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Abstract Using expectations regarding utilities to make decisions in a risk environment

hides a paradox, which is called the expected utility enigma. Moreover, the mystery has

not been solved yet; an imagined utility function on the risk-return plane has been applied

to establish the mean-variance model, but this hypothetical utility function not only lacks

foundation, it also holds an internal contradiction. This paper studies these basic problems.

Through risk preference VNM condition is proposed to solve the expected utility enigma.

How can a utility function satisfy the VNM condition? This is a basic problem that is hard

to deal with. Fortunately, it is found in this paper that the VNM utility function can have

some concrete forms when individuals have constant relative risk aversion. Furthermore, in

order to explore the basis of mean-variance utility, an MV function is founded that is based

on the VNM utility function and rooted in underlying investment activities. It is shown that

the MV function is just the investor’s utility function on the risk-return plane and that it

has normal properties. Finally, the MV function is used to analyze the laws of investment

activities in a systematic risk environment. In doing so, a tool, TRR, is used to measure risk

aversion tendencies and to weigh risk and return.

Key words VNM condition; relative risk aversion tendency; mean-variance utility; system-

atic risk
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1 Introduction

As maximizing the expected return of an investment was negated by the St. Petersburg

Paradox, it was proposed by D. Bernoulli to substitute expected utility for expected return.

The utility index was further established by J. von Neumann. From this time awards, the

maximization of expected utility has become the de facto practice in consumption and invest-

ment. Markovitz’s portfolio selection (1952, see [13]) provides a larger application stage for

the expected utility theory. In particular, the MV (mean-variance) approach has been applied
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broadly in investment decision and financial analysis. Research results on this has been very

numerous.

In practice, Markovitz’s MV optimization may perform poorly. This phenomenon is re-

ferred to as the Markovitz optimization enigma. Lai et al. (2011, see [9]) studied the enigma

and explained its root causes. They proposed a new approach of flexible modelling to resolve it.

Van Staden et al. (2021, see [16]) found that the MV optimization can be remarkably robust for

modelling misspecification errors in dynamic or multi-period portfolio optimization, in sharp

contrast to single-period portfolio optimization settings. They explained the causes of this sur-

prising robustness under both the pre-commitment MV and time-consistent MV approaches.

Li et al. (2022, see [10]) employed model predictive control to construct a multi-period portfolio

and to provide a comprehensive comparison of the models with regard to objective function

choice, planning horizon and parameter estimation. They found that Markovitz portfolio opti-

mization performs better in muti-period models than in single period ones.

In order to investigate the yield and price under uncertainty, Coyle (1999, see [5]) devel-

oped a duality model of production with risk aversion by using an MV approach. The model

incorporates both mean-variance preferences and expected output supply, and is tractable for

empirical research. Brown (2007, see [4]) gave a new application field for MV methodology. A

mean-variance model is introduced in [4] to solve serial replacement problems with uncertain

rewards. Liu (2022, see [11]) verified that Markowitz’s asset portfolio theory is applicable for

China’s A-share market by randomly selecting its four stocks and constructing a portfolio of

maximum Sharpe ratio.

Based on state-dependent risk aversion and efficient dynamic programming, Rainer (2022,

see [15]) presented a heuristic mean-variance optimization in Markov decision processes to

achieve a balance between maximizing expected rewards and minimizing risks. By using a

CRRA utility function, Kassimatis (2021, see [7]) examined whether mean-variance is a good

proxy for portfolios, and found that MV portfolios are a poor proxy for investors with CRRA

preferences. Marianil et al. (2022, see [12]) proposed a measure for portfolio risk management

by extending the Markowitz mean-variance approach to include the left-hand tail effects of

asset returns. Two risk dimensions were captured: the asset covariance risk and the risk in

left-hand tail similarity and volatility. From a simplified jump process, Khashanah et al (2022,

see [8]) found that mean-variance portfolios need to be enhanced by incorporating higher-order

components. Andrew et al. (2022, see [1]) investigated the impact of changes in the mean

vector on mean-variance portfolio optimization. They found that the bounds of mean vector

changes are unable to characterize portfolio sensitivity. Dai et al. (2020, see [6]) proposed a

dynamic portfolio choice model with MV criteria for log-returns. Their consideration conform

to investment common sense; for example, rich people should invest more in risky assets. The

longer the investment period, the greater the proportion of investment in risky assets. For

long-term investments, investors should not short sell major stock indices whose returns are

higher than the risk-free rate.

Systematic risks and their impact on investment have attracted much attention. Berk

and Tutarli (2020, see [2]) proposed two selection criteria for a mean variance optimization in

a systematic risk environment: the beta coefficient and previous period return. In fact, the

beta coefficient is a measure of systematic risk. Using these selection criteria, investors may



No.6 K.P. Wu: UTILITY BASIS OF CONSUMPTION AND INVESTMENT DECISIONS 2379

obtain investable portfolios. Empirical analysis of the Istanbul Stock Exchange shows that the

portfolio with the lowest beta coefficient is the best alternative. Bianconia et al. (2015, see [3])

introduced a measure of information dissemination for the determination of systemic risk. They

found that VIX volatility has a significant direct impact upon the systemic risk of financial firms

under distress. They also found that consumer pessimism can also predict systemic risk, and

may be dominated by the VIX.

A common feature of all of the above research is the imagining of a utility function, which is

used to derive an expectation regarding utilities. However, such a practice results in a paradox

that is referred to as the expected utility enigma. Meanwhile, the mean-variance utility lacks

foundation and hides its own contradictions. These problems are basic and intrinsic, and hide

a danger which may lead to poor decisions regarding investment and consumption. In view of

these problems, this paper starts by addressing the subject of risk preference, and makes an in-

depth theoretical analysis. First, a VNM condition is proposed to explain the expected utility

enigma. Second, the relative risk aversion tendency is used to explore the form of VNM utility

functions and then to unveil the truth of the expected utility enigma. Third, a mean-variance

utility function is constructed according to the VNM utility function and actual investment

activities. Finally, using the MV utility function constructed, the law of investment decisions

in systematic risks are revealed, and a new measure called the target rate of return is proposed

in order to evaluate the risk aversion tendencies of investors.

Before starting the discussion, we explain some of the rules regarding the care of symbols

in this paper. All vectors, matrices, and mappings whose values are vectors are expressed in

italic bold letters. In addition, the word “function” refers to the mapping whose values are real

numbers.

2 Expected Utility Enigma and VNM Condition

When individuals decide to consume or invest in an uncertain environment, they need

first to know the expected utilities of their activities, and then to organize their activities

according to the plan with maximal expected utility. Usually, the expected utility Eu(ξ) of a

random action ξ of an individual is given by the expectation that Eu(ξ) =
∫

Ω
u(ξ(ω))dP (ω)

is calculated from the utility function u(x) of the individual. However, such an approach may

lead to a contradiction, which is referred to as the expected utility enigma.

We can imagine a situation where a consumer chooses between two commodities X and

Y . The amounts of X and Y are denoted by x and y. Suppose that u(x, y) = (xy)0.25 and

v(x, y) = (xy)0.75 are the utility functions of the consumer. They display the same preference,

i.e., the following fact holds for any x1 ≥ 0, y1 ≥ 0 and x2 ≥ 0, y2 ≥ 0:

(u(x1, y1) ≤ u(x2, y2)) ⇔ (v(x1, y1) ≤ v(x2, y2)).

The two functions obey the decreasing law of marginal utility: u′

x(x, y) > 0, u′

y(x, y) > 0,

u′′

xx(x, y) < 0, u′′

yy(x, y) < 0; v′x(x, y) > 0, v′y(x, y) > 0, v′′xx(x, y) < 0, v′′yy(x, y) < 0. Thus u(x, y)

and v(x, y) could be regarded as the cardinal utility functions used to calculate expected utilities.

Now suppose that the consumer is in an uncertain environment where their choice depends

on the sides of a coin, while each side appears with a 50% probability. They are faced two

options, A and B.
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Option A: If the positive side appears, choose (1,1); otherwise, choose (3,3).

Option B: Always choose (2,2), no matter what side of the coin appears.

How does the consumer choose? Should they choose A or B? Facing this situation, the

consumer needs first to calculate the expected utilities of the two options A and B. As u(x, y)

is a utility function of the consumer, they can obtain Eu(A) and Eu(B) as follows:

Eu(A) = 0.5u(1, 1) + 0.5u(3, 3) = 0.5 × (1 + 90.25) ≈ 1.366,

Eu(B) = 0.5u(2, 2) + 0.5u(2, 2) = u(2, 2) =
√

2 ≈ 1.414.

Since Eu(A) < Eu(B), the consumer should choose option B. However, v(x, y) is also a

utility function, so of course they can use v(x, y) to calculate the expected utilities and obtain

Ev(A) and Ev(B) as follows:

Ev(A) = 0.5v(1, 1) + 0.5v(3, 3) = 0.5 × (1 + 90.75) ≈ 3.098,

Ev(B) = 0.5v(2, 2) + 0.5v(2, 2) = v(2, 2) = 40.75 ≈ 2.828.

