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Abstract. We study the arrangements of the roots in the complex plane
for the lacunary harmonic polynomials called harmonic trinomials. We provide
necessary and sufficient conditions so that two general harmonic trinomials have
the same set of roots up to a rotation around the origin in the complex plane, a
reflection over the real axis, or a composition of the previous both transforma-
tions. This extends the results of Jenő Egerváry given in [19] for the setting of
trinomials to the setting of harmonic trinomials.

1. Introduction, main results and their consequences

1.1. Introduction. The computation and the quantitative location of
the roots for polynomials are important in many research areas, and therefore
a vast literature in both pure and applied mathematics has been produced;
we refer to [6,40,44–47] and the references therein.

Given two positive integers m and n, a trinomial of degree n+m is a
lacunary polynomial with three terms of the form

(1.1) T (z) := Azn+m +Bzm + C for all z ∈ C,
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where A, B and C are non-zero complex numbers. Despite the apparent
simplicity of (1.1), the well-known works of P. Ruffini, N.H. Abel and É.
Galois imply that for n+m ≥ 5 and generic trinomials of the form (1.1)
there is no formula for their roots in terms of the so-called radicals. For
the literature reporting geometric, topological, quantitative and qualitative
behavior of the roots for trinomials of the form (1.1) we refer to [2–5,7–10,
14–20,27,32,33,41–43,48,49] and the references therein.

In [19] J. Egerváry analyzes the roots of general trinomials. More pre-
cisely, he studied

(I) the arrangements of the roots of (1.1) in the complex plane, that is,
provides necessary and sufficient conditions so that two general trinomials
possess the same set of roots up to a rotation around the origin in the com-
plex plane, a reflection over the real axis, or a composition of the previous
both transformations. The latter is an equivalence relation, which in the
sequel we refer to as its Egerváry equivalent, see Definition 1.1 below;

(II) the description of geometric sectors for the localization of the roots
of (1.1).

Since [19] is written in Hungarian, many of the results given there have
been rediscovered afterwards. We refer to [48] for an English review of [19].

In this paper, we extend (I) to the setting of harmonic trinomials; more
precisely, to the setting of lacunary harmonic polynomials of the form

(1.2) H(z) := Azn+m +Bzm + C for all z ∈ C,

where A, B and C are non-zero complex numbers, and ζ denotes the com-
plex conjugate of the given complex number ζ , see Theorem 1.2 below. As
a consequence of Theorem 1.2 we obtain the following results.

(a) A characterization of the class of harmonic trinomials of the form
(1.2) which are Egerváry equivalent with a harmonic trinomial with real
coefficients, see Corollary 1.4 below.

(b) A harmonic trinomial of the form (1.2) with different roots having
the same complex modulus is Egerváry equivalent to a harmonic trinomial
with real coefficients, see Corollary 1.5 below.

(c) A harmonic trinomial of the form (1.2) with a root of multiplicity
at least two is Egerváry equivalent to a harmonic trinomial with real coeffi-
cients, see Corollary 1.7 below.

In addition, Theorem 1.2 with the help of the following results in [1],
Lemma 2.6, Lemma 2.11, Lemma A.3 and Proposition 2.3, yields the follow-
ing statements.

(d) A geometric degenerate triangle condition on the modulus of the coef-
ficients of (1.2) so that (1.2) is Egerváry equivalent to a harmonic trinomial
with real coefficients, see Theorem 1.8 below.

(e) Two harmonic trinomials of the form (1.2) with roots having the same
complex modulus (such roots may be different) and satisfying that the ratio
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between the complex modulus of their respective coefficients with the same
degree is constant, are Egerváry equivalent, see Theorem 1.9 below.

By Bézout’s Theorem ([52, Theorems 1, 5]) it follows that (1.2) has at
most (n+m)2 roots. Recently, in [1, Corollary 1.4], it is shown that (1.2)
has at most n+ 3m roots. Moreover, such bound is sharp in the sense that
there exist harmonic trinomials with exactly n+3m roots. In general, there
exist harmonic polynomials with exactly (n+m)2 roots, see for instance [52,
Section 2 ] or [12, p. 2080].

