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Abstract
Feature selection (FS) stability is an important topic of recent interest. Finding stable features
is important for creating reliable, non-overfitted feature sets, which in turn can be used to
generate machine learning models with better accuracy and explanations and are less prone
to adversarial attacks. There are currently several definitions of FS stability that are widely
used. In this paper, we demonstrate that existing stability metrics fail to quantify certain key
elements ofmany datasets such as resilience to data drift or non-uniformly distributedmissing
values. To address this shortcoming, we propose a new definition for FS stability inspired
by Lyapunov stability in dynamic systems. We show the proposed definition is statistically
different from the classical record-stability on (n = 90) datasets. We present the advantages
and disadvantages of using Lyapunov and other stability definitions and demonstrate three
scenarios in which each one of the three proposed stability metrics is best suited.

Keywords Lyapunov stability · Feature stability · Record stability · Stable feature
selection · Feature selection

Mathematics Subject Classfication (2010) 68T09 · 90-05

1 Introduction

A model’s predictive accuracy is often the primary criterion for evaluating machine learning
(ML) algorithms [1, 2]. Recently, researchers have started to consider alternative measures
to evaluate ML performance including computational complexity [3, 4], stability [5, 6], and
explainability [7]. This paper focuses on how to quantify the stability of feature selection
(FS) algorithms. In general, stability measures the amount of change in the output of a model
as a function of changes in the inputs. For a data-driven model, an ML algorithm is said to be
stable if it produces consistent predictions concerning small perturbations of training records.

AsML algorithms and datasets become progressively more complex, the result’s stability,
or its ability to handle small changes in the distribution of the data, is becoming increasingly
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important. Consequently, the model’s stability, also referred to as ML robustness, is often
a primary or secondary objective [8–12]. For example, the usage of ML models in clinical
settings has become more common over the last few years [13]. These models are used to
forecast the clinical consequences of cancer diseases [14–16], cardiovascular risk prediction
[17], and classify mental health status [18]. These models are often developed on a relatively
small amount of records [19] and therefore must demonstrate their generality to other real-
world settings – which often does not occur in the model testing phase [20–22]. ML stability
is also important within other settings such as within search engines [23, 24] and finance
[25–27].

Increased model stability helps prevent overfitting by ensuring that the model is resilient
to minor changes in the training dataset. To achieve this goal, multiple works have proposed
methods to improve the model’s record-stability to make the model more resilient to changes
in the underlining distribution of the data with the same features [28, 29]. One of these
methods is feature selection (FS) which reduces the number of features in a system by
finding features that are most connected to the target variable within a supervised ML task.
FS was previously shown to improve learning model performance, especially when handling
complex data inputs with high dimensionality [30–32]. The reduced number of inputs also
facilitates better stability as the causal relationship between the system’s dependent and
independent variables becomes less complex, commonly reducing the entropy in the data
thus making the ML’s logic more understandable [33–35].

This modification is typically found by adding small amounts of noise into the data’s
records by bootstrapping different random samples. The FS is then applied to all bootstraps
and the level of similarity within the outputs quantifies that FS’s stability. This approach has
shown significant success, and record-stability has been typically used to date to quantify FS
stability.

In this work, we present two new definitions of models’ stability – feature-stability and
Lyapunov-stability. In contrast to record-stability, feature-stability studies modifications to
the dataset’s features (columns) rather than on the records (rows). The Lyapunov-stability
includes both definitions, allowing for the change to occur on both the records (rows) and
features (columns). Based on the feature-stability and Lyapunov-stabilitymetrics we present,
this work demonstrates four main contributions:

• Significant Differences exist between the record-stability, the feature-stability, and Lya-
punov stabilitymetrics. Each of these metrics is best suited for identifying problems with
stability in different learning environment.

• The Lyapunov-stabilitymetric is much more sensitive for concept drift in online learning
models compared to the record-stability and the feature-stability metrics.

• The feature-stability metric is best suited for identifying issues with missing values in
features. In contrast, record-stability and Lyapunov-stability are less impacted bymissing
values, making them less suited for addressing stability when many values of features
are missing.

• The record-stability metric is most effective in identifying stable features within
supervised FS algorithms. In contrast, the feature-stability metric is better suited for
unsupervised FS algorithms. Lyapunov-stability is between these twometrics, as it incor-
porates elements of both the record-stability and feature-stability.

The paper is organized as follows. In Section 2, we motivate the usefulness of the sta-
bility measurement and a review of the FS stability definitions. In Section 3, we formally
introduce our feature-stability and Lyapunov-stability FS stability definitions. In Section 4,
we statistically show that the proposed stability definitions are different on many datasets
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(n = 90). In Section 5, we explore three properties of how datasets change and the ability
of the proposed FS stability definitions to capture it using synthetic datasets. In Section 6,
we discuss the usage of the proposed definitions and propose several cases in which they are
useful.

2 Related work

Multiple definitions of stability have been proposed for data-driven tasks, each aiming to
measure different aspects of the learning models’ resilience to changes in training data, task
definition, and other properties [36–38]. Intuitively, an algorithm is considered stable if a
small change to its input causes a limited change in its output. However, this definition is
considered too generic for any applicative usage [39].

The most common stability definition is measuring the ability of the learning model to
preserve similar results such as accuracy, explainability, and robustness if small changes in the
records are introduced in either the training, testing, or production data [40, 41], which will
be referred to as record-stability. In particular, one can measure the stability of FS algorithms
according to the agreement of feature sets produced by the same algorithm when trained on
different datasets [42]. Namely, in the context of FS algorithms, record-stability stands for all
stability measurements associated with the changes in the obtained feature set after a change
to the records in the dataset. Formally, a FS record-stabilitymetric can be defined as follows:

Definition 2.1 The record-stability of a feature selection algorithm is a metric function

Sr : Rn ∪ R
m ∪ F ∪ A ∪ � → R

such that Sr (d1, d2, Fs, a, γ ) → R, where d1 ⊂ R
n is the baseline dataset, d2 ⊂ R

m

is the modified dataset, Fs ∈ F is the source feature set, a ∈ A is a FS algorithm, and
γ ∈ � is a metric function γ : F × F → R such that γ (a(d1, Fs), a(d2, Fs)) → R, where
a(d1, Fs), a(d2, Fs) ⊂ Fs .

