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Abstract. We discuss the finiteness of the topological entropy of continu-
ous endomorphims for some classes of locally compact groups. Firstly, we focus
on the abelian case, imposing the condition of being compactly generated, and
note an interesting behaviour of slender groups. Secondly, we remove the con-
dition of being abelian and consider nilpotent periodic locally compact p-groups
(p prime), reducing the computations to the case of Sylow p-subgroups. Finally,
we investigate locally compact Heisenberg p-groups Hn(Qp) on the field Qp of the
p-adic rationals with n arbitrary positive integer.

1. Motivations and main results

In the present paper a locally compact group is always assumed to be a
topological group whose topology is both Hausdorff and locally compact.
Hood [14] formulated a notion of topological entropy involving the well
known concept of uniformity for a topological space. His definition applies
to a topological groups possessing a left uniformity, since continuous en-
domorphisms are uniformly continuous (in connection with the given left
uniformity). Let us be more formal on Hood’s Entropy [14] in the context
of what we need to investigate here. For a locally compact group G, we
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denote by CT (G) the collection of all compact neighborhoods of the iden-
tity of G, and by μ a left invariant Haar measure on G. For a continuous
endomorphism ϕ of G, an element V ∈ CT (G) and an n ∈ N = {1, 2, 3, . . .},

(1.1) Cn(ϕ, V ) = V ∩ ϕ−1(V ) ∩ · · · ∩ ϕ−n+1(V ) ∈ CT (G)

defines the n-th ϕ-cotrajectory of V . The topological entropy of ϕ (in the
sense of Hood) is

(1.2) htop(ϕ) = sup
{
lim sup
n→∞

(− logμ(Cn(ϕ, V ))
n

) ∣∣∣ V ∈ CT (G)
}
.

Adler and others [1,3,18] investigated the aforementioned notions, stressing
on dynamical properties of topological structures with relations with ergodic
theory and mathematical physics. Following [7,8], we may introduce the
topological entropy of a locally compact group G as

(1.3) Etop(G) =
{
htop(ϕ) | ϕ ∈ End(G)

}
,

where End(G) denotes the ring of continuous endomorphisms of G and
Aut(G) the group of continuous automorphisms of G. Here we investigate
the cardinality of (1.3) and relations with structural properties, as made in
[3,4,8,17,21,22,24].

Denoting with Q̂ the topological dual (in the sense of Pontryagin) of the
additive group Q of the rationals, we note that

inf
{
Etop(G) \ {0} | G is a compact group

}
(1.4)

= inf
({

htop(ϕ) | ϕ ∈ Aut(Q̂n), n ∈ N
}
\ {0}

)
and a formula of Yuzvinski [24] shows that htop(ϕ) can be calculated from
the solutions of the characteristic polynomial of ϕ (see [16,24]). Looking
at locally compact groups, we also note that htop(ψ) is finite for any ψ ∈
End(R). Actually, we can do much more: given t ∈ Etop(R) \ {+∞} we may
construct ψ ∈ Aut(R) of htop(ψ) = t, see [3,23].

Following [7,8,10,22], we introduce (for a locally compact group G)

(1.5) E0 = {G | Etop(G) = {0}} and E<∞ = {G | Etop(G) = [0,+∞)}

and note that there are results which describe the abelian cases in E<∞

and E0. The characterization of groups in E0 can indicate the presence of
structural theorems. For instance, finite abelian groups are in E0 and have
a decomposition in direct product. On the other hand, very little is known
in the nonabelian case in E<∞ and E0.
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Following [12, Definition 2.2] and denoting by P the set of all primes,
an element g of a locally compact group G is called p-element, if the se-
quence gp

k

with k ∈ N tends to the identity element in G. A locally compact
group G is called p-group, if G coincides with

(1.6) Gp =
{
g ∈ G | g is a p-element

}
=

{
g ∈ G | lim

k→∞
gp

k

= 1
}
.

A maximal p-subgroup of a locally compact group G is called p-Sylow
subgroup of G. Note that Gp turns out to be a closed subgroup by [12,
Lemma 2.6], when G is totally disconnected. Following [12,13], we denote
by G0 the connected component of the identity and say that G is compactly
covered, if for an arbitrary x ∈ G we can always find a compact subgroup C
of G such that x ∈ C. From [12, p. 5], a compact element of G is an element
g ∈ G such that 〈g〉 is compact and the set

(1.7) comp(G) =
{
g ∈ G | g is a compact element

}
is described in [12, Proposition 1.3, Lemma 1.6]. For instance, G = comp(G)
when G is locally compact abelian, but in general comp(G) is just a subset
of G, not necessarily a subgroup. Note that comp(G) is denoted by B(G) in
[2,7,8]; similarly, G0 by c(G). Following [12, Proposition 1.3], we call periodic
those locally compact groups G such that G0 = 1 and 〈g〉 is compact for all
g ∈ G. Of course, periodic locally compact groups are totally disconnected,
so their Sylow p-subgroups are closed and comp(G) = G by [12, Lemma 1.6].

