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Abstract
We consider comparative dissimilarity relations on pairs on fuzzy description profiles, the
latter providing a fuzzy set-based representation of pairs of objects. Such a relation expresses
the idea of “no more dissimilar than” and is used by a decision maker when performing a
case-based decision task under vague information. We first limit ourselves to those relations
admitting a weighted L p distance representation, for which we provide an axiomatic charac-
terization in case the relation is complete, transitive and defined on the entire space of pairs
of fuzzy description profiles. Next, we switch to the more general class of comparative dis-
similarity relations representable by a Choquet L p distance, parameterized by a completely
alternating normalized capacity.

Keywords Dissimilarity relation · Fuzzy description profiles · Weighted L p distance ·
Choquet L p distance
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1 Introduction

The large availability of data and the increasing pervasiveness of Artificial Intelligence
throughmachine learning and deep learning techniques,made case-based decision paradigms
more and more common in recent years. In this context, similarity and dissimilarity mea-
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sures are important to evaluate a degree of resemblance between two or more objects. A
plethora of similarity/dissimilarity measures are available in the literature and the choice
of one of them is done each time two images, cases, objects, situations, texts or data must
be compared. Indeed, similarity/dissimilarity measures enter into play each time case-based
decision-making needs to be performed.

We are interested inmeasuring the similarity/dissimilarity of general objects characterized
by a profile formed by a finite number of attributes or features. Then any object is identified
by a vector which is binary (if the features can only belong or not to the object) or, as it has
been more recently preferred, with elements in [0, 1] (if a partial degree of membership is
accepted). In this setting, one can simply compare the resulting fuzzy description profiles,
rather than the objects themselves. For that, many papers on this subject present in the liter-
ature (see for instance [15, 19, 25]) discuss the opportunity of considering as dissimilarity
measure a pseudo-distance function [4] or a measure of comparison, as studied in [6] gener-
alizing Tversky’s contrast model [26] (for a general parameterized form, see [15]). Usually
the comparison is made for a particular environment and “a posteriori” (on the basis of the
obtained results), focusing on one or more specific properties.

With the purpose of providing conscious reasons to use a particular similarity measure on
the basis of the semantics behind this choice, in [7–9] two classes of similarity measures have
been studied by using the paradigm of measurement theory. These classes are very large and
contain as particular cases almost all the known measures in the sense of Tversky’s contrast
model and its generalizations. The study starts from the concept of comparative similarity
which is a binary relation between pairs of objects expressing the primitive idea of “no more
similar than” and provides the conditions that this relation needs to respect, when choosing
a measure of this class.

The aim of this paper is to make an equivalent study for some classes of dissimilarity
measures that cannot be derived fromsimilaritymeasures analyzed in [7–9].Here,we focus on
those dissimilarity measures that do not depend on the specific values taken by the degrees of
membership of each feature of a pair of objects but only on the feature-wise distances between
them, by analyzing the comparative dissimilarity relation they represent. This class contains
many distances like the weighted L p distances and the Choquet L p distances with respect
to a completely alternating normalized capacity. The reason for studying the comparative
dissimilarity relation is to make explicit what are the qualitative conditions an agent tacitly
accepts when he/she chooses a dissimilarity measure of these types.

It turns out that, though the quoted class of dissimilarity measures is characterized by
a set of axioms easy to justify from a behavioral point of view, the class is too wide. This
is why we first restrict ourselves to the distinguished subclass of weighted L p distances for
p ∈ [1,+∞), depending on a vector of parameters. These parameters express the importance,
with respect to dissimilarity, assigned to the various features that describe the objects and are
indirectly assessed through the comparative dissimilarity.

We provide a complete characterization for every p ∈ [1,+∞), by relying on a rationality
condition that acts on finite subsets of comparisons. Such condition turns out to be necessary
and sufficient to obtain aweighted L p distance representation, provided the set of comparisons
is finite. Nevertheless, rationality, alone, is not sufficient to get a weighted L p distance
representation in case the set of comparisons is infinite: rationality actually implies a weaker
condition equivalent to almost representability under non-triviality. We show that, if we add
a suitable axiom of equivalence involving constant fuzzy description profiles, then rationality
becomes necessary and sufficient to get a unique weighted L p distance representation. The
characterization we give generalizes some preliminary results involving the case p = 1, that
appeared in [10].
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Next, still for p ∈ [1,+∞), we provide an analogous characterization of dissimilarity
relations on fuzzy description profiles that are representable by a Choquet L p distance, with
respect to a completely alternating normalized capacity. This set of distances contains the
weighted L p distances and permits to model interactions among features. As a byproduct,
we also get a characterization of dissimilarity relations representable by the unweighted L∞
distance.

The paper is structured as follows. Section 2 introduces the necessary preliminaries on
comparative dissimilarity relations and their numerical representations. Section 3 presents
the axioms a comparative dissimilarity relation is asked to satisfy in order to have a numerical
representation that only depends on feature-wise distances between fuzzy description profiles.
Section 4 characterizes the comparative dissimilarity relations that are representable by a
weighted L p distance, while Section 5 considers those that are representable by a Choquet
L p distance with respect to a completely alternating normalized capacity. Next, Section 6
provides a discussion about introduced axioms, their logical grouping and their purpose in
an elicitation task. Finally, Section 7 gathers our conclusions.

2 Preliminaries

Let H = {h1, . . . , hm} = {hk}k∈I be a set of m ≥ 2 attributes (also referred to as features),
indexed by the set I = {1, . . . , m}, each of which is present in an object with a degree of
membership μk(·) ∈ [0, 1].

Let Y = [0, 1]m be the set of all fuzzy description profiles: objects are identified through
vectors X = (x1, . . . , xm) ∈ Y , where xk ∈ [0, 1] expresses the degree of membership of
attribute k in the considered object. In other words, fuzzy description profiles in Y can be
regarded as membership functions of fuzzy subsets of the set H of m attributes.

Since the attributes can be expressed by a vague characterization, we can regard each of
them as a fuzzy subset of a corresponding hidden variable. So each X ∈ Y is a projection
of the Cartesian product of m possibly fuzzy subsets of m variables. For instance if the
attributes h1 and h2 represent a person as “old” and “fat”, every X = (x1, x2) is a projection
of the Cartesian product of the fuzzy sets “old” and “fat” of variables “age” and “weight”,
both taking values in R. Therefore, in our setting we have two types of fuzzy sets: (i) single
attributes are seen as fuzzy subsets of the reference set related to the corresponding variable;
(ii) object description profiles are fuzzy subsets of H, formed by the evaluations of the
attribute memberships on the object values for each related variable.

Given two fuzzy description profiles X , Y ∈ Y , seen as fuzzy subsets of H, we adopt as
fuzzy inclusion the classic concept introduced by Zadeh [27]:

X ⊆ Y if and only if xk ≤ yk, for all k ∈ I . (1)

In other words, we have that X ⊆ Y if and only if every attribute is no more present in X
than it is in Y . So, in what follows the relation ⊆ on Y is identified with the partial order
relation ≤ on Y , where the inequality is component-wise. In the rest of the paper, we also
write X < Y if and only if xk < yk , for all k ∈ I .

We denote by X ⊂ Y the set of crisp description profiles, i.e., X = {0, 1}m, and for any
X ∈ Y , we consider the support sX = {k ∈ I : xk > 0}, so, in particular, 0 is the fuzzy
description profile with sX = ∅. More generally, if ε ∈ [0, 1], then ε denotes the element of
Y whose components are all equal to ε.
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For every 0 ≤ δ ≤ xk and 0 ≤ η ≤ 1 − xk we denote by x−δ
k the value xk − δ, and by

xη
k the value xk + η, and consider the elements of Y: X−δ

k = (x1, . . . , x−δ
k , . . . , xm), and

Xη
k = (x1, . . . , xη

k , . . . , xm).
Given X , Y ∈ Y , we denote by |X − Y | the element of Y whose k-th component is

|xk − yk |, by Xc the element of Y , whose k-th component is 1 − xk , which is referred to
as the complement of X . For p ∈ [1,+∞), we denote by X p the element of Y whose k-th
component is x p

k and by |X − Y |p the element of Y whose k-th component is |xk − yk |p .
Let us now consider a comparative dissimilarity that is a binary relation � on Y2, with

the following meaning: for all (X , Y ), (X ′, Y ′) ∈ Y2,

(X , Y ) � (X ′, Y ′) ⇐⇒ “X is no more dissimilar to Y than

X ′ is dissimilar toY ′”. (2)

The relations ∼ and ≺ are then induced by � in the usual way: (X , Y ) ∼ (X ′, Y ′)
stands for (X , Y ) � (X ′, Y ′) and (X ′, Y ′) � (X , Y ), while (X , Y ) ≺ (X ′, Y ′) stands for
(X , Y ) � (X ′, Y ′) and not (X ′, Y ′) � (X , Y ).

In a case-based decision task, the decisionmaker has a knowledge baseK = {X1, . . . , Xn}
of prototypical fuzzy description profiles. Thus, given a new fuzzy description profile X , the
relation � is normally used to find the less dissimilar prototype Xi∗ , that satisfies

(X , Xi∗) � (X , Xi ), for all i �= i∗.

The relation � on Y2 is said to be:
complete: if (X , Y ) � (X ′, Y ′) or (X ′, Y ′) � (X , Y ), for all (X , Y ), (X ′, Y ′) ∈ Y2;
transitive: if (X , Y ) � (X ′, Y ′) and (X ′, Y ′) � (X ′′, Y ′′) implies (X , Y ) � (X ′′, Y ′′), for all
(X , Y ), (X ′, Y ′), (X ′′, Y ′′) ∈ Y2;
weak order: if it is complete and transitive;
nontrivial: if (X , Y ) ≺ (X ′, Y ′) for some (X , Y ), (X ′, Y ′) ∈ Y2.

If� is assumed to be complete, then∼ and≺ are the symmetric and the asymmetric parts
of �, respectively.

We recall that in the literature there is not a commonly accepted definition (and nomen-
clature) for dissimilarity measures between fuzzy sets. In [12–14] a thorough analysis of
axioms that a dissimilarity measure should satisfy is carried out together with a comparison
between different definitions. Here, we adopt a very broad definition where a dissimilarity
measure is a function D : Y2 → R satisfying: for all X , Y ∈ Y ,
(i) D(X , Y ) ≥ 0;

(ii) D(X , Y ) = D(Y , X);
(iii) X = Y �⇒ D(X , Y ) = 0.

We notice that (i)–(iii) are necessary properties that all dissimilarity measures considered
in this paper satisfy, though they are not sufficient to completely capture the notion of dissim-
ilarity. Further properties according to [12–14] for the numerical function D will be singled
out in the next section.

