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Abstract. In this work a mistake in the paper is corrected. There is also a
new proof of the main theorem which classi�es the non-degenerate a�ne surfaces
in R4 having planar geodesics with respect to the a�ne metric.

1. Introduction

In the paper the following theorem is stated.
Theorem 1.The only nondegenerate surfaces inR4 whose geodesics with

respect to the Levi-Civita connection of the a�ne metric are planar are the
complex parabola x(u, v) = (u, v, uv, u2− v2) and the product of two parabolas
x(u, v) = (u, v, u2, v2).

The theorem remains true but there is an essential mistake in the proof.
It turns out that the statement just after equation (3.6) is not true in general.
We said that we can replaceX1, hi, τ i

j , S1 by X̄1, h̄i, τ̄ i
j and S̄1, respectively,

in conditions (3.4), (3.5) and (3.6). In fact we could apply such replacements
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if the terms τ i
j(Xk) have depended on ξi at the point x0 but they depend on

the behaviour of ξi in a neighbourhood of x0 along the geodesic γ.
Now we give a proper proof. We again use Burstin�Mayer transversal

bundle whose induced connection ∇ is de�ned by ∇XY = ∇̂XY +
1
2g(X, Y )∆gx, where ∇̂ is the Levi-Civita connection of the a�ne metric
g. By {X1, X2} we denote a local orthonormal frame, that is g(X1, X1) = ε,
g(X1,X2) = 0 and g(X2,X2) = 1,where ε = 1 for de�nite surfaces and ε = −1
for inde�nite ones. Let x0 be a �xed point of the surface, and v an arbitrary
unit vector in Tx0M with respect to the a�ne metric (if the metric is inde�-
nite, g(v, v) = −1). Let γ = γ(t) be a geodesic passing through x0 for t = 0
with the velocity v. Let X1 be a unit vector �eld along γ such that X1(x0)
= v. Let X2 be a vector �eld along γ such that X1, X2 are orthonormal. If
{ξ1, ξ2} denotes the transversal frame associated to {X1, X2}, we have

γ′′ = Dγ′γ
′ = ∇̂γ′γ

′ +
1
2
g(γ′, γ′)∆gx + h(γ′, γ′).(1)

Consequently,

γ′′′ = Dγ′γ
′′ =

1
2
ε∇γ′∆gx +

1
2
εh(X1, ∆gx)− Sh(γ′,γ′)γ

′ +∇⊥γ′h(γ′, γ′).(2)

The image of a geodesic γ is included in a plane if and only if at every point
there exist α, β ∈ R such that γ′′′ = αγ′ + βγ′′. This condition yields that
the following equalities holds:

αγ′ +
1
2
εβ∆gx =

1
2
ε∇γ′∆gx− Sh(γ′,γ′)γ

′,(3)

βh(γ′, γ′) =
1
2
εh(γ′, ∆gx) +∇⊥γ′h(γ′, γ′).(4)

Now we use the cubic form, which is de�ned byC(X,Y,Z) = ∇⊥Xh(Y,Z)
− h(∇XY, Z)− h(Y,∇XZ). It is well known that it is a (0, 3) tensor and is
totally symmetric. Thus

∇⊥γ′h(γ′, γ′) = C(γ′, γ′, γ′) + 2h(∇γ′γ
′, γ′)

= C(γ′, γ′, γ′) + 2h

(
∇̂γ′γ

′ +
1
2
ε∆gx, γ′

)
= C(γ′, γ′, γ′) + 2h

(
1
2
ε∆gx, γ′

)
.

Hence at t = 0, equality (4) is equivalent to βh(v, v) = 3h(v, 1
2ε∆gx) +

C(v, v, v) and

h1(v, v)
(

3
2
εh2(v, ∆gx) + C2(v, v, v)

)
(5)
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= h2(v, v)
(

3
2
εh1(v, ∆gx) + C1(v, v, v)

)

for C = C1ξ1 + C2ξ2. From this point we can do the proof of the main the-
orem as in the original paper because equality (3) and the last equality con-
tain only tensors, but here we give a simpler reasoning using the result [1] of
Vrancken. We will always assume for the contradiction that the Laplacian is
di�erent from zero at x0. The fact that the Laplacian vanishes completes the
proof because the connections∇ and ∇̂ coincide.