A locally compact group G is topologically finitely generated, if there
exists a finite subset X of G such that G = 〈X〉. In particular, a locally
compact p-group G has ?nite p-rank, if

(1.8) rankp(G) = max
{
rankp(H) | H closed subgroup of G

}
is a positive integer, where also the following quantities are positive integers

(1.9) rankp(H) = min
{
|Y | | Y ⊆ H and 〈Y 〉 = H

}
.

For compact p-groups, see also [19, §2.4]. Following [12,13], a locally com-
pact group G is compactly generated if there exists a compact set C such
that G = 〈C〉. It is possible to provide examples of periodic locally com-
pact groups, which are not compactly generated. It is also possible to pro-
vide examples which show that “topologically finitely generated groups” and
“compactly generated groups” are two different notions.

Theorem 1.1 [13, Theorem 7.57]. Every compactly generated locally
compact abelian group is isomorphic to a direct sum Rd ⊕ Zm ⊕K for a

compact abelian group K and two nonnegative integers d,m.
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We are going to focus on specific classes of locally compact abelian groups
and check whether the topological entropy of their continuous endomor-
phisms is finite or not; results of the type of Theorem 1.1 are fundamental for
this scope. Denote the cartesian sum of countably many copies of Z by ZN =
{(xi)i∈N | xi ∈ Z} and by Z(N) = {(xi)i∈N | xi ∈ Z and xi = 0 for almost all i}
the direct sum of countably many copies of Z. Denote by dim(A) the dimen-
sion of a compact abelian group A, that is, the dimension of the Q-module
Q⊗ Â as per [13, Definitions 8.23]. Note also from [13, Corollary 7.58] that
a connected compact abelian group A of finite dimension is characterized to
be the direct sum of finitely many copies of the torus T = R/Z.

Definition 1.2 [9, p. 489]. A (discrete) torsion-free abelian group G
is slender, if for every homomorphism α : (ei)i∈N ∈ ZN 
→ α((ei)i∈N) ∈ G we
have α((ei)i∈N) = 0 for almost all i, where (ei)i∈N is the sequence with the
i-th component equal to 1 and 0 elsewhere.

Our first main result can be now formulated:

Theorem 1.3 (First Main Theorem). Let G be a compactly generated
locally compact abelian group. With the notations of Theorem 1.1, the fol-

lowing statements are satisfied :
(a) If G is slender, then G ∈ E0. Viceversa, if G ∈ E0 and K = 0, then

G is slender.
(b) Assume that K is connected. Then G ∈ E<∞ if and only if G � Rd

⊕ Zm ⊕ Ts for some nonnegative integers d,m, s.

Note that computations of the topological entropy of continuous au-
tomorphisms (not endomorphisms) of Rd ⊕ Zm ⊕ Ts are available in [18,
pp. 475–476]. Also [4,17] contain computations of the topological entropy of
continuous endomorphims, but mostly of Lie groups. We go ahead and de-
scribe the finiteness of the topological entropy for some nonabelian locally
compact groups, looking at the behaviour of the Sylow p-subgroups. This is
our second main result.

Theorem 1.4 (Second Main Theorem). The continuous automorphisms
of a nilpotent periodic locally compact p-group G have finite topological en-
tropy whenever rankp(G) is finite.

We can always find periodic locally compact p-groups G of rankp(G) = r
in E<∞, looking at the direct sum G = Zr

p of r copies of the additive group of
p-adic integers Zp. On the other hand, it is possible to find periodic locally
compact p-groups of nilpotency class two and of finite p-rank, looking at
Heisenberg p-groups Hn(Qp) constructed with upper triangular (n+ 2)×
(n+ 2) matrices with coefficients in the field of p-adic rationals Qp. These
are neither abelian nor compact groups, and have finite topological entropy
and finite p-rank large enough.
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Theorem 1.5 (Third Main Theorem). The Heisenberg group Hn(Qp)
is a periodic locally compact nonabelian p-group of nilpotency class 2 of
rankp(Hn(Qp)) = 2n, where n is an arbitrary positive integer. Moreover
Hn(Qp) belongs to E<∞, but not to E0.

Terminology and notations are standard and follow [9,12,13,15,19,20].
After the statement of the main results in Section 1, the theory of slender
groups is summarized in Section 2 from [9,20] and some recent results on
the finiteness of the topological entropy for periodic locally compact groups
are summarized in Section 3 from [1,3,7,8,10,22]. Section 4 is devoted to
construct Hn(Qp) and to prove some results on the p-rank of these groups.
Then we end with the proofs of Theorems 1.3, 1.4 and 1.5 in Section 5.

2. Previous results on slender groups

We recall properties of slender groups, originally noted by Nunke, Los
and Sasiada, see [9].