Definition 1 Let � be a comparative dissimilarity and D : Y2 → R a dissimilarity measure.
We say that D represents � if and only if, for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds{

(X , Y ) � (X ′, Y ′) �⇒ D(X , Y ) ≤ D(X ′, Y ′),
(X , Y ) ≺ (X ′, Y ′) �⇒ D(X , Y ) < D(X ′, Y ′).

If only the first implication is satisfied, we say that D almost represents �.
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As is well-known, if � is complete, the above conditions of representability can be sum-
marized as follows:

(X , Y ) � (X ′, Y ′) ⇐⇒ D(X , Y ) ≤ D(X ′, Y ′).

Proposition 1 If � is a trivial complete dissimilarity relation on Y2, i.e., the asymmetric part
≺ is empty, then a dissimilarity measure D satisfying (i)–(iii) represents � if and only if
D(X , Y ) = 0, for all X , Y ∈ Y .

Proof Since D represents � and ≺ is empty, for all X , Y , X ′, Y ′ ∈ Y , it holds
D(X , Y ) = D(X ′, Y ′).

Finally, by property (iii) we derive that, for all X , Y ∈ Y , it holds
D(X , Y ) = D(X , X) = D(Y , Y ) = 0,

thus the claim follows. ��
The previous proposition shows that the case of a trivial complete dissimilarity relation �

is not interesting, as it can be uniquely represented by a trivial dissimilarity measure which is
constantly equal to 0. Therefore, in what follows we will always assume that � is nontrivial.

3 Basic axioms

Given a comparative dissimilarity relation � on Y2, in the following we propose a set of
axioms that reveal to be necessary and sufficient for � to have a dissimilarity measure
representation inside a suitable class of dissimilarity measures.

The next axiom is a necessary condition for the existence of any real-valued function
representing a binary relation.
(FD0) � is a weak order on Y2.

The completeness of relation � can be removed and required only in some specific cases:
we assume it for simplicity. We note that, under axiom (FD0), ∼ is an equivalence relation
and ≺ a strict order on the quotient set.

The next axiom requires the comparative degree of dissimilarity to be independent of
the common increase or decrease of the presence/absence of the features in the objects of a
pair. In fact, what is discriminant in assessing the comparative degrees of dissimilarity is the
distance between the two membership degrees assigned to each feature.
(FD1) For all X , Y ∈ Y , for all k ∈ I , for all ε ≤ min(xk, yk), it holds:

(X , Y ) ∼ (X−ε
k , Y −ε

k ).

The next example, inspired by an example given in [5], shows a situation of three pairs
that the axioms (FD0) and (FD1) require to be equivalent.

Example 1 Let us consider a comparative dissimilarity among banks in the Euro zone. As
prescribed by Basel II and Basel III accords [2, 3], banks should be rated in a way to point
out their ability to pay debts they have contracted with other financial institutions. Ratings
take into account qualitative, quantitative and performance information and the way they
are calculated may vary, depending on the credit agency. Here, we assume that banks are
described by the following attributes extracted from Basel accords:
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• h1: high quality of the enterprise;
• h2: low cost of interest paid;
• h3: compliance with the terms of repayment of received credit;
• h4: absence of inactive accounts or with a negative balance;
• h5: good use of credit lines.

Consider the following fuzzy description profiles related to six different banks of the Euro
zone.

H h1 h2 h3 h4 h5

X 0.5 0.4 0.9 0.6 0.1
Y 0.4 0.8 0.3 0.8 0.2
X ′ 0.3 0.2 0.8 0.2 0.05
Y ′ 0.2 0.6 0.2 0.4 0.15
X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1

Axioms (FD0) and (FD1) require that one must retain (X , Y ) ∼ (X ′, Y ′) ∼ (X ′′, Y ′′), that
is all the pairs of banks (X , Y ), (X ′, Y ′), (X ′′, Y ′′) should be judged as equally dissimilar. �

The next axiom is a local strong form of symmetry.
(FD2) For all X , Y ∈ Y , for all k ∈ I , denoting X ′

k = (x1, . . . , yk, . . . , xm) and Y ′
k =

(y1, . . . , xk, . . . , ym), it holds:
(X , Y ) ∼ (X ′

k, Y ′
k).

Example 2 Refer to the features in Example 1 and consider the fuzzy description profiles
below, related to 4 different banks of the Euro zone.

H h1 h2 h3 h4 h5

X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1
X ′′′ 0.1 0.4 0.6 0.2 0.1
Y ′′′ 0 0 0 0 0

Accepting axioms (FD0) and (FD2) implies to set (X ′′, Y ′′) ∼ (X ′′′, Y ′′′). �
As the following proposition shows, for a weak order, local symmetry implies symmetry.

We note that the transitivity is necessary and that the converse does not hold.

Proposition 2 Let � be a comparative dissimilarity on Y2. If � satisfies axioms (FD0) and
(FD2), then, for every X , Y ∈ Y one has: (X , Y ) ∼ (Y , X).

Proof The proof trivially follows by applying at most m times (FD2) and (FD0). ��

The next proposition shows that under axioms (FD0) and (FD1), all pairs of identical
fuzzy description profiles belong to the same equivalence class.

Proposition 3 Let � be a comparative dissimilarity on Y2. If � satisfies axioms (FD0) and
(FD1), then for every X ∈ Y one has: (1, 1) ∼ (X , X) ∼ (0, 0).

Proof For every X ∈ Y , in particular X = 1, apply m times axiom (FD1) taking ε = xk and
then use (FD0). ��
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The following axiom is a boundary condition. It provides a natural left limitation: “the
elements of each pair (X , Y ) are at least dissimilar to each other as an element of the pair is
from itself”. On the other hand, for the right limitation it is not enough to refer to any pair
(X , Xc) formed by a profile and its complement, but it is required that the profile X is crisp,
or equivalently that the supports of X and Xc are disjoint.
(FD3) The following conditions hold:

a) for every X , Y ∈ Y , (X , X) � (X , Y ) and (Y , Y ) � (X , Y ), and if xk �= yk , for all
k ∈ I , the comparisons must be strict;

b) for every X ∈ X and Y ∈ Y , (X , Y ) � (X , Xc), and if sX ⊆ sY and yk < 1, for all
k ∈ sY \ sX , the comparison must be strict.

The following is a monotonicity axiom.
(FD4) For all X , Y ∈ Y , for all k ∈ I , such that xk ≤ yk, for all 0 < ε ≤ xk and
0 < η ≤ 1 − yk , it holds:

(X , Y ) � (X−ε
k , Y ) and (X , Y ) � (X , Y η

k ).

The following Theorem 4 shows that the introduced axioms are necessarily satisfied by
any comparative dissimilarity agreeing with a dissimilarity measure, taking into account the
distances of the degree of membership of each feature in the compared fuzzy description
profiles. The same axioms become necessary and sufficient together with the following
structural axiom (Q), known as Debreu’s condition [16], which assures the representability
of a weak order � by a real function.
(Q) There is a countable ≺-dense set Z ⊆ Y2 (i.e., for all (X , Y ), (X ′, Y ′) ∈ Y2, with
(X , Y ) ≺ (X ′, Y ′), there exists (X ′′, Y ′′) ∈ Z, such that (X , Y ) ≺ (X ′′, Y ′′) ≺ (X ′, Y ′)).

Theorem 4 Let � be a nontrivial comparative dissimilarity relation on Y2. Then, the follow-
ing statements are equivalent:

(i) � satisfies (FD0)–(FD4) and (Q);
(ii) there exists a function (unique under strictly increasing transformations of [0, 1]) � :

Y2 → [0, 1] representing � in the sense of Definition 1 and a function ϕ : Y → [0, 1]
such that:

a) for all X , Y ∈ Y , it holds

�(X , Y ) = �(|X − Y |, 0) = ϕ(|X − Y |);
b) Z ≤ Z ′ �⇒ ϕ(Z) ≤ ϕ(Z ′), for every Z , Z ′ ∈ Y;
c) ϕ(0) = 0 and ϕ(1) = 1;
d) ϕ(Z) = ε ∈ {0, 1} implies zk = ε for at least one k ∈ I , for every Z ∈ Y .

Proof We first prove that (i) �⇒ (ii). Axioms (FD0) and (Q) are sufficient conditions for
the existence of a function � : Y2 → R representing � [22]. Now, applying at most m
times (FD1) with ε = min(xk, yk) and at most m

2 times (FD2) we get, by (FD0), that
(X , Y ) ∼ (|X − Y |, 0). So, � induces in Y a strict order among the equivalence classes
represented by (|X −Y |, 0). Then, since� represents�we have�(X , Y ) = �(|X −Y |, 0).
Thus it is sufficient to define, for all Z ∈ Y , ϕ(Z) = �(Z , 0) and note that ϕ satisfies
condition a).

We now prove the validity of statement b). Let Z = |X − Y | ≤ Z ′ = |X ′ − Y ′|. Taking
into account Proposition 3, if we start from (Z ′, 0) and apply (FD4) for k = 1, . . . , m with
ε = z′

k − zk , then we derive (Z , 0) � (Z ′, 0), and since � represents � we get b).
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Conditions c) and d) follow by axiom (FD3), by noting that 0 = |X − X | = |Y − Y | ≤
|X − Y |, for all X , Y ∈ Y , while 1 = |X − Xc| ≥ |X − Y |, for all X ∈ X and Y ∈ Y . Thus,
by the previous point we derive that (0, 0) � (|X − Y |, 0) � (1, 0), for all X , Y ∈ Y , and
(0, 0) ≺ (1, 0) by non-triviality. Since � is unique under strictly increasing transformations,
we can consider particular � and ϕ taking values in [0, 1] and such that ϕ(0) = 0 and
ϕ(1) = 1. Next, for all X , Y ∈ Y , we can have (X , X) ∼ (X , Y ) or (Y , Y ) ∼ (X , Y ) only
when there is at least one k ∈ I with xk = yk , thus ϕ(Z) = 0 implies that there is at least
one k ∈ I with zk = |xk − yk | = 0. Analogously, for all X ∈ X and Y ∈ Y , we can have
(X , Y ) ∼ (X , Xc) only when there is at least one k ∈ I with k ∈ sX \ sY , or k ∈ sY \ sX and
yk = 1, thus ϕ(Z) = 1 implies that there is at least on k ∈ I with zk = |xk − yk | = 1.

