Ξ,

lim←−ξ∈Ξ
HomR(Fξ, P ) = HomR(F,P )

and

lim
←−

i

ξ∈Ξ
HomR(Fξ, P ) = 0 for all i ≥ 1.

L. POSITSELSKI6
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Proof. Dropping the condition that the R-module F = lim
−→ξ∈Ξ

Fξ is
projective (but keeping the conditions that the R-modules Fξ are projec-
tive), one would have lim←−

i

ξ∈Ξ
HomR(Fξ, P ) = ExtiR(F,P ) for every i ≥ 0. �

Lemma 3.3. Let A be an infinite set and (VB)B⊂A be a projective system
of abelian groups, indexed by the poset of all finite subsets B ⊂ A ordered
by inclusion. Assume that there exists an integer n ≥ 0 such that VB = 0
whenever the cardinality of B exceeds n. Then the whole derived inverse
limit functor vanishes on the projective system (VB)B⊂A,

lim
←−

i

B⊂A
VB = 0 for all i ≥ 0.

Proof. This is a special case of the assertion that the derived functors
of inverse limit are preserved by the passage to a cofinal subsystem. This
can be deduced from fact that the derived inverse limits vanish on so-called
weakly flabby (faiblement flasque) projective systems [4, Théorème 1.8]. A
stronger result that the derived inverse limit (in an abelian category with
exact product functors) only depends on the pro-object represented by the
given projective system can be found in [13, Corollary 7.3.7]. �

Lemma 3.4. Let Ξ be a directed poset and (C•

ξ)ξ∈Ξ be a projective system
of complexes of abelian groups with Cn

ξ = 0 for n < 0. Then there are two

spectral sequences ′Epq
r and ′′Epq

r , starting from the pages

′Epq
2 = lim

←−
pHq(C•

ξ), p, q ≥ 0,
′′Epq

1 = lim
←−

q Cp
ξ , p, q ≥ 0,

with the differentials ′dpqr : ′Ep,q
r → ′Ep+r,q−r+1

r and ′′dpqr : ′′Ep,q
r → ′′Ep+r,q−r+1

r ,
converging to the associated graded groups to two different filtrations ′F pEn

and ′′F pEn on the same graded abelian group En, n = p+ q.

Proof. These are called “the two hypercohomology spectral sequences”
(for the derived functor of inverse limit); cf. [2, Section XVII.3]. The groups
En are the cohomology groups of the complex obtained by applying the de-
rived functor of inverse limit to the whole complex of projective systems (C•

ξ).
�

Now we can finish the proof of the theorem. By the definition, we have
ExtnR(k, P ) = HnHomR(K•

(R), P ). The complex HomR(K•
(R), P ) is the

inverse limit

HomR(K•
(R), P ) = lim

←−B⊂A
HomR(KB

•
(R), P ).

For every n ≥ 0, Lemma 3.2 (with the poset Ξ of all finite subsets
B ⊂ A, finitely generated free R-modules FB , and an infinitely generated
free R-module F ) tells that lim←−

i

B⊂A
HomR(KB

n (R), P ) = 0 for all i ≥ 1.
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On the other hand, the complex HomR(KB
•
(R), P ) has its only nonzero

cohomology module situated in the cohomological degree n equal to the
cardinality of B (as P is a flat module over the ring RB = k[xα : α ∈ B]).
By Lemma 3.3, we have lim

←−
i

B⊂A
Hn HomR(KB

•
(R), P ) = 0 for all i ≥ 0 and

n ≥ 0.
In the context of Lemma 3.4, put C•

B = HomR(KB
•
(R), P ). Then

we know that ′Epq
2 = lim

←−
p

B⊂A
Hq(C•

B) = 0 for all p, q ≥ 0, and ′′Epq
1 =

lim
←−

q

B⊂A
Cp
B = 0 for all q ≥ 1. Thus En = 0 and

Hn(lim
←−B⊂A

HomR(KB
•
(R), P )) = ′′En,0

2 = 0

for all n ≥ 0. �

4. The projective construction of acyclic complex of projectives

Now we are ready to present the “projective resolution construction of
a bounded below acyclic complex of projective modules”.

Corollary 4.1. Let R = k[xα : α ∈ A] be the ring of polynomials in
infinitely many variables over a field k, and let

(5) 0 ←− k ←− P0 ←− P1 −→ P2 ←− · · ·

be a projective resolution of the one-dimensional R-module k. Let P be a
projective R-module such that the R-module Pn is a direct summand of P
for all n ≥ 0. Let

(6) 0 −→ HomR(P0, P ) −→ HomR(P1, P ) −→ HomR(P2, P ) −→ · · ·

be the complex obtained by applying the contravariant functor HomR(−, P )
to the truncated resolution (5). Then (6) is a bounded below, noncontractible,
acyclic complex of finitely generated projective left modules over the ring S =
HomR(P,P ).

Proof. The complex (6) is acyclic by Theorem 3.1. The left S-module
HomR(Pn, P ) is a direct summand of the left S-module HomR(P,P ) = S for
every n ≥ 0, since the R-module Pn is a direct summand of P . So (6) is
even a complex of cyclic projective left S-modules.