Lemma 2.1 [9, Ch. 13, §2]. (i) Subgroups of slender groups are slender ;
(ii) Slender groups are torsion-free;
(iii) Q, Zp and ZN are not slender ;
(iv) A group which is slender cannot contain a subgroup isomorphic to Q,

Zp, or ZN;
(v) Direct products of slender groups are slender. In particular, Z(N) is

slender ;
(vi) A torsion-free abelian group G is slender if for every homomorpshim

f : ZN → G the image f(ZN) is a discrete finitely generated abelian group.

From [12,13,15,19], we may consider a periodic locally compact p-group
G (not necessarily abelian) with k positive integer and introduce the sub-
groups

(2.1) Ωk(G) = 〈g | gpk = 1〉 and Ωk(G) = 〈gp
k

| g ∈ G〉,

which are fully invariant in G and satisfy G/Ωk(G) = Ωk(G). This allows us
to introduce also

(2.2) Div(G) =
⋂
k∈N

Ωk(G),

which turns out to be useful for various reasons. For instance, if G is an (dis-
crete) abelian group (not necessarily a periodic locally compact p-group),
Div(G) as above is still well defined and we say that G is divisible, if
Div(G) ⊇ G, or that G is reduced, if the trivial subgroup of G is the only
divisible subgroup of G (see [13, Appendix 1, Definition A1.29]).

F. G. RUSSO and O. WAKA66
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Lemma 2.2 [13, Corollary 8.5]. For a compact abelian group G, the fol-
lowing conditions are equivalent :

(i) G is totally disconnected ;
(ii) Div(G) = 0;
(iii) Ĝ is a torsion group.

Nunke and Sasiada [9, Chapter 13, §2] showed that slender groups can-
not be divisible. The reader can refer to [20, Exercise 4.4.9]; their result is
summarized below.

Lemma 2.3 ([9, Lemma 2.3], Sasiada’s Theorem). An abelian group
which is slender must be reduced. In addition, if the group is countable,
then the condition of being reduced is necessary and sufficient to conclude
that the group is slender.

Following the discussion in [9, Chapter 1, §7] and [6, §1], we may con-
sider an abelian group G and a filter F in the subgroups lattice L(G) of G.
Automatically F defines a topology on G, if we declare B = {U | U ∈ F} to
be a basis of open neighborhoods at the identity of G and if for every g ∈ G
the cosets gB = {gU | U ∈ B} form a basis of open neighborhoods at g ∈ G.
This topology is said to be a linear topology on G (or more precisely a lin-
ear F -topology on G). Linear groups (in the sense of Orsatti and De Marco)
are abelian groups with linear topologies. A linear group G is complete, if
it is Hausdorff and every Cauchy net in G has a limit in G. De Marco and
Orsatti [6] studied Hausdorff linear groups:

Definition 2.4 [6]. An abelian group G belongs to the class LΩ if it
admits a linear complete and nondiscrete, Hausdorff topology. We say that
G belongs to the class LΩ1, if it belongs to LΩ and in addition its topology
is metrizable.

In fact the conditions of Definition 2.4 are not verified simultaneously,
that is, there are abelian linear groups which are not Hausdorff, or abelian
linear groups which are not complete and so on. Of course, abelian groups
in LΩ1 are also in LΩ, but examples can show that the viceversa is false.

Theorem 2.5 [6, Theorem 2.3]. A torsion-free abelian group possesses
a metrizable linear complete nondiscrete topology if and only if it contains a
copy of Zp, or of ZN as subgroup.

Note that all groups of LΩ1 are classified by Theorem 2.5. Moreover
Lemma 2.1 shows that both Zp and ZN are not slender, hence Theorem 2.5
implies that G cannot be slender, if it is possible to endow G of a metrizable
linear complete nondiscrete topology. This is reported below:

Theorem 2.6 ([6], De Marco and Orsatti). Let G be a reduced torsion-
free abelian group. Then G is slender if and only if G does not belong to
LΩ1.
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Thanks to what we have seen until now:

Lemma 2.7. There are no nontrivial compact abelian slender groups.

Proof. Assume that G is a compact abelian slender group. Lemma
2.3 along with Lemma 2.2 (a) and (b) imply that G is totally disconnected.
Then G should be profinite by [13, Theorem 1.34], hence projective limit of
finite groups. Profinite abelian groups are not slender; Zp is a counterexam-
ple. From the contradiction, there are no nontrivial compact slender groups.
�

3. Previous results on locally compact groups

When we have a totally disconnected locally compact group G, van
Dantzig [5] proved that

(3.1) U(G) =
{
V ≤ G | V compact and open

}
is contained in CT (G) and is local basis. From [8, Proposition 3.4], we have
that

(3.2) htop(ϕ) = sup
{

lim
n→∞

( log |V : Cn(ϕ, V )|
n

) ∣∣∣ V ∈ U(G)
}
,

where Cn(ϕ, V ) ∈ U(G) and the index |V : Cn(ϕ, V )| is finite. In fact, the
set Etop(G) turns out to be a countable subset of the real half-line in this
situation.