Let us consider now the implication (ii) �⇒ (i). Every binary relation � representable by
a real function satisfies axiom (FD0) and (Q) [22]. We must prove that � satisfies axioms
(FD1)–(FD4). Taking into account the representability of � by � we deduce that condition
a) in (ii) implies (FD1) and (FD2) whereas condition b) in (ii) implies (FD4). To prove
condition a) of axiom (FD3) it is sufficient to consider that, for all X , Y ∈ Y , � assigns 0 to
all the elements of the equivalence class of (0, 0), that contains the pairs (X , X) and (Y , Y ),
while it cannot contain any pair (X , Y ) with xk �= yk , for all k ∈ I . Analogously, condition
b) of axiom (FD3) follows since, for all X ∈ X and Y ∈ Y , � assigns 1 to all the elements
of the equivalence class of (1, 0), that contains the pair (X , Xc), while it cannot contain any
pair (X , Y ) with sX ⊆ sY and yk < 1, for all k ∈ sY \ sX . ��

The previous theorem singles out a class of functions D : Y2 → [0, 1], obtained from �

through strictly increasing transformation of [0, 1], all representing the same �. The axioms
(FD0)–(FD4) assure that every such D satisfies the properties (i)–(iii) that we reported in
Section 2 for a broad-sense dissimilarity measure, together with the following additional
properties analyzed in [12–14]:

(iv) D(X , X) = 0, for all X ∈ Y;
(v) D(X , Xc) = 1, for all X ∈ X ;

(vi) D(X , Z) ≥ D(X , Y ) and D(X , Z) ≥ D(Y , Z), for all X , Y , Z ∈ Y with X ≤ Y ≤ Z .

We point out that a function D : Y → [0, 1] satisfying properties (i)–(vi) is called a distance
measure in [12], not referring to the usual metric sense. Thus, the dissimilarity measures
studied in this paper are particular distance measures between fuzzy sets.

4 Representation by a weighted Lp distance

Condition (ii) of Theorem 4 identifies a too wide and therefore too general class of functions.
In the following we will study those relations representable by the elements of a particular
subclass of functions � that is the class of the weighted L p distances, for p ∈ [1,+∞).

Every element of this class takes into account the different weights that the decision
maker or the field expert assigns to each feature through�. Nevertheless, interactions among
features are not admitted by this class of dissimilarity measures.

Definition 2 Let p ∈ [1,+∞). A weighted L p distance is a function D p
α : Y2 → [0, 1]

parameterized by α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and
∑m

k=1 αk = 1, defined,
for every X , Y ∈ Y , as

D p
α (X , Y ) =

(
m∑

k=1

αk |xk − yk |p

) 1
p

.
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The corresponding p-th power weighted L p distance is a function W p
α : Y2 → [0, 1]

defined, for every X , Y ∈ Y , as

W p
α (X , Y ) = (D p

α (X , Y ))p =
m∑

k=1

αk |xk − yk |p.

In particular, for p = 1 we get a weighted Manhattan distance, and for p = 2 we get a
weighted Euclidean distance.

For every p ∈ [1,+∞), we notice that the function f (x) = x p , for all x ∈ [0, 1],
is continuous, strictly increasing, and such that f (0) = 0 and f (1) = 1. Therefore, f is

invertible and f −1 is defined, for all x ∈ [0, 1], as f −1(x) = x
1
p , which is continuous,

strictly increasing, and such that f −1(0) = 0 and f −1(1) = 1. This implies that, for all
(X , Y ), (X ′, Y ′) ∈ Y2, it holds

D p
α (X , Y ) ≤ D p

α (X ′, Y ′) ⇐⇒ W p
α (X , Y ) ≤ W p

α (X ′, Y ′). (3)

As is well-known, for a fixed α, defining the relation X ≡0 Y ⇐⇒ D p
α (X , Y ) = 0, then

D p
α turns out to be a metric on the quotient space Y/≡0 . In other terms, for all equivalence

classes [X ], [Y ], [Z ] ∈ Y/≡0 we have that

(i) D p
α (X , Y ) = 0 if and only if [X ] = [Y ];

(ii) D p
α (X , Y ) = D p

α (Y , X);
(iii) D p

α (X , Y ) ≤ D p
α (X , Z) + D p

α (Z , Y ).

In particular, D p
α is a metric on the whole Y if (and only if) α is strictly positive.

4.1 Rationality principle

The next axiom highlights “the constraint accepted” to obtain that the function representing
our comparative dissimilarity � belongs to the particular subclass of weighted L p distances.

(R-p) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y ′

1), . . . , (X ′
n, Y ′

n) ∈ Y2 with
(Xi , Yi ) � (X ′

i , Y ′
i ), i = 1, . . . , n−1, and (Xn, Yn) ≺ (X ′

n, Y ′
n), there are no λ1, . . . , λn > 0

with
∑n

i=1 λi = 1 such that:

n∑
i=1

λi |X ′
i − Y ′

i |p ≤
n∑

i=1

λi |Xi − Yi |p.

Let us notice that if � is trivial, then (R-p) is vacuously satisfied as (R-p) requires the
presence of at least one strict comparison in order to be applied. In other terms, non-triviality
of � is not implied by (R-p) and must be explicitly required. The following proposition lists
some immediate properties implied by (R-p).

Proposition 5 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2 satisfying (R-p). Then, for all X , Y , X ′, Y ′ ∈ Y , the following statements
hold:

(i) it must be (X , Y ) ∼ (|X − Y |, 0);
(ii) if |X − Y | ≤ |X ′ − Y ′|, then it must be (X , Y ) � (X ′, Y ′);

(iii) it must be (0, 0) ≺ (1, 0).
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Proof Statement (i). Since |X − Y |p = ||X − Y | − 0|p , by (R-p) it cannot be neither
(X , Y ) ≺ (|X − Y |, 0), nor (|X − Y |, 0) ≺ (X , Y ), and since � is complete, it must be
(X , Y ) ∼ (|X − Y |, 0).

Statement (ii). If |X −Y | ≤ |X ′ −Y ′| and (X ′, Y ′) ≺ (X , Y ), then |X −Y |p ≤ |X ′ −Y ′|p

and (R-p) is violated, thus it cannot be (X ′, Y ′) ≺ (X , Y ). Then, the statement follows by
the completeness of �.

Statement (iii). By non-triviality, there are (X , Y ), (X ′, Y ′) ∈ Y2 such that (X , Y ) ≺
(X ′, Y ′). Notice that it cannot be (1, 0) ≺ (0, 0) by statement (ii). Suppose (1, 0) � (0, 0).
Denote by q = max

k=1,...,m
{|x ′

k − y′
k |p − |xk − yk |p} and take λ1, λ2 ∈ (0, 1) with λ1 ≥ q

1+q

and λ2 = 1 − λ1. Then we have that

λ1|0 − 0|p + λ2|X ′ − Y ′|p ≤ λ1|1 − 0|p + λ2|X − Y |p,

violating condition (R-p). Thus, since � is complete, (R-p) implies (0, 0) ≺ (1, 0). ��

The above axiom has an easy interpretation. It asserts that if you have n pairs (Xi , Yi ) of
fuzzy profiles and you judge the elements of each of them no more dissimilar than those of
other n pairs (X ′

i , Y ′
i ), with at least one strict comparison, combining in a positive convex

combination the |Xi − Yi |p’s and the |X ′
i − Y ′

i |p’s you cannot obtain two fuzzy profiles Z
and Z ′ such that they satisfy Z ′ ≤ Z .

In the next example we provide a comparative dissimilarity assessment which violates the
above rationality principle.

Example 3 Let p ∈ [1,+∞). Referring to the features in Example 1, let us consider the
following profiles:

H h1 h2 h3 h4 h5

X1 1/2 1 1/4 3/4 1/10
Y1 1/2 2/3 1/4 1/2 1/10
X2 1 1 1/6 1/2 1/2
Y2 1/2 1 1/6 1/2 1/2
X3 2/3 2/3 1/3 0 1/4
Y3 1/6 1 1/3 0 1/4
X4 1/8 1 1/2 1/2 0
Y4 1/8 1 1/3 1/4 0
X5 1 1/8 0 0 1
Y5 1/2 1/8 0 1/4 1
X6 0 1/2 1/3 0 0
Y6 0 1/6 1/3 0 2/3
X7 1/4 1/6 1/6 1 1/3
Y7 1/4 1/6 0 1 1
X8 0 1/3 1/4 3/4 0
Y8 1/2 0 1/4 1/2 0

Suppose now we assign the following reasonable relation: (X1, Y1) ≺ (X2, Y2),

(X3, Y3) ≺ (X4, Y4), (X5, Y5) ≺ (X6, Y6), (X7, Y7) ≺ (X8, Y8).
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It is easy to prove that the relation violates axiom (R-p). By trivial computations, taking
all λi ’s equal to 1/4, one obtains∑

i∈{1,3,5,7}

1

4
|Xi − Yi |p =

(
2

4 · 2p
,

2

4 · 3p
,

1

4 · 6p
,

2

4 · 4p
,

2p

4 · 3p

)

=
∑

i∈{2,4,6,8}

1

4
|Xi − Yi |p.

�
The next theorem shows that, for a nontrivial complete �, condition (R-p) implies all

the axioms from (FD0) to (FD4). Nevertheless, since condition (R-p) deals with finite sets
of pairs, condition (Q) is not guaranteed to hold. This is why (R-p) does not assure the
representability of � on the whole Y2, but only its almost representability, as will be shown
in Subsection 4.3.

Theorem 6 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2 satisfying (R-p). Then � is transitive and axioms (FD1)–(FD4) hold.

Proof To prove transitivity note that, for all (X , Y ), (X ′, Y ′), (X ′′, Y ′′) ∈ Y2, it holds

1
3

(|X − Y |p + |X ′ − Y ′|p + |X ′′ − Y ′′|p
)

= 1
3

(|X ′ − Y ′|p + |X ′′ − Y ′′|p + |X − Y |p
)
.

Hence, if (X , Y ) � (X ′, Y ′), (X ′, Y ′) � (X ′′, Y ′′) and (X ′′, Y ′′) � (X , Y ), then (R-p)
implies that none of the comparisons can be strict, thus we get transitivity.

To prove (FD1) and (FD2) it is sufficient to note that |X −Y | = |X−ε
k −Y −ε

k | = |X ′
k −Y ′

k |,
for all X , Y ∈ Y . Thus, statement (i) of Proposition 5 and transitivity of � imply that
(X , Y ) ∼ (X−ε

k , Y −ε
k ) and (X , Y ) ∼ (X ′

k, Y ′
k).