For instance, given a dataset (D) with a set of features (Fs). a record-stability metric
sr ∈ Sr can be a function that computes the feature set obtained by the Top-k [43] features
as ranked by the Chi square algorithm [44], (a). Chi square’s stability can then be computed
by comparing the resultant feature set on the given dataset (a(d1, Fs)) in comparison to the
alternate feature set (a(d2, Fs)) that was obtained by randomly removing a portion of the
records. A similarity metric, (γ , then quantifies the stability between the two obtained feature
sets in the output of the sr metric.

Notably, the specific similarity metric between two sets of features is not trivial and
multiple metrics have been proposed to tackle this challenge for different use cases. For
instance, the Jaccard metric receives as its input two feature sets– A and B, and the similarity
between them is defined as |A∩B|/|A∪B| [45]. Similarly, the Tanimoto metric also receives
two feature sets A and B, but the similarity between them is defined as (|A∩ B|)/(|A∪ B|−
|A ∩ B|) [46]. Other similarity metrics are proposed which require additional information
about the feature sets, such as the Hamming distance that requires ranking [47] or the Pearson
correlation that requires weights [48]. For instance, the Hamming distance gets two vectors
of features F1 and F2 and defined as H(F1, F2) := � f 1, f 2∈F1,F2(I f1 �= f2) such that Icond
is a predict function that returns 1 is the condition cond is satisfied and 0 otherwise. The
Pearson correlation gets two vectors of features with theirs weights (F1,W 1) and (F2,W 2)

and defined as P(F1,W 1, F2,W 2) := cov(W 1,W 2)/(σW 1 · σW 2) where cov(x, y) is the
covariance between a vector x and y and σx is the standard deviation of x .
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These metrics are depended on the filter FS method used to obtain the subset, ranking,
or weight of the feature set. Multiple Filter FS algorithms exist. For instance, Remove Low
Variance (RLV) [49] ranks the features according to their variance and removes features
with variance lower than some predefined threshold. Chi square (CS) [50] is based on the
Chi-Square test measuring the independence of two events. In particular, this determines the
relationship between the independent feature and dependent (target) feature, aiming to select
the features which are more dependent on the target feature. Symmetrical uncertainty (SU)
[51] is adopted to measure the relevance between the feature and the class label in the target
feature. The average normalized interaction gain of an independent feature f , every other
feature, and the class label target feature is calculated to reflect the interaction of independent
feature f with other features in the feature set. Based on the combination of symmetrical
uncertainty and normalized interaction gain, less important features are removed iteratively
[51]. Fisher’s score (FS) [52] selects each feature independently according to their scores
under the Fisher criterion. Intuitively, The key idea of the Fisher score is to find a subset
of features such that the distances between data points in different classes are as large as
possible, while the distances between data points in the same class are as small as possible
[53]. Information gain (IG) [54] is an entropy-based selection method, which involves the
calculation from the output data grouped by an independent feature. The method ranks the
contribution of each independent feature, removing low contributing features based on a
predefined threshold.

Practically, there are threemain implementations for how record-stability can be quantified
[55]. The first implementation, partial record-stability divides the dataset into k ∈ N pairwise
distinct subsets which are usually the same size. The stability measurement is the average
similarity distance between all of the obtained feature sets relative to the other subsets. The
second implementation, increasing record-stability divides the dataset D into k ∈ N subsets
{Di }ki=1 such that

⋃k
i=1(Di ) = D and Di ⊂ Dj ↔ i < j ∈ [1, . . . , k]. The stability

measurement is the average similarity distance between any two consecutive feature sets
obtained from the FS algorithm and a subset (∀i ∈ [1, . . . k − 1] : (Di , Di+1). The third
implementation, noisy record-stability, introduces noise to the dataset which is either in
the same distribution of the features or random distribution. Stability is then measured by
quantifying the similarity between the noisy feature set and the original one without the
introduction of the noise.

All three of these implementations are based on measuring the similarity of the different
feature results. Kalusis et al. [56] suggested three ways to measure this similarity: Pearson
correlation (for FS algorithms that provides weight), Spearman’s rank correlation (for FS
algorithms that provide ranking), and the Tanimoto distance [46] for any FS algorithm. In
addition, Kuncheva [57] proposed treating the FS stability metric as a sequential forward
selection task and suggested a new measurement for the similarity between two feature sets
that are monotonic, bounded, and punished for error oversize. While showing promising
results, the method is limited to time-series data. Furthermore, Dernoncourt et al. [58] inves-
tigated T-score based feature selection approaches, especially for small sample data with high
dimensionality which tends to be unstable. The authors developed a mathematical model for
the stability measurement and later empirically validated it on artificial and real data. They
have shown the sensitivity of the method for cases with the curse of dimensionality (i.e., the
number of features is larger than the number of records) and when the number of features is
large, making it less accurate for large datasets.

A large body of literature has focused on the advantages of having record-stability. For
example, Khaire and Dhanalakshmi [39] show that stability indicates the reproducibility
power of FS methods, proposing that high stability of the FS algorithm is equally important
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to its contribution to the classification accuracy when evaluating FS performance. Saeys et al.
[59] showed that ensembles of FS techniques obtain more robust results when considering
stability in the performance of classification tasks, especially for high-dimensional domains
with small samples sizes. Yeom et al. [60] proposed to take into consideration the model’s
stability during the testing phase to avoid overfitting. They explored the relationships between
privacy and overfitting and how to improve privacy with more stable ML models in general
and FS algorithms in particular.

Nogueira et al. [61] proposed five properties which they claim a good FS stability metric
should contain: fully defined, strict monotonicity, bounded, obtain maximum stability if and
only if the selection is deterministic, and correction for chance. In addition, the authors
propose a novel stability metric that fulfills these conditions [61].

3 Feature and lyapunov stability metrics

Based on the record-stability metric definition, we propose two novel definitions for FS
stability: feature-stability and Lyapunov-stability. The feature-stability metric is intuitively
defined as the record-stability on the transposed dataset (e.g., the transpose of the matrix
representing the dataset). Formally, a feature-stability metric can be defined as follows:

Definition 3.1 The feature-stability of a feature selection algorithm is the metric function

S f : Rn ∪ F
i ∪ F

j ∪ A ∪ � → R

such that S f (d, Fs
1 , Fs

2 , a, γ ) → R, where d ⊂ R
n is the dataset, Fs

1 and Fs
2 are the

source and modified source feature set, a ∈ A is a FS algorithm, and γ ∈ � is a metric
function γ : Fl × F

o → R such that γ (a(d, Fs
1 ), a(d, Fs

2 )) → R, where a(d, Fs
1 ) ⊂ F

l and
a(d, Fs

2 ) ⊂ F
o such that Fl and F

o are the feature spaces obtained by applying a on F
s
1 and

F
s
2, respectively.