Some relevant facts are reported below. The first regards discrete groups.

Remark 3.1 [8, Remark 2.4]. Discrete groups belong to E0.

The second regards the additive group of p-adic integers.

Corollary 3.2 [8, Corollary 2.2]. Let G be a locally compact group and
ϕ ∈ End(G). If S ⊆ CT (G) is a local basis of G and S is realized by ϕ-in-
variant subgroups, then htop(ϕ) = 0. In particular, this applies to Zn

p , hence
Zn
p ∈ E0.

The computation of the topological entropy of continuous endomor-
phisms is somehow harder than that of continuous automorphisms, but we
have results for totally disconnected groups.

Corollary 3.3 ([8, Lemma 2.3, Theorem 3.11], [10, Corollary 1.3]).
Let G be a locally compact group and ϕ ∈ End(G).

(a) If H is a ϕ-invariant closed subgroup of G, then htop(ϕ|H
) ≤ htop(ϕ),

and, if in addition H is normal, then htop(ϕ̄G/H) ≤ htop(ϕ), where ϕ̄G/H :
G/H → G/H is induced by ϕ.

F. G. RUSSO and O. WAKA68



Acta Mathematica Hungarica 172, 2024

8 F. G. RUSSO and O. WAKA

(b) If S ⊆ U(G) is a local basis of G such that ϕ−n(V ) is normal in G
for all n and V ∈ S , then htop(ϕ) = htop(ϕ̄G/ kerϕ).

(c) If G is totally disconnected and ϕ ∈ Aut(G), then htop(ϕ) = htop(ϕ|N)
+htop(ϕ̄G/N ), where N is a closed normal subgroup of G.

The third regards p-adic rationals. Denoting the p-adic norm with | − |p,
Yuzvinski’s Formula [16,24] helps with the following computations:

Theorem 3.4 [16]. For n ∈ N and ϕ ∈ End(Qn
p), we have

(3.3) htop(ϕ) =
∑

|λi|p>1

log |λi|p,

where λi (with 1 ≤ i ≤ n) is eigenvalue of ϕ in a finite extension of Qp. In
particular, we have that Qn

p ∈ E<∞.

Further criteria of finiteness are related to the notion of of finite p-rank.

Theorem 3.5 [12, Theorem 3.97]. A locally compact abelian p-group G
has finite p-rank if and only

(3.4) G � Zα
p ×Qβ

p × Z(p∞)γ × Ep

for some nonnegative integers α, β, γ, δ and a finite p-group Ep of
rankp(Ep) = δ. In particular, G belongs to E<∞ and

(3.5) rankp(G) = α+ β + γ + δ.

The case of G in E0 is characterized by the condition β = 0.

The above result shows that the p-rank is preserved under Pontryagin
duality. In fact we have

(3.6) Ĝ = (Zα
p ×Qβ

p × Z(p∞)γ × Fp)
∧ ∼= Zγ

p ×Qβ
p × Z(p∞)α × Fp,

and so rankp(Ĝ) = rankp(G). In particular, it can be seen that Q
β
p ∈

E<∞ \ E0, Rd ∈ E<∞ \ E0, Z
γ
p ∈ E0, Fp ∈ E0 and Z(p∞)α ∈ E0. Further re-

sults are reported below in the abelian case.

Theorem 3.6 [8, Theorems 1.1, 1.2]. Let G be a locally compact abelian
group.

(i) If G belongs to E<∞, then its dimension should be finite;
(ii) The viceversa of (i) above is true when G is compact and G/G0 be-

longs to E<∞;
(iii) If G belongs to E0, then G is totally disconnected; moreover a profi-

nite group belongs to E0 if and only if it belongs to E<∞;
(iv) If G is periodic, then G ∈ E0 iff all its p-Sylow subgroups Gp do the

same.
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In the arguments which are used to prove Theorem 3.6, the main logic
is to find decompositions of the endomorphisms in portions where we can
control the finiteness of the topological entropy. In fact we say that the
Addition Theorem holds for (G,ϕ,H) of a locally compact group G with
ϕ ∈ End(G) and a ϕ-invariant closed normal subgroup N of G, if

(3.7) htop(ϕ) = htop(ϕ|N
) + htop(ϕ̄G/N ),

or briefly, we write that AT (G,ϕ,N) holds. Of course, (3.7) is equivalent to
the commutativity of the following diagram:

(3.8)

0 −−−−→ N
ι

−−−−→ G
π

−−−−→ G/N −−−−→ 0

ϕ|N

⏐⏐� ϕ

⏐⏐� ϕ̄G/N

⏐⏐�
0 −−−−→ N

ι
−−−−→ G

π
−−−−→ G/N −−−−→ 0

Similarly, AT (G) holds if AT (G,ϕ,N), which is depending on ϕ and N in
general, is satisfied by all ϕ and N . From [8, Proposition 3.6], if N is a fully
invariant open subgroup of G and AT (N) holds, then also AT (G) holds.