Recently, the corresponding geometric sectors as in (II) for harmonic tri-
nomials of the form (1.2) with A = 1, B ∈ C \ {0}, C = −1 has been derived
in [21]. For references about location, counting, geometry, and lower/uppers
bounds for the moduli of roots for harmonic polynomials including proba-
bilistic approaches and numerical experiments, we refer to [1,11–13,21–26,
28–31,34–39,50–52] and the references therein.

1.2. Preliminaries and main results. In this subsection, we present
the preliminaries and state the results of this manuscript. Given m,n ∈ N :=
{1, 2, . . .}, we consider two harmonic trinomials

(1.3) h1(z) := A1z
n+m +B1z

m + C1 for all z ∈ C,

and

(1.4) h2(z) := A2z
n+m +B2z

m + C2 for all z ∈ C,

where A1, A2, B1, B2, C1, C2 are non-zero complex numbers.
We start with the following definition, which rigorously encodes the ar-

rangements of roots that are equivalent.

Definition 1.1 (Egerváry equivalent). Let h1 and h2 be the harmonic
polynomials given in (1.3) and (1.4), respectively. We say h1 and h2 are
Egerváry equivalent if and only if the set of roots of h1 differs of the set of
roots of h2 by

(a) a rotation around the origin in the complex plane,
(b) a reflection over the real axis,
(c) a composition of both transformations given in (a) and (b).

More precisely, there exist a non-zero complex number c and a real number δ
satisfying

(1.5) h1(z) = ch2(eiδz) for all z ∈ C

or

(1.6) h1(z) = ch2(eiδz) for all z ∈ C,
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where i denotes the imaginary unit and

h2(z) := A2z
n+m +B2z

m + C2 for all z ∈ C.

We note that Definition 1.1 defines an equivalence relation. In addition,
we observe that (1.5) and (1.6) are mutually exclusive whenever some of the
coefficients A2, B2 or C2 is not a real number. Indeed, if (1.5) and (1.6)
both hold true, we have

h1(z) = ch2(eiδz) = ch2(eiδz) for all z ∈ C,

which yields

(A2 −A2)zn+m + (B2 −B2)zm + (C2 − C2) = 0 for all z ∈ C.

The latter implies A2, B2 and C2 are real numbers.
Along this manuscript, |ζ| denotes the complex modulus of the given

complex number ζ . We recall that the polar representation of ζ is given by
ζ = |ζ|eiϕ, where ϕ ∈ [0, 2π) is the argument of ζ . Moreover, for any real
numbers x and y, we write that

x ≡ y (mod 2π) if and only if x− y = 2kπ for some k ∈ Z.

The first main result of this manuscript is the following extension of the
results given in Equations (2) and (3) [19, p. 37] or the survey [48, Theo-
rem 1], to the setting of harmonic trinomials. It reads as follows.

Theorem 1.2 (Egerváry’s theorem for harmonic trinomials). Let h1 and
h2 be the harmonic polynomials given in (1.3) and (1.4), respectively. Then
the following holds true: h1 and h2 are Egerváry equivalent if and only if

(1.7)
∣∣∣∣A1

A2

∣∣∣∣ = ∣∣∣∣B1

B2

∣∣∣∣ = ∣∣∣∣C1

C2

∣∣∣∣
and

(1.8) m(α1 ± α2) + (n+m)(β1 ± β2)− (n+ 2m)(γ1 ± γ2) ≡ 0 (mod 2π),

where α1, α2, β1, β2, γ1 and γ2 are the arguments in the polar representation
of A1, A2, B1, B2, C1 and C2, respectively.

Remark 1.3 (about the choice of ±). We point out that (1.8) reads

m(α1 + α2) + (n+m)(β1 + β2)− (n+ 2m)(γ1 + γ2) ≡ 0 (mod 2π)

or

m(α1 − α2) + (n+m)(β1 − β2)− (n+ 2m)(γ1 − γ2) ≡ 0 (mod 2π).

