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Abstract
In resource contribution games, a class of non-cooperative games, the players want to obtain
a bundle of resources and are endowed with bags of bundles of resources that they can make
available into a common for all to enjoy. Available resources can then be used towards their
private goals. A player is potentially satisfied with a profile of contributed resources when
his bundle could be extracted from the contributed resources. Resource contention occurs
when the players who are potentially satisfied, cannot actually all obtain their bundle. The
player’s preferences are always single-minded (they consider a profile good or they do not)
and parsimonious (between two profiles that are equally good, they prefer the profile where
they contribute less).Whatmakes a profile of contributed resources good for a player depends
on their attitude towards resource contention. We study the problem of deciding whether an
outcome is a pure Nash equilibrium for three kinds of players’ attitudes towards resource
contention: public contention-aversity, private contention-aversity, and contention-tolerance.
In particular, we demonstrate that in the general case when the players are contention-averse,
then the problem is harder than when they are contention-tolerant. We then identify a natural
class of games where, in presence of contention-averse preferences, it becomes tractable, and
where there is always a Nash equilibrium.
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1 Introduction

Most real-world agents in social and socio-technical environments consume resources:
money, amount of matter, etc. Resources can be transformed, split and recombined, and
they constitute a driving force towards the end goal of obtaining resource goods.
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Generalized exchanges [21] are social settings where the participants are providers and
receivers of resources. They involve indirect reciprocity between participants. When there
exists no fixed structure and the participants essentially pool the resources to be used by
everyone, the exchanges are called group-generalized [51]. Social interactions of this sort
are common-place: mutual help in a neighborhood, the redistribution of goods within a
close-knit group, etc.

In [46], a model of interaction between self-interested agents is presented in which the
agents are producers and consumers of resources.When the amount of somewanted resources
surpasses the amount of these resources that is produced, we are in presence of resource
contention. We thus take up where [46] left off. We introduce novel kinds of preferences
that reflect the players’ aversion towards resource contention in a class of non-cooperative
resource games.

The models and the algorithms presented here can be used as analytical tools at the
disposition of actors and policy makers. They can serve at gauging the possible strategic
behaviours of the actors and of their competitors, and at identifying possible issues of resource
scarcity in a common. This paper does not however intend to propose possible mechanisms
to achieve ‘good’ behaviours in non-cooperative resource games.

Voluntary provisions to a common Specifically, the models can be conceived as a com-
mon [41]whose resources are voluntarily contributed by the players. The players are endowed
with a multiset of resource bundles, that cannot be used directly, but can be added into a com-
mon pool of resources. A possible action of a player consists in providing a submultiset of
his endowment to the common pool. Each player then has a resource bundle objective which
he can try to attain by using the resources contributed by all the players. Once in the common
pool, the resources are thus common pool resources: they are non-excludable (every player
can consume them) and rivalrous (one player’s consumption of a resource limits the access
of it from other players). We call these games, resource contribution games (RCGs).

The resources contributed to the common pool should be reminiscent of voluntary private
provisions [4, 5, 35, 45] of public goods (e.g., public street lighting, public radio). However,
public goods are non-rivalrous, while in RCGs, the private provisions are literally consumed
towards an agent’s private goal, leaving less resources for the other agents to consume. The
configuration of RCGs may resonate more closely with the setting adopted in the public
good game [36], a standard game of experimental economics. In the public good game,
the participants are given a number of private tokens, and an action is to put some number
(possibly zero) of these tokens in a public pot. The participants get to keep the tokens that
they did not contribute. Then the tokens in the pot are multiplied by a factor and distributed
evenly among the participants. However, the goals of the participants of the public good game
are only monetary and the redistribution of common pool resources is a simple division of
goods by a supervising authority.

In RCGs, the goals of the players are arbitrary bundles of resources that the players can
only satisfy by using the common pool resources without the supervised resource allocation
of an authority.

Example 1 You participate in a bring-your-own-food cooking party. You bring a bottle of
white wine. You cannot take it out and open it without sharing it, and if other guests also
want a taste of it, or to cook with it, you might not have enough to your satisfaction. Once at
the party you can strategically decide whether to contribute the bottle to the party or keep it
away in your bag. Your bottle of wine contains four glasses, and your objective is to enjoy two
glasses. Bruno and Carmen both want a portion of risotto, each portion needing a portion of
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rice, one onion, and a glass of white wine. Bruno brings three portions of rice, and Carmen
brings two onions.

What are the possible equilibria?

Unsupervised resource-sensitive social interactions like the one in Example 1 have
attracted less attention in the literature than public good games. Resource contribution games
are not either elaborated models of interaction with particularly pleasing properties, espe-
cially in their most general form. The situations they capture are not any less ubiquitous,
at least in our mundane everyday life, and are well worth studying for what they are. They
are arguably rarer in the economic sector, but occur for instance in sharing economies [23]
or interconnected economies [2, 10]. The following example, taken from [48], is a simple
abstraction of the forces in presence in an interconnected market in the telecom industry.