The proof of the assertion that the complex of S-modules (6) is not
contractible is similar to the argument in the proof of Corollary 2.3. By
Lemma 2.2(b) (for A = R–Mod and M = P ), the functor HomR(−, P ) is an
anti-equivalence of categories add(P )op 	 S–modproj. The truncated resolu-
tion (5),

0 ←− P0 ←− P1 −→ P2 ←− · · ·

L. POSITSELSKI8
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is a noncontractible (since nonacyclic) complex in R–Mod with the terms
belonging to add(P ), so it is a noncontractible complex in add(P ). Apply-
ing the anti-equivalence of additive categories add(P )op 	 S–modproj, we ob-
tain a noncontractible complex (6) in S–modproj, which is consequently also
noncontractible in S–Mod. It is important for this argument that the con-
travariant functor HomR(−, P ) : add(P )op −→ S–Mod is fully faithful. �

5. Brief preliminaries on coalgebras

In this section and the next two, we consider comodules and contramod-
ules over coassociative, counital coalgebras C over a field k. We refer to the
book [17] and the survey papers [7, Section 1], [10, Sections 3 and 8] for
background material on coalgebras, comodules, and contramodules.

For any coalgebra C, there are locally finite Grothendieck abelian cat-
egories of left and right C-comodules C–Comod and Comod–C, and a lo-
cally presentable abelian category of left C-contramodules C–Contra. There
are enough injective objects in C–Comod, and they are precisely the di-
rect summands of the cofree left C-comodules C ⊗k V (where V ranges over
the k-vector spaces). Dual-analogously, there are enough projective objects
in C–Contra, and they are precisely the direct summands of the free left
C-contramodules Homk(C, V ) (where V ∈ k–Vect).

The additive categories of injective left C-comodules and projective left
C-contramodules are naturally equivalent,

(7) ΨC : C–Comodinj 	 C–Contraproj :ΦC .

The equivalence is provided by the restrictions of the adjoint functors

ΨC : C–comod � C–Contra :ΦC ,

the functor ΦC being the left adjoint and ΨC the right adjoint. The functors
ΨC and ΦC are constructed as

ΨC(M) = HomC(C,M) and ΦC(P) = C �C P

for all M ∈ C–Comod and P ∈ C–Contra. Here �C : Comod–C × C–Contra
→ k–Vect is the functor of contratensor product over a coalgebra C, while
HomC denotes the Hom functor in the comodule category C–Comod. The
equivalence of additive categories (7) is called the (underived) comodule-
contramodule correspondence. We refer to [7, Sections 1.2 and 3.1], [10,
Sections 8.6–8.7], or [6, Sections 0.2.6 and 5.1] for a more detailed discus-
sion.

In fact, we are only interested in one special kind of coalgebras, namely,
the symmetric coalgebra Sym(U) of a k-vector space U . To define the
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symmetric coalgebra, consider the tensor coalgebra Ten(U) =
⊕∞

n=0 U
⊗n,

as defined, e. g., in [10, Section 2.3] (where the notation is slightly differ-
ent). The tensor coalgebra is the cofree conilpotent coalgebra cospanned
by U [10, Remark 3.2]; it is also naturally graded. The symmetric coalge-
bra is simplest defined as the graded subcoalgebra in Ten(U) whose grad-
ing components Symn(U) ⊂ Tenn(U) = U⊗n are the subspaces of symmet-
ric tensors Symn(U) ⊂ U⊗n in the tensor powers of the vector space U .
So the whole symmetric coalgebra is Sym(U) =

⊕∞
n=0 Symn(U) = k ⊕ U

⊕ Sym2(U)⊕ · · · .
Following the discussion in [7, Section 1.3–1.4] or [10, Section 8.3], coal-

gebras C can be described (and in fact, defined) in terms of their vector
space dual algebras C∗ = Homk(C, k), which carry natural linearly compact
(= pseudocompact) topologies. In particular, if U is a finite-dimensional
k-vector space with a basis x∗1, . . . , x

∗
m, then the dual algebra Sym(U)∗ to

the symmetric coalgebra Sym(U) is the topological algebra of formal Taylor
power series Sym(U)∗ = k[[x1, . . . , xm]].

Generally speaking, for an infinite-dimensional k-vector space W , one
has Sym(W ) = lim

−→U⊂W
Sym(U) and Sym(W )∗ = lim

←−U⊂W
Sym(U)∗, where

U ranges over the finite-dimensional vector subspaces of W . So, if {x∗α :
α ∈ A} is a k-vector space basis of W , indexed by some set A, then
Sym(W )∗ = lim

←−B⊂A
k[[xα : α ∈ B]], where B ranges over the finite sub-

sets of A. Here, given two finite subsets B′ ⊂ B′′ ⊂ A, the transition map
k[[xα : α ∈ B′′]] → k[[xα : α ∈ B′]] in the projective system takes xα to xα
for all α ∈ B′ and xβ to 0 for all β ∈ B′′ \B′. Such rings Sym(W )∗ =
lim←−B⊂A

k[[xα : α ∈ B]] are the “commutative rings of formal power series in
infinitely many variables” that we are interested in.

