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Abstract. We study some families of finite groups having inner class-
preserving automorphisms. In particular, let G be a finite group and S be a
semidihedral Sylow 2-subgroup. Then, in both cases when either Sym(4) is not
a homomorphic image of G and Z(S) < Z(G) or G is nilpotent-by-nilpotent, we
have that all the Coleman automorphisms of G are inner. As a consequence, these
groups satisfy the normalizer problem.

1. Introduction

The study of the automorphisms of a finite group that preserve the con-
jugate classes has long been a subject of great interest. Since the first re-
searches, one of the most studied problems is to find which are the groups
whose automorphisms of this type are all inner (see, e.g., [4,6,9,16,19,21]). In
this paper we deal with a particular type of class-preserving automorphisms,
called Coleman automorphisms, using the definition given by Marciniak and
Roggenkamp in [18]. Donald B. Coleman, in [5, Theorem 1], showed that
the main property of these class-preserving automorphisms, i.e. that of be-
coming inner if restricted to any Sylow p-subgroup, plays an important role
in the study of the normalizer of a group G in the unit group U(Z(G)) of
its integral group ring ZG. Indeed, using Coleman’s result and other two
results due to Krempa [16, Theorem 3.2] and Jackowski and Marciniak [16,
Proposition 2.3], it is possible to prove that if G is a group for which each
Coleman automorphism is inner, then G satisfies the normalizer problem, i.e.

NU(ZG)(G) = GZ(U(ZG)).
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As a reference for knowing this problem and other problems and results re-
lated to the study of integral group rings see, e.g., [2]. If AutCol(G) is the
group of all Coleman automorphisms of G, here we study the problem to
find finite groups G for which AutCol(G) = Inn(G), which we call OutCol-
problem. In the literature, there are several affirmative answers and coun-
terexamples to this problem (see, e.g., [11,13–15,17,18,22,23]) and also au-
thors which study the characterization of the Coleman automorphism group
for some classes of finite groups (see, e.g., [10,12]). In particular, we consider
families of finite groups with semidihedral Sylow 2-subgroups. We seem fair
to point out that even in [23] the authors dealt with the same problem for
groups containing semidihedral Sylow 2-subgroups, considering different hy-
pothesis and thus obtaining different results. In Section 2, starting from
a result due to Juriaans, de Miranda and Robério [17, Theorem 2.4], pre-
senting a structure for a counterexample to the OutCol-problem, we give,
with a similar approach, some preliminaries results which we will then use
for proving our main results. Finally, in Section 3, we prove our main re-
sults in which we give two families of finite groups, with semidihedral Sylow
2-subgroups, satisfying the OutCol-problem.

2. Preliminary results

Let G be a finite group. Let us denote by Aut(G) the group of all auto-
morphisms of G and by Inn(G) the subgroup of Aut(G) containing all inner
automorphisms of G. Let us define the subgroup Autc(G) of Aut(G) as the
set of all class-preserving automorphisms of G, i.e. the automorphisms pre-
serving the conjugacy classes in G. The following definition was introduced
by Marciniak and Roggenkamp in [18].

Definition 2.1. A class-preserving automorphism ϕ ∈ Autc(G) of G is
called Coleman automorphism, for short C-automorphism, if

(i) ϕ2 ∈ Inn(G);
(ii) for every Sylow p-subgroup of G, we have ϕ|S = conjg|S , for some

g ∈ G.

We shall denote by AutCol(G) the group of the C-automorphisms of G.

Remark 1. By definition, AutCol(G) ≥ Inn(G) and C-automorphisms
of odd order are inner and so, taking a suitable odd power, we can as-
sume that such automorphisms have order a power of 2. Moreover, since
|AutCol(G)| is divisible only by the prime numbers dividing |G|, we can sup-
pose that G has order even. Indeed, suppose that ϕ ∈ AutCol(G) has order
a prime p such that p � |G| and let H = {g ∈ G | ϕ(g) = g}. Then p does not
divide the cardinality of any conjugate class C in G, hence H ∩ C �= ∅, and
so H = G, i.e. ϕ = Id. For another definition of Coleman automorphisms
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for which it is possible consider such automorphisms with a p-power order,
also with p �= 2, see for example [14,15].

Now we give some results which we will exploit, in Section 3, for present-
ing two families of groups G, with semidihedral Sylow 2-subgroups, for which
each C-automorphism is inner, or, in other words, AutCol(G) = Inn(G),
which is equivalent to say

OutCol(G) = AutCol(G)/ Inn(G) = {Id}.