Now Ev(A) > Ev(B) means that the consumer should choose option A. The different

answers here lead to a contradiction. Which option should be chosen? Is option A better than

option B or is option B better than option A? This problem is the so-called expected utility

enigma.

By this token, the underlying utility function used to calculate the expected utilities is a key

factor that decides whether or not the decision is correct when individuals are in an uncertain

environment. In order to solve the expected utilities enigma, the VNM condition can not be

ignored; that is, the underlying utility function has to satisfy the VNM condition.

Before explaining the meaning of the VNM condition, let Ω denote the set of all natural

states that affect the outcome of economic activities. The set Ω is called a state space. Let

F denote the event field on Ω, which is a σ-field. Let P : F → [0, 1] denote the probability

measure on F . The probability space (Ω,F , P ) expresses that the economic environment is one

of uncertainty.

Suppose that there are l kinds of commodities on the market. Then the commodity space

becomes the l-dimensional Euclidean space Rl. The outcomes of economic activities are just

vectors in Rl, called commodity vectors or selection schemes. However, not all vectors in Rl

are available for individuals to choose, since activities are limited by some conditions. Let S

denote the set of vectors from which individuals are allowed to choose. S is a subset of Rl,

called outcome set. Usually, S is required to be a non-empty, convex and closed set.

For different outcomes, what is best? The answer depends on preferences. A rational

individual’s preference can be expressed as a binary relation � on the outcome set S obeying

the following three axioms:

Reflexivity: (∀x ∈ S)(x � x), i.e., every outcome is not better than itself.

Completeness: (∀x, y ∈ S)((x � y) ∨ (x � y)), so the individual knows good and bad.

Transitivity: (∀x, y, z ∈ S)(((x � y) ∧ (y � z)) ⇒ (x � z)), so � is a good preordering.

For any x, y ∈ S, by x ∼ y we mean that x � y and x � y; and by x ≺ y we mean that

x � y and x 6� y. When x ∼ y, it is said that x and y are indifferent. When x ≺ y, it is said

that x is inferior to y (or y is preferred than x).
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In the uncertain environment (Ω,F , P ), the activity of the individual is really a random

vector ξ : Ω → S; its outcome ξ(ω) ∈ S is affected by the natural state ω ∈ Ω. Let S denote

the set of all random vectors on Ω, i.e., S = {ξ|ξ : Ω → S is a random vector}. The set S is

called a risky selection set or a risk set. As any vector x ∈ S can be regarded as a degenerate

random vector, S is contained in S, i.e., S ⊆ S.

Any two activities ξ, η ∈ S can be compounded into an activity pξ⊕(1−p)η by probability p

in such a way that the activity is ξ with probability p, and η with probability 1−p. pξ⊕(1−p)η

is called a compound activity. Using random events to express things, pξ⊕ (1−p)η means that

the individual takes ξ if A happens, and takes η if A doesn’t happen, where A ∈ F is an event

with probability p. The compounding operation obeys obvious the following laws:

Commutative law: pξ ⊕ (1 − p)η = (1 − p)η ⊕ pξ holds for any ξ, η ∈ S and p ∈ [0, 1].

Associative law: The following formula holds for any ξ, η ∈ S and α, p, q ∈ [0, 1]:

α(pξ ⊕ (1 − p)η) ⊕ (1 − α)(qξ ⊕ (1 − q)η)

= (αp + (1 − α)q)ξ ⊕ (α(1 − p) + (1 − α)(1 − q))η.

Meanwhile the individual can judge which is better for any two random activities, ξ, η ∈ S,

according to their preference. This means that there is a reflexive, complete and transitive

binary relation �r on the risk set S such that �r expresses the individual’s risk preference.

Since S ⊆ S, (x � y) ⇔ (x �r y) should hold for any x, y ∈ S; that is, the evaluation on S is

consistent under � and �r. Hence the preference � is a confinement of �r on S, i.e., �=�r|S .

In other words, the risk preference �r is an expansion of the outcome preference � to the risk

set S. On this account, for convenience, we use the same symbol � to denote both the outcome

preference � and the risk preference �r.

Some general rules should be complied for the expanding of preferences from S to S. For

example, when x, y ∈ S and x ≺ y, the evaluation qx ⊕ (1 − q)y ≺ px ⊕ (1 − p)y should

hold for any p, q ∈ [0, 1] with p < q. This means that choosing the worse outcome with greater

probability is worse than choosing the worse outcome with smaller probability. More generally,

when ξ, η ∈ S and ξ ≺ η, (p < q) ⇔ (qξ ⊕ (1 − q)η ≺ pξ ⊕ (1 − p)η) should hold for any

p, q ∈ (0, 1). Another example is that (x ≺ y) ⇔ (px⊕(1−p)z ≺ py⊕(1−p)z) should hold for

any x, y, z ∈ S and p ∈ (0, 1). In other words, when the outcomes chosen with probability 1−p

are the same, choosing the worse outcome with probability p is worse than choosing the better

outcome with probability p. This property is referred to as the independence of evaluation.

More generally, (ξ ≺ η) ⇔ (pξ ⊕ (1− p)γ ≺ pη ⊕ (1− p)γ) should hold for any ξ, η, γ ∈ S and

p ∈ (0, 1).

These general rules for preference expansion are recognized and admitted with the following

two axioms:

Independence Axiom: (ξ � η) ⇔ (pξ ⊕ (1 − p)γ � pη ⊕ (1 − p)γ) for any ξ, η, γ ∈ S
and p ∈ (0, 1).

Continuity Axiom: Both {p ∈ [0, 1] : pξ⊕(1−p)η � γ} and {p ∈ [0, 1] : pξ⊕(1−p)η � γ}
are closed subsets of interval [0, 1] for any ξ, η, γ ∈ S.

The following theorem makes a clear and intuitive interpretation of the above two axioms,

and shows that the preference expansion according the two axioms does conform to general

rules of evaluation:
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Theorem 2.1 The risk preference � satisfies the Independence and Continuity Axioms

if and only if � conforms to the following five general rules:

Rule (1) (ξ ∼ η) ⇔ (pξ⊕(1−p)γ ∼ pη⊕(1−p)γ) holds for any ξ, η, γ ∈ S and p ∈ (0, 1);

Rule (2) (ξ ≺ η) ⇔ (pξ⊕(1−p)γ ≺ pη⊕(1−p)γ) holds for any ξ, η, γ ∈ S and p ∈ (0, 1);

Rule (3) (ξ ≺ η) ⇔ (ξ ≺ pξ ⊕ (1 − p)η ≺ η) holds for any ξ, η ∈ S and p ∈ (0, 1);

Rule (4) (p < q) ⇔ ((1− p)ξ⊕ pη ≺ (1− q)ξ⊕ qη) holds for any p, q ∈ (0, 1) and ξ, η ∈ S
with ξ ≺ η;

Rule (5) For any ξ, η, γ ∈ S with ξ ≺ γ ≺ ξ, there exists a real c ∈ (0, 1) such that

(1 − c)ξ ⊕ η ∼ γ.

Furthermore, the rules (4) and (5) above imply that (1 − a)ξ ⊕ aη ≺ γ ≺ (1 − b)ξ ⊕ bη

holds for any a ∈ (0, c) and b ∈ (c, 1).

Proof It is easy to verify that � satisfies the Independence and Continuity Axioms if �
conforms to the five general rules listed in the theorem, so we only need to prove the necessity.

For this purpose, suppose that � satisfies the Independence and Continuity Axioms. Let

ξ, η, γ ∈ S and p, q ∈ (0, 1) be given arbitrarily. From the Independence Axiom, rules (1) and

(2) are obviously satisfied. In the following we prove rules from (3) to (5).

Proof of rule (3). Suppose that ξ ≺ η. Note that ξ = (1− p)ξ ⊕ pξ and η = pη⊕ (1− p)η.

Form rule (2), ξ = (1−p)ξ⊕pξ ≺ (1−p)η⊕pξ = pξ⊕(1−p)η and pξ⊕(1−p)η ≺ pη⊕(1−p)η = η

hold. Rule (3) is proven.

Proof of rule (4). Here we know that ξ ≺ η. To show the necessity in rule (4), suppose that

p < q. Let t = p/q and γ = (1− q)ξ ⊕ qη. Obviously, 0 < t < 1. Since ξ ≺ η, it is immediately

derived from rule (3) that ξ ≺ γ. Again from rule (3) we have (1− t)ξ ⊕ tγ ≺ γ. Note that the

following fact is true:

(1 − t)ξ ⊕ tγ = (1 − t)ξ ⊕ t((1 − q)ξ ⊕ qη) = (1 − t + t(1 − q))ξ ⊕ tqη = (1 − p)ξ ⊕ pη.

Thus it can be seen that (1 − p)ξ ⊕ pη = (1 − t)ξ ⊕ tγ ≺ γ = (1 − q)ξ ⊕ qη holds. The

necessity in rule (4) is proven.