At this point it is important that we pause and look closely at the struc-
ture of compactly generated locally compact abelian groups of Theorem 1.1.
First, we note that the groups that appear in the decomposition are either
compact or totally disconnected, or isomorphic to Rd for some nonnegative
integer d. Because of this observation, we record the following result:

Lemma 3.7 [8, Lemma 3.1]. Let A, B be two locally compact groups that
either are compact, or totally disconnected or isomorphic to Rd for some
nonnegative integer d, and f ∈ End(A), g ∈ End(B). Consider A×B with
the product topology and f × g ∈ End(A× B). Then

(3.9) htop(f × g) = htop(f) + htop(g).

Again the situation is computationally clear for locally compact abelian
groups.

Theorem 3.8 [8, Theorems 1.8, 1.9]. Let G be a totally disconnected
locally compact abelian group. Then, for every ϕ ∈ End(G), we have

(3.10) htop(ϕ) =
∑
p∈P

htop(ϕ|Gp
).

If G is also periodic, then AT (G) holds if and only if AT (Gp) holds for all
p-Sylow subgroups Gp.

Theorem 3.8 (ii) shows that Addition Theorems may be reduced to Ad-
dition Theorems on p-Sylow subgroups. This means that the presence of

F. G. RUSSO and O. WAKA70
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a decomposition helps to determine groups in E0 or E<∞, just looking at
Sylow p-subgroups in E0 or E<∞.

Remark 3.9. For compactly generated locally compact abelian groups,
Theorem 1.1 shows that Lemma 3.7 can be applied and so we have an Ad-
dition Theorem. This helps to reduce the computation of the topological
entropy of continuous endomorphisms to the topological entropy of contin-
uous endomorphisms arising from factors.

4. Heisenberg groups on p-adic rationals

As application of Corollary 3.2, we have that a compact p-group G with
local basis {Ωn(G) | n ∈ N} ⊆ U(G) should belong to E0. Note that this
applies to Zn

p × Fp, where Fp is finite p-group.

Remark 4.1. Groups of the form Zp × Fp for Fp finite nonabelian
p-group are among the easiest examples of infinite nilpotent compact
p-groups which can be produced in E0. Looking at [15, Section 3.1], a
finite p-group Fp is of maximal class if |pn| with n > 3 and its nilpotency
class is c = n− 1. Their costruction can be found in [15, Examples 3.1.5].
Now Zp ×Fp has nilpotency class exactly n by Fitting’s Lemma [15, Lemma
1.1.21]. This means that we have already an example of an infinite non-
abelian compact p-group of nilpotency class arbitrarily large in E0.

Given a commutative unitary topological ring R, the Heisenberg group
on R is the group of all (n+ 2)× (n+ 2)-matrices of the following form

(4.1) M(A,B; c) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 . . . an c

0 1 0 . . . 0 b1
0 0 1 . . . 0 b2
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 bn
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎝ 1 A c
O In B
0 O 1

⎞⎠ ,

where the block O is of all zeros, In denotes a identity matrix n× n, A the
n-tuple row (a1, . . . , an), B the n-tuple column (b1, . . . , bn). Of course, for
n = 1 we get the usual representation of the Heisenberg group as group of
matrices 3× 3.

In particular, the matrices (4.1) have coefficients mij such that

(4.2) mij =

{
1, if i = j,

0, if i > j, or 1 < i < j < n− 1.

Note that GL(Rn+2) is the general linear group of dimension n+ 2 of all
invertible matrices with coefficients in R, and the set of all matrices (4.1)
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is denoted by Hn(R) and equipped with the product topology induced by
the product topology in R(n+2)2 . In particular, one can check that Hn(R) is
nilpotent of class 2, since the center

(4.3) Z(Hn(R)) = [Hn(R),Hn(R)] =

⎧⎨⎩
⎛⎝ 1 O c

O In O
0 O 1

⎞⎠ ∣∣∣ c ∈ R

⎫⎬⎭
is topologically isomorphic to (R,+) and the central quotient

(4.4) Hn(R)/Z(Hn(R)) ∼= (R,+)× (R,+)× . . . × (R,+)︸ ︷︷ ︸
2n-times

,

is topologically isomorphic to 2n copies of (R,+). Note that for R = Z,
or Zp, or Z(p), (4.4) is topologically generated by the matrices of the follow-
ing form ⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,(4.5)

. . . ,

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 1 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

along with the corresponding ones where the role of A is played by B in the
last column⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 1
0 1 0 . . . 0 1
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 1
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,(4.6)
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. . . ,

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In particular, we describe the nonabelian compact p-group H(Zp) below for
n = 1.