2. De�nite case

Let c be a function such that 1
2∆gx = cX1, and let t, s denote cos(u) and

sin(u) for u ∈ R, resp. Then v = tX1 + sX2 is a unit vector and equation (5)
is equivalent to

(t2 − s2)(3cs(t2 + s2) + t3C2
111 + 3t2sC2

112 + 3ts2C2
122 + s3C2

222)

= 2ts(3ct(t2 + s2) + t3C1
111 + 3t2sC1

112 + 3ts2C1
122 + s3C1

222)

where Ci
jkl = Ci(Xj ,Xk,Xl). Since the above equation is homogeneous with

respect to t and s, we consider the coe�cients at t4s, t2s3 and s5 and get

3C2
112 + 3c = 6c + 2C1

111, −3C2
112 + C2

222 = 6c + 6C1
122, −3c− C2

222 = 0.

These equations together with one of the conditions determining the Burstin�
Mayer transversal bundle, 2C1

122 + C1
111 − C2

211 = 0 give C1
111 = −15c, C1

122

= 3c. Since there exists a local function a that ∇̂X1X1 = aX2 and ∇̂X1X2

= −aX1, we have ∇X1X1 = aX2 + cX1 and ∇X1X2 = −aX1. Using the ex-
pression C1(X,Y, Z) = (∇Xh1)(Y,Z) + τ1

1 (X)h1(Y, Z) + τ1
2 (X)h2(Y, Z), we

obtain

−15c = C1
111 = −2h1(aX2 + cX1, X1) + τ1

1 (X1) = −2c + τ1
1 (X1)

3c = C1
122 = −2h1(−aX1, X2)− τ1

1 (X1) = −τ1
1 (X1),

whence c = 0 which contradicts the assumption∆gx 6= 0 at x0.
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3. Inde�nite case

Let t, s denote cosh(u) and sinh(u) for u ∈ R, resp. Then v = tX1 + sX2

is a unit vector with g(v, v) = −1. In this case we will use one of the equations
determining the Burstin�Mayer transversal bundle:

(6) −2C1
122 + C1

111 − C2
112 = 0.

We distinguish three cases.
Case 1: g(∆gx,∆gx) < 0 at x0. Let c be such a function that 1

2∆gx

= cX1, and equation (5) is equivalent to

(t2 + s2)
( − 3cs(t2 − s2) + t3C2

111 + 3t2sC2
112 + 3ts2C2

122 + s3C2
222

)

= 2ts
( − 3ct(t2 − s2) + t3C1

111 + 3t2sC1
112 + 3ts2C1

122 + s3C1
222

)
.

Like in the de�nite case we obtain

3C2
112 − 3c = −6c + 2C1

111, 3C2
112 + C2

222 = 6c + 6C1
122, 3c + C2

222 = 0.

These together with (6) giveC1
111 = 15c and C1

122 = 3c. We also have∇X1X1

= ∇̂X1X1− 1
2∆gx = aX2−cX1 and∇X1X2 = ∇̂X1X2 = aX1 for a function a.

Hence

15c = C1
111 = −2h1(aX2 − cX1, X1) + τ1

1 (X1) = 2c + τ1
1 (X1)

3c = C1
122 = −2h1(aX1, X2)− τ1

1 (X1) = −τ1
1 (X1),

which again gives c = 0.
Case 2: g(∆gx,∆gx) > 0 at x0. Then we take c such that 1

2∆gx = cX2,
and equation (5) is equivalent to

(t2 + s2)
( − 3ct(t2 − s2) + t3C2

111 + 3t2sC2
112 + 3ts2C2

122 + s3C2
222

)

= 2ts
( − 3cs(t2 − s2) + t3C1

111 + 3t2sC1
112 + 3ts2C1

122 + s3C1
222

)
.

As in Case 1, we obtain C1
222 = −3c and C1

112 = C1
211 = 0. Using the fact

that∇X2X2 = ∇̂X2X2 + 1
2∆gx = bX1 + cX2 and∇X2X1 = ∇̂X2X1 = bX2 for

a function b, we use cubic forms and get

−3c = C1
222 = −2h1(bX1 + cX2, X2) + τ1

1 (X2) = −2c + τ1
1 (X2)

0 = C1
211 = −2h1(bX2, X1) + τ1

1 (X2) = −τ1
1 (X1).
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This gives c = 0.
Case 3: g(∆gx,∆gx) = 0 at x0. Then we can take c such that 1

2∆gx

= c(X1 + εX2) (ε = 1 or −1), and equation (5) is equivalent to

(t2 + s2)
(− 3(εct + cs)(t2 − s2) + t3C2

111 + 3t2sC2
112 + 3ts2C2

122 + s3C2
222

)

= 2ts
(− 3(ct + ε)cs(t2 − s2) + t3C1

111 + 3t2sC1
112 + 3ts2C1

122 + s3C1
222

)
.

As in the previous cases, we obtain C1
111 = 15c and C1

122 = 3c. Using the
cubic form gives c = 0 again.
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