Now we prove the sufficiency in rule (4). Suppose that (1− p)ξ ⊕ pη ≺ (1 − q)ξ ⊕ qη. The

reflexivity of � implies that p 6= q. If p > q, then from the necessity in rule (3) we have that

(1 − p)ξ ⊕ pη ≻ (1 − q)ξ ⊕ qη. This is a contradiction, so p > q cannot hold. Therefore p < q.

The sufficiency in rule (4) is proven, and rule (4) is proven.

Proof of rule (5). Let A = {p ∈ [0, 1] : (1−p)ξ⊕pη � γ} and B = {p ∈ [0, 1] : (1−p)ξ⊕pη �
γ}. Then A ∪ B = [0, 1]. The continuity Axiom tells us that both A and B are closed subsets

of interval [0, 1].

As we know that ξ ≺ γ ≺ η, it can be seen that 0 ∈ A and 1 ∈ B. Thus A and B are

non-empty subsets of [0, 1]. Now the connectivity of interval [0, 1] implies that A ∩ B 6= Φ.

Hence there exists a real number c ∈ A ∩B. Obviously, (1− c)ξ ⊕ cη ∼ γ and 0 < c < 1. Rule

(5) is proven.

Furthermore, from rule (4), it can be found that (1 − a)ξ ⊕ aη ≺ γ ≺ (1 − b)ξ ⊕ bη holds

for any a ∈ (0, c) and b ∈ (c, 1). Theorem 2.1 is proven. �

Based on the above preparations and analyses, the expected utility enigma can now be

solved. Note that the expectation Eu(ξ) =
∫

Ω u(ξ(ω))dP (ω)(ξ ∈ S) defines a function Eu :

S → R, which is an expansion of the underlying function u : S → R, i.e., Eu|S = u. So
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Eu(x) = u(x) for any x ∈ S. u : S → R is said to be a utility function of the outcome

preference � if (x � y) ⇔ (u(x) ≤ u(y)) holds for any x, y ∈ S. Utility functions are invariant

under strictly increasing transformations, which says that if u : S → R is a utility function of

�, then v(x) = ϕ(u(x))(x ∈ S) is a utility function of � too, where ϕ : R → R is a strictly

increasing function.

We know that in an uncertain environment (Ω,F , P ), the individual evaluates activities

according to their risk preferences �. If they want to use an expectation Eu(ξ) to evaluate

things, Eu(ξ) must be a utility function of the risk preference �. This requirement is called the

VNM condition on the underlying function u : S → R. The specific expression of this condition

is as follows:

VNM condition: u : S → R satisfies that (∀ξ, η ∈ S)((ξ � η) ⇔ (Eu(ξ) ≤ Eu(η))).

When u : S → R satisfies the VNM condition, u : S → R is said to be a VNM function.

It can be verified that if u : S → R is a VNM function, then u : S → R is a utility function of

the outcome preference �, so a VNM function is also referred to as the VNM utility function.

It can be verified further that VNM functions are invariant under affine transformations. That

is, if u : S → R is a VNM function, then v(x) = a + bu(x) is also a VNM function too for any

a, b ∈ R with b > 0.

Up until now, the expected utility enigma has been solved by asking the underlying function

to be a VNM function. When individuals make decisions in an environment with uncertainty,

they must use a VNM function to evaluate things. A lack of VNM functions will inevitably

lead to incorrect decisions.

3 Relative Risk Aversion Tendency and the VNM Function

After solving the expected utility enigma, there are two important questions that follow.

One is whether the VNM functions exist. The other is how to identify a function as a VNM

function. Fortunately, economics gives an answer to the first question, and tells us that there

exist VNM functions if the preference � satisfies the following three conditions:

(1) Ω = S and {x} ∈ F for any x ∈ S;

(2) � satisfies the Independence and Continuity Axioms;

(3) � is measurable and inherited.

The first condition means that every outcome can be viewed as a natural state and appears

randomly. The meaning of the second condition has been explained in Theorem 2.1. Third,

saying that � is measurable means that both {x ∈ S : x � z} and {x ∈ S : x � z} are

measurable sets for any z ∈ S. Finally, saying that � is inherited means that for any x ∈ S

and ξ ∈ S, ξ � x if P{ξ(ω) � x} = 1, and ξ � x if P{ξ(ω) � x} = 1. Thus the judgement

ξ � x is an inheritance from the judgement that ξ(ω) � x holds almost everywhere. It is

obvious that these conditions are common. Thus VNM functions exist in general.

In addition, VNM functions must be cardinal utility functions. If this were not so, the

expectation of utilities could be meaningless. As a result of the cardinal meaning of VNM

functions, there exist cardinal utility functions. The existence puzzle of cardinal utilities is now

solved.

In the past, it was generally recognized that utilities are hard to measure with a ruler. When
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you consume a certain quantity of goods, there is no way to know how much utility you obtain.

In light of this, economists abandoned the cardinal utility assumption, and used instead ordinal

utility theory. However economists are contradictory. While abandoning cardinal utilities, they

again used cardinal utility functions to build dynamic or multi-period models such as business

cycle models, economic growth models and financial models. In particular, they use cardinal

utilities but do not know whether or not cardinal utilities exist. Thus their models are built

like castles in the clouds. Now, with the help of VNM utilities, a positive answer is obtained for

the existence puzzle regarding cardinal utilities, and thus a foundation is added for dynamic or

multi-period models.

The above discussions about the existence of VNM and of cardinal utilities can be summa-

rized in the following theorem:

Theorem 3.1 Suppose that S is a non-empty convex closed subset of space Rl, that

Ω = S and that {x} ∈ F for any x ∈ S. If the preference � satisfies the Independence and

Continuity Axioms, and is measurable and inherited, then there exist VNM functions, and there

also exist cardinal utility functions of �.

Now we consider the second question raised at the beginning of this section. In order to

identify VNM functions, we start for analyzing risk aversion tendencies. In general, there are

three kinds of attitudes towards risk: risk averse, risk love and risk neutral. An individual with

risk preference � is called a risk averter if Eξ ≻ ξ, a risk lover if ξ ≻ Eξ, and risk neutral if

ξ ∼ Eξ, for any degenerated ξ ∈ S. In terms of gambling, a fair gamble is one in which the

sum that is bet is equal to the expected return. Facing a fair gamble, risk averters reject it, but

risk lovers accept the gamble. Risk neutrals are indifferent to fair gambling. The reality is that

most people are risk averse. Only a small portion are risk neutral. Very few are risk lovers.

Let v : S → R be a VNM function of the individual. It can be shown that v : S → R is

concave for risk averters, and convex for risk lovers. If they are risk neutral, then v : S → R

is a linear or one-order function. The function v(x) = v(x1, x2, · · · , xl) could be assumed

to be twice differentiable and have non-zero first order derivatives. Under this assumption,

v′′ii(x) = (∂2v(x))/(∂x2
i ) (i = 1, 2, · · · , l) are negative for risk averters, positive for risk lovers,

and zero for risk neutrals. As a result, the decreasing marginal utility is equivalent to risk

aversion, and so is verified to be a prevailing phenomenon.

With the help of the Arrow-Pratt coefficient of risk aversion, a measurement vector θ(x)

is found and proposed here for multi-variate function v(x). The vector θ(x), called a relative

risk aversion tendency, is defined as follows:

θi(x) = θi(x1, x2, · · · , xl) = −v′′ii(x)xi

v′i(x)
(x ∈ S, i = 1, 2, · · · , l).

The economic meaning of θi(x) can be explained by a gambling plane. We can imagine a

gamble designed by an event F with probability p. The amount of commodity i becomes xi(1+a)

if F happens, and becomes xi(1 + b) if F doesn’t happen, where a and b are percentages of

changes in quantity. The amount xj of other commodities j(j 6= i) remain unchanged. This

gamble can be denoted by (a, b), which is a point on the plane R2 called a gambling plane, as

shown in Figure 1. The origin 0 of the coordinate means no gambling.

For convenience, let u(a) = v(x1, · · · , xi−1, xi(1 + a), xi+1, · · · , xl)(a ∈ R). u(·) is the

underlying utility function of the gamble. The expected return ER and the expected utility
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Eu are as follows:

ER = ER(a, b) = pxi(1 + a) + (1 − p)xi(1 + b) = xi(1 + pa + (1 − p)b),

Eu = Eu(a, b) = pu(a) + (1 − p)u(b).

Fair gambles are those (a, b) with expected return xi, i.e., ER(a, b) = xi, so a gamble (a, b)

is fair if and only if pa(1 − p)b = 0. The line J consisting of all fair gambles is called fair

gambling line, as shown in Figure 1.

Figure 1 Risk averse acceptance set

The condition for the individual to accept a gamble (a, b) is that the expected utility

Eu(a, b) is not less than the utility Eu(0, 0) = u(0) = v(x) of no gambling. Let A be the set

of all gambles accepted by the individual, i.e., A = {(a, b) ∈ R2 : pu(a) + (1 − p)u(b) ≥ u(0)},
called the acceptance set. It can be shown that the acceptance set A of risk averters is convex.