To prove (FD3) notice that (0, 0) ≺ (1, 0) by statement (iii) of Proposition 5. Condition
a) follows since 0 = |X − X | = |Y − Y | ≤ |X − Y |, for all X , Y ∈ Y , thus, by statement
(ii) of Proposition 5 it must be (X , X) � (X , Y ) and (Y , Y ) � (X , Y ). Moreover, it cannot
neither be (X , Y ) � (X , X) nor (X , Y ) � (Y , Y ) if xk �= yk , for all k ∈ I , as we have
(0, 0) ≺ (1, 0). Indeed, denoting by q = min

k∈I
|xk − yk |p , we get

1

1 + q
|X − X |p + q

1 + q
|1 − 0|p ≤ 1

1 + q
|X − Y |p + q

1 + q
|0 − 0|p,

1

1 + q
|Y − Y |p + q

1 + q
|1 − 0|p ≤ 1

1 + q
|X − Y |p + q

1 + q
|0 − 0|p,

that contradict (R-p). Analogously, condition b) follows since 1 = |X − Xc| ≥ |X − Y |,
for all X ∈ X and Y ∈ Y , that implies (X , Y ) � (X , Xc) by statement (ii) of Proposition 5.
Moreover, it cannot be (X , Xc) � (X , Y ) if sX ⊆ sY and yk < 1, for all k ∈ sY \ sX , as we
have (0, 0) ≺ (1, 0). Indeed, denoting by q = 1 − max

k∈I
|xk − yk |p , we get

1

1 + q
|X − Y |p + q

1 + q
|1 − 0|p ≤ 1

1 + q
|X − Xc|p + q

1 + q
|0 − 0|p,

that contradicts (R-p).
Finally, axiom (FD4) holds since |X − Y | ≤ |X−ε

k − Y | and |X − Y | ≤ |X − Y η
k |, for all

X , Y ∈ Y , for all k ∈ I , such that xk ≤ yk , for all 0 < ε ≤ xk and 0 < η ≤ 1− yk . Thus, by
statement (ii) of Proposition 5 it must be (X , Y ) � (X−ε

k , Y ) and (X , Y ) � (X , Y η
k ). ��
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4.2 Representability theorems

In the following we characterize the weighted L p distance representability of a nontrivial
complete comparative dissimilarity relation on a finite set of fuzzy description profiles.

Theorem 7 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on a finite F ⊂ Y2. Then, the following statements are equivalent:

(i) � satisfies (R-p);
(ii) there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and∑m

k=1 αk = 1 such that, for all (X , Y ), (X ′, Y ′) ∈ F , it holds that

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Proof Since F is finite, the binary relation � amounts to a finite number of comparisons.
Consider the sets

S = {((X , Y ), (X ′, Y ′)) ∈ F2 : (X , Y ) ≺ (X ′, Y ′)},
W = {((X , Y ), (X ′, Y ′)) ∈ F2 \ S : (X , Y ) � (X ′, Y ′)},

with s = card S and w = cardW , and fix two enumerations S = {((X j , Y j ), (X ′
j , Y ′

j ))} j∈J

and W = {((Xh, Yh), (X ′
h, Y ′

h))}h∈H with J = {1, . . . , s} and H = {1, . . . , w}.
Condition (ii) is equivalent to the solvability of the following linear system⎧⎨

⎩
Aβ > 0,
Bβ ≥ 0,
β ≥ 0,

with unknown β ∈ R
m×1, and A ∈ R

s×m and B ∈ R
w×m , where the s rows of A are the

vectors |X ′
j − Y ′

j |p − |X j − Y j |p , for all j ∈ J , while the w rows of B are the vectors
|X ′

h − Y ′
h |p − |Xh − Yh |p , for all h ∈ H . Indeed, if we have a weight vector α satisfying (ii),

then setting β = αT we get a solution of the above system. On the converse, if β is a solution
of the above system, then defining αk = βk∑m

i=1 βi
, we get a weight vector α satisfying (ii).

By the Motzkin’s theorem of the alternative [24], the solvability of the above system is
equivalent to the non-solvability of the following system⎧⎨

⎩
μA + νB ≤ 0,
μ, ν ≥ 0,
μ �= 0,

with unknowns μ ∈ R
1×s and ν ∈ R

1×w. In particular, the first inequality reduces to∑
j∈J

μ j (|X ′
j − Y ′

j |p − |X j − Y j |p) +
∑
h∈H

νh(|X ′
h − Y ′

h |p − |Xh − Yh |p) ≤ 0.

Therefore, it easy to see that, dividing both sides of the inequality by the sum of the μ j ’s and
the νh’s, the non-solvability of the above system is equivalent to condition (R-p). ��
Remark 1 We note that, in the hypotheses of previous theorem, if (X , Y ), (X ′, Y ′) ∈ F
and it holds |X − Y |p < |X ′ − Y ′|p then it must be (X , Y ) ≺ (X ′, Y ′). In particular, if
(0, 0), (1, 0) ∈ F , then it must be (0, 0) ≺ (1, 0), as already noticed.

Consider now the case where� is a nontrivial complete relation onY2. In this case, axiom
(R-p) is not sufficient to assure representability of � by a weighted L p distance D p

α on the
whole Y2, as the following Example 4 shows.
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Example 4 Let p ∈ [1,+∞). We consider objects described by only two features, i.e.,
m = 2 and I = {1, 2}, and we introduce the following dissimilarity relation: for every
(X , Y ), (X ′, Y ′) ∈ Y2,

(X , Y ) � (X ′, Y ′) ⇐⇒
⎧⎨
⎩

|x1 − y1| < |x ′
1 − y′

1|
or
|x1 − y1| = |x ′

1 − y′
1| and |x2 − y2| ≤ |x ′

2 − y′
2|.

(4)

We first notice that, for every X , Y ∈ Y , it holds that (X , Y ) ∼ (|X −Y |, 0) as |x1− y1| =
||x1 − y1| − 0| and |x2 − y2| = ||x2 − y2| − 0|. Moreover, we have that (0, 0) ≺ (1, 0).

The relation� is a nontrivialweak order onY2 and its quotient relation onY2
/∼ corresponds

to the lexicographic order on Y . As is well-known (see, e.g., [22]), we cannot find a real
function ϕ : Y → R representing the lexicographic order on Y . Hence, by Theorems 4 and
6 we cannot find a weight vector α such that D p

α represents � on the whole Y2.
Now, we show that � satisfies (R-p). Let G ⊂ Y2 be arbitrary and finite, and take

F = G ∪ {(0, 0), (1, 0)}. Therefore, the restriction of � to F is a nontrivial complete weak
order, that we denote by the same symbol.

Consider a weight vector α = (α, 1−α) with α ∈ (0, 1). The strictly compared pairs can
be partitioned as

S1 = {((X , Y ), (X ′, Y ′)) ∈ F2 : (X , Y ) ≺ (X ′, Y ′),
|x1 − y1| < |x ′

1 − y′
1|, |x2 − y2| ≤ |x ′

2 − y′
2|},

S2 = {((X , Y ), (X ′, Y ′)) ∈ F2 : (X , Y ) ≺ (X ′, Y ′),
|x1 − y1| < |x ′

1 − y′
1|, |x2 − y2| > |x ′

2 − y′
2|},

S3 = {((X , Y ), (X ′, Y ′)) ∈ F2 : (X , Y ) ≺ (X ′, Y ′),
|x1 − y1| = |x ′

1 − y′
1|, |x2 − y2| < |x ′

2 − y′
2|}.

Choosing α ∈ (0, 1) such that

α < min
((X ,Y ),(X ′,Y ′))∈S2

|x2 − y2|p − |x ′
2 − y′

2|p

|x ′
1 − y′

1|p − |x1 − y1|p + |x2 − y2|p − |x ′
2 − y′

2|p
,

we have that, for all (X , Y ), (X ′, Y ′) ∈ F ,

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Hence, by Theorem 7 the relation � satisfies (R-p) on F and by the arbitrariness of the
choice of G, � satisfies (R-p) on the whole Y2. �

Nevertheless, axiom (R-p) guarantees representability only on every finite subset Y2, by
virtue of Theorem 7. This implies that the parameter α characterizing D p

α depends on the
particular finite subset F . To remedy this problem we can follow two paths: (1) reinforce the
hypotheses or (2) weaken the requirements on the result, contenting ourselves with obtaining
an almost-representation. For the first strategy we introduce a further axiom which requires
that in each equivalence class containing (|X − Y |, 0) there must be one pair (ε, 0). Indeed,
having fixed α, if

D p
α (X , Y ) = D p

α (|X − Y |, 0) =
(

m∑
k=1

αk |xk − yk |p

) 1
p

= ε,
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where ε ∈ [0, 1], then

D p
α (ε, 0) =

(
m∑

k=1

αkε
p

) 1
p

= ε,

thus the pairs (X , Y ), (|X − Y |, 0) and (ε, 0) should be judged as equally dissimilar.
(FD5) For all (X , Y ) ∈ Y2 there exists ε ∈ [0, 1], such that (X , Y ) ∼ (ε, 0).

Given a nontrivial complete dissimilarity relation� on thewholeY2, we notice that (FD5)
is a “richness axiom” used to guarantee both that all strict comparisons are preserved by the
numerical representation of � and that the numerical representation of � is unique. Indeed,
asking only (R-p) to hold, by applying a compacteness argument one can only prove the
existence of a (not necessarily unique) vector α whose corresponding D p

α almost represents
�.

Theorem 8 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2. Then, the following statements are equivalent:

(i) � satisfies (R-p) and (FD5);
(ii) there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and∑m

k=1 αk = 1 such that, for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Moreover, the weight vector α is unique.

Proof The implication (ii) �⇒ (i) is easily proven, therefore we only prove (i) �⇒ (ii).
For every finiteF ⊂ Y2 such that the restriction of� toF is nontrivial, Theorem 7 implies

the existence of a weight vector αF = (αF
1 , . . . , αF

m ) with αF
k ≥ 0 and

∑m
k=1 αF

k = 1, such
that the corresponding W p

αF represents the restriction of� toF . Notice that, by Proposition 5

every finite subset of Y2 containing (0, 0) and (1, 0) meets non-triviality, as it must be
(0, 0) ≺ (1, 0).

Next, axiom (FD5) implies that, for all (X , Y ) ∈ Y2, there exists ε(X ,Y ) ∈ [0, 1], such that
(X , Y ) ∼ (ε(X ,Y ), 0). In particular, denoting by Ek the element of Y whose k-th component
is 1 and the others are 0, we have that there exists βk ∈ [0, 1] such that (Ek, 0) ∼ (βk, 0).

Now, for every (X , Y ), (X ′, Y ′) ∈ Y2 we consider the finite subset of Y2

F = {(X , Y ), (X ′, Y ′), (ε(X ,Y ), 0), (ε(X ′,Y ′), 0),

(E1, 0), . . . , (Em, 0), (β1, 0), . . . , (βm, 0), (0, 0), (1, 0)}.