Note from [19, Chapter 2] that the Frattini subgroup Frat(G) of a profi-
nite group G is defined as the intersection of all its maximal open subgroups.
Moreover it is a characteristic subgroup of G. An element g of a profinite
group G is a nongenerator if it can be omitted from every generating set
of G, that is, whenever G = 〈X, g〉, then G = 〈X〉. In particular,

Remark 4.2. We have that the set of all nongenerators of a profinite
group G coincides with Frat(G), see [19, Lemma 2.8.1]. Moreover [19,
Lemma 2.8.6] shows that the minimal number of generators of a topolog-
ically finitely generated profinite group G agrees with the minimal num-
ber of generators of G/Frat(G). For compact p-group G, this means that
rankp(G) = rankp(G/Frat(G)).

Example 4.3. For any prime p, consider a separated bilinear map

(4.7) ω : (x, y) ∈ Zp × Zp → ω(x, y) ∈ Zp

and the set Z3
p endowed with the binary operation

� : ((x1, y1, z2), (x2, y2, z2)) ∈ Z3
p × Z3

p 
→ (x1, y1, z1)� (x2, y2, z2)(4.8)

=
(
x1 + x2, y1 + y2, z1 + z2 + ω(x1, y2)

)
∈ Z3

p.

See terminology in [2, Definitions 2.1, 2.2]. In particular, � is not a com-
mutative operation and (Z3

p,�) satisfies the algebraic axioms of group. Of
course, the construction depends on ω and (Z3

p,�) is topologically isomor-
phic to H(Zp) with the matrix product. The center, the Frattini subgroup
and the derived subgroup of H(Zp) satisfy

Frat(H(Zp)) ⊇ Z(H(Zp)) = {M(0, 0; c) | c ∈ Zp}(4.9)

= [H(Zp),H(Zp)] � Zp.
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We can now look at topological generators and relations for H(Zp), find-
ing that

H(Zp)(4.10)

= 〈M(1, 0; 0),M(0, 1; 0),M(0, 0; 1) | [M(1, 0; 0),M(0, 1; 0)] = M(0, 0; 1),

[M(1, 0; 0),M(0, 0; 1)] = [M(0, 1; 0),M(0, 0; 1)] = I3〉.

From Remark 4.2, the p-rank of H(Zp) can be reduced to the Frattini quo-
tient, i.e.

(4.11) rankp(H(Zp)) = rankp(H(Zp)/Frat(H(Zp))) = 2.

Indeed, Frat(G) = Ω1(G)[G,G] for any compact p-group G by [19,
Lemma 2.8.7 (c)]. Since this is true of course when G = H(Zp), in (4.9)
one can compute Frat(H(Zp)) as follows. Now [H(Zp),H(Zp)] = Z(H(Zp))
and

(4.12) Ω1(H(Zp)) =

⎛⎝1 pZp Zp

0 1 pZp

0 0 1

⎞⎠
are compact, so Frat(H(Zp)) = Ω1(H(Zp))Z(H(Zp)), since the subgroup
Ω1(H(Zp))Z(H(Zp)) is compact. Therefore, H(Zp)/Frat(H(Zp)) ∼= Z(p)×
Z(p). This proves the second equality on (4.11). Example 4.3 holds more
generally than R = Zp, see [11, Theorem 2.5, Lemma 5.5] and [2, §4]. Now
we look at Hn(Zp) and Hn(Qp) for n large enough.

Lemma 4.4. The Heisenberg group Hn(Qp) is a locally compact non-
abelian p-group of nilpotency class two and

rankp(Hn(Qp)) = rankp(Hn(Qp)/Z(Hn(Qp))) = 2n.

Proof. Looking at (4.1), (4.2), (4.3) and (4.4) with R = Qp, it is clear
that Hn(Qp) is a locally compact nonabelian p-group of nilpotency class two.
Now consider (4.1) and observe that

(4.13) H1 = Z(Hn(Qp))×K2 � Qp ×Qn
p and K1 � Qn

p .

Moreover H1 is a closed normal subgroup such that

Hn(Qp) = H1 �K1 =
{
h1k1 | h1 ∈ H1 and k1 ∈ K1

}
(4.14)

=
{
zk2k1 | z ∈ Z(Hn(Qp)), k2 ∈ K2, k1 ∈ K1

}
=

{
[u2, u1]k2k1 | k2, u2 ∈ K2 and k1, u1 ∈ K1

}
,
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because we have

(4.15) Z(Hn(Qp)) = [Hn(Qp),Hn(Qp)] = [K2,K1].