Figure 1 displays the shape of the acceptance set of a risk averter, where ∂A is the boundary

of A. The boundary ∂A is determined by equation pu(a) + (1 − p)u(b) = u(0). Hence ∂A is

the indifference curve through the origin o; its slope at origin o is −p/(1− p), which is just the

slope of the fair gambling line J . Therefore J is just the tangent line of ∂A at the origin o.

Let b = ϕ(a) be the function determined by equation pu(a)+(1−p)u(b) = u(0); i.e., b = ϕ(a)

describes ∂A. It can be shown that ϕ′(0) = −p/(1− p) and ϕ′′(0) = −(u′′(0)/u′(0))p/(1− p)2.

Assume that the individual is a risk averter, so that u′(0) > 0 and u′′(0) < 0. Then

ϕ′′(0) > 0. Based on curvature theory, the larger the ϕ′′(0), the more curved the boundary ∂A,

and so the more gambles near at origin o are rejected. As we know, gambles near at origin o are

all small ones. Attitudes towards small gambles can reflect best the tendencies of risk aversion.

Hence ϕ′′(0) measures the tendency of risk aversion. As ϕ′′(0) and −u′′(0)/u′(0) maintain a

proportional relation, −u′′(0)/u′(0) can be regarded as a measure of the risk aversion tendency.

Calculating the derivatives of u(a), it can be obtained that u′(0) = v′i(x)xi and u′′(0) =

v′′ii(x)x2
i , so −u′′(0)/u′(0) = −v′′ii(x)xi/v′i(x) = θi(x). This explains the significance of θi(x).

Conforming with our expectation, θi(x) measures the risk aversion tendency on commodity i

of the individual. Note that the changes of return in gambling are expressed by percentage

changes, which are relative changes in quantity. For this reason, θi(x) is called a relative risk

aversion tendency on commodity i of the individual.

Theorem 3.2 The relative risk aversion tendency θ(x) depends only on the individual,

not the forms of VNM functions of the individual. That is, if both u : S → R and v : S → R are
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VNM functions of the individual, then u′′

ii(x)xi/u′

i(x) = v′′ii(x)xi/v′i(x) (i = 1, 2, · · · , l) holds

for any x ∈ S.

Proof By cardinal utility, there is a rod scale or ruler in the mind of the individual used

to measure the quantity of utilities. What is the scale of this ruler? This can be determined

by a business plan. One foot can be defined as one meter long or 33.333 centimeters, etc.,

according to the plan. Once the length is determined, the ruler cannot be deformed or broken;

otherwise, the measured quantity would be inaccurate. It does not matter whether long or

short; what matters is that the ruler gives the reference unit of measurement, and then is used

to mark the scale on a straight line. It does not matter either where the 0 mark is; as long as

the 0 point is marked, the scales can be marked to the right or left.

One can use scales of different lengths, and adopt 0 points with different positions, to

mark the scales on straight lines. The correspondence between any two different scales is really

an affine transformation. Like the different scales with different positions of the 0 point, the

correspondence between any two cardinal utility functions u(x) and v(x) is really an affine

transformation too; that is, there exist real numbers a > 0 and b such that v(x) = au(x) + b.

Now suppose that u : S → R and v : S → R are VNM functions of the individual.

They are cardinal utility functions, as VNM functions are cardinal ones. Thus there are real

numbers a > 0 and b such that v(x) = au(x)+ b for any x ∈ S. This implies immediately that

u′′

ii(x)xi/u′

i(x) = v′′ii(x)xi/v′i(x) holds for any x ∈ S and i = 1, 2, · · · , l.

For the above fact that u(·) can be affinely transformed to v(·), we can give a strict proof.

As both u(·) and v(·) are VNM functions of the same individual, we have that for any ξ, η ∈ S:

(

∫

Ω

u(ξ(ω))dP (ω) ≤
∫

Ω

u(η(ω))dP (ω)) ⇔ (

∫

Ω

v(ξ(ω))dP (ω) ≤
∫

Ω

v(η(ω))dP (ω)).

Let A = {Eu(ξ) : ξ ∈ S} and B = {Ev(ξ) : ξ ∈ S}, where Eu(ξ) ,
∫

Ω
u(ξ(ω))dP (ω) and

Ev(ξ) ,
∫

Ω v(ξ(ω))dP (ω). It can be checked that for any α ∈ [0, 1], the distribution function

of (1−α)ξ⊕αη is the weighted sum (1−α)f(·)+αg(·) where f(·) and g(·) are the distribution

functions of ξ and η respectively. Thus Eu((1 − α)ξ ⊕ αη) = (1 − α)Eu(ξ) + αEu(η) for any

α ∈ [0, 1]. This implies that both A and B are convex subsets of the real line R.

Define ϕ : A → B as follows: ϕ(Eu(ξ)) = Ev(ξ)(ξ ∈ S). Obviously, ϕ(·) is increasing, and

ϕ((1 − α)Eu(ξ) + αEu(η)) = ϕ(Eu((1 − α)ξ ⊕ αη))

= Ev((1 − α)ξ ⊕ αη)

= (1 − α)Ev(ξ) + αEv(η)

= (1 − α)ϕ(Eu(ξ)) + αϕ(Eu(η)) (ξ, η ∈ S).

This shows that ϕ : A → B is convexly linear. Thus there exist a, b ∈ R with a > 0 such that

ϕ(z) = az + b for any z ∈ A; i.e., ϕ : A → B is an affine transformation. Since Eu(x) = u(x)

and Ev(x) = v(x) for any x ∈ S ⊆ S, we have that ϕ(u(x)) = ϕ(Eu(x)) = Ev(x) = v(x)

for any x ∈ S. Therefore v(x) = au(x) + b for any x ∈ S; i.e., u : S → R can be affinely

transformed to v : S → R. Theorem 3.2 is proven. �

θi(x) changes with the change of xi. What are the specific characteristics of such change?

The specific answer to this is unknown, but because the stakes are in proportion, it seems

that θi(x) has nothing to do with the size of xi. In this case, it should be a good option to
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assume that θi(x) is constant. At least this option is acceptable and conforms to the principle

of meeting change with constancy.

Theorem 3.3 Let S = Rl
+ = {x ∈ Rl : (x1 ≥ 0) ∧ (x2 ≥ 0) ∧ · · · ∧ (xl ≥ 0))} and

v : S → R be a twice differentiable VNM function of the individual with non-zero first order

derivatives. Suppose that one unit of each commodity is a necessity, i.e., (xi = 1) ⇒ (v(x) =

0) (i = 1, 2, · · · , l). Then the individual has a constant relative risk aversion tendency θ =

(θ1, θ2, · · · , θl) (or θ(x) is a constant vector θ) if and only if there is a constant real number

a > 0 such that v(x) = a
l

∏

(i=1)

(x1−θi

i − 1)/(1− θi)(x ∈ S), where the value (x1−θi

i − 1)/(1− θi)

at θi = 1 can be defined supplementarily as ln(xi) (i = 1, 2, · · · , l).

Proof We first explain why(x1−θi

i −1)/(1−θi) can be viewed as ln(xi) when θi = 1. There

are two reasons for this view. One is the lim
θi→1

(x1−θi

i −1)/(1−θi) = ln(xi). Thus the supplemen-

tary definition gives the function continuity at θi = 1. The other is the lim
θi→1

d
dxi

[(x1−θi

i −1)/(1−
θi)] = d

dxi
ln(xi). Hence the function with supplementary definition has continuous derivatives

at θi = 1.

Sufficiency From v(x) = a
l

∏

i=1

(x1−θi

i − 1)/(1 − θi) (a > 0) and calculating the relative

risk aversion tendency θi(x) on commodity i, it can be seen that θi(x) = −v′′ii(x)xi/v′i(x) ≡ θi.

Thus the individual has a constant relative risk aversion tendency θ = (θ1, θ2, · · · , θl).

Necessity Suppose that the individual has a constant relative risk aversion tendency

θ ∈ Rl. Then the following formulas hold for all x ∈ S and i = 1, 2, · · · , l:

θi ≡ −v′′ii(x)xi

v′i(x)
= − xi

v′i(x)

∂v′i(x)

∂xi

.

Note that the partial derivative ∂vi(x)/∂xi requires that the other xj(j 6= i) are unchanged.

Hence ∂(·)/∂xi and d(·)/dxi have the same meaning, so above formula can be written as

θi = −xi

v′i

dv′i
dxi

= − dv′i/v′i
dxi/xi

= −d ln |v′i|
d lnxi

, or d ln |v′i| = d lnx−θi

i .

Starting from commodity 1, we recursively deduce things from above formula.