EGERVÁRY’S THEOREMS FOR HARMONIC TRINOMIALS 173



Acta Mathematica Hungarica 172, 2024
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The following corollary is an analog of the results given in Equations (1),
(5) and (6) in [19, p. 38] or [48, p. 100] to the setting of harmonic trinomials.
It reads as follows.

Corollary 1.4 (the class of harmonic trinomials with real coefficients).
Let h(z) = Azn+m + Bzm + C for all z ∈ C be a harmonic trinomial whose
coefficients A, B and C are non-zero complex numbers. We consider the
polar representation of A, B and C, that is, A = |A|eiα, B = |B|eiβ , C =
|C|eiγ . Then the following statements are equivalent.

(i) The harmonic trinomial h is Egerváry equivalent to a harmonic tri-
nomial with real coefficients.

(ii) The angular relation

(1.9) mα+ (n+m)β − (n+ 2m)γ ≡ 0 (mod π)

holds true.
(iii) The coefficients A, B and C satisfy that

AmBn+m

Cn+2m is a real number.

The following corollary is an analog of Statement III in [19, p. 40].

Corollary 1.5 (different roots with the equal modulus). Let h(z) =
Azn+m +Bzm + C for all z ∈ C be a harmonic trinomial whose coefficients
A, B and C are non-zero complex numbers. We consider the polar represen-
tation of A, B and C, that is, A = |A|eiα, B = |B|eiβ , C = |C|eiγ . Assume
that h has at least two different roots with the same modulus. Then h is
Egerváry equivalent to a harmonic trinomial with real coefficients.

In the sequel, we remark that the converse of the Statement III in [19,
p. 40] does not hold true in general.

Remark 1.6 (converse of Corollary 1.5 for degree three or more). Let
h(z) = z2 +

√
3

6 z − 1
4 for all z ∈ C. By [1, Corollary 1.4] we have that h has

at most four different roots in C. In fact, a straightforward computation
yields that h has only two roots, which are given by

z1 :=
−1−√

13
2
√
12

≈ −0.664 and z2 :=
−1 +

√
13

2
√
12

≈ 0.376.

Since |z1| �= |z2|, the converse of Corollary 1.5 is not valid when n+m = 2,
i.e., n = m = 1.

For n+m ∈ N \ {1, 2} we claim that all the roots of h(z) = Azn+m +
Bzm + C for all z ∈ C, where A,B,C ∈ R \ {0} cannot be real numbers.
Indeed, by Descartes’ rule of signs h has at most two real roots and hence
h has at least one complex root ζ . It is not hard to see that ζ is also a root
of h and hence the converse of Corollary 1.5 holds true.
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The following corollary is an analog of Statement IV in [19, p. 40].

Corollary 1.7 (root with multiplicity at least two). Let h(z) = Azn+m

+Bzm + C for all z ∈ C be a harmonic trinomial whose coefficients A, B
and C are non-zero complex numbers. We consider the polar representation
of A, B and C, that is, A = |A|eiα, B = |B|eiβ , C = |C|eiγ . Assume that h
has a root of multiplicity at least two with modulus r. Then h is Egerváry
equivalent to a harmonic trinomial with real coefficients. Moreover,

AmBn+m

Cn+2m =
(−1)n+m

r2m(n+m)
mm(n+m)n+m

nn+2m .

Analogues of the following theorems are not given in [19]. We state them
here since they are interesting on their own. They are deduced using Theo-
rem 1.2 together with the following results in [1, Lemmas 2.6, 2.11, A.3 and
Proposition 2.3].

Theorem 1.8 (geometric degenerate condition). Let h(z) = Azn+m +
Bzm + C for all z ∈ C be a harmonic trinomial whose coefficients A, B
and C are non-zero complex numbers. We consider the polar representation
of A, B and C, that is, A = |A|eiα, B = |B|eiβ , C = |C|eiγ . Assume that
there exists a root of h with modulus r such that |A|rn+m, |B|rm and |C| are
the side lengths of some degenerate triangle. Then h is Egerváry equivalent
to a harmonic trinomial with real coefficients of the form

(1.10) gu,v(z) := u|A|zn+m + v|B|zm + |C|, z ∈ C,

for some u, v ∈ {−1, 1}. Moreover, if n and m are co-prime numbers, then
(a) for |C| = |A|rn+m + |B|rm it follows that h is Egerváry equivalent to

g(z) := |A|zn+m + |B|zm − |C|, z ∈ C,

(b) for |A|rn+m = |B|rm + |C|, it follows that h is Egerváry equivalent to

g(z) := |A|zn+m − |B|zm − |C|, z ∈ C,

(c) for |B|rm = |A|rm+n + |C|, it follows that h is Egerváry equivalent to

g(z) := |A|zn+m − |B|zm + |C|, z ∈ C.