Therefore the p-rank of Hn(Qp) is reduced to that of K1 plus that of K2,
i.e., 2n. �

Lemma 4.4 can be proved with the idea of Example 4.3, that is, noting
that

(4.16) Frat(Hn(Qp)) ⊇ Z(Hn(Qp)),

and that the quotient Hn(Qp)/Frat(Hn(Qp)) has p-rank 2n, but we gave
an argument based on the structure of semidirect product for Heisen-
berg groups. Moreover also here one could argue that Frat(Hn(Qp)) =
Ω1(Hn(Qp))[Hn(Qp),Hn(Qp)], even if in this sitation we don’t have a com-
pact p-group but a periodic locally compact p-group.

Remark 4.5. Looking at [2, Lemma 2.4, Theorem 2.5], one can show
that H(Zp) possesses abelian maximal subgroups of the following form
(4.17)
H1 = Z(H(Zp))⊕ 〈M(1, 0; 0)〉 � Zp

2, H2 = Z(H(Zp))⊕ 〈M(0, 1; 0)〉 � Zp
2

satisfying the following conditions:

H1 ∩H2 = Z(H(Zp)), H1 ∩ 〈M(0, 1; 0)〉 = 1, H2 ∩ 〈M(1, 0; 0)〉 = 1,(4.18)

H(Zp) = H1 � 〈M(0, 1; 0)〉 = H2 � 〈M(1, 0; 0)〉 � Zp
2 � Zp.(4.19)

In particular (4.19) shows that any element of H(Zp) can be written uniquely
as product of an element of H1 and of one of 〈M(0, 1; 0)〉 = K1, but any
element of H1 can be also written uniquely as product of an element of
Z(H(Zp)) and of one of 〈M(1, 0; 0)〉 = K2 by (4.17). In Fig. 1 we identify
the aforementioned subgroups in the lattice of closed subgroups SUB(H(Zp))
of H(Zp). At the first level (beginning from the bottom of Fig. 1) we find
the trivial subgroup. At the second level there are three subgroups isomor-
phic to Zp. At the third level there are two subgroups isomorphic to the
additive group Zp

2. At the fourth level we find the entire group. Note that
Fig. 1 shows only the subgroups that can be directly deduced from (4.19)
and not all the subgroups of H(Zp).

In fact one can see that, given the cardinality of the continuum c and
fixed ξ ∈ Zp, the subset Mξ of all matrices M(a, ξa; t) ∈ H(Zp) is a maximal
abelian subgroup of H(Zp), and of course there are c of this type.
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H(Zp)

H1

K2

H2

K1Z(H(Zp))

1

Fig. 1: Some relevant subgroups in SUB(H(Zp))

5. Proofs of main theorems

Proof of Theorem 1.3. (a) If G is a compactly generated locally
compact abelian group, then Theorem 1.1 implies G ∼= Rd ⊕ Zm ⊕K for a
compact abelian group K and nonnegative integers m,d. Assume in addi-
tion that G is slender. Lemma 2.1 shows that subgroups of slender groups
are slender. Then Lemma 2.3 implies n = 0, that is, G � Zm ⊕K. Lemma
2.7 implies K = 0. Hence G � Zm, and since Zm ∈ E0, the first part of the
result follows. Assume now that G ∈ E0 and that G ∼= Rd ⊕ Zm. Since Rd

∈ E∞ \ E0, G should be totally disconnected by Theorem 3.6 (iii) and so
G � Zm which is slender. The result follows completely.

(b) From Theorem 1.1 and the assumption that K is a connected com-
pact abelian group, we have that G � Rd⊕Zm⊕K with K of dim(K) even-
tually infinite. Then

(5.1) dim(G) = dim(Rd) + dim(Zm) + dim(K) = d+ 0 + dim(K)

and this shows that dim(G) < ∞ if and only if dim(K) < ∞ if and only if
K = Ts for some nonnegative integer s, see [13, Corollary 8.22(5)]. From
Theorem 3.6(i), this means that if G ∈ E<∞, then dim(G) < ∞ hence
dim(K) < ∞, and so G � Rd ⊕ Zm ⊕ Ts. Conversely, assume that G � Rd

⊕Zm ⊕Ts. We may apply Lemma 3.7 with summands Rd ∈ E<∞, Zm ∈ E0
and Ts ∈ E<∞, concluding G ∈ E<∞. Note that the computations of topo-
logical entropy, which allows us to have Rd ∈ E<∞, Zm ∈ E0 and Ts ∈ E<∞,
are well known, see [3,16,22]. The result follows. �

Proof of Theorem 1.4. First assume that G has rankp(G) < ∞. We
note that closed subgroups and quotients of G are again periodic locally
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compact p-groups. The topological lower central series of G of length c has
closed characteristic p-subgroups γi(G) (with i = 1, 2, . . . , c) such that

G = γ1(G) ≥ γ2(G) = [G,G] ≥ γ3(G)