For commodity 1, the amounts x2, x3, · · · , xl are arbitrary but settled, and d ln |v′1| =

d lnx−θ1

1 holds for all x1 > 0. Solving this equation, we have that ln |v′1(x)| = lnx−θ1

1 + C11,

where C11 is a constant relative to x1 but dependent on x2, x3, · · · , xl, i.e., C11 = C11(x2, x3,

· · · , xl). Thus |v′1(x)| = eC11x−θ1

1 . Solving this equation, we have that |v(x)| = eC11x1−θ1

1 /(1−
θ1)+C12, where C12 is still a constant relative to x1 but dependent on x2, x3, · · · , xl, i.e., C12 =

C12(x2, x3, · · · , xl). Note that v(x) = 0 when x1 = 1. This implies that C12 = −eC11/(1 − θ1)

and that v(x) = ±eC11(x1−θ1

1 − 1)/(1 − θ1). Let A2 = ±eC11 = A2(x2, · · · , xl). Then v(x) =

A2(x
1−θ1

1 − 1)/(1 − θ1). We get the first conclusion as follows:

Conclusion 1 There is a constant A2 relative to x1 such that

v(x) =
x1−θ1

1

1 − θ1
A2(x2, x3, · · · , xl).

For commodity 2, the amounts are arbitrary but settled, and d ln |v′2(x)| = d lnx−θ2

2 holds

for all x2 > 0. From Conclusion 1, we have that v′2(x) = [(x1−θ1

1 − 1)/(1 − θ1)]A
′

22, where
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A′

22 = ∂A2/∂x2. Thus d lnx−θ2

2 = d ln |v′2(x)| = d ln
∣

∣

∣
A′

22(x
1−θ1

1 − 1)/(1 − θ1)
∣

∣

∣
= d ln |A′

22|
holds for all x2 > 0.

Using reasoning similar as to that for the commodity 1, there are constants C21 and C22

relative to x1 and x2, but depending on x3, x4, · · · , xl, such that |A2| = |A2(x2, x3, · · · , xl)| =

eC21x1−θ2

2 /(1− θ2) + C22, where C21 = C21(x3, x4, · · · , xl) and C22 = C22(x3, x4, · · · , xl). Note

that v(x) = 0 when x2 = 1. Substituting x2 = 1 into v(x) = A2(x
1−θ1

1 − 1)/(1 − θ1), we

obtain that 0 =
[

eC21/(1 − θ2) + C22

]

(x1−θ1

1 − 1)/(1 − θ1). Hence C22 = −eC21/(1 − θ2),

and |A2| = eC21x1−θ2

2 /(1 − θ2) + C22 = eC21(x1−θ2

2 − 1)/(1 − θ2). Let A3 = ±eC21 . Then

A2 = A3(x
1−θ2

2 − 1)/(1 − θ2), and we get the second conclusion as follows:

Conclusion 2 There is a relative constant A3 such that

v(x) =

2
∏

j=1

x
1−θj

j − 1

1 − θj

A3(x3, · · · , xl).

Recursively using similar reasoning, we can get the conclusion for commodity i as follows:

Conclusion i There is a relative constant Ai such that

v(x) =

i
∏

j=1

x
1−θj

j − 1

1 − θj

Ai+1(xi+1, · · · , xl) (i < l).

Finally, for commodity l, d ln |v′l(x)| = d lnx−θl

l holds for all xl > 0, where x1, x2, · · · , xl−1

are settled. From conclusion l − 1, we have v′l(x) =
l−1
∏

i=1

[

(x1−θi

i − 1)/(1 − θi)
]

A′

ll(xl), where

A′

ll = A′

ll(xl) = dAl(xl)/dxl. Thus d lnx−θl

l = d ln |v′l(x)| = d ln |A′

ll| holds for all xl > 0.

Solving this equation, we obtain that ln |A′

ll| = lnx−θl

l + Cl1, so |A′

ll| = eCl1x−θl

l , where Cl1

is constant relative to x1, x2, · · · , xl. Solving |A′

ll| = eCl1x−θl

l there is a constant Cl2 relative

to x1, x2, · · · , xl such that |Al| = eCl1x1−θl

l /(1 − θl) + Cl2. Note that v(x) = 0 when xl = 1.

Substituting xl = 1 into v(x) = Al

l−1
∏

i=1

(x1−θi

i − 1)/(1− θi), we obtain that Cl2 = −eCl1/(1− θl)

and that |Al| = eCl1(x1−θl

l −1)/(1−θl). Sine (1, 1, · · · , 1) is the necessity vector, the constant a =

eCl1 > 0 is just one desired such that v(x) = Al

l−1
∏

i=1

(x1−θi

i −1)/(1−θi) = a
l

∏

i=1

(x1−θi

i −1)/(1−θi).

Theorem 3.3 is proven. �

Imitating the above proof, Theorem 3.3 can be generalized into a more general form, which

are described in Theorem 3.4. As a preparation, here we explain the semi-orderings ≤ and ≪
on Rl. For any x, y ∈ Rl, x ≤ y means that xi ≤ yi (i = 1, 2, · · · , l); x < y means that x ≤ y

but that x 6= y; x ≪ y means that xi < yi (i = 1, 2, · · · , l). The zero vector is denoted by the

bold letter 0 = (0, 0, · · · , 0).

Theorem 3.4 Let S = Rl
+, µ = (µ1, µ2, · · · , µl) ≫ 0 and v : S → R, and be a twice

differentiable VNM function of the individual with non-zero first order derivatives. Suppose

that (xi = µi) ⇒ (v(x) = 0) holds for each i. Then the individual has a constant relative

risk aversion tendency θ = (θ1, θ2, · · · , θl) if and only if there is a number a > 0 such that

v(x) = a
l

∏

i=1

(x1−θi

i − µ1−θi

i )/(1− θi)(x ∈ S), where the value (x1−θi

i − µ1−θi

i )/(1− θi) at θi = 1

can be defined supplementarily as ln(xi/µi) (i = 1, 2, · · · , l).

The proof of this theorem is similar to the one of Theorem 3.3. It will not be repeated here.
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However the vector µ is meaningful. For an individual with a constant relative risk aversion

tendency, µ satisfies that v(µ) = 0 and v(x) > 0 when x ≫ µ. This means that µ is a package

of necessities, and a starting point for lives. µ ≫ 0 indicates a high living standard. The

individual has passed through the difficult stage of robbing Peter to pay Paul, so µ signifies

entering a well-off life. It is because of this well-off life that the individual could have a relative

constant risk aversion tendency.

The relative constant risk aversion tendency θi(x) has another significant meaning. From

its definition, it is easy to see that θi(x) is the elasticity of marginal utility, which represents

the ratio of the marginal utility decline to the consumption increase. As usual, it is said that

θi(x) is small if θi(x) < 1, large if θi(x) > 1, and appropriate if θi(x) = 1. Thus θi(x) is a

measure for the sensitivity of marginal utility to consumption.

As marginal utility represents scarcity, the elasticity of marginal utility θi(x) can be referred

to as scarcity elasticity. The smaller the scarcity elasticity, the less the impact of consumption

on marginal utility, and the more necessary the commodity. Therefore, a small θi(x) implies

that the commodity i is a necessity.

θi(x) also denotes the ratio of instantaneous speed to the average speed of diminishing

marginal utility. When the instantaneous speed is less than the average speed, θi(x) is small.

When the former is greater than the latter, θi(x) is large. When both are equal, θi(x) is

appropriate. Therefore θi(x) is also a measure for the declining intensity of marginal utility.

In a word, the relative risk aversion tendency θi(x) has very significant meaning. It reflects

both the scarcity elasticity and the declining intensity of marginal utility. The smaller θi(x),

the weaker the tendency of relative risk aversion, the more necessary the commodity, and the

weaker the declining intensity of marginal utility. The following theorem interprets the form of

VNM utility functions of individuals with a weak tendency of relative risk aversion:

Theorem 3.5 Let S = Rl
+ and θ = (θ1, θ2, · · · , θl) ≪ (1, 1, · · · , 1). Suppose that v : S →

R+ is a twice differentiable VNM function of an individual with non-zero first order derivatives,

and that for each i, v(x) = 0 if xi = 0. Then the individual has constant relative risk aversion

tendency θ if and only if there exists a > 0 such that v(x) = a
l

∏

i=1

x1−θi

i (x ∈ S). Furthermore,

when the individual has constant relative risk aversion tendency θ, (v(x) > 0) ⇔ (x ≫ 0) holds

for any x ∈ S, and v′i(x) > 0 at x ≫ 0 for each i = 1, 2, · · · , l.

Proof The sufficiency is easy to show by calculating derivatives; one only needs to show

the necessity. For this purpose, let −v′′ii(x)xi/v′i(x) = θi hold for all x ∈ S and i = 1, 2, · · · , l,

so d ln |v′i| = d lnx−θi

i holds for all xi > 0 with other x′

js settled.