6. Comodule and contramodule acyclicity theorems

As above, we denote by W an infinite-dimensional k-vector space with
a basis {x∗α : α ∈ A} indexed by a set A. Given a finite set B, we let
R̂B = k[[xα : α ∈ B]] be the (topological) ring of commutative formal Tay-
lor power series in finitely many variables indexed by B. Furthermore, we
put R̂ = lim

←−B⊂A
R̂B (with the transition maps described in the previous

section). So, denoting by UB ⊂ W the finite-dimensional vector subspace
spanned by {x∗α : α ∈ B}, we have R̂B = Sym(UB)∗ and R̂ = lim

←−B⊂A
k[[xα :

α ∈ B]] = Sym(W )∗. Let us also introduce the notation CB = Sym(UB) and
C = Sym(W ) for the symmetric coalgebras.

As in the proof of Theorem 3.1, we start with considering the two-term
Koszul complex of free R̂B-modules with one generator

(8) · · · −→ 0 −→ R̂B
xα∗−→ R̂B −→ 0 −→ · · ·

L. POSITSELSKI10
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situated in the cohomological degrees −1 and 0 (where α ∈ B). Denote
by KB

•
(R̂B) the tensor product, taken over the ring R̂B , of the com-

plexes (8). As the elements {xα : α ∈ B} form a regular sequence in the
formal power series ring R̂B , the complex KB

•
(R̂B) is a finite resolution of

the one-dimensional R̂B-module k = R̂B/
∑

α∈B xαR̂B by finitely generated
free R̂B-modules.

The (augmented) Koszul complex KB
•
(R̂B) → k is a complex of linearly

compact topological k-vector spaces; so it can be obtained by applying the
vector space dualization functor Homk(−, k) to a certain complex of discrete
vector spaces. The latter complex has the form

0 −→ k −→ Sym(UB) −→ Sym(UB)⊗k UB(9)

−→ Sym(UB)⊗k Λ2(UB) −→ · · · −→ Sym(UB)⊗k Λm(UB) −→ 0,

wherem = dimUB and Λn(V ), n ≥ 0, denotes the exterior powers of a vector
space V . The complex (9) is an injective/cofree CB-comodule coresolution
of the trivial one-dimensional comodule k over the conilpotent coalgebra
CB = Sym(UB).

Passing to the direct limit of the finite complexes (9) over all the finite
subsets B ⊂ A, we obtain a bounded below complex

0 −→ k −→ Sym(W ) −→ Sym(W )⊗k W(10)

−→ Sym(W )⊗k Λ2(W ) −→ · · · −→ Sym(W )⊗k Λn(W ) −→ · · ·

The complex (10) is an injective/cofree C-comodule coresolution of the trivial
one-dimensional comodule k over the conilpotent coalgebra C = Sym(W ).

One can easily check that the coresolutions (9) and (10) are well-defined
and functorial for any k-vector spaces U (in place of UB) and W , and
do not depend on the choice of any bases in the vector spaces. In fact,
the differential Sym(W )⊗k Λn(W ) → Sym(W )⊗k Λn+1(W ) can be con-
structed as the composition Sym(W )⊗kΛn(W )→ Sym(W )⊗kW ⊗kΛn(W )
→ Sym(W )⊗k Λn+1(W ) of the map induced by the comultiplication map
Sym(W ) → Sym(W )⊗k W and the map induced by the multiplication map
W ⊗k Λn(W ) → Λn+1(W ).

Applying the vector space dualization functor Homk(−, k) to the com-
plex (10), we obtain a bounded above complex

0 ←− k ←− Homk(C, k) ←− Homk(C,W ∗)(11)

←− Homk(C,Λ2(W )∗) ←− · · · ←− Homk(C,Λn(W )∗) ←− · · ·

The complex (11) is a projective/free C-contramodule resolution of the triv-
ial one-dimensional C-contramodule k.

PROJECTIVE MODULES 11
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Applying the functor ΦC = C �C − to the truncated C-contramodule
resolution (11), we obtain a bounded above complex of injective/cofree
C-comodules

0 ←− C ←− C ⊗k W
∗ ←− C ⊗k Λ2(W )∗(12)

←− · · · ←− C ⊗k Λn(W )∗ ←− · · ·

Applying the functor ΨC = HomC(C,−) to the truncated C-comodule coreso-
lution (10), we obtain a bounded below complex of projective/free C-contra-
modules

0 −→ Homk(C, k) −→ Homk(C,W )(13)

−→ Homk(C,Λ2(W )) −→ · · · −→ Homk(C,Λn(W )) −→ · · ·

Theorem 6.1. For any infinite-dimensional k-vector space W , the com-

plex of cofree comodules (12) is acyclic (i.e., its cohomology spaces vanish in

all the degrees).

Proof. This was stated in [6, Section 0.2.7] (as a part of introduc-
tory/preliminary material for the book). The proof is not difficult.

The complex (12) is the direct limit of its subcomplexes

0 ←− CB ←− CB ⊗k W
∗ ←− CB ⊗k Λ2(W )∗(14)

←− · · · ←− CB ⊗k Λn(W )∗ ←− · · ·

taken over the directed poset of all finite subsets B ⊂ A. The complex (14),
which is a complex of comodules over the subcoalgebra CB = Sym(UB) of
the coalgebra C = Sym(W ), can be obtained by applying the cotensor prod-
uct functor CB �C − to the complex (12) (see [7, Sections 2.5–2.6] or [6,
Section 0.2.1 or 1.2.1]).