For the sake of simplicity, we will say that a group G satisfies the OutCol-
problem if OutCol(G) = {Id}.

We start from the following result giving a structure of a certain class of
groups which is a minimal counterexample to the OutCol-problem. As usual,
we denote by Op(G) the maximal normal p-subgroup of G and by Op′(G)
the maximal normal subgroup of G whose order is coprime to p.

Theorem 2.2 [17, Theorem 2.4]. Let G be a finite solvable group
which is a minimal counterexample to the OutCol-problem. Suppose that
Z(S) < Z(G), for S a Sylow 2-subgroup of G. Then G has a non-inner
C-automorphism ϕ and contains a normal subgroup H such that :

(i) ϕ induces a derivation ρ : G → H such that ρ(g) = ϕ(g)g−1 ∈ H , for
every g ∈ G;

(ii) there exists a Sylow 2-subgroup S on which ϕ acts as the identity ;
(iii) the Fitting subgroup Fit(G) of G is H ×F1, H = O2′(Fit(G)) is min-

imal normal in G and F1 �= {1}.
(iv) ϕ|H = conjx0

= conjxg

0

, for some x0 ∈ S and for every g ∈ G;
(v) ϕ2 = Id and ϕ(h) = x−1

0 hx0 = h−1, for every h ∈ H .

From now on we will consider G a finite group with semidihedral Sylow
2-subgroups. Let us recall that a semidihedral group S of order 2n is a group
with the following presentation

〈
a, b | a2n−1

= b2 = 1, bab = a2n−2−1〉 ,

or, in other words, is the semidirect product C2n−1 � C2, where C2 acts on
C2n−1 by x �→ x2n−2−1. In particular, all the elements in S \ 〈a〉 have order 2
or 4. Moreover, we have the following useful properties (see [1, Lemma 1,
p. 9]):

(i) Z(S) = C2 and S/Z(S) is dihedral D2n−2 of order 2n−1;
(ii) S possesses precisely three maximal subgroups, respectively cyclic,

generalized quaternion, and dihedral, and so, more in general, the subgroups
of S are cyclic, generalized quaternion, dihedral and Klein groups contained
in dihedrial subgroups;

(iii) if D is a dihedral subgroup of S of order at least 8, then the maximal
cyclic subgroup of D is contained in the maximal cyclic subgroup C2n−1 of S.

COLEMAN AUTOMORPHISMS OF FINITE GROUPS 3
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Notice that, by definition, n has to be bigger or equal to 4, or, in other
words, S has order at least 16.

Lemma 2.3. Let G be a finite solvable group which is a minimal coun-

terexample to the OutCol-problem, containing a semidihedral Sylow 2-sub-
group S such that Z(S) < Z(G). Let H be the normal subgroup and x0 the

element of S of Theorem 2.2. Then there exist s1 ∈ S of order four and

h1 ∈ H \ {1} such that [x0, s1] �= 1 = [h1, s1].

Proof. By Theorem 2.2, x0 �∈ Z(G) > Z(S) and, since S is a semidihe-
dral group, it is possible to choose y ∈ S \ {〈x0〉} of order 4. We can notice
that [x0, y] �= 1. If we suppose CH(y) �= {1}, then we can set s1 = y and so
[h1, s1] = 1, for any h1 ∈ CH(s1) \ {1}. Let us suppose that CH(y) = {1}. In
this case, for any positive integer k, we have that xk0y trivially acts on H .
Since [x0, x

k
0y] = [x0, y] �= 1, taking k such that xk0y has order 4 and setting

s1 = xk0y , we also have [s1, h1] = 1, for any h1 ∈ H \ {1}. �

Corollary 2.4. With the same notation and the same hypotheses of

Lemma 2.3, we have that a conjugate of s1 belongs to the maximal cyclic

subgroup of S and there exists a 2-element s0 of order at least 8, inverting
h1 and commuting with s1.

Proof. Let us define f = h1s1 and let ϕ be the C-automorphism of
Theorem 2.2. Since ϕ(f) = ϕ(h1)ϕ(s1) = h−1

1 s1 is conjugate to f by a
2-element s0, we get

h−1
1 s1 = ϕ(f) = (s−1

0 h1s0)(s−1
0 s1s0).