Theorem 1.9 (common root with the same modulus). Let h1 and h2
be the harmonic polynomials given in (1.3) and (1.4), respectively. Assume
that (1.7) holds true. In addition, assume that there exist ζ1 and ζ2 roots of
h1 and h2, respectively, and satisfying |ζ1| = |ζ2|. Then
(1.11) m(α1 ±α2) + (n+m)(β1 ± β2)− (n+2m)(γ1 ± γ2) ≡ 0 (mod 2π).

In particular, h1 and h2 are Egerváry equivalent.
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2. Proofs of the results

Proof of Theorem 1.2. Assume that h1 and h2 are Egerváry equiv-
alent. By Definition 1.1 it is not hard to see that there exist a non-zero
complex number c and a real number δ satisfying

(2.1) h1(e−iδz) = ch2(z) for all z ∈ C

or

(2.2) h1(e−iδz) = ch2(z) for all z ∈ C.

By (2.1) we have

(2.3)
A1

A2
=

B1

B2
ei(n+2m)δ =

C1

C2
ei(n+m)δ ,

which easily implies (1.7). By (2.3) we have

α1 − α2 ≡ β1 − β2 + (2m+ n)δ ≡ γ1 − γ2 + (n+m)δ (mod 2π).

In particular, we obtain

(2.4)

{
γ1 − γ2 ≡ β1 − β2 +mδ (mod 2π)
α1 − α2 ≡ β1 − β2 + (2m+ n)δ (mod 2π).

By (2.4) we have

m(α1 − α2) + (n+m)(β1 − β2)− (n+ 2m)(γ1 − γ2)(2.5)

≡ m(β1 − β2 + (2m+ n)δ) + (n+m)(β1 − β2)− (n+ 2m)(β1 − β2 +mδ)

≡ 0 (mod 2π).

Analogously, (2.2) implies

(2.6) m(α1 + α2) + (n+m)(β1 + β2)− (n+ 2m)(γ1 + γ2) ≡ 0 (mod 2π).

By (2.5) and (2.6) we deduce (1.8).
In the sequel, we assume that (1.7) and (1.8) are valid. In particular, we

have

(2.7)
|A1|
|A2| =

|B1|
|B2| =

|C1|
|C2| =: r

and

(2.8) m(α1 − α2) + (n+m)(β1 − β2)− (n+ 2m)(γ1 − γ2) ≡ 0 (mod 2π).
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Without loss of generality, we can assume that r = 1. Since r = 1, (2.7)
implies the existence of real numbers θ1, θ2 and θ3 such that

(2.9) A1 = eiθ1A2, B1 = eiθ2B2 and C1 = eiθ3C2.

Then we have

α1 − α2 ≡ θ1 (mod 2π), β1 − β2 ≡ θ2 (mod 2π)(2.10)

γ1 − γ2 ≡ θ3 (mod 2π).

By (2.8) and (2.10) we obtain

(2.11) m(θ1 − θ3) + (n+m)(θ2 − θ3) ≡ 0 (mod 2π).