For instance, given a dataset (D), the feature-stability metric s f ∈ S f will calculate the
stability of the FS algorithms constructed from the Top-k [43] features as ranked by the Chi
square algorithm [44] a, such that a is computed for the full feature set of the dataset Fs

1 and
for the ranking obtained after removing a single feature from the dataset’s feature set Fs

2 . This
is a type of a partial feature-stability. The resulting value, s f = γ (a(D, Fs

1 ), a(D, Fs
2 )),

is computed with any of the similarity measures previously discussed such as the Jaccard
similarity (γ ).

The feature-stability is best suited for univariate FS algorithmswhere there is a dependency
with other features for the result, such as the Top-k method or when multivariate FS is used.
For example, assume the Remove Low Variance (RLV) [49, 54] algorithm is considered.
This FS univariate algorithm sorts features according to their variance without consideration
of feature interdependence. In this example, we will assume that the Top-K features will be
selected from the dataset shown in Table 1, when k = 2 as per RLV’s ranking. Given the
feature-stability’s modification is the reduction of a single feature from the dataset, we obtain
five feature sets

{�i }5i=1 := {F5, F3}, {F1, F3}, {F1, F2}, {F1, F2}, and {F1, F2}.
One can notice that�3 = �4 = �5 and that Jaccard(�1,�2) = Jaccard(�2,�3) = 0.5,
showing the Top-k with the RLV algorithm is relatively stable for this example with a final
average score of 0.8 which obtained by calculating the average Jaccard similarity between
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Table 1 An example matrix for
the FS stability definitions for an
unsupervised dataset

F1 F2 F3 F4 F5

−1.51 −1.39 −0.47 0.96 −2.88

0.42 −0.72 0.49 0.1 0.77

0.09 1.72 −1.46 1.55 0.25

−0.54 0 −0.28 0.43 −0.97

1.38 −0.62 1.29 −0.44 2.63

0.29 0.41 1.17 0.09 0.52

0.75 1.43 0.73 0.98 1.58

0.87 1.11 0.91 1.69 1.60

−0.10 0.68 1.09 1.82 −0.23

0.73 2.11 1.19 1.24 1.37

The first five rows and four columns were obtained from a normal distri-
bution with a mean and standard deviation of 0 and 1, respectively. For
the same rows, the fifth column is obtained by multiplying the first col-
umn by two and adding Gaussian noise with a mean of 0 and a standard
deviation of 0.1. The remaining five rows are obtained in the same way
but with a normal distribution with a mean and standard deviation of 1
and 0.5, respectively

any two consecutive feature sets. Notably, as at least one of the features is removed to test
for stability, a perfect value of one is not mathematically possible. Even if there is a feature
set that is obtained all the time, in some configurations one of the features would be removed
which will reduce the stability score of the algorithm. Therefore, in some configurations of
the feature-stability the stability range is normalized to be [0, 1] in a post-hoc manner.

The motivation for the Lyapunov-stability originates from treating the dataset as a n-
dimensional point allocated in a n-dimensional distribution space. By adding noise to this
point and measuring the performance of an algorithm on the data, given a similarity metric
between feature sets, one canmeasure the amount of change introduced to the outcome feature
set due to the changes introduced to the input. Inspired by Lyapunov-stability in dynamic
systems which is represented using differential equations [62], we treat the FS algorithm as a
dynamics system as follows: At time t = 0 the state of the system is defined to be Ft (0) that
obtained by a(d(0), Fs). At each point in time t , we add αt ≤ α new records to the dataset
d(t) and βt ≤ β features to Fs(t). Assuming the FS algorithm a is autonomous (does not
explicitly depend on t) dynamical system, the tuple

(d(t), Fs(t)) ∈ D ⊂ R
N , N := max

t∈[0,∞)
(nt )

denotes the system state vector, D an open set containing the origin, and a : D → R
N is

a continuous vector field on D. In addition, we assume that Ft (0) = a(d(0), Fs(0)) is an
equilibrium state in the manner that a optimize some inner target function g. Formally, the
Lyapunov-stablity metric takes the form:

Definition 3.2 The Lyapunov-stability of a feature selection algorithm is a metric function:

Sl : Rn ∪ R
m ∪ F

i ∪ F
j ∪ A ∪ � → [0,∞]

such that Sl(d1, d2, Fs
1 , Fs

2 , a, γ ) := γ (a(d1, Fs
1 ), a(d2, Fs

2 )).

Namely, the Lyapunov-stability of a dataset given a FS algorithm (a) and feature set similarity
function (γ ) is the average change in the obtained feature sets due to the introduction of
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some modification to both the records and features space of the table. Thus, the Lyapunov-
stability extends both the record-stability and feature-stability as one can use the definition
of Lyapunov-stability and use the identity function for either the change in the records or
features space to obtain the original definitions, respectively. The proposed definition for
Lyapunov-stability is only inspired by the classical Lyapunov stability originally proposed
for dynamic systems. Simply put, the Lyapunov stability has been proposed for ordinary
differential equations that describe the change of a system’s state over time. Here, we adopted
this approach by assuming that change in the data is occurring over time and therefore the state
of the dataset (i.e., the dynamical system) is stable in a similar sense to the original Lyapunov
stability. However, as far as we know, there is no mathematical isomorphism between the
two definitions.

Following the sample example from Table 1, the Lyapunov-stability would obtain a lower
score compared to the feature-stability due to the changes in the distribution between the
first five records and the last five records. In particular, one can take an increasing size
of sub-matrices, following the diagonal (starting from the top-left corner) to obtain one
approximation for the Lyapunov-stability. This is a type of a increasing Lyapunov-stability.
Hence, we obtain five sub-matrices sizes [(2, 1), (4, 2), (6, 3), (8, 4), (10, 5)] by increasing
the sub-table by one feature at a time (and therefore two records). One can notice that the
distribution of the data starts to change between the second and third subset due to the
introduction of the sixth record which was obtained from another distribution compared to
the first five records. Thus, the stability score of the Lyapunov-stability would be 0.5 which
is lower compared to the feature-stability score (0.8) for the same dataset.