By the previous point we have that there is a weight vectorαF = (αF
1 , . . . , αF

m )with αF
k ≥ 0

and
∑m

k=1 αF
k = 1 such that

(X , Y ) � (X ′, Y ′) ⇐⇒ W p
αF (X , Y ) ≤ W p

αF (X ′, Y ′),

(X , Y ) ∼ (ε(X ,Y ), 0) ⇐⇒ W p
αF (X , Y ) = W p

αF (ε(X ,Y ), 0) = ε
p
(X ,Y ),

(X ′, Y ′) ∼ (ε(X ′,Y ′), 0) ⇐⇒ W p
αF (X ′, Y ′) = W p

αF (ε(X ′,Y ′), 0) = ε
p
(X ′,Y ′).

Moreover, for all k = 1, . . . , m, we have

(Ek, 0) ∼ (βk, 0) ⇐⇒ W p
αF (Ek, 0) = αF

k = β
p
k = W p

αF (βk, 0),
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thus the numbers βk ∈ [0, 1] are such that β p
k ≥ 0 and

∑m
k=1 β

p
k = 1. So, defining αk = β

p
k

we get

ε
p
(X ,Y ) =

m∑
k=1

αk |xk − yk |p and ε
p
(X ′,Y ′) =

m∑
k=1

αk |x ′
k − y′

k |p,

and also
ε(X ,Y ) ≤ ε(X ′,Y ′) ⇐⇒ ε

p
(X ,Y ) ≤ ε

p
(X ′,Y ′).

Hence, there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0 and
∑m

k=1 αk = 1 such
that, for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds that

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′),

and such weight vector is unique. Indeed, suppose there exists α′ = (α′
1, . . . , α

′
m) with

α′
k ≥ 0 and

∑m
k=1 α′

k = 1, such that D p
α′ represents � on the whole Y2 and α′ �= α. For

k = 1, . . . , m, it holds that

(Ek, 0) ∼ (βk, 0) ⇐⇒ W p
α′(Ek, 0) = α′

k = αk = W p
α′(βk, 0),

reaching in this way a contradiction. ��
In the particular case of a uniform distribution of weights αu = ( 1

m , 1
m , . . . , 1

m

)
, the

weighted L p distance D p
αu turns out to be a strictly increasing transformation of the

unweighted L p distance (also known as Minkowski distance of order p) defined, for all
X , Y ∈ Y , as

D p(X , Y ) =
(

m∑
k=1

|xk − yk |p

) 1
p

. (5)

Therefore, for every (X , Y ), (X ′, Y ′) ∈ Y2, it holds that

D p
αu (X , Y ) ≤ D p

αu (X ′, Y ′) ⇐⇒ D p(X , Y ) ≤ D p(X ′, Y ′). (6)

In particular, for p = 1 we get the Manhattan distance, and for p = 2 we get the Euclidean
distance.

It turns out that, to get an unweighted L p distance representation, in the presence of (R-p)
and (FD5), it is necessary and sufficient to add one of the following two axioms:
(U1) Denoting by Ek the element of Y whose k-th component is 1 and the others are 0, it
holds that

(E1, 0) ∼ (E2, 0) ∼ · · · ∼ (Em, 0);
(U2) For every X , Y ∈ Y and every i, j ∈ I with i < j , denoting by Xi j =
(x1, . . . , x j , . . . , xi , . . . , xm) and Y i j = (y1, . . . , y j , . . . , yi , . . . , ym), it holds that

(X , Y ) ∼ (Xi j , Y i j ).

Theorem 9 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2. Then, the following statements are equivalent:

(i) � satisfies (R-p), (FD5) and (U1);
(ii) � satisfies (R-p), (FD5) and (U2);

(iii) for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds

(X , Y ) � (X ′, Y ′) ⇐⇒ D p(X , Y ) ≤ D p(X ′, Y ′).
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Proof By (6), condition (iii) is equivalent to the representability of � by a weighted L p

distance D p
αu with uniform weight vector αu . In turn, (iii) ⇐⇒ (i) directly comes from the

proof of Theorem 8 since, for any weight vector α, W p
α (Ek, 0) = αk . The implication (iii)

�⇒ (ii) is easily proved, thus we only prove (ii) �⇒ (iii). If� is representable by a weighted
L p distance D p

α with a weight vector α, then

(X , Y ) ∼ (Xi j , Y i j ) ⇐⇒ W p
α (X , Y ) = W p

α (Xi j , Y i j )

⇐⇒ αi (|xi − yi |p − |x j − y j |p)

+ α j (|x j − y j |p − |xi − yi |p) = 0,

and since this holds for every X , Y ∈ Y and every i, j ∈ I with i < j , we get that
α1 = α2 = . . . = αm , that is α = αu . ��

4.3 Almost representability theorems

Here, we weaken the requirement of representability by a weighted L p distance, only requir-
ing almost representability. For this purpose, we consider the following weaker condition.

(AR-p) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y ′

1), . . . , (X ′
n, Y ′

n) ∈ Y2 with
(Xi , Yi ) � (X ′

i , Y ′
i ), i = 1, . . . , n, there are no λ1, . . . , λn > 0 with

∑n
i=1 λi = 1 such that:

n∑
i=1

λi |X ′
i − Y ′

i |p <

n∑
i=1

λi |Xi − Yi |p.

Let us stress that, for a complete relation � on a finite F ⊂ Y2 satisfying (AR-p), if
|X − Y |p < |X ′ − Y ′|p , then it must be (X , Y ) ≺ (X ′, Y ′). In other terms, condition (AR-p)
implies non-triviality, contrary to (R-p) for which non-triviality must be explicitly required.
Thus, for instance, if (0, 0), (1, 0) ∈ F , then condition (AR-p) forces us to set (0, 0) ≺ (1, 0)
and so � must be nontrivial.

Theorem 10 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on a finite F ⊂ Y2. Then, the following statements are equivalent:

(i) � satisfies (AR-p);
(ii) there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and∑m

k=1 αk = 1 such that, for all (X , Y ), (X ′, Y ′) ∈ F , it holds that

(X , Y ) � (X ′, Y ′) �⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Proof Since F is finite, the binary relation � amounts to a finite number of comparisons.
Consider the set

W = {((X , Y ), (X ′, Y ′)) ∈ F2 : (X , Y ) � (X ′, Y ′)},
with w = cardW , and fix an enumeration W = {((Xh, Yh), (X ′

h, Y ′
h))}h∈H with H =

{1, . . . , w}.
Condition (ii) is equivalent to the solvability of the following linear system⎧⎨

⎩
Aβ ≥ 0,
β ≥ 0,
β �= 0,

with unknown β ∈ R
m×1, and A ∈ R

w×m , where the w rows of A are the vectors |X ′
h −

Y ′
h |p − |Xh − Yh |p , for all h ∈ H . Indeed, if we have a weight vector α satisfying (ii), then
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setting β = αT we get a solution of the above system. On the converse, if β is a solution of
the above system, then defining αk = βk∑m

i=1 βi
, we get a weight vector α satisfying (ii).

By the Gale’s theorem of the alternative [18, 24], the solvability of the above system is
equivalent to the non-solvability of the following system{

μA < 0,
μ ≥ 0,

with unknown μ ∈ R
1×w. In particular, the first inequality reduces to∑

h∈H

μh(|X ′
h − Y ′

h |p − |Xh − Yh |p) < 0.

Therefore, dividing both sides of the inequality by the sum of the μh’s, it easy to see that the
non-solvability of the above system is equivalent to condition (AR-p). ��

It is immediate to verify that condition (R-p) implies (AR-p) under non-triviality, but
the converse does not hold. To see this, we provide the following toy example, inspired by a
well-known example given in [21].

Example 5 Let p ∈ [1,+∞). Take m = 5, that is I = {1, . . . , 5}, and consider the finite set
F = {(Xi , 0) : i = 1, . . . , 6} where

h1 h2 h3 h4 h5

X1 1 0 1 0 0
X2 0 1 0 0 1
X3 1 1 0 0 0
X4 0 0 1 1 0
X5 0 1 1 0 0
X6 1 0 0 0 0

Consider the comparisons (X1, 0) ≺ (X2, 0), (X3, 0) ≺ (X4, 0), (X5, 0) ≺ (X6, 0) that
can be extended to the nontrivial weak order � on F such that

(X5, 0) ≺ (X6, 0) ≺ (X1, 0) ∼ (X3, 0) ≺ (X2, 0) ∼ (X4, 0).

Taking α = (0.2, 0.1, 0.1, 0.3, 0.3) we get

D p
α (X1, 0) = 0.3

1
p ,

D p
α (X2, 0) = 0.4

1
p ,

D p
α (X3, 0) = 0.3

1
p ,

D p
α (X4, 0) = 0.4

1
p ,

D p
α (X5, 0) = 0.2

1
p ,

D p
α (X6, 0) = 0.2

1
p ,

thus D p
α is easily seen to almost represent �, therefore � satisfies (AR-p) by virtue of

Theorem 10. Notice D p
α does not represent � since (X5, 0) ≺ (X6, 0) but D p

α (X5, 0) =
D p

α (X6, 0).
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It actually holds that for the relation� there is no weight vector α such that D p
α represents

it. Indeed, since the following system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1 + α3 < α2 + α5,

α1 + α2 < α3 + α4,

α2 + α3 < α1,

α1 + α2 + α3 + α4 + α5 = 1,
αk ≥ 0, k = 1, . . . , 5,

has no solution, the three comparisons (X1, 0) ≺ (X2, 0), (X3, 0) ≺ (X4, 0), (X5, 0) ≺
(X6, 0) cannot be represented simultaneously by any weighted L p distance. In turn, this
implies that � does not satisfy (R-p) by virtue of Theorem 7. �

Contrarily to the representability case, if we have a nontrivial complete relation � on
the whole Y2, condition (AR-p) alone turns out to be necessary and sufficient to the almost
representability of � with a weighted L p distance.

Theorem 11 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2. Then, the following statements are equivalent:

(i) � satisfies (AR-p);
(ii) there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and∑m

k=1 αk = 1 such that, for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds that

(X , Y ) � (X ′, Y ′) �⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Proof The implication (ii) �⇒ (i) follows by Theorem 10. Thus, suppose that (i) holds.
Theorem 10 implies, for every finite G ⊆ Y2 and F = G ∪ {(0, 0), (1, 0)}, the compatibility
of the following system ⎧⎨

⎩
Aα ≥ 0,
α ≥ 0,∑m

k=1 αk = 1,

where α ∈ R
m×1 is the unknown and A ∈ R

w×m is defined as in the proof of Theorem 10.
Let AF be the set of solutions of the above system, which is easily seen to be a non-empty
closed subset of the compact space [0, 1]m endowed with the product topology. The family

A = {AF : F = G ∪ {(0, 0), (1, 0)}, finite G ⊆ Y2} ,

is easily shown to possess the finite intersection property, therefore
⋂

A �= ∅, and this implies
the existence of a weight vector α ∈ ⋂

A whose corresponding D p
α satisfies (ii). ��

Let us stress that Theorem 11 does not assure the uniqueness of the weight vector α. The
uniqueness is achieved if we further require condition (FD5).