By Lemma A.1 in Appendix A we have that the solutions of (2.11) are
parametrized as follows:

(2.12) θ1 ≡ θ3 + (n+m)δ (mod 2π) and θ2 ≡ θ3 −mδ (mod 2π)

for some δ ∈ R. By (2.9) and (2.12) we obtain

h1(z) = A1z
n+m + B1z

m + C1 = A2e
iθ1zn+m + B2e

iθ2zm + C2e
iθ3

= eiθ3(A2e
i(n+m)δzn+m +B2e

−imδzm + C2) = eiθ3f2(eiδz)

for all z ∈ C. In the case of

m(α1 + α2) + (n+m)(β1 + β2)− (n+ 2m)(γ1 + γ2) ≡ 0 (mod 2π)

the proof is analogous and we omit it. �

Proof of Corollary 1.4. We start proving that (i) implies (ii).
Since (i) holds true, h is Egerváry equivalent to a harmonic trinomial with
real coefficients g. We write g(z) = A1z

n+m +B1z
m +C1, z ∈ C, where A1,

B1 and C1 are real numbers. In particular,

(2.13) α1 ≡ 0 (mod π), β1 ≡ 0 (mod π) and γ1 ≡ 0 (mod π),

where α1, β1 and γ1 are the arguments A1, B1 and C1, respectively. By
Theorem 1.2 (applied to h and g) we have

m(α± α1) + (n+m)(β ± β1)− (n+ 2m)(γ ± γ1) ≡ 0 (mod 2π),

which implies
(2.14)
mα+(n+m)β−(n+2m)γ ≡ ∓mα1 ∓ (n+m)β1 ± (n+2m)γ1 (mod 2π).
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EGERVÁRY’S THEOREMS FOR HARMONIC TRINOMIALS 9

By (2.13) for any 
1, 
2, 
3 ∈ {−1, 1} we obtain

(2.15) 
1mα1 + 
2(n+m)β1 + 
3(n+ 2m)γ1 ≡ 0 (mod π).

Hence (2.14) with the help of (2.15) yields (1.9). The proof of (i) ⇒ (ii) is
finished.

Now, we show that (ii) implies (i). Since (1.9) holds true, we have

m(α− γ) + (n+m)(β − γ) ≡ 0 (mod π).

By Lemma A.2 in Appendix A we obtain

α ≡ γ + (n+m)δ (mod π) and β ≡ γ −mδ (mod π)

for some δ ∈ R. Then for any z ∈ C we obtain

h(z) = |A|eiαzn+m + |B|eiβzm + |C|eiγ(2.16)

= eiγ
( |A|ei(α−γ)zn+m + |B|ei(β−γ)zm + |C|)

= eiγ
(
u|A|ei(n+m)δzn+m + v|B|e−imδzm + |C|)

= eiγ
(
u|A|(eiδz)n+m + v|B|(eiδz)m + |C|) ,

where u, v ∈ {−1, 1}. By (2.16) we deduce that h is Egerváry equivalent to
the harmonic trinomial

g(z) := u|A|zn+m + v|B|zm + |C| for all z ∈ C.

The proof of (ii) ⇒ (i) is complete.
Finally, the equivalence of (ii) and (iii) is straightforward due to the

relation

AmBn+m

Cn+2m =
|A|m|B|n+m

|C|n+2m ei(mα+(n+m)β−(n+2m)γ). �

Proof of Corollary 1.5. Assume that h has two different roots with
modulus r > 0. After a rotation, one can see that h is Egerváry equivalent
to a harmonic trinomial h̃ with roots ζ1 = r and ζ2 = reiθ, where θ ∈ (0, 2π).
Without loss of generality, we assume that h = h̃. Since h(ζ1) = h(ζ2) = 0,
we have

A = − C

rn+m

eimθ − 1
ei(n+2m)θ − 1

and B = − C

rm
eimθ(ei(n+m)θ − 1)

ei(n+2m)θ − 1
.

Recall the identity

eit − 1 = 2i · sin
( t

2

)
ei

t

2 for any t ∈ R.