To provide more intuition for the Lyapunov-stability metric, let us consider the follow-
ing example. During the COVID-19 pandemic, researchers discovered and gathered new
information regarding risk factors, the number of ill, life-treating ill, recovered, and dead
individuals [63]. As such, the change over the rows is intuitive as this indicates changes in
the number of patients for which new information was available. In addition, during 2020
alone, in Israel, the definition of “life-treating illness” changed three times [64]. This change
can be represented as a change in the feature space as the definition for different risk-factors
and their consequences, was redefined over time. The advantage behind the Lyapunov defi-
nition is in its able to evaluate the stability of a given model in settings where both changes
in the records of patient data (rows) and feature space (columns) exist.

4 Feature selection stability definitions’ uniqueness

In this section, we present our study of the outcomes of record-, feature-, andLyapunov-
stability metrics on n = 90 real-world datasets, utilizing diverse filter feature selection
algorithms. As we detail in this section, our results show that the proposed stability
metrics are statistically significantly unique. Specifically, we studied the outcomes of the
record-, feature-, and Lyapunov- stability metrics on n = 90 datasets from Kaggle1. The
datasets were manually picked to cover a wide range of topics while ensuring from the
description of each dataset that the data originated from real-world gathering rather than
being a synthetically generated one. The list of datasets is provided as a supplementary
material

1 https://www.kaggle.com/
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For each dataset, we computed a 24-dimensional vectorwhich contains the scores of all the
combinations of stability metrics (data, feature, Lyapunov) with the filter FS algorithms: Chi
square (CS) [44], Symmetrical uncertainty (SU) [51], Information gain (IG) [54], Pearson
correlation (PC) [65], Spearman correlation (SC) [59], Remove low variance (RLV) [66],
Missing value ration (MSR) [66], Fisher’s score (FS) [52]. The hyperparameters of each
algorithms is obtained using a grid search [67] where the fitness function is the obtained
model’s accuracy.

We used the Jaccard metric [68] to quantify stability by measuring the similarity between
any two sets of features. The record-stability has been computed by dividing the dataset into
kD = 10 increasing subsets (i.e., for each subsets i < j : Di ⊂ Dj ) such that the size of
the ith subset is i/kD from the size of the entire dataset for i ∈ [1, . . . , kD], implementing
the increasing record-stability approach (see Section 2). For each pair of subsets (Di , Di+1),
the Jaccard metric between the two feature sets is computed. The features set for each subset
is obtained using an FS algorithm on the subset. The feature-stability metric is computed
using the increasing approach as well, starting with a single feature and increasing until the
last subset contains all the features of the dataset with a predefined step of size kF = 1.
The Lyapunov-stability metric is computed in the same manner, with both the records and
columns increasing, following the diagonal of the dataset’s representing matrix. As such, the
ith subset (e.g., Di ) is i/kL is formed from the size of the entire dataset, i.e., i ∈ [1, . . . , kL ],
where KL equals to the number of features in the dataset. Importantly, except for theMissing
value ratio FS algorithm, for all other FS algorithms, the missing values have been removed
from the datasets.

Based on the obtained meta-table, we calculated a two-tail paired T-test between the
record-, feature-, and Lyapunov- stability metrics with each one of the eight filter FS algo-
rithms, as shown in Table 2. It is possible to see that the record- and Lyapunov- stability
metrics are statistically different for 87.5% (seven out of eight FS algorithms), as shown in
Table 2. Similarly, the feature- and Lyapunov- stability metrics are statistically different for
75% of the FS algorithms (six out of eight FS algorithms), and also the record- and feature-
stability metrics are statistically different for 100% of the FS algorithms (eight out of eight
FS algorithms). Therefore, it is safe to say that the three stability metrics are statistically
different across datasets and filter FS algorithms.

There are three cases in which the results are not significant. First, the case of Chi square
with the record- and Lyapunov- stability. This result obtained a p-value of 0.062 which is
not considered significant but we believe a bit larger sample set would result in a statistically
significant result. Second, the remove low variance with the feature- and Lyapunov- stability.
Since most of the features in most the datasets had similar variance relative to their dataset,
the changes in the features or features and records were not significant enough. Third, the
missing value ratio with the feature- and Lyapunov- stability. Most of the datasets are without
missing values. In the small portion which it does, most of the missing values can be found
concentrated on just a few features. As such, the feature- and Lyapunov- stability metrics
are similar and indeed did not obtain statistically significant different results. Overall, we
statistically show that all three stability definitions are pairwise distinct

pDL < 0.005, pFL < 0.005, and pDF < 0.001,

as presented in Table 2 a by computing a two-tailed pair T-test between any two stability
metrics.
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Table 2 The P-values of paired two-tail T-tests between the record- (R), feature- (F), and Lyapunov- (L)
stability, on the n = 90 datasets, divided into the eight filter FS algorithms

Feature selection algorithm Stability metrics P-value

R-F p < 0.05

Chi square R-L p = 0.062 < 0.1∗
F-L p < 0.05

R-F p < 0.01

Symmetrical uncertainty R-L p < 0.01

F-L p < 0.01

R-F p < 0.01

Information gain R-L p < 0.05

F-L p < 0.05

R-F p < 0.0005

Pearson correlation R-L p < 0.01

F-L p < 0.001

R-F p < 0.01

Spearman correlation R-L p < 0.01

F-L p < 0.05

R-F p < 0.01

Remove low variance R-L p < 0.05

F-L p = 0.081 < 0.1∗
R-F p < 0.05

Missing value ratio R-L p < 0.01

F-L p = 0.143 < 0.2∗
R-F p < 0.01

Fisher correlation R-L p < 0.05

F-L p < 0.05

(*) Not statistically significant difference

5 Feature selection stability’s properties

In this section, we use synthetically generated datasets to explore three naturally occurring
phenomena: concept drift,missing values, and supervised feature selection. For each property,
a set of n = 1000 datasets is generated at random, differentiating by the three properties to be
examined. Using the obtained set, we computed the record, feature, and Lyapunov stability
of multiple FS algorithms. In addition, we conduct a meta-analysis across these properties
showing no metric is superior over the others for all examined cases. Figure 1 presents a
schematic view of the synthetic datasets generation process for the three experiments.