The complex (14) is not acyclic, but its cohomology spaces gradually
vanish as the size of the finite subset B ⊂ A grows. Indeed, applying the
vector space dualization functor Homk(−, k) to the finite complex (9), we
obtain a finite Koszul complex that was denoted above by KB

•
(R̂B). It has

the form

0 ←− k ←− Homk(CB, k) ←− Homk(C, U∗
B)(15)

←− Homk(CB ,Λ2(UB)∗) ←− · · · ←− Homk(CB ,Λm(UB)∗) ←− 0

and can be viewed as a projective/free CB-contramodule resolution of the
trivial one-dimensional CB-contramodule k.

L. POSITSELSKI12
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Applying the functor ΦCB
= CB �CB

− to the truncated CB-contramodule
resolution (15), we obtain a finite complex of injective/cofree CB-comodules

0 ←− CB ←− CB ⊗k U
∗
B ←− CB ⊗k Λ2(UB)∗(16)

←− · · · ←− CB ⊗k Λm(UB)∗ ←− 0.

The only cohomology space of the complex (16) is the one-dimensional
k-vector space Λm(UB)∗ situated in the cohomological degree −m, i.e., at
the rightmost term.

Consider the direct sum decomposition W = UB ⊕ VB , where VB ⊂ W
is the subspace with the basis {x∗α : α ∈ A \B}. Consider the graded dual
vector space to the exterior algebra

⊕∞
n=0 Λ

n(VB), and view it as a complex

(17) 0 ←− k
0

←− V ∗
B

0
←− Λ2(VB)∗

0
←− · · ·

0
←− Λn(VB)∗

0
←− · · ·

with zero differential. Then the complex (14) is the tensor product, taken
over the field k, of the complexes (16) and (17). Accordingly, the coho-
mology spaces of the complex (14) are concentrated in the cohomological
degrees ≤ −m, where m is the cardinality of the set B.

As the size of the subset B ⊂ A grows, the cohomology of the com-
plex (14) move away and disappear at the cohomological degree −∞. So the
direct limit (12) of the complexes (14) is acyclic. �

Theorem 6.2. For any infinite-dimensional k-vector space W , the com-

plex of free contramodules (13) is acyclic (i.e., its cohomology spaces vanish

in all the degrees).

Proof. This was also stated in [6, Section 0.2.7]. The proof is only
slightly more complicated than the proof of the previous theorem, in that
one needs to deal with inverse limits. However, we have done all the prepara-
tory work already.

The complex (13) is the inverse limit of its quotient complexes

0 −→ Homk(CB, k) −→ Homk(CB ,W )(18)

−→ Homk(CB,Λ2(W )) −→ · · · −→ Homk(CB ,Λn(W )) −→ · · ·

taken over the directed poset of all finite subsets B ⊂ A. The complex (18),
which is a complex of contramodules over the subcoalgebra CB ⊂ C, can be
obtained by applying the Cohom functor CohomC(CB,−) to the complex (13)
(see [7, Sections 2.5–2.6] or [6, Section 0.2.4 or 3.2.1]).

Similarly to the previous proof, the complex (18) is not acyclic, but its
cohomology spaces gradually vanish as the size of the finite subset B ⊂ A
grows. For the sake of completeness of the exposition, let us start with apply-
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ing the functor ΨCB
= HomCB

(CB ,−) to the truncated CB-comodule coreso-
lution (9). We obtain a finite complex of projective/free CB-contramodules

0 −→ Homk(CB, k) −→ Homk(CB, UB)(19)

−→ Homk(CB,Λ2(UB)) −→ · · · −→ Homk(CB,Λm(UB)) −→ 0.

The only cohomology space of the complex (19) is the one-dimensional
k-vector space Λm(UB) situated in the cohomological degree m, i. e, at the
rightmost term. In fact, the complex of contramodules (19) can be obtained
by applying the vector space dualization functor Homk(−, k) to the complex
of comodules (16).

Consider the exterior algebra
⊕∞

n=0 Λ
n(VB), where as in the previous

proof W = UB ⊕ VB , and view it as a complex

(20) 0 −→ k
0

−→ VB
0

−→ Λ2(VB)
0

−→ · · ·
0

−→ Λn(VB)
0

−→ · · ·

with zero differential. Then the complex (18) is the complex of k-vector
space morphisms, Homk(−,−), from the complex (16) into the complex (20).
Accordingly, the cohomology spaces of the complex (18) are concentrated in
the cohomological degrees ≥ m.

The rest of the argument proceeds along the lines of the proof of Theo-
rem 3.1, based on Lemmas 3.2–3.4. As mentioned above, the complex (13)
is the inverse limit of the complexes (18) taken over the directed poset Ξ of
all finite subsets B ⊂ A with respect to inclusion. At every cohomological
degree n ≥ 0, Lemma 3.2 (for R = k, FB = CB , and P = Λn(W )) tells that
lim←−

i

B⊂A
Homk(CB,Λn(W )) = 0 for all i ≥ 1.