Example 2 In a local telecom industry, anti-trust laws forbid a priori cooperation, and reg-
ulations oblige the companies to accept traffic from each other. Consider two competing
telecommunication companies. Company A manages a 3G network of comprised capacity 4
(bundled as capacities 1, 1 and 2). Company B manages a 3G network of capacity 1, and
a 4G network of comprised capacity 3 (bundled as capacities 1 and 2). Company A needs
to offer its customers 3G at capacity 2 and 4G at capacity 1. Company B needs to offer its
customers 3G at capacity 2 and 4G at capacity 2.

Companies have preferences along these lines: (1) Activating a network at some capacity
has a cost; Contributing less is better. (2) Serving under-capacitated network to customers
may yield to various technical and economic failures; having access to less than what they
need is not acceptable. (3) Con-tention-averse companies will not accept using oversub-
scribed networks.

What are the possible equilibria?

Wewill formalize Examples 1 and 2 later and use them to illustrate the notions introduced
in this paper.

The need for contention-averse preferences In [46], a model of non-cooperative games
is proposed for representing situations such as the one in Example 1. There are two Nash
equilibria. In both, you share the bottle ofwine. In thefirst one,Bruno andCarmendonot share
anything: only you are satisfied, but Bruno (resp. Carmen) cannot cook the risotto without
Carmen’s onions (resp. Bruno’s rice), and thus has no individual incentive to contribute.

In the second one, Bruno contributes one portion of rice, and Carmen contributes one
onion. They can now cook one portion of risotto. They are both ‘satisfied’, and they have
no incentive to contribute more, that would be necessary to cook a second portion of risotto.
They are both ‘satisfied’ by the fact that a portion of risotto can be cooked, and they are not
concerned with an inevitable contention about who is actually going to eat the sole portion
of risotto.

To avoid this second often unsatisfactory solution, we add contention-aversity to the
parsimonious preferences. In this example, it will yield two Nash equilibria. The first one is
as before. In the second one, you still contribute the wine, Bruno contributes two portions of
rice and Carmen contributes two onions; enough to cook two portions of risotto and for you
to enjoy enough of your bottle of wine.

Example 1 (continued) Suppose Edward also comes to the party without bringing anything,
and wants to enjoy three glasses of white wine.

With the original so-called contention tolerant preferences, the profile where you con-
tribute the bottle of wine, Bruno contributes one portion of rice, Carmen contributes one

123



320 N. Troquard

onion, and Edward contributes nothing is a Nash equilibrium, a very contentious one. With
the new so-called contention-averse preferences introduced in this paper, the only Nash
equilibrium is when no-one contributes anything.

Attitudes towards resources and preferences.When a player can obtain his objective from
the pool of contributed resources, we will say that he is potentially satisfied. An action
profile providing enough resources to satisfy potentially a set of players but not enough to
satisfy them all at once is a contentious profile. Contention-tolerant players do not worry
about contentious profiles, and find them good, as long as they can be potentially satisfied.
Contention-averse players will not consider a contentious profile as good, even if they can
be potentially satisfied. We will call these players public contention-averse. A contention-
averse attitude is specifically pertinent in close-knit groups where members, although non-
cooperative, are community-conscious and suffer from any conflict over resources. A bring-
your-own food party is a real-world examplewhere contention about limited resources affects
all the participants, and must be avoided at all costs. (Like, e.g., in computing, resource-
contention leads to thrashing that affects all processes. In geopolitics, three neighboring
countries with interconnected economies would prefer obtaining the goods they need and
avoid resource contention, which could possibly lead to conflict.) In less interdependent
societies, a resource contention in a profile may not concern a player directly. It happens
when the contention is about a resource that is independent of the player’s objective. Private
contention-averse players that are potentially satisfied in such a profile will consider it good.
Of course, they will not consider good a profile in which the contention is about a resource
that plays a part in their objective.

The players are single-minded (as, e.g., in [3, 19]): either they find a profile good, or they
do not. A player will prefer a good profile from a ‘not good’ profile.

In addition to this, players are parsimonious. They prefer a profile in which they contribute
strictly less (for multiset inclusion) from another profile, if they find the profile otherwise
equally good. Analogous preferences have sometimes been called pseudo-dichotomous. It
has been used before in the literature, e.g., [27, 49]. Pseudo-dichotomous preferences are a
simple tool to add nuance to how the players regard the outcomes. In the context of resource
contributions, they are a way to disincentivize waste. The best outcome for a player is to be
in a profile that he considers good and in which he does not contribute anything. A worst
outcome is to be in a profile that he does not consider good and in which he contributes all
of his endowment.