= [[G,G], G] ≥ · · · ≥ γc(G) ≥ γc+1(G) = 1

and γi(G)/γi+1(G) are locally compact abelian p-groups for all i. Note also
that closed subgroups and quotients of a periodic locally compact p-group
of finite p-rank have finite p-rank. This means that if G has finite p-rank,
then γi(G)/γi+1(G) are of the form of those in Theorem 3.5, and in par-
ticular continuous automorphisms of γi(G)/γi+1(G) have finite topological
entropy. Now we do induction on c. Assume c = 1. Then G is a locally com-
pact abelian group of finite p-rank and the result is true by Theorem 3.5,
because in this situation the continuous automorphisms of G should have
finite topological entropy. Assume c > 1 and that the result is true for all
periodic nilpotent locally compact p-groups of derived length at most c− 1.
Then the continuous automorphisms of N = γc(G) have finite topological
entropy, since N is abelian, but also those of G/N have finite topological
entropy, since G/N is a locally compact abelian p-group of finite p-rank.
From Addition Theorem for continuous automorphisms of totally discon-
nected locally compact abelian groups (see [18, Addition Theorem 10], or
Corollary 3.3 (b)) we conclude that AT (G,ϕ,N) holds for every continuous
automorphism ϕ of G. The result follows. �

Proof of Theorem 1.5. From Lemma 4.4, the Heisenberg group
Hn(Qp) is a periodic locally compact nonabelian p-group of nilpotency class
two and rankp(Hn(Qp)) = 2n. Then we shall only prove that Hn(Qp) belongs
to E<∞, but not to E0.

Assume that n = 1. From [8, Theorem 6.8] we know that H(Qp) belongs
to E<∞, but not to E0. Then there exists a subgroup S of Hn(Qp) which
is isomorphic to H(Qp) as topological group, for instance S can be realized
putting in (4.1) the condition ai = bi = 0 for all i = 2, 3, . . . , n. This is suf-
ficient to show that Hn(Qp) cannot be in E0, since it contains a subgroup S
which is not in E0. It remains to check that Hn(Qp) belongs to E<∞ and we
adapt the argument of [8, Proof of Theorem 6.8] for this scope.

Consider ϕ ∈ End(Hn(Qp)) and N = kerϕ; we claim that htop(ϕ) < ∞.
Assume that N = 1. We claim that ϕ ∈ Aut(Hn(Qp)). Since Z(Hn(Qp))

is fully invariant, ϕ|Z(Hn(Qp)) is injective, hence ϕ|Z(Hn(Qp)) is a continuous
automorphism of Z(Hn(Qp)). In particular, ϕ−1(Z(Hn(Qp))) = Z(Hn(Qp))
and so ϕ̄|Hn(Qp)/Z(Hn(Qp)) on Hn(Qp)/Z(Hn(Qp)) is injective. In fact it is a
continuous automorphism of Hn(Qp)/Z(Hn(Qp)) � Q2n

p . Now Hn(Qp) is a
totally disconnected locally compact group, which can be also realized as
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union of countably many compact sets, and so ϕ is a continuous automor-
phism by the Open Mapping Theorem [13, Appendix 1, Exercise EA1.21].
We may apply Addition Theorems on closed normal subgroups for con-
tinuous automorphisms of locally compact groups as per Corollary 3.3(c),
concluding htop(ϕ) < ∞ from the fact that both htop(ϕ|Z(Hn(Qp))) < ∞ and
htop(ϕ̄Hn(Qp)/Z(Hn(Qp))) < ∞ by Theorem 3.5.

Now assume that N = kerϕ �= 1. First we show that N ∩ Z(Hn(Qp))
is nontrivial and then that Z(Hn(Qp)) ⊆ N . If there exists some y ∈
N \ Z(Hn(Qp)), then there exists x ∈ Hn(Qp) such that [x, y] is nontriv-
ial. This implies that N ∩ [Hn(Qp),Hn(Qp)] is nontrivial, because [x, y]
∈ N . The claim follows and N ∩ Z(Hn(Qp)) is a nontrivial closed subgroup
of Z(Hn(Qp)), hence Z(Hn(Qp))/(N ∩ Z(Hn(Qp))) is torsion because non-
trivial quotient of Qp. On the other hand, Z(Hn(Qp))/(N ∩ Z(Hn(Qp)))
∼= ϕ(Z(Hn(Qp))) is a subgroup of Hn(Qp) (up to continuous isomorphisms),
hence torsion-free. Consequently Z(Hn(Qp))/(N ∩ Z(Hn(Qp))) is trivial,
and the other claim Z(Hn(Qp)) ⊆ N follows. Since N contains Z(Hn(Qp)) =
[Hn(Qp),Hn(Qp)], we may apply Addition Theorems as per Corollary 3.3(b),
hence htop(ϕ) = htop(ϕ̄Hn(Qp)/N ) is finite by Theorem 3.5. Therefore the re-
sult follows. �
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