By [h1, s1] = 1 and the uniqueness of decomposition of ϕ(f), it follows that
s0 inverts h1 and commutes with s1. Moreover, since S is a semidihedrial
group and [s0, h1] �= 1 but [h1, s1] = [s0, s1] = 1, then ord(s0) > ord(s1) = 4;
hence ord(s0) ≥ 8 and so s1 belongs to 〈s0〉 and, again because of S is a
semidihedrial group, 〈s0〉 is contained in a conjugate of the maximal cyclic
subgroup of S. �

Lemma 2.5. Let G be a finite group with a semidihedral Sylow 2-sub-
group S. If Z(S) < Z(G) and G is a counterexample of minimal order to

the OutCol-problem, then either G = S �O2′(G) or G/N = Sym(4), where
N = Z(S)×O2′(G). In particular, if G = S �O2′(G), then the element s1
in S of Lemma 2.3 is contained in the maximal cyclic subgroup of S and the

element x0 in S of Theorem 2.2 has order 2 or 4.

Proof. By hypothesis, Z(S) < Z(G) and so we can define the quo-
tient H = G/Z(S). Since S is semidihedral, then H contains the Sylow
2-subgroup S/Z(S) = D2n−2 , with n ≥ 4, and so it contains a dihedral Sy-
low 2-subgroup of order at least 8 and hence the order of H is a multiple
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of 8. Notice that in [8, Theorem 2], an immediate corollary of the classi-
fication of Gorenstein and Walter of the finite groups with dihedral Sylow
2-subgroups (in the case when the group is simple), the hypothesis is sat-
isfied when the group has order 4m, with m odd, and in this case, the
simple group can only be PSL(2, q), for q > 3. Hence, in our case, since
|H/O2′(H)| = 8m, for some positive integer m, then we have H/O2′(H)
�= PSL(2, q), for q > 3. Moreover, H/O2′(H) cannot be a subgroup K of
PΓL(2, q) containing as subgroup PSL(2, q), for q > 3. Indeed, if by contra-
diction G/(Z(S)×O2′(G)) = H/O2′(H) = K, then

|G/(Z(S)×O2′(G))| = k(q2 − 1)q,

for some positive integer k. Therefore, there exists a subgroup A of G such
that A/(Z(S)×O2′(G)) = PSL(2, q), which is simple, since PSL(2, q) is sim-
ple for q > 3. Moreover, notice that |G| = 2hk(q2− 1)q and |A| = h(q2 − 1)q,
where |O2′(G)| = h and recalling that |Z(S)| = 2 and

|PSL(2, q)| =
1
2
(q2 − 1)q,

and so the index of A in G is 2k. Hence a Sylow 2-subgroup S′ of A is a
proper subgroup of S, and so S′ can be either cyclic or generalized quater-
nion or dihedral. It is well known that a Sylow 2-subgroup of a simple group
cannot be cyclic, and in [3], the authors proved that it cannot even be gen-
eralized quaternion. Moreover S′ cannot even be dihedral since, for order
reasons, A �= PSL(2, q), and so we have a contradiction. Therefore, by the
Gorenstein-Walter classification we have either G/O2′(G) ∼= S or H/O2′(H)
∼= PGL(2, 3) = Sym(4). Consequently, applying the Schur–Zassenhaus The-
orem (see, e.g., [20, Theorem 9.1.2]), we have either G = S � O2′(G) or
G/(Z(S)×O2′(G)) = Sym(4).

Let us now suppose that G = S �O2′(G). Notice that, by the Feit-
Thompson Theorem [7], O2′(G) is solvable, and also S is it, being is a
2-group, so G is solvable and we can apply Corollary 2.4. Hence there ex-
ists s1 ∈ S such that, for some g ∈ G, sg1 is contained in the maximal cyclic
subgroup 〈a〉 of S. If π : G → S ∼= G/O2′(G) is the natural projection with
kernel O2′(G), then π fixes S, and so applying π on sg1, it is possible to
choose g ∈ S such that s1 ∈ 〈a〉. �

Proposition 2.6. Let G be a finite group whose Sylow 2-subgroup are
semidihedral, G is a counterexample of minimal order to the OutCol-problem
and there exists a normal nilpotent subgroup N of G such that a Sylow 2-sub-
group of G/N is normal. Then any ϕ ∈ AutCol(G) can be modified, modulo
Inn(G), in a such way that ϕ|O2′(N) = Id.