To summarize, the players are single-mindedly pursuing profiles that are good for themand
they have pseudo-dichotomous preferences. To be good for a player, a profilemust potentially
satisfy the player, but it also depends on the player’s exact attitude towards contention.

Outline Our main conceptual contribution is the definition of the notion of resource con-
tention in RCGs, and the definition of contention-averse preferences. Our main technical
contributions will be on the computational aspects of Nash equilibria in this setting.

The class of resource contribution games (RCGs) is introduced in Section 2. We define
resource-contention and three kinds of preferences, namely, public and private contention-
averse preferences and contention-tolerant preferences. We also define the notion of pure
Nash equilibrium. We focus on the problem of deciding whether a profile is a (pure) Nash
equilibrium (NE), and also address interesting cases of the problem of deciding whether
a game admits a (pure) Nash equilibrium (∃NE). In Section 3.1, we show that the prob-
lem NE is coNP-complete in presence of public and private contention-averse preferences.
In Section 3.2, we show that the problem is in PTime in presence of contention-tolerant
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preferences. We also show that the problem of deciding whether a Nash equilibrium exists in
a gamewith contention-tolerant preferences isNP-complete. In Section 4, we focus on a class
of games where the endowments are bags of atomic resources (RCGBARs). We show that
the problem of deciding whether a profile is a Nash equilibrium is in PTime. We also show
that in this class of games, if in presence of public contention-averse preferences, a Nash
equilibrium always exists, and finding one can be done in polynomial time. This sets public
contention-averse preferences apart, as a Nash equilibrium needs not exist in RCGBARs in
presence of either contention-tolerant preferences or private contention-averse preferences.
In Section 5 we investigate some more tractable variants of the classes of RCGs. Concluding
remarks are offered in Section 6, where we discuss related work, open problems, and future
work.

We illustrate the use of an implementation of our models and algorithms in the Appendix.
We provide detailed software executions of Examples 1 and 2, and repeat a few proofs of the
paper.

2 Preliminaries

We present the main definitions and some basic results.

2.1 Multiset notations

We use � and ∪ for multiset disjoint union (sum) and set union respectively. We use ∩ for set
or multiset intersection.We use⊆ for set or multiset containment.We use \ for set or multiset
difference. We use ⊆ for set or multiset inclusion. We use ∈ for set or multiset membership.

Let U be a set of multiset elements, and let X and Y be two multisets over a universe
U . Let m(X , x) be the multiplicity of x in X , that is, the number of times x occurs in X .
X is the empty multiset when m(X , x) = 0 for every x ∈ U . X � Y is the multiset such
that m(X � Y , x) = m(X , x) + m(Y , x), for every x ∈ U . X ∩ Y is the multiset such
that m(X ∩ Y , x) = min(m(X , x),m(Y , x)), for every x ∈ U . X \ Y is the multiset such
that m(X \ Y , x) = max(0,m(X , x) − m(Y , x)), for every x ∈ U . We have X ⊆ Y iff
m(X , x) ≥ m(Y , x), for every x ∈ U . We have x ∈ X iff m(X , x) > 0.

2.2 Bundles, bags, resource transformations, and notation

We assume a resource domain, which is a set Res of atomic (indivisible) resource types.
Bundling is a common feature in economic transactions and exchanges. They can be homo-
geneous (e.g., a box of 12 cookies), or heterogeneous (a 3-DVD box set of a trilogy). Players
may be inclined to provide bundles instead of individual items for various reasons (e.g.,
wholesale vs. retail sales pricing, cargo shipping).

In this paper, resource bundles are multisets over the universe U = Res, and resource
bags are multisets over the universe U being the set of resource bundles.

A resource bundlemultiset of atomic resources of any type in Res. For example, let H and
O be two atomic resource types in Res. The object H •H •O is the resource bundle containing
two instances of the atomic resource H and one instance of the atomic resourceO. The empty
resource bundle containing no instance of any resource type is denoted by λ. The singleton
resource bundle containing only one instance of one resource type A ∈ Res is simply denoted
by A. Given two resource bundles Bundle1 = A1 • . . . • Ak and Bundle2 = Ak+1 • . . . • Al ,

123



322 N. Troquard

we denote by Bundle1 • Bundle2 the resource bundle A1 • . . . • Al . Let Bundle = A1 • . . . • Ak

be a resource bundle. We define the multiset of atomic resource instances in Bundle as
�(Bundle) = {A1, . . . , Ak}.