G. BARRERA, W. BARRERA and J. P. NAVARRETE178



Acta Mathematica Hungarica 172, 2024

10 G. BARRERA, W. BARRERA and J. P. NAVARRETE

Then we have

AmBn+m

Cn+2m =
1

r2m(n+m) (−1)n
sinm(mθ

2 ) sinn+m( (n+m)θ
2 )

sinn+2m( (n+2m)θ
2 )

,

which with the help of (iii) of Corollary 1.4 yields the statement. �

Proof of Corollary 1.7. After a rotation, without loss of generality,
we can assume that h has a real root r > 0 with multiplicity at least two.
The function γ(x) := Axn+m +Bxm + C, x ∈ R represents a curve in the
complex plane C. Since r is a root of h with multiplicity at least two and
h(x) = γ(x) for all x ∈ R, we have γ(r) = γ′(r) = 0, where γ′ denotes the
derivative of γ. The latter reads as follows

Arn+m +Brm + C = 0 and (n+m)Arn+m−1 +mBrm−1 = 0,

so A = mC
rn+mn

, B = − (n+m)C
rmn

. A straightforward computation yields

AmBn+m

Cn+2m =
(−1)n+m

r2m(n+m)
mm(n+m)n+m

nn+2m ,

which with the help of (iii) of Corollary 1.4 yields the statement. �

Proof of Theorem 1.8. By (ii) of Corollary 1.4, it is enough to show
(1.9). By hypothesis we have that h(r) = 0. We assume that n and m are
co-prime numbers. Since |A|rn+m, |B|rm and |C| are the side lengths of
some degenerate triangle, the contrapositive of [1, Lemma 2.11] applied to
h̃(z) := e−iγh(z), z ∈ C yields

(n+m)(β − γ) +m(α− γ) ≡ 0 (mod π).

The latter implies (1.9). Moreover, by (2.16) we have that h is Egerváry
equivalent to gu,v for some u, v ∈ {−1, 1}, where gu,v is defined in (1.10).

We continue with the proof when d := gcd(n+m,m) ∈ {2, . . . ,m}. Ob-
serve that gcd(n,m) = d. Let n′ := n/d and m′ := m/d and note that
gcd(n′,m′) = 1. Since h has a root of modulus r, the harmonic trinomial

H(z) := A1z
n′+m′

+ B1z
m′

+ C1 for all z ∈ C

has a root of modulus rd. Then the previous discussion for the co-prime case
implies

(n′ +m′)(β − γ) +m′(α− γ) ≡ 0 (mod π).

Multiplying by d in both sides the preceding inequality yields

(n+m)(β − γ) +m(α− γ) ≡ 0 (mod π).
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In addition, H is Egerváry equivalent to

g̃u,v(z) := u|A|zn′+m′

+ v|B|zm′

+ |C|, z ∈ C,

for some u, v ∈ {−1, 1}. The change of variable z 
→ zd yields that h is
Egerváry equivalent to gu,v for some u, v ∈ {−1, 1}.

In the sequel, we show (a). We start with the following observation.
The relation |C| = |A|rn+m + |B|rm holds true if and only if g−1,−1(r) =
0. By Descartes’ rule of signs we have that r is the unique positive real
number satisfying g−1,−1(r) = 0. By Theorem 1.2 one can verify that g−1,−1
is Egerváry equivalent to

(2.17)

⎧⎪⎨⎪⎩
g−1,1 if and only if n+m is an even number,
g1,1 if and only if n is an even number,
g1,−1 if and only if m is an even number,

where gu,v is defined in (1.10).
Now, we assume that n and m are co-prime numbers. Then we claim

that g−1,1, g1,1 and g1,−1 are never Egerváry equivalent between them. In-
deed, we start assuming that n+m is an even number. By (2.17) we have
g−1,−1 is Egerváry equivalent to g−1,1. Since n and m are co-prime num-
bers, the assumption that n+m is an even number imply that n and m are
odd numbers. Recall that being Egerváry equivalent is an equivalence rela-
tion. Hence (2.17) yields that g−1,1 cannot be Egerváry equivalent to g1,1
neither g1,−1 when n+m is an even number.

We now claim that g1,1 and g1,−1 do not have a root of modulus r. We
start showing that g1,−1 does not have a root of modulus r. Indeed, by
contradiction assume that there exists ζ = reiθ with θ ∈ [0, 2π) such that
g1,−1(ζ) = 0, that is,

|A|rn+mei(θ(n+m)) + |B|rme−i(θm+π) + |C| = 0.

Since |C| = |A|rn+m + |B|rm, Lemma A.3 in [1, Appendix A] implies

θ(n+m) ≡ π (mod 2π) and − θm− π ≡ π (mod 2π).