Proof. Suppose that G is a minimal counterexample to the OutCol-
problem. Let us denote O2′(N) by O. Since N is nilpotent, also O is it. So
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we can consider O as a product of its Sylow p-subgroups Op. If the Frattini
subgroup Φ(O) is non-trivial, then Φ(Op̄) �= {1}, for some prime p̄ dividing
the order of O. Since G is a minimal counterexample, then G/Φ(Op̄) satis-
fies the OutCol-problem. Hence, modulo Inn(G), we can define, modifying
ϕ, a derivation ρ : G → Φ(Op̄) such that ρ(g) = ϕ(g)g−1 ∈ Φ(Op̄), for every
g ∈ G. Choose a prime divisor q of the order of O and notice that ϕ fixes
Oq. If q �= p̄, then, for each g ∈ Oq, we have ρ(g) = 1 and so ϕ|Oq

= Id. If
q = p̄, then we have Op̄ = COp̄

(ϕ)[Op̄, ϕ] ⊂ COp̄
(ϕ)Φ(Op̄); but we also have

COp̄
(ϕ)Φ(Op̄) ⊂ Op̄. Hence Op̄ = 〈COp̄

(ϕ),Φ(Op̄)〉, and so, by definition of
Frattini group, Op̄ = COp̄

(ϕ). Therefore ϕ|Op
= Id, for every p dividing |O|,

and so ϕ|O = Id.
Let us now suppose that Φ(O) = {1}. By a well-known property of the

Frattini subgroup, we have that O is a direct product of elementary abelian
groups. Let us write O = Op×O1, where Op is a Sylow p-subgroup of O and
O1 is the complement of Op in O. We necessarily have that O �= Op, oth-
erwise, since ϕ ∈ AutCol(G), we have ϕ|O = conjg|O, for some g ∈ G, a con-
tradiction. We modify again ϕ in a such way that we can define ρ : G → Op

such that ρ(g) = ϕ(g)g−1 ∈ Op, for every g ∈ G. Therefore, since ϕ is a
2-element, we have that if g ∈ O, then ϕ(g) = s−1gs, where s is a 2-element.
Let us fix a Sylow 2-subgroup such that ϕ|S = Id. By hypothesis G/N has
unique Sylow 2-subgroup, and so, modulo N , s belongs to S, or, in other
words, there exist n ∈ N and x ∈ S such that s = nx. In particular, since O
is abelian, we can conjugate g by a 2-element s and choose s ∈ S. In other
words, we proved that g ∈ O is conjugate to ϕ(g) by an element of S. Let us
define H = 〈ϕ|O, conjg|O | g ∈ S〉, which is a 2-group, since ϕ|S = Id and ϕ
is a 2-element. Since O is a direct product of elementary abelian subgroups,
then it can be written as a direct product of irreducible H-modulos M1,. . . ,
Mk. Let us consider m = m1 · · ·mk, where 1 �= mi ∈ Mi, for every 1 ≤ i ≤ k.
As mentioned before, we can choose s ∈ S such that ϕ(m) = s−1ms, and so
ψ = ϕ · conjs−1 ∈ CH(m). Since S is semidihedral, then Z(S) = 〈ŝ〉 = C2, for
some ŝ ∈ S of order 2, and, being O = Op ×O1, m = zw with z ∈ Op and
w ∈ O1. Since ρ(g) ∈ Op for each g ∈ G and, Op and O1 are normal in G,
we have that ϕ|O1

= Id. By definition, ψ fixes m and (ord(z), ord(w)) = 1,
and so we have that sw = ws. If ϕ fixes also z, then again sz = zs, and
so we have that the sets {t ∈ Mi | t ∈ Op, ϕ(t) = t} are H-invariant and so
they coincide with Mi, since Mi is irreducible. Hence ϕ fixes also Op, and
so O. Let us now suppose that s �∈ CH(z). In particular, we can suppose
that s �= 1 and, since we have chosen s in the maximal cyclic subgroup of S
and S is semidihedral, we have Z(S) = 〈ŝ〉 ≤ 〈s〉 < CH(w). Therefore, the
sets {t ∈ Mi | t ∈ O1, [ŝ, t] = 1} are H-invariant and so again they coincide
with Mi. This implies that [ŝ, O1] = 1. Finally, it is enough to prove that,
if s �∈ CH(z), then ϕ|Op