Denote by C•

B the complex (18). By Lemma 3.3, we have lim
←−

i

B⊂A
Hn(C•

B)
= 0 for all i ≥ 0 and n ≥ 0. Now in the context of Lemma 3.4 we have
′Epq

2 = 0 for all p, q ≥ 0, and ′′Epq
1 = 0 for all q ≥ 1. Therefore, En = 0 and

Hn(lim←−B⊂A
C•

B) =
′′En,0

2 = 0 for all n ≥ 0. �

7. Two contramodule constructions of acyclic complexes of

projectives

We have essentially already constructed the promised bounded above,
noncontractible, acyclic complex of injective comodules and bounded be-
low, noncontractible, acyclic complex of projective contramodules over the
cocommutative coalgebra C = Sym(W ). Let us state this as a corollary.

Corollary 7.1. Let W be an infinite-dimensional vector space over a
field k and C = Sym(W ) be the symmetric coalgebra. Then

(a) the complex (12) is a bounded above, noncontractible, acyclic complex
of injective comodules over C;
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(b) the complex (13) is a bounded below, noncontractible, acyclic complex
of projective contramodules over C.

Proof. Part (a): the complex (12) is acyclic by Theorem 6.1. It re-
mains to explain why the complex of C-comodules (12) is not contractible.

The truncated resolution (11),

0 ←− Homk(C, k) ←− Homk(C,W ∗)

←− Homk(C,Λ2(W )∗) ←− · · · ←− Homk(C,Λn(W )∗) ←− · · ·

is a noncontractible (since nonacyclic) complex in the abelian category
C–Contra with the terms belonging to the full subcategory of projective ob-
jects C–Contraproj, so it is a noncontractible complex in C–Contraproj. Ap-
plying the equivalence of additive categories ΦC : C–Contraproj 	 C–Comodinj

(7), we obtain a noncontractible complex (12) in C–Comodinj, which is con-
sequently also noncontractible in C–Comod.

Part (b): the complex (13) is acyclic by Theorem 6.2. It remains to
explain why the complex of C-contramodules (13) is not contractible.

The truncated coresolution (10),

0 −→ C −→ C ⊗k W −→ C ⊗k Λ2(W ) −→ · · · −→ C ⊗k Λn(W ) −→ · · ·

is a noncontractible (since nonacyclic) complex in the abelian category
C–Comod with the terms belonging to the full subcategory of injective ob-
jects C–Comodinj, so it is a noncontractible complex in C–Comodinj. Applying
the equivalence of additive categories ΨC : C–Comodinj 	 C–Contraproj (7), we
obtain a noncontractible complex (13) in C–Contraproj, which is consequently
also noncontractible in C–Contra. �

Now let us present the two contramodule constructions of bounded be-
low, noncontractible, acyclic complexes of projective modules. Recall the
notation HomC(−,−) for the Hom spaces in the category C–Comod. The
notation HomC(−,−) stands for the Hom spaces in the category C–Contra.

Corollary 7.2. Let W be an infinite-dimensional vector space over a
field k and C = Sym(W ) be the symmetric coalgebra. Let

0 −→ k −→ J 0 −→ J 1 −→ J 2 −→ · · ·

be a notation for the injective coresolution (10) of the trivial one-dimensional
C-comodule k. Denote by J the cofree C-comodule C ⊗k W cospanned by W .
Let

(21) 0 −→ HomC(J ,J 0) −→ HomC(J ,J 1) −→ HomC(J ,J 2) −→ · · ·

be the complex obtained by applying the functor HomC(J ,−) to the trun-
cated coresolution (10). Then (21) is a bounded below, noncontractible,

PROJECTIVE MODULES 15



Acta Mathematica Hungarica

16 L. POSITSELSKI

acyclic complex of finitely generated projective left modules over the ring
S = HomC(J ,J )op.

Proof. For any C-comodule M, we have

HomC(C ⊗k W, M) = Homk(W,Homk(C,M)) = Homk(W,ΨC(M)).

Thus the complex (21) can be obtained by applying the vector space Hom
functor Homk(W,−) to the complex (13), and it follows from Theorem 6.2
that the complex (21) is acyclic.

Furthermore, by construction, the C-comodule J 0 = C is a direct sum-
mand of J , while the C-comodules J n = C ⊗k Λn(W ) are isomorphic to J
for n ≥ 1. Hence the left S-module HomC(J ,J 0) is a direct summand of
HomC(J ,J ) = S, and the left S-modules HomC(J ,J n) are isomorphic to S
for n ≥ 1. So (21) is even a complex of cyclic projective left S-modules.

The assertion that the complex of S-modules (21) is not contractible
is provable similarly to the argument in the proof of Corollary 2.3. By
Lemma 2.2(a) (for A = C–Comod and M = J ), the functor HomC(J ,−) is
an equivalence of categories add(J ) 	 S–modproj. The truncated coresolu-
tion (10),

0 −→ J 0 −→ J 1 −→ J 2 −→ · · ·

is a noncontractible (since nonacyclic) complex in C–Comod with the terms
belonging to add(J ), so it is a noncontractible complex in add(J ). Apply-
ing the equivalence of additive categories add(J ) 	 S–modproj, we obtain a
noncontractible complex (21) in S–modproj, which is consequently also non-
contractible in S–Mod. It is important for this argument that the functor
HomC(J ,−) : add(J ) → S–Mod is fully faithful.