5.1 Concept drift sensitivity

Concept drift is a well known challenge in ML applications [69–71].Concept Drift occurs as
the target variable needing to be learned changes over time in unforeseen ways. A learning
system is challenged when the system needs to learn this variable over time as the target
variable is under constant flux. For example, drift will exist if the system’s goal is to learn
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Fig. 1 A schematic view of the synthetic datasets generation process for the three experiments. Panel (a) stands
for the concept drift case; panel (b) stands for the missing values case; and panel (c) stands for supervised
feature selection case

consumers’ preferenceswhile sellers’ preferences change. This phenomenon typicallymakes
data-driven algorithms (such as ML) less accurate over time since the learned connection
between the source and target variable changes. We measure two different ways of concept
drift: shifted and moving. Shifted concept drift occurs when the distribution of the data is
changed at a single point in time due to some event from one distribution D1 to another
distribution D2 such that D1 �= D2. On the other hand, moving concept drift occurs when
the distribution of the data changes over time between the original distribution D1 to another
distribution D2 such that D1 �= D2.

In order to evaluate the sensitivity of the proposed stability metrics to concept drift, we
measure the record-, feature-, and Lyapunov- stability over the eight FS algorithms for 1000
artificial datasets. The datasets were generated as follows. A random number of records (N )

and features (M) between 50 and 5000 and between 10 and 50 are chosen, respectively. After-
ward, the first half of the records ([1, N/2]) are fulfilled according to aM-dimensional normal
distribution such that the means and standard deviations of the data for each dimensional are
chosen in random ranging from -10 to 10 and from 0 to 4, respectively. The second half of the
records ([N/2 + 1, N ]) is generated identically but the M-dimensional normal distribution
is chosen such that the two sets would be statistically significant difference according to a
two-tailed T-test with p < 0.01. Based on these datasets, we computed the record-, feature-,
and Lyapunov- stability on each dataset and show the mean and standard division in Fig. 2.

In a similar manner, a random number of records (N ) and features (M) between 50 and
5000 and between 10 and 50 are chosen, respectively. Afterward, two M-dimensional normal
distribution that satisfies that for N/2 · M records each, the sets are statistically significant
different according to a two-tailed T-test with p < 0.01, marked by D1 and D2, respectively.
Each sample i ∈ [1, N ] is generated as a sample from the distribution i ·D1+(N−i)·D2

N . Again,
we computed the record-, feature-, and Lyapunov- stability on each dataset and show the
mean and standard division are shown in Fig. 3.

From both Figs. 2 and 3, one can notice that the Lyapunov-stability metric obtains much
lower scores compared to the record-stability and feature-stabilitymetrics for all six FS algo-
rithms. As such, the Lyapunov-stability metric is more sensitive to a shift in the distribution
of the dataset associated with concept drift. Hence, a sudden reduction in the Lyapunov-
stability metric’s value over time might be an indicator for concept drift. In this case, the
higher sensitivity (i.e., less stability) is preferable as it means one can use the metric in order
to identify concept drift.
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Fig. 2 Comparison between the record-, feature-, and Lyapunov- stability for the shifted concept drift datasets.
Where CS, SU, IG, PC, RLV, and FS stands for Chi square, symmetrical uncertainty, information gain, Pearson
correlation, remove low variance, and fisher score, respectively

5.2 Missing values

Missing data is a significant challenge and is pervasive in Learning and prediction ML and
statistical data analysis [72]. Missing data occurs in a wide array of application domains for

Fig. 3 Comparison between the record-, feature-, andLyapunov- stability for themoving concept drift datasets.
Where CS, SU, IG, PC, RLV, and FS stands for Chi square, symmetrical uncertainty, information gain, Pearson
correlation, remove low variance, and fisher correlation, respectively
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several reasons. For example, missing data can occur when hardware is damaged such as
when a physical sensor is damaged or from human factors such as when patients dropout of
a clinical trial [72]. Several methods have been proposed to address this challenge [73–75].

In order to evaluate the sensitivity of the proposed stability metrics to missing values, we
measure the record-, feature-, and Lyapunov- stability over the six FS algorithms for 1000
artificial datasets. The datasets were generated as follows. A random number of records (N )

and features (M) between 50 and 5000 and between 10 and 50 are chosen, respectively.
Afterward, the matrix is fulfilled according to a M-dimensional normal distribution such that
the means and standard deviations of the data for each dimensional are chosen in random
ranging from -10 to 10 and from 0 to 4, respectively. Afterward, in an uniformly distributed
way, missing values are allocated such that no more than 10% and no less than 2% of
each record and feature has missing values. Using these datasets, we computed the record-,
feature-, and Lyapunov- stability on each dataset and show the mean and standard division
in Fig. 4.

As can be seen from Fig. 4 the feature-stability metric obtains the highest scores across
all six FS algorithms, which means it is more resilient to the lack of values in the dataset.
Hence, one can measure the FS stability of datasets with missing values using the feature-
stability and record-stability to obtain an upper and lower boundaries for the FS’s stability,
respectively.

5.3 Supervised feature selection

Supervised FS algorithm are commonly used in a ML pipelines during the prepossessing
phase [7]. These algorithms are known to improve model accuracy and explainability by
selecting those features with strong connections between the source and target features [66].

Fig. 4 Comparison between the record-, feature-, and Lyapunov- stability for the datasets with missing values.
Where CS, SU, IG, PC, RLV, and FS stands for Chi square, symmetrical uncertainty, information gain, Pearson
correlation, remove low variance, and fisher correlation, respectively
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For example, theChi square (CS) and InformationGain (IG) FS algorithms are supervised that
compare each source feature with the target feature. Other algorithms, such as the Remove
low variance (RLV) FS algorithm, is unsupervised since it takes into consideration one source
feature at a time.

We evaluate the sensitivity of the proposed stability metrics to datasets representing a
classification or regression task where all features except one are the source features and
the remaining feature is the target feature (which is the feature one is aiming to predict
based on the source features). In practice, we measure the record-, feature-, and Lyapunov-
stability over the Chi square [44] and Remove low variance [49] FS algorithms for 1000
artificial datasets. The datasets were generated as follows. A random number of records (N )

and features (M) between 50 and 5000 and between 10 and 50 are chosen, respectively.
Afterward, the target feature is fulfilled by sampling a uniform distribution between 1 and λ

where λ ∈ [2, 20] is chosen randomly. Following that, a vector of size M − 1 with values
ranging between−10 and 10 is generated, operating as the coefficients of amulti-dimensional
logistic regression. Using the generated logistic regression, the source features are fulfilled
such that the accuracy of the model is 100% (using the Monte-Carlo method). In addition,
Gaussian noise is introduced to the source features with a mean of 1 and a standard deviation
of 3. Based on these datasets, we computed the record-, feature-, and Lyapunov- stability on
each dataset and show the mean and standard division in Fig. 5.