For i = 1, solving d ln |v′i| = d lnx−θi

i and using the fact that v(x) = 0 when x1 = 0

there exists a relative constantA2 = A2(x2, · · · , xl) such that v(x) = A2x
1−θ1

1 . For i = 2,

from d ln |v′2| = d lnx−θ2

2 it can be obtained that d ln |v′2(x)| = d ln |A′

22| = d lnx−θ2

2 , where

A′

2 = ∂A2/∂x2. With similar reasoning, there is a relative constant A3 = A3(x3, · · · , xl) such

that A2 = A3x
1−θ2

2 , so v(x) = A3x
1−θ1

1 x1−θ2

2 .

Recursively deducing from i = 2 to i = l − 1, there is a relative constant Al = Al(xl) such

that v(x) = Al

l−1
∏

i=1

x1−θi

i . Now from d ln |v′l(x)| = d lnx−θl

l with the other x′

is settled, we have

that d ln |v′ll| = d lnx−θl

l . Solving this equation, there is a constant a > 0 such that Al = ax1−θl

l .
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Thus v(x) = a
l

∏

i=1

x1−θi

i . The necessity and the theorem are proven. �

Theorems 3.3 to 3.5 have explained some relations between constant risk aversion tendency

and forms of VNM functions, and have answered to certain extent the question of how to

identify a function as a VNM function.

Coming back to the example of the expected utility enigma in Section 2, the truth can

be eventually revealed. Two utility functions, u(x, y) = (xy)0.25 and v(x, y) = (xy)0.75 are

given in the example for the individual to evaluate, but they get two contradict answers. Now,

applying Theorem 3.5, it turns out that the truth is that if the relative risk aversion tendency

is θ = (0.75, 0.75), then the VNM function is u(x, y) rather than v(x, y), and the individual

should choose option B. If the relative risk aversion tendency is θ = (0.25, 0.25), then the VNM

function is v(x, y) rather than u(x, y), and the individual should choose option A. If neither

(0.75, 0.75) nor (0.25, 0.25) is the relative risk aversion tendency, then neither of the evaluations

from the two functions is correct.

4 Re-establishing Mean-variance Utility

With the help of utility theory, Markovitz’s mean-variance approach has been greatly de-

veloped. A utility function for mean and variance has been imagined, called the mean-variance

utility function, or MV utility function for short. However this imagination hides two basic

problems. One is similar to the enigma of expected utility without consideration of the VNM

condition. The other is the MV utility function decoupling from underlying economic behavior.

The value of the MV function is confused, because different behaviors can have the same mean-

variance but different utilities. This may lead to paradoxes. Now we use the VNM condition to

rebuild the MV utility function on the base of underlying behavior to solve the two problems.

For this purpose, we first reexamine the mean-variance model for investment.

Let (Ω,F , P ) denote a risky environment. The outcome of an investment is its return,

usually expressed in terms of monetary revenue, which is random. Let v : R → R be the

VNM utility function of an investor. Its value v(x) denotes the utility amount of x units of

revenue. Usually, the investor may face two of options. One is risk-free investment, such as

in monetary assets, which are safe in terms of returns. The other is risky investment, such

as securities, which are usually with uncertain returns. Generally, talking about investments

means dealing with risks. Let ξ denote the return of an investment. It is a random variable.

The mathematical expectation r = Eξ expresses its expected return. The standard deviation

σ =
√

Var(ξ) =
√

E[(ξ − Eξ)2] expresses the risk of the investment. Whether the investor

takes the investment activity ξ, it depends on weighing up of risk σ and return r; after all, high

(or low) risk accompanies high (or low) expected return. The mean-variance model expresses

how an investor weighs risks against expected returns.

Now assume Rf and Rm to be two options of an investor, where Rf is the rate of return

of a risk-free investment, and Rm is the rate of a risky investment. We can view the sum to

invest as one unit. Note that Rf is constant, but the Rm is random. Rf = ERf = rf and

σf =
√

Var(Rf ) = 0; Rm 6= ERm = rm and σm =
√

Var(Rm) > 0. High risk accompanying

high return implies rm > rf . How much should the investor invest on the risky item Rm? It
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has long been said that one should not put all eggs in one basket. The investor might consider

putting a proportion of their money in Rm, and putting another part in Rf . This proportion

is the well-known β coefficient.

By Rβ we denote the rate of the return of a portfolio with the coefficient β : Rβ = βRm +

(1 − β)Rf . The expected return is rβ = ERβ = βrm + (1 − β)rf , and the standard deviation

is σβ =
√

E[(Rβ − rβ)2] = βσm. We have that β = σβ/σm and rβ = rf + ((rm − rf )/σm)σβ .

This equation expresses the constraints on the risks and returns of portfolios, called the budget

constraint of portfolios. This is displayed in Figure 2 as a straight line, called the budget line.

Figure 2 Risk-return plane

In the prevailing MV model, a utility function U(σ, r) is imagined directly on the risk-return

plane to be used to make a portfolio decision, but such an approach leaves the following basic

questions unsolved:

(1) Where is the function from? What is its base? Can it be set up arbitrarily? Does it

truly express the investor’s objective function?

(2) Different investment activities may have different utility levels but the same mean-

variance. This means that the value U(σ, r) is not unique, and so is confused and leads to

wrong decisions.

Now these questions can be solved by using the VNM condition. A solid theoretical foun-

dation will be established for mean-variance modelling.

For question (1), it can be seen from the VNM condition that U(σ, r) can not be set

casually. Otherwise, wrong decisions could result. U(σ, r) must be established on the VNM

utility function v : R → R of the investor. Meanwhile this can not be decoupled from underlying

investment activities. In order to bring out U(σ, r), it is right to calculate the expected utility

Ev(ξ) of investment behavior ξ. Only in this manner of defining U(σ, r) it becomes the objective

function of the investor.

Question (2) is an extremely important issue arising inevitably from the process of solving

question (1). To overcome it, the behavior considered is confined within the extent of normal

random variables. However, as we know, it is hard for the investment return to obey normal

distributions; the problem still exists, and up until now has not been fundamentally solved.

Here we shall put forward a method to solve the question (2) satisfactorily. The idea is

based on the budget line to give every point (σ, r) of the risk-return plane a portfolio investment

behavior such that the behavior corresponding to (σ, r) is decided uniquely, and has mean r

and variance σ2. The specific practices are as follows:
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For any σ ≥ 0 and r ≥ 0, let ξ(σ, r) = r+((Rm− rm)/σm)σ. It is easy to verify that ξ(σ, r)

is a random variable and represents an investment activity with risk σ and expected return r;

that is, we have that E[ξ(σ, r)] = r and Var(ξ(σ, r)) = σ2.

The behavior ξ(σ, r) has intuitive meanings. Let Rβ = βRm+(1−β)Rf = rf +β(Rm−Rf ),

where β = σ/σm. Then the following facts are true:

rβ = ERβ = rf + β(rm − rf ), i.e., β(rm − rf ) = rβ − rf ,

σβ =
√

E[(Rβ − rβ)2] = βσm = σ,

ξ(σ, r) = r + [(Rm − rm)/σm]σ = r + β(Rm − rm) = βRm + r − βrm

= β(Rm + r − rβ) − β(r − rβ) + r − βrm

= β(Rm + r − rβ) + (1 − β)r − β(rm − rβ)

= β(Rm + r − rβ) + (1 − β)r − β(rm − (βrm + (1 − β)rf ))

= β(Rm + r − rβ) + (1 − β)r − β((1 − β)rm − (1 − β)rf )

= β(Rm + r − rβ) + (1 − β)(r − β(rm − rf ))

= β(Rm + r − rβ) + (1 − β)(r − (rβ − rf ))

= β(Rm + r − rβ) + (1 − β)(Rf + r − rβ).

Therefore, ξ(σ, r) = β(Rm + r − rβ) + (1 − β)(Rf + r − rβ). This shows that ξ(σ, r) is a

portfolio of the safe item Rf + r− rβ and the risky item Rm + r− rβ with the coefficient β. On

the risk-return plane, as σβ = σ, the corresponding point (σ, r) of ξ(σ, r) is just the position to

which the point (σβ , rβ) representing portfolio Rβ move upward, as shown in Figure 2. It can

be proven that the correspondence between ξ(σ, r) and (σ, r) is one-to-one, i.e., for any (σ1, r1)

and (σ2, r2), we have that ((σ1, r1) = (σ2, r2)) ⇔ (ξ(σ1, r1) = ξ(σ2, r2)). In addition, it can be

seen that ξ(σβ , rβ) = Rβ holds for any proportion β.

Note that ξ(σ, r) represents the rate of return of the investment behavior (σ, r). Its return

is 1+ ξ(σ, r), as the sum to invest is viewed as one unit. The expected utility is Ev(1+ ξ(σ, r)).

Based on Ev(1 + ξ(σ, r)), a utility function U(σ, r) can be defined on the risk-return plane R2
+

as follows: U(σ, r) , Ev(1 + ξ(σ, r)) for any (σ, r) ∈ R2
+.