Alternatively, put P = Homk(C,W ) ∈ C–Contraproj. Then the co-contra
correspondence (7) restricts to an equivalence of additive categories add(J )
	 add(P) taking J to P. Hence the ring S can be alternatively described as
S = HomC(P,P)op. The complex of left S-modules (21) can be constructed
by applying the functor HomC(P,−) to the complex of C-contramodules (13),
whose terms belong to add(P).

Then the noncontractibility argument can be based on Corollary 7.1(b)
and the fact that the functor HomC(P,−) is an equivalence of categories
add(P) 	 S–modproj (by Lemma 2.2(a) for A = C–Contra and M = P). Once
again, it is important for this argument that the functor HomC(P,−): add(P)
→ S–Mod is fully faithful. In fact, the whole functor HomC(P,−) : C–Contra
→ S–Mod is fully faithful (on the whole abelian category C–Contra) by [11,
Theorem 6.10]. The latter conclusion is based on the observations that P is
the coproduct of dimW copies of the projective generator C∗ = Homk(C, k)
of the abelian category C–Contra, and C∗ is abstractly κ-small in C–Contra
for C = Sym(W ) if κ is the successor cardinality of dimW . �
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Corollary 7.3. Let W be an infinite-dimensional vector space over a
field k and C = Sym(W ) be the symmetric coalgebra. Let

0 ←− k ←− P0 ←− P1 ←− P2 ←− · · ·

be a notation for the projective resolution (11) of the trivial one-dimensional
C-contramodule k. Denote by P the free C-contramodule Homk(C,W ∗)
spanned by the vector space W ∗ = Homk(W,k). Let

(22) 0 −→ HomC(P0,P) −→ HomC(P1,P) −→ HomC(P2,P) −→ · · ·

be the complex obtained by applying the contravariant functor HomC(−,P) to
the truncated resolution (11). Then (22) is a bounded below, noncontractible,
acyclic complex of finitely generated projective left modules over the ring S =
HomC(P,P).

Proof. For any right C-comodule N , any left C-contramodule Q, and
any k-vector space V , there is a natural isomorphism of k-vector spaces

HomC(Q,Homk(N , V )) 	 Homk(N �C Q, V )

[7, Section 3.1], [10, Section 8.6], or [6, Sections 0.2.6 and 5.1.1]. In particu-
lar, we have natural isomorphisms

HomC(Q,P) = Homk(C �C Q, W ∗) = Homk(ΦC(Q),W ∗).

Thus the complex (22) can be obtained by applying the contravariant vector
space Hom functor Homk(−,W ∗) to the complex (12), and it follows from
Theorem 6.1 that the complex (22) is acyclic.

Furthermore, by construction, the C-comodule P0 = C∗ is is a direct
summand of P, while the C-contramodules Pn = Homk(C,Λn(W )∗) are iso-
morphic to P for n ≥ 1. Hence the left S-module HomC(P0,P) is a direct
summand of HomC(P,P) = S, and the left S-modules HomC(Pn,P) are iso-
morphic to S for n ≥ 1. So (22) is even a complex of cyclic projective left
S-modules.

The assertion that the complex of S-modules (22) is not contractible
is provable similarly to the argument in the proof of Corollary 4.1. By
Lemma 2.2(b) (for A = C–Contra and M = P), the functor HomC(−,P) is
an anti-equivalence of categories add(P)op 	 S–modproj. The truncated res-
olution (11),

0 ←− P0 ←− P1 ←− P2 ←− · · ·

is a noncontractible (since nonacyclic) complex in C–Contra with the terms
belonging to add(P), so it is a noncontractible complex in add(P). Applying
the anti-equivalence of additive categories add(P)op 	 S–modproj, we obtain
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a noncontractible complex (22), which is consequently also noncontractible
in S–Mod. It is important for this argument that the contravariant functor
HomC(−,P) : add(P)op → S–Mod is fully faithful. �

8. Summary of the examples obtained

Now we can summarize our constructions as follows.

Conclusion 8.1. There exists an associative ring S for which
(a) there is a bounded above acyclic complex of injective right S-modules

that is not contractible;
(b) there is a bounded below acyclic complex of flat left S-modules that is

not pure acyclic;
(c) there is a bounded below acyclic complex of (finitely generated) pro-

jective left S-modules that is not contractible.

Proof. Proposition 1.2 tells that any ring S satisfying (c) also satis-
fies (a) and (b). Various examples of associative rings S satisfying (c) are
provided by Corollaries 2.3, 4.1, 7.2, and 7.3. �

What can one say about the rings S appearing in Corollaries 2.3, 4.1,
7.2, and 7.3 ? First of all, none of them is commutative (while we have
cocommutative coalgebra examples in Corollary 7.1).

Let us denote the respective versions of the ring S by S2.3, S4.1, S7.2,
and S7.3. While the ring S2.3 (from Corollary 2.3) appears to be compli-
cated and hard to visualize, the rings S4.1, S7.2, and S7.3 can be described
rather explicitly.