As can be seen from Fig. 5, record-stability obtaining the best score for the supervised
FS algorithm as already been shown in previous works [7, 8, 60]. On the other hand, for
the unsupervised FS algorithm, the feature-stability obtain the highest score which indicates
it more fitted for unsupervised tasks while the record-stability is more fitted for supervised
tasks. In both cases, the Lyapunov-stability obtains a score between the other two stability
matrices, representing a more generic stability metric.

Fig. 5 Comparison between the record-, feature-, and Lyapunov- stability for the datasets with supervised
(Chi square) and unsupervised (remove low variance) FS algorithms
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5.4 Meta-analysis

In order to explore the performance of the different stability definitions across the above four
properties, we computed the mean± standard deviation of each stability definition across the
FE algorithms examined. The motivation behind this analysis is to present the performance
of each stability definition in an FE algorithmic agnostic manner. Table 3 presents the results
of this meta-analysis. One can notice that the Lyapunov-stability is the most sensitive to all
properties as it obtains the lowest stability score, followed by the record-stability, leaving the
feature-Lyapunov to last. That said, more sensitivity is not necessarily better as one can prefer
a less sensitive stability metric for the missing values case. In such a scenario, the feature-
stability would be preferable. To this end, for the concept drift cases, where more often than
not, the user wishes to detect and handle concept drift as early as possible, being sensitive to
it is better. As such, the Lyapunov stability outperforms the classical record stability. Unlike,
in the case of the missing values, less sensitivity in the stability metric is often the desired
property so feature stability outperforms the others.

For each property, we computed an Analysis of Variance (ANOVA) test with p-value of
0.01 set as statistically significant. For both the moving and shift concept drift cases, the three
stability definitions are statistically significantly different. However, for the missing values
case and supervised FE, the record- and Lyapunov- do not statistically differ from each other
while both differ from the feature-stability. This outcome can be explained by the fact that in
the explored datasets, the number of records is much larger than the number of features, so
changes in these more dominant in the Lyapunov-stability computation that takes both into
consideration.

6 Conclusions and future work

In the paper, we proposed two new definitions for FS stability metrics: the feature-stability
and Lyapunov-stability metrics. These metrics complement the established record-stability
metric. The feature-stability metric is “orthogonal” to the record-stability definition as it
measures changes in the obtained feature set due to changes in the source feature set rather
than changes to the records, as does the record-stability metric. The Lyapunov-stability is a
combination of the feature-stability and record-stability by taking into consideration changes
in both the records and features.

We show that the three stability matrices are statistically pairwise distinct on n = 90 real-
world datasets. As such, these stability metrics capture different stability properties of the FS
process, making them possibly useful in different scenarios. To demonstrate this point, we
found three scenarios in which the results obtained from each of the stability metrics differ,
illustrating scenarios in which one stability metric is superior to the others. We found that the

Table 3 A summary of the record-, feature-, and Lyapunov- stability definitions, presented as the average ±
standard deviation score in terms of the concept drift sensitivity, missing values, and supervised FE

Property Record Feature Lyapunov

Moving concept drift 0.708 ± 0.056 0.842 ± 0.039 0.488 ± 0.093

Shift concept drift 0.806 ± 0.060 0.891 ± 0.028 0.585 ± 0.067

Missing values 0.407 ± 0.065 0.882 ± 0.025 0.392 ± 0.120

Supervised 0.677 ± 0.134 0.721 ± 0.218 0.674 ± 0.031
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Lyapunov-stabilitymetric is better in identifying changes in both shifted and moving concept
drift compared to the feature-stability and record-stability.We found that the feature-stability
metric is better for identifying stability problems resulting frommissing values relative to the
record-stability and Lyapunov-stability. Moreover, we show that the record-stability metric
is better for supervised FS algorithms while the feature-stability metric is better suited for
unsupervised FS algorithms and that the Lyapunov-stability lies in between. These results
show that no stability metric is best for all situations. Consequently, we encourage the reader
to considerwhich stabilitymetric is used based on the potential problem they hope tomeasure.
This outcome is similar to other metric-related usages, in general, and in ML, in particular.
For example, one can not claim that the mean absolute error (MAE) is better or worse than
the mean squared error (MSE) since each one is better suited for a specific case compared to
the other - similar to the case we present. To this end, the diversity of metrics allows users to
find the one best suited for their task at hand.

Several directions are possible for future work. While we demonstrated the differences
between these three stabilitymeasureswith 90 real-world datasets, the experiments with drift,
missing values, and supervised and unsupervised FS stability differences were conducted
with simulated data. We hope to verify these results in real-world data as well. A second
possible direction is to repeat these experiments on non-numerical datasets as the artificial
datasets were exclusively comprised of numerical data. Moreover, we hope to study further
the connection between different stability measures and why each one is best suited for a
different problem. For example, we are studying why Lyapunov-stability is best suited for
measuring concept drift. Third, we focused on naturally occurring changes in the data over
time, such as rows added to a dataset for the data-stability. However, synthetic modifications
such as data perturbations play a central role in modern data-driven systems. Future work
can further explore the proposed metrics in such a context. This study could help further
generalize these results to predict additional problems that are best suited for each of the
three stability measures we present. We believe this study will provide additional insights
into how to best measure stability in different learning scenarios.

Author Contributions Conceptualization, methodology, formal analysis and investigation, Writing - original
draft preparation, and Writing - review and editing: Teddy Lazebnik; Supervision and Writing - review and
editing: Avi Rosenfeld.

Funding The authors did not receive support from any organization for the submitted work.

Data transparency All the data used in this research is provided as supplementary materials.

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


T. Lazebnik and A. Rosenfeld

References

1. Ling, C.X., Huang, J., Zhang, H.: AUC: a better measure than accuracy in comparing learning algorithms.
Adv. Artif. Intell. (2003)

2. Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms. Adv. Artif. Intell. 17(3),
299–310 (2005)

3. Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient machine learning for
big data: a review. Big Data Res. 2(3), 87–93 (2015)

4. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245),
255–260 (2015)

5. Beriman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383
(1996)

6. Bousquet, O., Elisseff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)
7. Rosenfeld, A., Richardson, A.: Explainability in human-agent systems. Auton. Agents Multi-Agent Syst.