Theorem 12 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2. Then, the following statements are equivalent:

(i) � satisfies (AR-p) and (FD5);
(ii) there exists a weight vector α = (α1, . . . , αm) with αk ≥ 0, k = 1, . . . , m, and∑m

k=1 αk = 1 such that, for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds that

(X , Y ) � (X ′, Y ′) �⇒ D p
α (X , Y ) ≤ D p

α (X ′, Y ′).

Moreover, the weight vector α is unique.
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Proof The existence of α follows by Theorem 11 while uniqueness is proved as in the
proof of Theorem 8, since almost representability preserves all equivalences in comparative
dissimilarity. ��

5 Representation by a Choquet Lp distance

One of the main drawbacks of weighted L p distances is the fact that they cannot consider
interactions among attributes. Inspired by considerations on similarity measures [1, 11],
we can generalize weighted L p distances by referring to the Choquet integral computed
with respect to a completely alternating normalized capacity. We recall that a set function
ν : 2I → [0, 1] is a completely alternating normalized capacity if it satisfies:

(i) ν(∅) = 0 and ν(I ) = 1;
(ii) for all n ≥ 2 and A1, . . . , An ∈ 2I it holds that

ν

⎛
⎝ n⋂

j=1

A j

⎞
⎠ ≤

∑
∅�=J⊆{1,...,n}

(−1)|J |+1ν

⎛
⎝⋃

j∈J

A j

⎞
⎠ .

Wenotice that a completely alternating normalized capacity is additive if it satisfies condition
(ii) as an equality. In this case, ν is completely characterized by its values on the atoms of
the algebra 2I that can be identified with the vector α = (α1, . . . , αm).

As is well-known (see [20]), every completely alternating normalized capacity ν is char-
acterized by the Möbius inverse of its dual capacity, which is a set function π : 2I → [0, 1]
such that,

π(∅) = 0,
∑
B∈2I

π(B) = 1 and ν(A) =
∑

B∩A �=∅
π(B), for all A ∈ 2I . (7)

Notice that the function π allows us to attach a weight to groups of features, thus it can be
used to model interactions among some of them.

We recall (see [20]) that, for all X ∈ Y , the Choquet integral of X with respect to ν is
defined as

C

∫
X dν =

m∑
k=1

(xσ(k) − xσ(k+1))ν(Aσ
k ), (8)

where σ is a permutation of I such that xσ(1) ≥ . . . ≥ xσ(m), Aσ
k = {σ(1), . . . , σ (k)} for

k = 1, . . . , m, and xσ(m+1) = 0.

Definition 3 Let p ∈ [1,+∞). A Choquet L p distance is a function D p
ν : Y2 → [0, 1]

parameterized by a completely alternating normalized capacity ν, defined, for every X , Y ∈
Y , as

D p
ν (X , Y ) =

(
C

∫
|X − Y |p dν

) 1
p

.

The corresponding p-th power Choquet L p distance is a function W p
ν : Y2 → [0, 1]

defined, for every X , Y ∈ Y , as

W p
ν (X , Y ) = (D p

ν (X , Y ))p = C

∫
|X − Y |p dν.
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Also in this case, for all X , Y ∈ Y , it holds that
D p

ν (X , Y ) ≤ D p
ν (X ′, Y ′) ⇐⇒ W p

ν (X , Y ) ≤ W p
ν (X ′, Y ′). (9)

Moreover, as shown in [17], for a fixed ν, defining the relation X ≡0 Y ⇐⇒ D p
ν (X , Y ) = 0,

then D p
ν turns out to be a metric on the quotient space Y/≡0 .

Remark 2 As follows from [17], to get a Choquet L p distance D p
ν , it is sufficient that ν

is 2-alternating, i.e., it satisfies the above condition (ii) only for n = 2. Nevertheless, we
stick to completely alternating capacities since they are sufficiently general to accommodate
(as shown below) also the unweighted L∞ distance and, at the same time, they can be
characterized by an axiom that is simpler to justify.

Let us notice that in case of an additive ν, a Choquet L p distance reduces to a weighted
L p distance according to Definition 2, parameterized by the vector α of the values of ν on
the atoms of 2I . More generally, introducing

Cν =
{

α ∈ [0, 1]m :
∑
k∈A

αk ≤ ν(A), for all A ∈ 2I ,

m∑
k=0

αk = 1

}
, (10)

which is the anti-core induced by ν (see [20]), for all X , Y ∈ Y , we have that

D p
ν (X , Y ) =

(
max
α∈Cν

W p
α (X , Y )

) 1
p = max

α∈Cν

D p
α (X , Y ). (11)

We point out that for p = 1 and ν∞ defined, for all A ∈ 2I , as

ν∞(A) =
{
0 if A = ∅,

1 otherwise,
(12)

then D1
ν∞ reduces to the unweighted L∞ distance (also known as Čebyšëv distance) defined,

for all X , Y ∈ Y , as
D1

ν∞(X , Y ) = D∞(X , Y ) = max
k=1,...,m

|xk − yk |. (13)

We notice that

Cν∞ = A :=
{

α ∈ [0, 1]m :
m∑

k=0

αk = 1

}
, (14)

where A is the set of all possible weight vectors, therefore, by the properties of the Choquet
integral (see, e.g., [17]), we have that the unweighted L∞ distance can be expressed, for all
X , Y ∈ Y , as

D∞(X , Y ) = lim
p→+∞ D p(X , Y ) = max

α∈A D1
α(X , Y ). (15)

5.1 Rationality principle

Below we report the normative condition that must be accepted if we want that the function
representing our comparative dissimilarity � belongs to the particular subclass of Choquet
L p distances with respect to a completely alternating normalized capacity.
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(CR-p) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y ′

1), . . . , (X ′
n, Y ′

n) ∈ Y2 with
(Xi , Yi ) � (X ′

i , Y ′
i ), i = 1, . . . , n − 1, and (Xn, Yn) ≺ (X ′

n, Y ′
n), setting Vi = |Xi − Yi |p

and V ′
i = |X ′

i − Y ′
i |p , there are no λ1, . . . , λn > 0 with

∑n
i=1 λi = 1, such that:

n∑
i=1

λi max
k∈B

vi
k
′ ≤

n∑
i=1

λi max
k∈B

vi
k, for all B ∈ 2I \ {∅}.

In analogy with (R-p), axiom (CR-p) does not imply non-triviality as it is vacuously
satisfied if there are no strict comparisons. Thus, we need to explicitly assume that � is
nontrivial. In this case, an analog of Proposition 5 holds.

Proposition 13 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2 satisfying (CR-p). Then, for all X , X ′, Y , Y ′ ∈ Y , the following statements
hold:

(i) it must be (X , Y ) ∼ (|X − Y |, 0);
(ii) if |X − Y | ≤ |X ′ − Y ′|, then it must be (X , Y ) � (X ′, Y ′);

(iii) it must be (0, 0) ≺ (1, 0).

Proof Statement (i). Since V = |X − Y |p = ||X − Y | − 0|p = V ′, we get that

max
k∈B

vk
′ = max

k∈B
vk, for all B ∈ 2I \ {∅}.

Therefore, by (CR-p) it cannot be neither (X , Y ) ≺ (|X −Y |, 0), nor (|X −Y |, 0) ≺ (X , Y ),
and since � is complete, it must be (X , Y ) ∼ (|X − Y |, 0).

Statement (ii). If |X −Y | ≤ |X ′−Y ′| and (X ′, Y ′) ≺ (X , Y ), then setting V = |X −Y |p ≤
|X ′ − Y ′|p = V ′ we get that

max
k∈B

vk ≤ max
k∈B

vk
′, for all B ∈ 2I \ {∅},

and (CR-p) is violated, thus it cannot be (X ′, Y ′) ≺ (X , Y ). Then, the statement follows by
the completeness of �.

Statement (ii). By non-triviality, there are (X , Y ), (X ′, Y ′) ∈ Y2 such that (X , Y ) ≺
(X ′, Y ′). Notice that it cannot be (1, 0) ≺ (0, 0) by statement (ii). Suppose (1, 0) � (0, 0).
Let V1 = |1 − 0|p , V2 = |X − Y |p , V ′

1 = |0 − 0|p , V ′
2 = |X ′ − Y ′|p . Denote by q =

max
B∈2I \{∅}

{
max
k∈B

v2k
′ − max

k∈B
v2k

}
and take λ1, λ2 ∈ (0, 1) with λ1 ≥ q

1+q and λ2 = 1 − λ1.

Then we have
2∑

i=1

λi max
k∈B

vi
k
′ ≤

2∑
i=1

λi max
k∈B

vi
k, for all B ∈ 2I \ {∅},

violating condition (CR-p). Thus, (CR-p) requires to set (0, 0) ≺ (1, 0). ��
Axiom (CR-p) asserts that if you have n pairs (Xi , Yi ) of fuzzy profiles and you judge

the elements of each of them no more dissimilar than those of other n pairs (X ′
i , Y ′

i ), with
at least one strict comparison, combining in a positive convex combination the maxima of
|Xi − Yi |p’s and the maxima of |X ′

i − Y ′
i |p’s on each non-empty subset of features, you

cannot obtain a situation of weak dominance, uniformly over 2I \ {∅}.
Also in this case we have that condition (CR-p) is stronger than (FD1)-(FD4) under

non-triviality and completeness.

Theorem 14 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2 satisfying (CR-p). Then � is transitive and axioms (FD1)–(FD4) hold.
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Proof To prove transitivity, for all (X , Y ), (X ′, Y ′), (X ′′, Y ′′) ∈ Y2, let U = |X − Y |p ,
V = |X ′ − Y ′|p and Z = |X ′′ − Y ′′|p . For every B ∈ 2I \ {∅}, then we have

1

3

(
max
k∈B

uk + max
k∈B

vk + max
k∈B

zk

)
= 1

3

(
max
k∈B

vk + max
k∈B

zk + max
k∈B

uk

)
.

Hence, if (X , Y ) � (X ′, Y ′), (X ′, Y ′) � (X ′′, Y ′′) and (X ′′, Y ′′) � (X , Y ), then (CR-p)
implies that none of the comparisons can be strict, thus we get transitivity.

To prove (FD1) and (FD2) it is sufficient to note that |X −Y | = |X−ε
k −Y −ε

k | = |X ′
k −Y ′

k |,
for all X , Y ∈ Y . Thus, statement (i) of Proposition 13 and transitivity of � imply that
(X , Y ) ∼ (X−ε

k , Y −ε
k ) and (X , Y ) ∼ (X ′

k, Y ′
k).