In the context of Corollary 4.1, it makes sense to choose the infinite
Koszul complex K

•
(R) = lim

−→B⊂A
KB

•
(R) to play the role of the projective

resolution P
•
(5) of the R-module k. In this case, one can take P to be

the free R-module with A generators, P =
⊕

α∈A R. Then the R-module
P0 = R is a direct summand of P , while the R-module Pn is isomorphic
to P for n ≥ 1, so the assumption of the corollary is satisfied. The resulting
ring S4.1 = HomR(P,P ) is the ring of infinite, column-finite A× A matri-
ces with entries from the commutative polynomial ring R = k[xα : α ∈ A] in
infinitely many variables.

In the context of Corollaries 7.2 and 7.3, it makes sense to introduce
the notation J7.2 for the cofree comodule J = C ⊗k W appearing in Corol-
lary 7.2 and the notation P7.2 for the free contramodule P = Homk(C,W )
mentioned in the discussion in its proof. Then the notationP7.3 can be used
for the bigger free contramodule P = Homk(C,W ∗) from Corollary 7.3, and
we can also denote by J7.3 the corresponding cofree comodule J = C ⊗kW

∗.
The ring S7.2 = HomC(J7.2,J7.2)

op = HomC(P7.2,P7.2)
op is the ring

of infinite, row-zero-convergent A×A matrices with entries from the topolog-
ical commutative formal power series ring R̂ = C∗ = lim←−B⊂A

k[[xα : α ∈ B]]
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in infinitely many variables. Such rings of row-zero-convergent matrices were
discussed in the papers [11, Example 7.10] and [12, Section 5].

Let D denote the indexing set of a basis {yδ : δ ∈ D} in the k-vector
space W ∗. The cardinality |D| of the set D is equal to |k||A|, where |k| is the
cardinality of the field k and |A| is the cardinality of the set A. Then the
ring S7.3 = HomC(J7.3,J7.3) = HomC(P7.3,P7.3) is the ring of infinite,
column-zero-convergent D ×D matrices with entries from the topological
commutative formal power series ring R̂ in infinitely many variables indexed
by A.

Endowed with its natural topology, the ring S7.2 becomes a complete,
separated right linear topological ring (i.e., a topological ring with a base of
neighborhoods of zero formed by open right ideals). Such topological rings
were discussed in the papers [8,11,12]. Moreover, the ring S7.2 is topologically
left perfect in the sense of [12, Section 14] (as one can see from the discus-
sion in [11, Section 7.3] or [12, Section 5] together with [8, Example 12.3]).
Similarly, the ring S7.3 is a complete, separated, left linear topological ring
which is, moreover, topologically right perfect. In other words, the ring S7.3
is the endomorphism ring of a module with perfect decomposition [12, Sec-
tion 10], while S7.2 is the opposite ring to the endomorphism ring of such a
module.

Viewed as abstract rings, both the rings S7.2 and S7.3 are semiregular

in the sense of [1, Section 4]; see the discussion in [12, Remark 10.5]. (The
semiregularity is a left-right symmetric property.) The ring S4.1, on the
other hand, has vanishing Jacobson radical.

The ring S7.3 differs from the opposite ring to S7.2 for the only reason
that the cardinality of the set D is larger than that of the set A. One can
employ the bigger cofree comodule J7.3 = C ⊗k W

∗ in lieu of the cofree co-
module J7.2 = C ⊗k W in the construction of Corollary 7.2 (while leaving
the rest of the construction unchanged). This will produce a pair of oppo-
site rings S and Sop, both of them semiregular, both of them satisfying all
the claims of Conclusion 8.1.

Remark 8.2. None of the rings S4.1, S7.2, and S7.3 is Noetherian
on either side. Indeed, consider the ring T = Homk(k(E), k(E)) of infinite,
column-finite E × E matrices with entries from the field k (where E is a
set and k(E) is the k-vector space with a basis indexed by E). Then T is
a quotient ring of S4.1 (for E = A) and of S7.3 (for E = D), while the op-
posite ring to T is a quotient ring of S7.2 (for E = A). The ring T is von
Neumann regular, so it cannot be left or right Noetherian (as any one-sided
Noetherian von Neumann regular ring is semisimple Artinian).

Remark 8.3. A simpler construction of rings and complexes of modules
satisfying Conclusion 8.1 than the one discussed above exists (see Exam-

PROJECTIVE MODULES 19



Acta Mathematica Hungarica

20 L. POSITSELSKI

ple 8.4 below). But the following näıve attempt at constructing an example
for Conclusion 8.1(b) fails.

The commutative ring R = k[xα : α ∈ A] of polynomials in infinitely
many variables over a field k is not Noetherian, but it is coherent. Hence the
class of flat R-modules is closed under infinite products in R–Mod, and it fol-
lows that the R-module HomR(Q,P ) is flat for any projective R-module Q
and flat R-module P . Thus the complex (6) from Corollary 4.1 is a bounded
below, acyclic complex of flat R-modules. One does not even need the
R-modules Pn to be direct summands of P for this claim to hold; it suf-
fices to take P = R.

However, this is not an example for Conclusion 8.1(b), because the com-
plex of R-modules (6) is actually pure acyclic (for any flat R-module P ).
Indeed, it suffices to show that, for any finitely presented R-module M , ap-
plying the functor M ⊗R − preserves acyclicity of the complex (6). Denote
the complex (6) by F •.