Then we have

θ =
(2k + 1)π
n+m

=
2πk′

m

for some k, k′ ∈ Z. Hence, (2k+ 1)m = 2k′(n+m), which is a contradiction
since m and 2k + 1 are odd numbers.
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Now, we prove that g1,1 has no root of modulus r. By contradiction,
assume that there exists a root of g1,1 of the form ζ = reiθ with θ ∈ [0, 2π).
Then it follows that

|A|rn+mei(θ(n+m)) + |B|rme−i(θm) + |C| = 0.

Similarly to the previous case, we obtain

θ(n+m) ≡ π (mod 2π) and − θm ≡ π (mod 2π),

which implies (2k + 1)m = (2k′ + 1)(n+m) for some k, k′ ∈ Z. This yields
a contradiction since m and 2k + 1 are odd numbers and n+m is an even
number.

Observe that (1.10) yields that h is Egerváry equivalent to gu,v for some
u, v ∈ {−1, 1}. The preceding analysis implies that h is Egerváry equivalent
to g−1,−1, which is also Egerváry equivalent to g−1,1.

The proof when n is an even number and the proof when m is an even
number follow similarly and we omit them. In summary, the proof of (a) is
complete. Moreover, the proofs of (b) and (c) are analogous. �

Proof of Theorem 1.9. Since (1.7) is valid, without loss of generality
we assume that ∣∣∣∣A1

A2

∣∣∣∣ = ∣∣∣∣B1

B2

∣∣∣∣ = ∣∣∣∣C1

C2

∣∣∣∣ = 1,

that is, |A1| = |A2|, |B1| = |B2| and |C1| = |C2|. Let r > 0 be fixed. Then
the following straightforward remark is true: |A1|rn+m, |B1|rm and |C1|
are the side lengths of a triangle Δ1 (it may be degenerate), if and only if,
|A2|rn+m, |B2|rm and |C2| are the side lengths of a triangle Δ2. In fact, Δ1
and Δ2 are congruent.

By hypothesis, h1 and h2 have roots (such roots may be different) of
modulus r for some r > 0. The proof is divided in three cases accordingly
to |A1|rn+m, |B1|rm and |C1| are the side lengths of some triangle.

We now assume that n and m are co-prime numbers.
Case (1). Assume that |A1|rn+m, |B1|rm and |C1| are not the side

lengths of any triangle. By [1, Lemma 2.6] we have that there is no root of
modulus r for the harmonic trinomial h1 and h2, which yields a contradic-
tion.

Case (2). Assume that |A1|rn+m, |B1|rm and |C1| are the side lengths
of some triangle. For each j ∈ {1, 2}, we set the corresponding pivotals

(2.18)

⎧⎪⎪⎨⎪⎪⎩
P∗,j =

(n+m)(βj − γj − π) +m(αj − γj − π)
2π

,

ω∗,j =
(n+m)w1 −mw2

2π
,
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where w1 and w2 are the angles opposite to the side lengths |A1|rn+m and
|A2|rm, respectively. We note that ω∗,1(r) = ω∗,2(r). By [1, Proposition 2.3]
for each j = 1, 2 we have that P∗,j +ω∗,j or P∗,j −ω∗,j are integers numbers.
If P∗,1 + ω∗,1(r) and P∗,2 +ω∗,2(r) are integers, then P∗,1 − P∗,2 is an integer
and by (2.18) we deduce

(n+m)(β1 − β2) +m(α1 − α2)− (n+ 2m)(γ1 − γ2) ≡ 0 (mod 2π).

The remaining cases are similar and hence we omit their proofs.
Case (3). Assume that |A1|rn+m, |B1|rm and |C1| are the side lengths

of some degenerate triangle. By (a), (b) and (c) of Theorem 1.8, h1 and h2
are Egerváry equivalent. Hence (1.8) in Theorem 1.2 yields (1.11).

By Case (1), Case (2) and Case (3) we finish the proof for the co-prime
setting.