= conjŝ|Op
. Since G is a minimal counterexample to

the OutCol-problem, then G = G/O1 satisfies OutCol(G) = {Id}, and so, in
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partucilar, there exists a 2-element g ∈ G such that ϕ = conjg, where ϕ is a
C-automorphism of G induced by ϕ. Since, by hypothesis, ϕ|S = Id, where
S is a Sylow 2-subgroup of G, we have that g ∈ Z(S). Because of O1 has
order odd, then S ∩O1 = {1}, and so we can choose g = ŝ. Since ρ(g) ∈ Op,
we obtain that ϕ(g) = conjŝ(g), for each g ∈ Op. Since we already proved
that ϕ and conjŝ act as the identity on O1, we obtain that ϕ|O = conjŝ|O.
Finally, also when Φ(O) = {1}, we can modify ϕ, modulo Inn(G), such that
ϕ|O = Id. �

For a proof of a more general version of Proposition 2.6, see [15, Corol-
lary 3]

3. Main results

In this section we prove our main results. In particular we exhibit two
families of finite groups, with semidihedral Sylow 2-subgroups, satisfying
the OutCol-problem. We will use the same notation of Theorem 2.2 and
Lemma 2.3.

Theorem 3.1. Let G be a finite group and S be a Sylow 2-subgroup.
Suppose that S is semidihedral and Z(S) < Z(G). If Sym(4) is not a homo-

morphic image of G, then OutCol(G) = {Id}. In particular this is the case

when |S| > 16.

Proof. Suppose that G is a minimal counterexample to the OutCol-
problem. By Corollary 2.4, we have the

• s1 ∈ 〈s0〉,
• s1 and a conjugate sg0 of s0, for some g ∈ G, are contained in the

maximal cyclic subgroup of S, and
• the order of x0 is 2 or 4.
First, suppose the order of x0 is 4. The element s2 = x0s

g
0 belongs to S,

has order 4 and commutes with hg
1, indeed, considering Theorem 2.2(v) and

Corollary 2.4, we have

s−g
0 x−1

0 hg
1x0s

g
0 = (s−1

0 h−1
1 s0)g = hg

1

Since, by Theorem 2.2(ii)–(v), (hg
1)

−1s2 = ϕ(hg
1s2) is conjugate to hg

1s2, then
there exists a 2-element f commuting with s2 and inverting hg

1. Hence the
order of f is at least 8 and, by Lemma 2.5, we have that s2 belongs to the
maximal cyclic subgroup of S, and so also x0 is contained in the maximal
cyclic subgroup of S. This implies that x0 has to commute with s1 and that
is a contradiction. In the case when x0 has order 2, we can proceed in a
similar way, considering s3 = x2

0s
g
0. Finally, we obtain the last claim of our

theorem, applying again Lemma 2.5. �
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Theorem 3.2. Let G be a nilpotent-by-nilpotent finite group whose Sy-

low 2-subgroups are semidihedral. Then OutCol(G) = {Id}.

Proof. Suppose that G is a minimal counterexample to the OutCol-
problem. Let F = Fit(G) be the Fitting subgroup of G and ϕ ∈ AutCol(G)
be non-inner. Let N be a normal nilpotent subgroup of G such that G/N is
nilpotent, and so also (G/N)/(F/N) = G/F is nilpotent. By Proposition 2.6,
we can suppose that ϕ acts as the identity on O2′(F ). If F = O2′(F ), then
ϕ is a C-automorphism which acts as the identity on F ; hence, if g ∈ G and
f ∈ F , we have

g−1fg = ϕ(g−1fg) = ϕ(g−1)fϕ(g).

Therefore ϕ(g)g−1 centralizes F . Since G is solvable, being nilpotent-by-
nilpotent, we have that F contains its centralizing, and so ρ(g) = ϕ(g)g−1

∈ Z(F ). Let m = exp(F ), then ϕm(g) = ρm(g)g = g; this means that ϕ has
odd order, since m is odd, and so we obtain a contradiction, recalling that
if a C-automorphism has odd order then it is inner. Suppose now that |F |
is even. Then the intersection O2(G) of all the semidihedral Sylow 2-sub-
groups is non-trivial and so it contains a cyclic group C2 of order 2, which is
characteristic in O2(G). This implies that C2 is normal, and hence central,
in each semidihedral Sylow 2-subgroup S and thus C2 = Z(S). Now, since
it is characteristic in O2(G), it is normal, and hence central, in G, and so we
can conclude that Z(S) < Z(G). Finally, since G is nilpotent-by-nilpotent,
Sym(4) can not be a homomorphic image of G, and so the claim follows from
Theorem 3.1. �

Acknowledgement. The author is grateful to the referee for the inter-
est expressed in the results shown and for the valuable suggested references
that improve the bibliography of the manuscript.
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