Any finitely presented module over the ring of polynomials R in in-
finitely many variables has a finite projective resolution G

•
by finitely gen-

erated projective R-modules. Since F • is a complex of flat R-modules and
G

•
is a finite resolution, the complexes M ⊗R F • and G

•
⊗R F • are quasi-

isomorphic. Finally, viewed as an object of the homotopy category of com-
plexes of R-modules K(R–Mod), the complex G

•
⊗R F • belongs to the thick

subcategory spanned by the complex F • (since the complex G
•
belongs to

the thick subcategory spanned by the one-term complex of R-modules R).
As the complex F • is acyclic, so is the complex G

•
⊗R F •.

Example 8.4. The following example has a different nature than all
the previous examples in this paper. It was communicated to the author by
A. Canonaco and is reproduced here with his kind permission.

Suppose that we have a bounded below complex of free modules with one

generator over a ring S. Obviously, such a complex of (left) modules has
the form

(23) 0 −→ S
∗z0−→ S

∗z1−→ S
∗z2−→ S −→ · · · ,

where z0, z1, z2, . . . is some sequence of elements in S. For the sequence of
maps (23) to be a complex, the equation znzn+1 = 0 has to be satisfied in S
for all integers n ≥ 0.

Now let k be a field and Suni be the k-algebra generated by a sequence of
elements x0, x1, x2, . . . with the imposed relations xnxn+1 = 0 for all n ≥ 0,
and no other relations. Then one can easily see that any element s ∈ Suni
satisfying the equation sx0 = 0 vanishes, while any element s ∈ Suni satisfy-
ing sxn+1 = 0 with n ≥ 0 has the form s = txn for some t ∈ Suni. It suffices
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to represent s as a k-linear combination of monomials in the variables xn,
n ≥ 0, etc. In other words, the bounded below complex of free Suni-modules

(24) 0 −→ Suni
∗x0−→ Suni

∗x1−→ Suni
∗x2−→ Suni −→ · · ·

is acyclic. On the other hand, if k is endowed with the right Suni-module
structure in which all the elements xn act by zero in k, then applying the
functor k ⊗Suni

− to the complex (24) produces a nonacyclic complex with
zero differential. So the complex (24) is not contractible.

The bounded below complex of free Suni-modules with one generator (24)
is universal in the following sense. Let S be an associative k-algebra and
C• be a complex of free S-modules with one generator such that Ci = 0 for
i < 0. Then there exists a k-algebra homomorphism f : Suni → S such that
the complex C• is obtained by applying the functor of extension of scalars
S ⊗Suni

− to the complex (24). Indeed, the complex C• has the form (23)
for some elements zn ∈ S, n ≥ 0 satisfying the equations znzn+1 = 0, and it
remains to let f : Suni → S be the homomorphism taking xn to zn for every
n ≥ 0.

While the example in Example 8.4 is certainly simpler (to construct and
prove its properties) than the examples in Corollaries 2.3, 4.1, 7.2, and 7.3,
no example of a bounded below, noncontractible, acyclic complex of pro-
jective modules (or of a bounded above, noncontractible, acyclic complex
of injective modules) can be too simple. The results of [16, Appendix A]
demonstrate this.
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Lecture Notes in Math., vol. 254, Springer (1972).

[5] A. Neeman, The homotopy category of flat modules, and Grothendieck duality, In-
ventiones Math., 174 (2008), 225–308.

PROJECTIVE MODULES 21



Acta Mathematica Hungarica

22 L. POSITSELSKI: PROJECTIVE MODULES

[6] L. Positselski, Homological Algebra of Semimodules and Semicontramodules: Semi-
infinite Homological Algebra of Associative Algebraic Structures, Appendix C
in collaboration with D. Rumynin, Appendix D in collaboration with
S. Arkhipov, IMPAN Monogr. Mat. (N.S.), vol. 70, Birkhäuser/Springer Basel
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68 (1999), 335–401.
[14] J. Rickard, Unbounded derived categories and the finitistic dimension conjecture, Adv.

in Math., 354 (2019), Paper No. 106735, 21 pp.
[15] L. Shaul, The finitistic dimension conjecture via DG-rings, arXiv:2209.02068 (2022).
[16] L. Shaul, Acyclic complexes of injectives and finitistic dimensions, With an appendix

by T. Nakamura and P. Thompson, arXiv:2303.08756 (2023).
[17] M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W. A. Benjamin,

Inc. (New York, 1969).

22 L. POSITSELSKI: PROJECTIVE MODULES

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need 
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.


	A BOUNDED BELOW, NONCONTRACTIBLE,
ACYCLIC COMPLEX OF PROJECTIVE
MODULES
	Abstract
	Introduction
	1. Projective, flat, and injective bounded acyclicity problems
	2. The injective construction of acyclic complex of projectives
	3. Dual Rickard’s acyclicity theorem
	4. The projective construction of acyclic complex of projectives
	5. Brief preliminaries on coalgebras
	6. Comodule and contramodule acyclicity theorems
	7. Two contramodule constructions of acyclic complexes of
projectives
	8. Summary of the examples obtained
	Acknowledgements
	References