Such U(σ, r) are not only based on the VNM utility function v : R → R, but also on the

underling investment activity ξ(σ, r). Therefore, this is truly the most objective function in

which the investor can make investment decisions. Because of this, U(σ, r) is called the mean-

variance utility function, briefly, the MV utility function or the MV function. The following

two theorems explain the characteristics of the MV functions:

Theorem 4.1 The MV function U(σ, r) defined above is strictly concave for risk averters,

strictly convex for risk lovers, and linear or of one order for risk neutrals.

Proof Let (σ1, r1), (σ2, r2) ∈ R2
+ and α ∈ (0, 1) be arbitrarily given with (σ1, r1) 6=

(σ2, r2). We have that

αU(σ1, r1) + (1 − α)U(σ2, r2) = E[αv(1 + ξ(σ1, r1)) + (1 − α)v(1 + ξ(σ2, r2))],

U(α(σ1, r1) + (1 − α)(σ2, r2)) = Ev(1 + ξ(α(σ1, r1) + (1 − α)(σ2, r2))).

When the investor is risk averse, their VNM utility function v : R → R is strictly concave, so

we have that E[αv(1+ξ(σ1, r1))+(1−α)v(1+ξ(σ2, r2))] < Ev(1+ξ(α(σ1, r1)+(1−α)(σ2, r2))),
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and hence αU(σ1, r1) + (1−α)U(σ2, r2) < U(α(σ1, r1) + (1−α)(σ2, r2)); i.e., U(σ, r) is strictly

concave.

When the investor is a risk lever, their VNM utility function v : R → R is strictly convex, so

we have that E[αv(1+ξ(σ1, r1))+(1−α)v(1+ξ(σ2, r2))] > Ev(1+ξ(α(σ1, r1)+(1−α)(σ2, r2))),

and hence αU(σ1, r1) + (1−α)U(σ2, r2) > U(α(σ1, r1) + (1−α)(σ2, r2)); i.e., U(σ, r) is strictly

convex.

When the investor is risk neutral, their VNM utility function v : R → R is of one order or

linear, so we have that E[αv(1+ ξ(σ1, r1))+ (1−α)v(1+ ξ(σ2, r2))] = Ev(1+ ξ(α(σ1, r1)+ (1−
α)(σ2, r2))), and hence αU(σ1, r1) + (1−α)U(σ2, r2) = U(α(σ1, r1)+ (1−α)(σ2, r2)); and thus

i.e., U(σ, r) is of one order or linear.

The theorem is proven. �

The next theorem reveals the characteristics for U(σ, r) to reflect the phenomenon of high

risks accompanying high returns. This is important for investors to weigh risks against returns.

Theorem 4.2 Let the VNM function v : R → R be twice differentiable and v′(x) > 0 for

all x ∈ R.

(1) If the investor is risk averse, then U ′

σ(σ, r) < 0 and U ′

r(σ, r) > 0 for all (σ, r) ∈ R2
+, so

the portfolio with low risk and high return is better than that with high risk and low return.

(2) If the investor is a risk lover, then U ′

σ(σ, r) > 0 and U ′

r(σ, r) > 0 for all (σ, r) ∈ R2
+, so

the portfolio with high risk and high return is better than that with low risk and low return.

(3) If the investor is risk neutral, then U ′

σ(σ, r) = 0 and U ′

r(σ, r) > 0 for all (σ, r) ∈ R2
+, so

the portfolio with high return is better than that with low return without regard to risk.

Proof ξ(σ, r) = r + [(Rm − rm)/σm]σ and U(σ, r) = Ev(1 + ξ(σ, r)). Calculating the

partial derivatives, we can obtain that

U ′

r(σ, r) =
∂U(σ, r)

∂r
= E

[

v′(1 + ξ(σ, r))
∂ξ(σ, r)

∂r

]

= Ev′(1 + ξ(σ, r)) > 0,

U ′

σ(σ, r) =
∂U(σ, r)

∂σ
= E

[

v′(1 + ξ(σ, r))
∂ξ(σ, r)

∂σ

]

= E

[

v′(1 + ξ(σ, r))
Rm − rm

σm

]

= Cov

(

v′(1 + ξ(σ, r))
Rm − rm

σm

)

+ Ev′(1 + ξ(σ, r))E

[

Rm − rm

σm

]

= Cov

(

v′(1 + ξ(σ, r))
Rm − rm

σm

)

(Because E

[

Rm − rm

σm

]

= 0).

The symbol “Cov” above means covariance. Note that ξ(σ, r) and (Rm − rm)/σm are

positively related random variables; both become larger or smaller at the same time.

If the investor is risk averse, then v′′(x) < 0 or v′(x) changes inversely with x, so v′(1 +

ξ(σ, r)) changes inversely with (Rm−rm)/σm, and thus Cov(v′(1+ξ(σ, r)), (Rm−rm)/σm) < 0,

and we obtain that U ′

σ(σ, r) < 0.

If the investor is a risk lover, then v′′(x) > 0, so v′(1 + ξ(σ, r)) changes in the same

direction as (Rm − rm)/σm, and thus Cov(v′(1 + ξ(σ, r)), (Rm − rm)/σm) > 0, and we obtain

that U ′

σ(σ, r) > 0.

If the investor is risk neutral, then v′′(x) = 0 or v′(x) is constant, so v′(1 + ξ(σ, r)) is

independent on (Rm − rm)/σm, and thus Cov(v′(1 + ξ(σ, r)), (Rm − rm)/σm) = 0, and we

obtain that U ′

σ(σ, r) = 0.
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The theorem is proven. �

The characteristics of mean-variance utility revealed by Theorems 4.1 and 4.2 are displayed

in Figure 3, where the shapes of the indifference curves are depicted separately for the risk

averter, risk the lover and the risk neutral.

Figure 3 Indifference curves under mean-variance utility function

For an investor with constant relative risk aversion tendency θ, it can be shown that they

have an VNM utility function with the form v(x) = a(x1−θ − 1)/(1 − θ) + b, where a > 0 and

b are constants. This function may be further taken as v(x) = (x1−θ − 1)/(1 − θ), since VNM

functions have “invariance” under affine transformations.

Let ϕm(x) be the density function of the distribution of the risky return Rm. For the

investor with constant relative risk aversion tendency θ, the MV utility function U(σ, r) =

Ev(1 + ξ(σ, r)) can be written as follows:

U(σ, r) =
1

1 − θ
(

∫ +∞

−∞

(1 + r +
σ

σm

(x − rm))1−θϕm(x)dx − 1).

If θ < 1, then U(σ, r) can be written as U(σ, r) =
∫ +∞

−∞
(1 + r + σ

σm
(x − rm))1−θϕm(x)dx.

If θ = 1, then U(σ, r) can be written as U(σ, r) =
∫ +∞

−∞
ln(1 + r + σ

σm
(x − rm))ϕm(x)dx.

These kinds of concrete forms of mean-variance utility functions might be useful in econo-

metrics. In particular, they are convenient for quantitative analyses.

5 Investment Decision under Systematic Risks

Systematic risk refers to the fluctuation of the whole economic and financial system due to

external or internal factors, which cause a series of continuous losses. No individuals are spared

and anyone can suffer losses. This kind of risk can not be dispersed and can not be eliminated

by investment diversification. Hence Markowitz’s method of maximizing profits and minimizing

risks is invalid here.

There are many factors that cause systematic risks, including political factors, policy fac-

tors, economic factors, social factors, environmental factors, and large-scale natural or man-

made disasters (such as the COVID-19 epidemic), etc.. Once systematic risk occurs, all kinds

of investment activities will be seriously affected. This means that in the systematic risk envi-

ronment, the returns of various investment activities will show the same characteristics of rise

and fall. Combining different risk options can not solve the risk. Only by following the logic of

the mean variance model and choosing the optimal β coefficient can the loss be minimized. As

such, it seems important to hold a certain percentage of safe assets.
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Assume that the investor is in a systematic risk environment, and their VNM function is

v(x), where x ∈ R. They are faced with two options for investment activities. One option is to

hold safe asset Rf . This could be viewed as holding a monetary asset, whose return is constant

and not affected by the systematic risks. The other option is to hold risky asset Rm, which

could be viewed as holding securities. The return of the risky asset is affected by systematic

risks, and so is a random variable. Although risky assets are various, their return rates rise or

fall simultaneously. Any one of them could be chosen as a representor. Let Rm be the chosen

representor of all risky investment activities, and let Rf be the representor of safe assets. As we

did in last section, Rm and Rf express the rates of returns. Rf is constant, but Rm is random.

The sum for the investor to invest is viewed as one unit. Thus Rm and Rf represent both rates

and net returns. The investor’s MV function is then U(σ, r) = Ev(1 + ξ(σ, r))((σ, r) ∈ R2
+),

where ξ(σ, r) is defined as in last section: ξ(σ, r) = r + [(Rm − rm)/σm] σ.

No matter what happens, the object of the investor is to maximize his MV utility within

the budget constraint of portfolios. Let (σ∗, r∗) be the optimal combination of risk and return;

that is, (σ∗, r∗) is the solution of the following maximization problem of mean-variance utilities:










max
σ,r

U(σ, r),

r = rf +
rm − rf

σm

σ.