To prove (FD3) notice that (0, 0) ≺ (1, 0) by statement (iii) of Proposition 13. Condition
a) follows since 0 = |X − X | = |Y − Y | ≤ |X − Y |, for all X , Y ∈ Y , thus, by statement
(ii) of Proposition 13 it must be (X , X) � (X , Y ) and (Y , Y ) � (X , Y ). Moreover, it cannot
be neither (X , Y ) � (X , X) nor (X , Y ) � (Y , Y ) if xk �= yk , for all k ∈ I , as we have
(0, 0) ≺ (1, 0). Indeed, settingU = |X −Y |p , V = |X − X |p , Z = |Y −Y |p , W = |0−0|p ,
R = |1 − 0|p , and denoting by q = min

B∈2I \{∅}
max
k∈B

uk , for all B ∈ 2I \ {∅}, we get

1

1 + q
max
k∈B

vk + q

1 + q
max
k∈B

rk ≤ 1

1 + q
max
k∈B

uk + q

1 + q
max
k∈B

wk,

1

1 + q
max
k∈B

zk + q

1 + q
max
k∈B

rk ≤ 1

1 + q
max
k∈B

uk + q

1 + q
max
k∈B

wk,

that contradict (CR-p). Analogously, condition b) follows since 1 = |X − Xc| ≥ |X − Y |,
for all X ∈ X and Y ∈ Y , that implies (X , Y ) � (X , Xc) by statement (ii) of Proposition 13.
Moreover, it cannot be (X , Xc) � (X , Y ) if sX ⊆ sY and yk < 1, for all k ∈ sY \ sX , as
we have (0, 0) ≺ (1, 0). Indeed, setting V1 = |X − Xc|p , V ′

1 = |X − Y |p , V2 = |0 − 0|p ,

V ′
2 = |1 − 0|p , and denoting by q = 1 − max

B∈2I \{∅}
max
k∈B

v1k
′
, we get

1

1 + q
max
k∈B

v1k
′ + q

1 + q
max
k∈B

v2k
′ ≤ 1

1 + q
max
k∈B

v1k + q

1 + q
max
k∈B

v2k ,

that contradicts (CR-p).
Finally, axiom (FD4) holds since |X − Y | ≤ |X−ε

k − Y | and |X − Y | ≤ |X − Y η
k |, for all

X , Y ∈ Y , for all k ∈ I , such that xk ≤ yk , for all 0 < ε ≤ xk and 0 < η ≤ 1− yk . Thus, by
statement (ii) of Proposition 13 it must be (X , Y ) � (X−ε

k , Y ) and (X , Y ) � (X , Y η
k ). ��

As it happens with axiom (R-p), axiom (CR-p), alone, guarantees representability by a
Choquet L p distance only if � is defined on a finite set of fuzzy description profiles.

Theorem 15 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on a finite F ⊂ Y2. Then, the following statements are equivalent:

(i) � satisfies (CR-p);
(ii) there exists a completely alternating normalized capacity ν such that, for all (X , Y ), (X ′,

Y ′) ∈ F , it holds that

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
ν (X , Y ) ≤ D p

ν (X ′, Y ′).
Proof Since F is finite, the binary relation � amounts to a finite number of comparisons.
Consider the sets

S = {((X , Y ), (X ′, Y ′)) ∈ Y2 : (X , Y ) ≺ (X ′, Y ′)},
W = {((X , Y ), (X ′, Y ′)) ∈ Y2 \ S : (X , Y ) � (X ′, Y ′)},
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with s = card S and w = cardW , and fix two enumerations S = {((X j , Y j ), (X ′
j , Y ′

j ))} j∈J

and W = {((Xh, Yh), (X ′
h, Y ′

h))}h∈H with J = {1, . . . , s} and H = {1, . . . , w}.
Letπ be theMöbius inverse associated to ν through (7). Fixing the enumeration 2I \{∅} =

{B1, . . . , B2m−1}, for every X ∈ Y , we have (see [20])

C

∫
X dν =

2m−1∑
i=1

(
max
k∈Bi

xk

)
π(Bi ).

Define V ′
j = |X ′

j − Y ′
j |p and Vj = |X j − Y j |p , for all j ∈ J , and U ′

h = |X ′
h − Y ′

h |p and
Uh = |Xh − Yh |p , for all h ∈ H .

Condition (ii) is equivalent to the solvability of the following linear system⎧⎨
⎩
Aβ > 0,
Bβ ≥ 0,
β ≥ 0,

with unknown β ∈ R
(2m−1)×1, and A ∈ R

s×(2m−1) and B ∈ R
w×(2m−1), where A = (a ji )

and B = (bhi ) are such that

a ji = max
k∈Bi

v
j
k

′ − max
k∈Bi

v
j
k ,

bhi = max
k∈Bi

uh
k
′ − max

k∈Bi
uh

k .

Indeed, if we have a completely alternating normalized capacity ν satisfying (ii), the cor-
responding Möbius inverse π is such that setting βi = π(Bi ) we get a solution of the
above system. On the converse, if β is a solution of the above system, then defining
π(Bi ) = βi∑2m −1

l=1 βl
, we get a Möbius inverse π inducing a completely alternating normalized

capacity ν that satisfies (ii).
By the Motzkin’s theorem of the alternative [24], the solvability of the above system is

equivalent to the non-solvability of the following system⎧⎨
⎩

μA + νB ≤ 0,
μ, ν ≥ 0,
μ �= 0,

with unknowns μ ∈ R
1×s and ν ∈ R

1×w . In particular, the first inequality reduces, for
i = 1, . . . , 2m − 1, to∑

j∈J

μ j

(
max
k∈Bi

v
j
k

′ − max
k∈Bi

v
j
k

)
+

∑
h∈H

νh

(
max
k∈Bi

uh
k
′ − max

k∈Bi
uh

k

)
≤ 0,

thus, dividing both sides of the inequality by the sum of the μ j ’s and the νh’s, the non-
solvability of the above system is equivalent to condition (CR-p). ��
Remark 3 In the hypotheses of previous theorem, if (X , Y ), (X ′, Y ′) ∈ F and it holds |X −
Y |p < |X ′−Y ′|p then it must be (X , Y ) ≺ (X ′, Y ′). So, also in this case, if (0, 0), (1, 0) ∈ F ,
then it must be (0, 0) ≺ (1, 0), as noted above.

Theorems 7 and 15 imply that every nontrivial complete comparative dissimilarity relation
that satisfies (R-p) also satisfies (CR-p), but the converse does not hold, as the following
example shows.
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Example 6 Let p ∈ [1,+∞). Take the finite set F = {(Xi , 0) : i = 1, . . . , 6} and the
nontrivial weak order � on F of Example 5. It has been shown that such relation does not
satisfy (R-p) as there is no weight vector α such that the corresponding weighted L p distance
represents �.

Consider the function π : 2I → [0, 1] such that π({4}) = π({5}) = 0.2, π({4, 5}) =
π({2, 3, 4, 5}) = 0.1,π({1, 4, 5}) = 0.4 and 0 otherwise. By setting ν(A) = ∑

B∩A �=∅ π(B),

for all A ∈ 2I , we get a completely alternating normalized capacity (see, e.g., [20]). The
Choquet L p distance with respect to ν is such that

D p
ν (X1, 0) = 0.5

1
p ,

D p
ν (X2, 0) = 0.8

1
p ,

D p
ν (X3, 0) = 0.5

1
p ,

D p
ν (X4, 0) = 0.8

1
p ,

D p
ν (X5, 0) = 0.1

1
p ,

D p
ν (X6, 0) = 0.4

1
p ,

thus D p
ν represents �, which satisfies (CP-p) by virtue of Theorem 15. �

Also in this case, axiom (FD5) must be added to (CR-p) to have Choquet L p distance
representability, when � is defined on the whole Y2.

Theorem 16 Let p ∈ [1,+∞). Let � be a nontrivial complete comparative dissimilarity
relation on Y2. Then, the following statements are equivalent:

(i) � satisfies (CR-p) and (FD5);
(ii) there exists a completely alternating normalized capacity ν such that, for all (X , Y ), (X ′,

Y ′) ∈ Y2, it holds

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
ν (X , Y ) ≤ D p

ν (X ′, Y ′).

Moreover, the capacity ν is unique.

Proof The implication (ii) �⇒ (i) is easily proven, therefore we only prove (i) �⇒ (ii).
For everyfiniteF ⊂ Y2 such that the restriction of� toF is nontrivial, Theorem15 implies

the existence of a completely alternating normalized capacity νF , such that the corresponding
W p

νF represents the restriction of � to F . Notice that, by Proposition 13 every finite subset

of Y2 containing (0, 0) and (1, 0) meets non-triviality, as it must be (0, 0) ≺ (1, 0).
Fix the enumeration 2I \ {∅} = {B1, . . . , B2m−1}. Next, axiom (FD5) implies that, for

all (X , Y ) ∈ Y2, there exists ε(X ,Y ) ∈ [0, 1], such that (X , Y ) ∼ (ε(X ,Y ), 0). In particular,
for i = 1, . . . , 2m − 1, denoting by EBi the element of Y which is 1 for every k ∈ Bi and
0 otherwise, we have that there exists βBi ∈ [0, 1] such that (EBi , 0) ∼ (βBi , 0). Now, for

every (X , Y ), (X ′, Y ′) ∈ Y2 we consider the finite subset of Y2

F = {(X , Y ), (X ′, Y ′), (ε(X ,Y ), 0), (ε(X ′,Y ′), 0),

(EB1 , 0), . . . , (EB2m −1 , 0), (βB1 , 0), . . . , (βB2m −1 , 0), ,

(0, 0), (1, 0)}.
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By the previous point, there is a completely alternating normalized capacity νF such that

(X , Y ) � (X ′, Y ′) ⇐⇒ W p
νF (X , Y ) ≤ W p

νF (X ′, Y ′),

(X , Y ) ∼ (ε(X ,Y ), 0) ⇐⇒ W p
νF (X , Y ) = W p

νF (ε(X ,Y ), 0) = ε
p
(X ,Y ),

(X ′, Y ′) ∼ (ε(X ′,Y ′), 0) ⇐⇒ W p
νF (X ′, Y ′) = W p

νF (ε(X ′,Y ′), 0) = ε
p
(X ′,Y ′).

Moreover, for all i = 1, . . . , 2m − 1, we have

(EBi , 0) ∼ (βBi , 0) ⇐⇒ W p
νF (EBi , 0) = νF (Bi ) = β

p
Bi

= W p
νF (βBi , 0),

thus the set function ν : 2I → [0, 1] defined as ν(∅) = 0 and ν(Bi ) = β
p
Bi
, is a completely

alternating normalized capacity. So, we get

ε
p
(X ,Y ) = C

∫
|X − Y |p dν and ε

p
(X ′,Y ′) = C

∫
|X ′ − Y ′|p dν.

and also
ε(X ,Y ) ≤ ε(X ′,Y ′) ⇐⇒ ε

p
(X ,Y ) ≤ ε

p
(X ′,Y ′).