33(6), 673–705 (2019)
8. Ben-Hur, A., Elisseeff, I., Guyon, A.: A stability based method for discovering structure in clustered data.

Pac. Symp. Biocomput. 1, 6–17 (2002)
9. Meinshausen, N., Buhlmann, P.: Stability selection. J. R. Stat. Soc. 72, 414–473 (2010)

10. Wang, J.: Consistent selection of the number of clusters via cross validation. Biometrika 72, 893–904
(2010)

11. Liu, K., Roeder, K., Wasserman, L.: Stability approach to regularization selection for high-dim graphical
models. Adv. Neural Inf. Process. Syst. 23, (2010)

12. Stodden, V., Leisch, F., Peng, R.: Implementing reproducible research. CRC Press (2014)
13. Shah, P., Kendall, F., Khozin, S., Goosen, R., Hu, J., Laramie, J., Ringel, M., Schork, N.: Artificial

intelligence and machine learning in clinical development: a transnational perspective. Npj Digit. Med.
69, 1–34 (2019)

14. Boyko, N., Sviridova, T., Shakhovska, N.: Use ofmachine learning in the forecast of clinical consequences
of cancer diseases. 7th Mediterranean Conference on Embedded Computing (MECO), pp. 1–6 (2018)

15. Yaniv-Rosenfeld, A., Savchenko, E., Rosenfeld, A., Lazebnik, T.: Scheduling bcg and il-2 injections for
bladder cancer immunotherapy treatment. Mathematics, 1–6 (2018)

16. Veturi,Y.A.,Woof,W., Lazebnik, T.,Moghul, I.,Woodward-Court, P.,Wagner, S.K.,Cabral deGuimaraes,
T.A., Daich Varela, M., Liefers, B., Patel, P.J., Beck, S., Webster, A.R., Mahroo, O., Keane, P.A.,
Michaelides, M., Balaskas, K., Pontikos, N.: Syntheye Investigating the impact of synthetic data on
artificial intelligence-assisted gene diagnosis of inherited retinal disease. Ophthalmology Science 3(2),
100258 (2023)

17. Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N.: Can machine-learning improve cardiovascular
risk prediction using routine clinical data? PLOS ONE 12, e0174944 (2017)

18. Bonner, G.: Decision making for health care professionals: use of decision trees within the community
mental health setting. J. Adv. Nursing 35, 349–356 (2001)

19. Flechet, M., Güiza, F., Schetz,M.,Wouters, P., Vanhorebeek, I., Derese, I., Gunst, J., Spriet, I., Casaer, M.,
Van den Berghe, G., Meyfroidt, G.: Akipredictor, an online prognostic calculator for acute kidney injury
in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-
associated lipocalin. J. Adv. Nursing 35, 349–356 (2001)

20. Shung, D.L., Au, B., Taylor, R.A., Tay, J.K., Laursen, S.B., Stanley, A.J., Dalton, H.R., Ngu, J., Schultz,
M., Laine, L.: Validation of a machine learning model that outperforms clinical risk scoring systems for
upper gastrointestinal bleeding. Gastroenterology 158, 160–167 (2020)

21. Shamout, F., Zhu, T., Clifton, D.A.: Machine learning for clinical outcome prediction. IEEERev. Biomed.
Eng. 14, 116–126 (2020)

22. Lazebnik, T., Somech, A.,Weinberg, A.I.: Substrat: a subset-based optimization strategy for faster automl.
Proc. VLDB Endow. 16(4), 772–780 (2022)

23. Aztiria, A., Farhadi, G., Aghajan, H.: User Behavior Shift Detection in Intelligent Environments. Springer,
(2012)

24. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation.
ACM Comput. Surv. (CSUR), 46, (2014)

25. Cavalcante, R.C., Oliveira, A.L.I.: An approach to handle concept drift in financial time series based on
extreme learning machines and explicit drift detection. Int. Jt. Conf. Neural Netw. (IJCNN), 1–8 (2015)

26. Lazebnik, T., Fleischer, T., Yaniv-Rosenfeld, A.: Benchmarking biologically-inspired automatic machine
learning for economic tasks. Sustainability 11232(14), (2023)

27. Shami, L., Lazebnik, T.: Implementing machine learning methods in estimating the size of the non-
observed economy. Comput. Econ. (2023)

123



A new definition for feature selection stability analysis

28. K. Chaudhuri and S. A. Vinterbo. A stability-based validation procedure for differentially private machine
learning. Advances in Neural Information Processing Systems, 2013

29. Yokoyama, H.: Machine learning system architectural pattern for improving operational stability. IEEE
Int. Conf. Softw. Architecture Comp. (2019)

30. Bolón-Canedo, V., Alonso-Betanzos, A.: Ensembles for feature selection: a review and future trends. Inf.
Fusion 52, 1–12 (2019)

31. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar),
1157–1182 (2003)

32. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. In
Feature selection in data mining, p 4–13. PMLR (2010)

33. Rosenfeld, A.: Better metrics for evaluating explainable artificial intelligence. In: AAMAS ’21: 20th
International Conference on Autonomous Agents and Multiagent Systems, pp. 45–50. ACM (2021)

34. Bhatt, U., Xiang, A., Sharma, S.,Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J.M.F., Eckersley,
P.: Explainable machine learning in deployment. In: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 648–657 (2020)

35. Lazebnik, T., Bunimovich-Mendrazitsky, S., Rosenfeld, A.: An algorithm to optimize explainability using
feature ensembles. Appl. Intell. (2024)

36. Sun, W.: Stability of machine learning algorithms. Purdue University, (2015)
37. Kenneth, O.S.: Learning concept drift with a committee of decision trees. Technical Report AI03-302,

(2019)
38. Jain, A.K., Chandrasekaran, B.: Machine learning based concept drift detection for predictive mainte-

nance. Comput. Ind. Eng. 137, 106031 (2019)
39. Khaire, U.M., Dhanalakshmi, R.: Stability of feature selection algorithm: a review. J. King Saud Univ.

Comput. Inf. (2019)
40. Shah, R., Samworth, R.: Variable selection with error control: another look at stability selection. J. R.

Stat. Soc. 75, 55–80 (2013)
41. Sun, W., Wang, J., Fang, Y.: Consistent selection of tuning parameters via variable selection stability. J.