We continue with the proof of (1.11) for d := gcd(n+m,m) ∈ {2, . . . ,m}.
Let n′ := n/d and m′ := m/d and note that gcd(n′,m′) = 1. Since h1 and
h2 have roots (such roots may be different) of modulus r for some r > 0, the
harmonic trinomials

H1(z) := A1z
n′+m′

+B1z
m′

+ C1 for all z ∈ C

and

H2(z) := A2z
n′+m′

+B2z
m′

+ C2 for all z ∈ C

have roots (such roots may be different) of modulus rd. Then the previous
discussion for the co-prime case implies

(2.19) m′(α1±α2)+(n′+m′)(β1±β2)− (n′+2m′)(γ1±γ2) ≡ 0 (mod 2π).

Multiplying by d in both sides of (2.19) gives (1.11). Finally, Theorem 1.2
yields that h1 and h2 are Egerváry equivalent. �

Appendix A. Tools

This section contains auxiliary results that help us to make this paper
more fluid.

Lemma A.1 (linear Diophantine solutions I). Let n,m ∈ N be fixed.
Then the solutions x1, x2, x3 of the linear Diophantine equation

(A.1) m(x1 − x3) + (n+m)(x2 − x3) ≡ 0 (mod 2π)

can be parametrized as

(A.2) x1 ≡ x3 + (n+m)δ (mod 2π) and x2 ≡ x3 −mδ (mod 2π)

for some δ ∈ R.
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Proof. Note that (A.1) reads as follows

(A.3) m(x1 − x3) + (n+m)(x2 − x3) = 2πk for some k ∈ Z.

Let k ∈ Z be fixed. We observe that the solutions of the homogeneous equa-
tion

m(x1 − x3) + (n+m)(x2 − x3) = 0

can be parametrized by x1 −x3 = (n+m)δ and x2 −x3 = −mδ for δ ∈ R. If
k = 0 we immediately obtain (A.2). Then we assume that k ∈ Z \ {0}. One
can see that the solutions of (A.3) can be parametrized by

(A.4) x1 − x3 = (n+m)δ + 2πz1 and x2 − x3 = −mδ + 2πz2 for δ ∈ R,

where z1 ∈ R and z2 ∈ R is a particular solution of the linear Diophantine
equation mz1 + (n+m)z2 = k. Now, we assume that gcd(n+m,m) = 1.
Then Bézout’s Identity implies that there exist z∗1 ∈ Z and z∗2 ∈ Z satisfying
mz∗1 + (n+m)z∗2 = k. Choosing z1 = z∗1 and z2 = z∗2 in (A.4), we obtain
(A.2).

We continue with the proof of (A.2) for d := gcd(n+m,m) ∈ {2, . . . ,m}.
Let n′ := n/d andm′ := m/d and note that gcd(n′,m′) = 1. We rewrite (A.3)
as m′(x′1 − x′3) + (n′ +m′)(x′2 − x′3) = 2πk for some k ∈ Z, where x′1 = x1d,
x′2 := x2d and x′3 := x3d. Since gcd(n′ +m′,m′) = 1, the previous reasoning
yields

(A.5) x′1 − x′3 = (n′ +m′)δ+2πz′1 and x′2 − x′3 = −m′δ+2πz′2 for δ ∈ R,

and some integers z′1 and z′2. Multiplying by d in both sides of the equalities
given in (A.5) we obtain (A.2). �

Lemma A.2 (linear Diophantine solutions II). Let n,m ∈ N be fixed.
Then the solutions x1, x2, x3 of the linear Diophantine equation

m(x1 − x3) + (n+m)(x2 − x3) ≡ 0 (mod π)

can be parametrized as

x1 ≡ x3 + (n+m)δ (mod π) and x2 ≡ x3 −mδ (mod π)

for some δ ∈ R.

Proof. The proof follows step by step that of Lemma A.1 replacing 2π
by π. �
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greatly indebted with professor Péter Kevei (Bolyai Institute, University of
Szeged) for his support on the translation of [19] and professor Péter Gábor
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[18] J. Čermák, J. Jánský and L. Nechvátal, Exact versus discretized stability regions for a
linear delay differential equation, Appl. Math. Comput., 347 (2019), 712–722.
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