Hence, there exists a completely alternating normalized capacity ν such that, for all
(X , Y ), (X ′, Y ′) ∈ Y2, it holds that

(X , Y ) � (X ′, Y ′) ⇐⇒ D p
ν (X , Y ) ≤ D p

ν (X ′, Y ′),

and such capacity is unique. Indeed, suppose there exists a completely alternating normalized
capacity ν′ : 2I → [0, 1], such that D p

ν′ represents � on the whole Y2 and ν′ �= ν. For
i = 1, . . . , 2m − 1, it holds that

(EBi , 0) ∼ (βBi , 0) ⇐⇒ W p
ν′(EBi , 0) = ν′(Bi ) = ν(Bi ) = W p

ν′(βBi , 0),

reaching in this way a contradiction. ��
As pointed out before, if the capacity ν coincides with ν∞ defined as in (12), then D1

ν∞
reduces to the unweighted L∞ distance, according to (13).

It turns out that, to get an unweighted L∞ distance representation, in the presence of
(CR-1) and (FD5), it is necessary and sufficient to add one of the following two axioms:

(I1) Denoting by EB the element of Y which is 1 for every k ∈ B and 0 otherwise, it holds
that

(EB , 0) ∼ (1, 0), for all B ∈ 2I \ {∅};
(I2) For every X , Y ∈ Y it holds that

(|xk − yk |, 0) � (X , Y ), for k = 1, . . . , m,

with at least a symmetric comparison.

Theorem 17 Let � be a nontrivial complete comparative dissimilarity relation on Y2. Then,
the following statements are equivalent:

(i) � satisfies (CR-1), (FD5) and (I1);
(ii) � satisfies (CR-1), (FD5) and (I2);

(iii) for all (X , Y ), (X ′, Y ′) ∈ Y2, it holds

(X , Y ) � (X ′, Y ′) ⇐⇒ D∞(X , Y ) ≤ D∞(X ′, Y ′).
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Proof By (13), condition (iii) is equivalent to the representability of � by a Choquet L1

distance D1
ν∞ with capacity ν∞ defined as in (12). In turn, (iii) ⇐⇒ (i) directly comes

from the proof of Theorem 16 since, for any completely alternating normalized capacity ν,
W 1

ν (EB , 0) = ν(B). The implication (iii) �⇒ (ii) is easily proved, thus we only prove (ii)
�⇒ (iii). If � is representable by a Choquet L1 distance D1

ν with completely alternating
normalized capacity ν, then

(|xk − yk |, 0) � (X , Y ) ⇐⇒ D1
ν (|xk − yk |, 0) ≤ D1

ν (X , Y )

⇐⇒ |xk − yk | ≤ D1
ν (X , Y ),

and since this holds for k = 1, . . . , m with at least an equality, we get D1
ν (X , Y ) =

max
k=1,...,m

|xk − yk |. ��

Remark 4 Also in the more general context of Choquet L p distances with respect to a com-
pletely alternating normalized capacity, the demand of representability can be weakened by
requiring only almost representability. This is done by referring to the following condition.

(ACR-p) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y ′

1), . . . , (X ′
n, Y ′

n) ∈ Y2 with
(Xi , Yi ) � (X ′

i , Y ′
i ), i = 1, . . . , n, for all λ1, . . . , λn > 0 with

∑n
i=1 λi = 1, setting

Vi = |Xi − Yi |p and V ′
i = |X ′

i − Y ′
i |p , it does not hold:

n∑
i=1

λi max
k∈B

vi
k
′
<

n∑
i=1

λi max
k∈B

vi
k, for all B ∈ 2I \ {∅}.

Proceeding in a similar way to the proof of Theorems 15 and 16, it is easy to prove that
analogous versions of Theorems 10, 11 and 12 hold, where (AR-p) and D p

α are replaced by
(ACR-p) and D p

ν , respectively.

6 Discussion

The axioms introduced so far can be logically divided into five different groups: (FD0)–
(FD4); (Q) and (FD5); (R-p) and (CR-p); (U1) and (U2); (I1) and (I2).

Axioms (FD0)–(FD4) are the most qualitative in nature and are necessary in order to have
a representing function D : Y2 → [0, 1] which satisfies at least properties (i)–(vi), recalled
in Sections 2 and 3. We point out that (i)–(vi) are a minimal set of properties, that we expect
from a notion of dissimilarity measure.

Axiom (Q) is a purely technical axiomassuring that the order structure of� is not “toofine”
with respect to the canonical order structure of the real numbers. Its justification encounters
the same issues we have with an analogous axiom appearing in utility theory (see, e.g., [23]).

The ensemble (FD0)–(FD4) and (Q) turns out to be necessary and sufficient to the repre-
sentability of � by means of an element of a large class of functions, all satisfying properties
(i)–(vi), that actually depend only on the component-wise distance of two fuzzy description
profiles, that is D(X , Y ) = ϕ(|X − Y |), for all X , Y ∈ Y .

For a fixed p ∈ [1,+∞), axiom (R-p) allows us to arrive to a representation by means of
a weighted L p distance D p

α . Such axiom is not purely qualitative as it considers strict convex
combinations of p-th power component-wise distances between any nontrivial finite set of
comparisons among fuzzy description profiles. The strict convex combination operation is
the responsible for the metric properties of D p

α . Given a nontrivial complete dissimilarity
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relation � on Y2, axiom (R-p) implies all axioms (FD0)–(FD4), while (Q) is not implied
due to the finite scope of (R-p).

Axiom (FD5) is another technical axiom, with a role analogous to (Q). Since (FD5) is
still based on comparisons, we reserve for it a name in compliance with (FD0)–(FD4). It
turns out that, in presence of (R-p), for a nontrivial complete dissimilarity relation �, (FD5)
is actually stronger than (Q), as it assures the uniqueness of the representation D p

α , besides
existence. We point out that the pair (ε, 0) appearing in (FD5) plays a similar role of the
certainty equivalent in the classical expected utility theory [23]. Referring to the element Ek

of Y whose k-th component is 1 and the others are 0, axiom (FD5) can be used to single out
an elicitation procedure.

For k = 1, we ask the agent to single out a number α1 = β
p
1 ∈ [0, 1], such that (E1, 0) ∼

(β
1
, 0). Then, for k = 2, . . . , m − 1, we ask the agent to provide a number αk = β

p
k ∈[

0, 1 − ∑k−1
h=1 αh

]
, such that (Ek, 0) ∼ (β

k
, 0). Finally, we set αm = 1− ∑m−1

h=1 αh . Hence,

in the end we get a vector α of non-negative numbers summing up to 1 that can be used to
define a D p

α .
Axioms (U1) and (U2) are equivalent for a nontrivial complete dissimilarity relation �

satisfying (R-p) and (FD5). They have a qualitative nature and assure that α reduces to a
uniformweight distribution αu . In this case we get an unweighted L p distance representation
of�. In particular, the p-th power unweighted L p distance W p representing� turns out to be
an additive dissimilarity measure, according to [12–14], also referred to as local divergence
measure.

Axiom (CR-p) is actually a weakening of axiom (R-p), still implying axioms (FD0)–
(FD4) for a nontrivial complete dissimilarity relation �. In all representation results,
substituting (CR-p) to (R-p) we get the representability of � by means of a Choquet L p

distance D p
ν with respect to a completely alternating normalized capacity ν. Also in this case,

the ensemble (CR-p) and (FD5) is equivalent to the Choquet L p distance representability
of � and axiom (FD5) can be used to elicit a completely alternating normalized capacity ν

or, equivalently, the Möbius inverse π of its dual capacity. For every B ∈ 2I \ {∅}, denote by
EB the element of Y which is 1 for every k ∈ B and 0 otherwise. Moreover, we consider the
partition 2I \ {∅} = B1 ∪ · · ·∪Bm , where B j is the collection of subsets of I with cardinality

j . For every B j , we fix an enumeration B j =
{

B j,1, . . . , B j,(m
j )

}
.

For j = 1 and k = 1, we ask the agent to provide a number π(B1,1) = 1 − β
p
1,1 ∈ [0, 1],

such that (EBc
1,1

, 0) ∼ (β1,1, 0). For k = 2, . . . , m, we ask the agent to provide a num-

ber π(B1,k) = 1 − β
p
1,k ∈

[
0, 1 − ∑k−1

h=1 π(B1,h)
]
, such that (EBc

1,k
, 0) ∼ (β1,k, 0).

Next, for j = 2, . . . , m − 1 and k = 1, . . . ,
(m

j

)
, we ask the agent to single out a num-

ber π(B j,k) ∈
[
0, 1 − ∑ j

i=1

∑k−1
h=1 π(Bi,h)

]
, such that 1 − β

p
j,k = ∑

A⊆B j,k
π(A) and

(EBc
j,k

, 0) ∼ (β j,k, 0). Finally, we set π(I ) = 1 − ∑m−1
i=1

∑(m
i )

h=1 π(Bi,h). Hence, setting

π(∅) = 0, in the end we get a function π : 2I → [0, 1] summing up to 1, which is the
Möbius inverse (see, e.g., [20]) of the dual of a completely alternating normalized capacity
ν that can be used to define a D p

ν .
In the context of Choquet L p distance representations, axioms (I1) and (I2) are equivalent

for a nontrivial complete dissimilarity relation � satisfying (CR-p) and (FD5). They have a
qualitative nature and assure that ν reduces to a vacuous completely alternating normalized
capacity ν∞. In this case we get an unweighted L∞ distance representation of �.
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Fig. 1 Axioms and representations of a nontrivial complete dissimilarity relation � on Y2

Figure 1 summarizes the role of axioms in the family of dissimilarity measures dealt
with in this paper. We conclude recalling that, both axioms (AR-p) and (ACR-p) are a
weakening of (R-p) and (CR-p), respectively, that imply non-triviality but only assure almost
representability of �.

7 Conclusions

In this paper we characterize comparative dissimilarities on fuzzy description profiles, repre-
sentable by elements of a class of dissimilarity measures only depending on the attribute-wise
distance. This very large class contains all weighted L p distances, for p ∈ [1,+∞), and, in
particular, the weighted Manhattan distances and the weighted Euclidean distance. Next, we
show that this class also contains the wider class of Choquet L p distances, for p ∈ [1,+∞),
with respect to a completely alternating normalized capacity. As a byproduct, this allows us to
characterize those comparative dissimilarities representable by the unweighted L∞ distance.
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