Mach. Learn. Res. 14, 3419–3440 (2013)
42. Han, Y.: Stable Feature Selection: Theory and Algorithms. PhD thesis, (2012)
43. Zhang, X., Fan, M., Wang, D., Zhou, P., Tao, D.: Top-k feature selection framework using robust 0-1

integer programming. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3005–3019 (2021)
44. Plackett, R.L.: Karl pearson and the chi-squared test. International Statistical Review/Revue Internationale

de Statistique, pp. 59–72 (1983)
45. Chung, N.C., Miasojedow, B., Startek, M., Gambin, A.: Jaccard/tanimoto similarity test and estimation

methods for biological presence-absence data. BMC Bioinform. 20, (2019)
46. Bajusz, D., Racz, A., Heberger, K.: Why is tanimoto index an appropriate choice for fingerprint-based

similarity calculations? J. Cheminform. 20(7), (2015)
47. Bookstein, A., Kulyukin, V.A., Raita, T.: Generalized hamming distance. Inf. Retr. 5, 353–375 (2002)
48. Liu, Y., Mu, Y., Chen, K., Li, Y., Guo, J.: Daily activity feature selection in smart homes based on pearson

correlation coefcient. Neural Process. Letters 51, 1771–1787 (2020)
49. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28

(2014)
50. Plackett, R.L.: Karl pearson and the chi-squared test. International Statistical Review/Revue Internationale

de Statistique, 59–72 (1983)
51. Kanna, S.S., Ramaraj, N.: A novel hybrid feature selection via symmetrical uncertainty ranking based

local memetic search algorithm. Knowl. Based Syst. 23(6), 580–585 (2010)
52. Chengzhang, L., Jiucheng, X.: Feature selection with the fisher score followed by the maximal clique

centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma. Sci. Rep. 9, 17283
(2019)

53. Gu, Q., Li, Z., Han, J.: Generalized fisher score for feature selection. In: Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pp. 266–273. AUAI Press (2011)

54. Azhagusundari, B., Thanamani, A.S.: Feature selection based on information gain. Int. J. Innov. Res. Sci.
Eng. Technol. 2(2), 18–21 (2013)

55. Bommert, A., Michel, L.: stabm: Stability measures for feature selection. J. Open Source Softw. 1, 1
(2021)

56. Kalousis, A., Prados, J., Hilario, M.: Evaluating feature-selection stability in next-generation proteomics.
Knowl. Inf. Syst. 12(1), 95–116 (2007)

57. Kuncheva, L.I.: A stability index for feature selec. In: Proceedings of the 25th IASTED International
Multi-Conference Artificial Intelligence and Applications (2007)

123



T. Lazebnik and A. Rosenfeld

58. Dernoncourt, D., Hanczar, B., Zucker, J.-D.: Analysis of feature selection stability on high dimension and
small sample data. Comput. Stat. Data Anal. 71, 681–693 (2013)

59. Saeys, Y., Abeel, T.: and Y, vol. de. Springer, Peer. Robust Feature Selection Using Ensemble Feature
Selection Techniques (2008)

60. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connec-
tion to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282.
IEEE (2018)

61. Nogueira, S., Sechidis, K., Brown, G.: On the stability of feature selection algorithms. J. Mach. Learn.
Res. 18, 1–54 (2018)

62. Lyapunov, A.M..: The general problem of the stability of motion. University Of Kharkov, (1966)
63. Shami, L., Lazebnik, T.: Economic aspects of the detection of new strains in amulti-strain epidemiological-

mathematical model. Chaos, Solitons & Fractals 165, 112823 (2022)
64. Mayerhofer, T., Klein, S.J., Peer, A., Perschinka, F., Lehner, G.F., Hasslacher, J., Bellmann, R., Gasteiger,

L., Mittermayr, S., Eschertzhuber, M., Mathis, S., Fiala, S., Fries, D., Kalenka, A., Foidl, E., Hasibeder,
W., Helbok, R., Kirchmair, L., Stogermüller, C., Krismer, B., Heiner, T., Ladner, E., Thome, C., Preub-
Hernandez,C.,Mayr,A., Pechlaner,A., Potocnik,M., Reitter,M., Brunner, J., Zagitzer-Hofer, S., Ribitsch,
A., Joannidis, M.: Changes in characteristics and outcomes of critically ill covid-19 patients in tyrol
(Austria) over 1 year. Wiener klinische Wochenschrift 133, 1237–1247 (2021)

65. Liu, Y., Mu, Y., Chen, K., Li, Y., Guo, J.: Daily activity feature selection in smart homes based on pearson
correlation coefcient. Neural Process. Letters 51, 1771–1787 (2020)

66. A. Jovie, K. Brkie, and N. Bogunovic. A review of feature selection methods with applications. IEEE,
(2015). In: Russian

67. Liu, R., Liu, E., Yang, J., Li, M., Wang, F.: Optimizing the hyper-parameters for svm by combining
evolution strategies with a grid search. Intell. Control Automation 344, (2006)

68. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over
union: a metric and a loss for bounding box regression. In CVPR 2019 (2019)

69. Žliobaite, I., Pechenizkiy, M., Gama, J.: Big Data Analysis: New Algorithms for a New Society, vol. 16.
Springer (2016)

70. Gama, J.M., Zliobaite, I., Bifet, A., Pechenizkiy,M., Bouchachia, A.: A survey on concept drift adaptation.
ACM Comput. Surv. 46(4), 1–37 (2014)

71. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans.
Knowl. Data Eng. 31(12), 2346–2363 (2019)

72. Marlin, B.M.: Missing data problems in machine learning. pp. 1–6. University of Toronto, (2008)
73. Jerez, J.M., Molina, I., Garcia-Laencina, P.J., Alba, E., Ribelles, N., Martin, M., Franco, L.: Missing data

imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell.
Med. 50(2), 105–115 (2010)

74. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Mach. Learn. 45, 147–170 (2001)
75. Thomas, R.M., Bruin, W., Zhutovsky, P., van Wingen, G.: Chapter 14 - dealing with missing data, small

sample sizes, and heterogeneity in machine learning studies of brain disorders. In: Andrea Mechelli and
Sandra Vieira, editors, Machine Learning, pp. 249–266. Academic Press (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A new definition for feature selection stability analysis
	Abstract
	1 Introduction
	2 Related work
	3 Feature and lyapunov stability metrics
	4 Feature selection stability definitions' uniqueness
	5 Feature selection stability's properties
	5.1 Concept drift sensitivity
	5.2 Missing values
	5.3 Supervised feature selection
	5.4 Meta-analysis

	6 Conclusions and future work
	References