Assume that the VNM function v(x)(x ∈ R) is twice differentiable with positive first order

derivatives. Then there is a Lagrange multiplier λ such that (σ∗, r∗) satisfies the condition that














U ′

r(σ
∗, r∗) = λ,

U ′

σ(σ∗, r∗) = −λ(rm − rf )/σm,

r∗ = rf + σ∗(rm − rf )/σm.

This condition is called the first order MV condition, and it can be also written as follows:










rm − rf

σm

= −U ′

σ(σ∗, r∗)

U ′

r(σ
∗, r∗)

,

r∗ = rf + σ∗(rm − rf )/σm.

The first order MV condition involves two tools. One is the slope π = (rm − rf )/σm of the

budget line. The other is the slope ρ = ρ(σ, r) = −U ′

σ(σ, r)/U ′

r(σ, r) of the indifference curve.

The two slopes have very significant implications for investment decision making.

(1) Actual Rate of Return (ARR) π = (rm − rf )/σm. As the slope of the budget line, π

denotes the amount by which the expected return rate of the portfolio can increase, when the

risk of portfolio is increased by one unit. This amount is determined by the budget line, so is

a real amount that cannot be artificially changed. Therefore, it called the ARR of risk.

(2) Target Rate of Return (TRR) ρ = ρ(σ, r) = −U ′

σ(σ, r)/U ′

r(σ, r). As the slope of

the indifference curve, ρ denotes the amount by which the expected rate of return should be

increased to keep the utility level constant when the risk at (σ, r) is increased by one unit. This

amount is the goal that investors hope to achieve for the risk-return rate. Therefore, it is called

the TRR of risk.

(3) Decision Principle (DP). After increasing the risk, if the ARR reaches the TRR, the

utility level will remain unchanged; if the ARR exceeds the TRR, the utility level will rise;
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if the ARR fails to reach the TRR, the utility level will drop. This implies the principle of

investment decision which tell us that at the current point (σ, r), we should increase the risk if

ARR>TRR, reduce the risk if ARR<TRR, and remain unchanged if ARR=TRR. The utility

level reaches the highest point when ARR=TRR.

In what follows, we use the ARR and the TRR to explain the laws of investment activities

in a systematic risk environment. Before the discussion, we classify systematic risks according

to their degree of influence. In fact, systematic risks mainly affect investor’s expectation of

returns. When ERm < Rf , it is viewed as serious influence. When ERm > Rf , it is viewed as

heavy influence. When ERm = Rf , it is viewed as light influence.

Case 1 Serious influence of systematic risk, rm = ERm < Rf = rf .

In this case, the ARR is negative. For risk averters and risk neutrals, TRR>ARR at every

point (σ, r) of the budget line; thus they do not invest in risky item Rm and will put all of

their money in safe item Rf . As they make up the overwhelming majority, social investment

activities will be extremely depressed.

Even for risk lovers, if TRR≥ARR at (σm, rm), they do not invest in Rm either. Instead,

they will put all of their money in safe item Rf . This makes social investment situation more

severe.

Case 2 Heavy influence of systematic risk, rm = ERm = Rf = rf .

In this case, the ARR is zero. For risk averters, TRR>ARR at every point (σ, r) of the

budget line, they will put all of their money in safe item Rf . Because risk averters are the

majority, social investment activities are heavily depressed and very low.

For risk neutrals, TRR=ARR at every point (σ, r) of the budget line, and they do not care

what choice they make. Some risk neutrals may invest in Rm, some may not.

For risk lovers, TRR<0=ARR at every point (σ, r) of the budget line, so they will invest

all of their money in Rm. However, as they are very few, their investment activities can not

improve the grim investment situation.

Case 3 Light influence of systematic risk, rm = ERm > Rf = rf .

In this case, although systematic risk has caused adverse effects leading to a decline of

expected rate of return rm, the influence is light, so the expected rate of return rm is still

higher than rf . Thus the ARR is still positive.

For risk neutrals and risk lovers, their TRR at every point (σ, r) of the budget line is non-

positive, and so is less than the ARR. Thus they will definitely invest all of their money in

Rm.

For risk averters, so long as TRR<ARR at initial point (0, rf ) of the budget line, they will

certainly invest some or all of their money in Rm.

In summary, those risk averters whose TRR at (0, rf ) are less than the ARR, along with

all risk lovers and risk neutrals, make up a quite large part of those who have an investment in

Rm. Therefore, in the case that the influence of systematic risk is light, the situation for social

investment activities is not so bad; quite a few people are still engaged in investment activities.

Why do those risk averters whose TRR at (0, rf ) are equal to or greater than the ARR

not invest in item Rm? In order to analyze this, let us reveal another profound implication of

TRR = ρ(σ, r) for risk averters. From the calculation of U ′

r(σ, r) and U ′

σ(σ, r) in the proof of
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Theorem 4.2, we have that

U ′

r(σ, r) = Ev′(1 + ξ(σ, r)),

U ′

σ(σ, r) = Cov(v′(1 + ξ(σ, r)), (Rm − rm)/σm) = Cov(v′(1 + ξ(σ, r)), Rm)/σm,

TRR = ρ(σ, r) = −Uσ(σ, r)

U ′

r(σ, r)
= −Cov(v′(1 + ξ(σ, r)), Rm)

σmEv′(1 + ξ(σ, r))
.

Since v′′(x) < 0 and ξ(σ, r) is positively related to Rm, v′(1 + ξ(σ, r)) is negatively related

to Rm. From the Pratt Theorem (1964, see [14]), we know that the stronger the risk aversion

tendency, the more concave the utility function v(x). Obviously, the more concave the v(x) is,

the faster the marginal utility v′(x) diminishes. The faster the v′(x) diminishes, the stronger the

negative correlation between v′(1 + ξ(σ, r)) and Rm, the greater the −Cov(v′(1 + ξ(σ, r)), Rm),

the higher the ρ(σ, r). Therefore, the stronger the risk aversion tendency, the higher the ρ(σ, r);

that is, ρ(σ, r) and the risk aversion tendency change uniformly or in the same direction. This

shows that ρ(σ, r) or TRR reflects the strength of the risk aversion tendency. Hence the TRR

becomes a new tool to measure the risk aversion tendency of investors.

This profound aspect of TRR implies that the stronger the investor’s risk aversion tendency,

the higher the investor’s requirements for risk return rate. If you do not meet the requirements,

you will not take risks, but rather consider risk-free options.

Now we can find the reason that those risk averters with TRR≥ARR at point (0, rf ) have

no investment in Rm. At the initial point (0, rf ) of the budget line, ρ(0, rf ) ≥ π implies that the

utility at any other point of budget line is less than the utility at (0, rf ), so Rf is the optimal

choice. In other words, the investor has a strong risk aversion tendency from the beginning so

as to never invest in risky assets.

We can also find that when ρ(σm, rm) ≤ π, the investor never puts money into Rf , instead,

they invest all of their money in Rm. Thus ρ(σm, rm) ≤ π expresses the fact that the investor

has a weak risk aversion tendency at last, so as to eventually invest all of their money in Rm.

This kind of behavior makes the risk averter look like a risk lover, giving others the illusion

that they loves risks.

In a word, for a risk averter, ρ(0, rf ) ≥ π means a strong risk aversion tendency for them to

put all of their money in safe item Rf , and ρ(σm, rm) ≤ π means a weak risk aversion tendency

for them to put all of their money in risky item Rm. They will put their money into both Rf

and Rm if and only if their risk aversion tendency is neither too strong (ρ(0, rf ) < π) nor too

weak (ρ(σm, rm) > π).

The conclusions drawn from the above analyses can be summarized into the following

theorem:

Theorem 5.1 Investment decisions depend on the comparison between target rate of

return (TRR) and actual rate of return (ARR). The TRR not only reflects the investor’s

required rate of return for taking risks, but also reflects the risk aversion tendency. In the case

that the influence of systematic risk is light (ARR>0), all risk lovers, risk neutrals and those risk

averters whose risk aversion tendency is not too strong (ρ(0, rf ) < π) will have investments in

risky items; thus the situation for social investment activities is not so bad. Only in the cases

where the influence of systematic risks is heavy or serious (ARR≤0) will social investment

activities be depressed to a great extent, and most people will not make investments.
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This theorem has important policy implications. It tells us that governments should focus

on those systematic risks that are expected to have serious or heavy influences. Priority should

be placed upon maintaining stability in politics, the economy, the environment and in people’s

lives, in order to prevent macro-systemic risks from occurring. Maintaining currency stability

to prevent currency itself from becoming a systematic risk factor is also important, as is main-

taining the stability of the foreign exchange markets to prevent large fluctuations in exchange

rates. Governments must maintain the stability of financial systems and markets to prevent

the capital chain from breaking. Maintaining the continuity of policies to prevent long supply

chains from breaking is crucial too. In summary, society should always pay attention to guard

against the occurrence of those factors that induce heavy or serious systematic risks.
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