A resource bag is amultiset of resource bundles. For example, {O • O,H • H • O,H • H • O,C}
is the resource bag containing one resource bundle O • O, two resource bundles H • H • O, and
one singleton resource bundle C. Let Bag = {B1, . . . , Bk} be a resource bag. We define the
multiset of atomic resource instances in Bag as �•(Bag) = ⊎

1≤i≤k �(Bi ).
We say that the resource bag Bag can be transformed into the resource bundle Bundle,

noted
Bag � Bundle ,

when �(Bundle) ⊆ �•(Bag). We simply write Bag 
� Bundle when Bag cannot be
transformed into Bundle.

By definition, resources can be disposed freely during transformation. For example, {H •

H,O • O} � H • H • O.
We use Bundle1|Bundle2 to represent the ‘sub-bundle’ of Bundle1 restricted to resources

present in the bundle Bundle2. E.g., (A • A • B)|A•C = A • A; or (A • B)|C = λ (that is, the
empty resource bundle). Formally, Bundle1|Bundle2 is the resource bundle such that

m(�(Bundle1|Bundle2), x) =
{
m(�(Bundle1), x) when x ∈ �(Bundle2)

0 otherwise .

2.3 Resource contribution games

We formally define our models of resource contribution games.

Definition 1 A resource contribution game (RCG) is a tuple G = (N , γ1, . . . , γn, ε1, . . . , εn)

where:

• N = {1, . . . , n} is a finite set of players;
• γi is a resource bundle (i’s goal, or objective);
• εi is a finite resource bag (i’s endowment).

We define the set of possible actions, or choices, of i as the set of multisets (resource bags)
chi (G) = {C | C ⊆ εi }, and the set of profiles in G as ch(G) = ∏

i∈N chi (G).

Example 3 Say A and B are atomic resources, we can represent the complex resource com-
posed of one A and one B as the resource bundle A • B. We can use γi = A • B to express
that player i wants A and B simultaneously.

The endowment εi = {B, B, A • B} is different from the endowment {A, B, B, B}. With
the former, player i cannot contribute an A without also contributing a B.

When P = (C1, . . . ,Cn) ∈ ch(G) and 1 ≤ i ≤ k, then Pi = Ci , and P−i =
(C1, . . . ,Ci−1,Ci+1, . . . ,Cn). That is, P−i denotes P without player i’s contribution Pi .
When P ′

i ∈ chi (G) and P ∈ ch(G), we note (P−i , P ′
i ) the profile obtained by substitut-

ing the choice of player i in the profile P with his choice P ′
i . The outcome of a profile

P = (C1, . . . ,Cn) is given by the resource bag

out(P) =
⊎

1≤i≤n

Ci .

We show how our examples in the introduction can bemodelled as RCGs, andwe illustrate
the notions introduced so far.
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Example 1 (continued) A glass of wine is represented byw, one portion of rice is represented
by r, and an onion is represented by o.

The bottle of wine is represented as the bundle w • w • w • w of four glasses of wine. A
portion of risotto is represented as the bundle w • r • o of a glass of wine, one portion of rice,
and one onion.

You are represented by player y, Bruno is represented by player b, and Carmen is repre-
sented by player c.

As regards the first part of the example, with you, Bruno, andCarmen, the game is formally
defined as: G̃1.1 = ({y, b, c}, γy = w •w, γb = w •r •o, γc = w •r •o, εy = {w •w •w •w}, εb =
{r, r, r}, εc = {o, o}).

If Edward joins the party, as in the second part of the example, then his objective is
γe = w • w • w and his endowment is εe = ∅.

We obtain the RCG G̃1.2.

Example 2 (continued) The symbols 3G and 4G are atomic resource types, and a and b are
the two telecom companies.

The scenario of Example 2 can be formalized as the RCG G̃2 = ({a, b}, γa, γb, εa, εb),
where γa = 3G • 3G • 4G and γb = 3G • 3G • 4G • 4G are their respective goals, and
εa = {3G, 3G, 3G • 3G} and εb = {3G, 4G, 4G • 4G} are their respective endowments.

The choices of player a are∅, {3G}, {3G•3G}, {3G, 3G}, {3G, 3G•3G}, and {3G, 3G, 3G•3G}.
Themultiset {3G, 4G} is one of the choices of player b. The tuple P = ({3G•3G}, {3G, 4G})

is a profile of G. The outcome of P is the bag out(P) = {3G •3G, 3G, 4G}. Its decomposition
into a bag of atomic resources is �•(out(P)) = {3G, 3G, 3G, 4G}.
Remark 1 In RCGs, players are forced to contribute resources before using them. In the
terminology of public good games [36], we can say that there is no private exchange, and only
a group exchange. This is only a limitation of RCGs as games for experimental economics.
Just like in public good games the participants have no reason to invest on the group exchange
at all, in RCGs with a private exchange, the players would have no reason to contribute
resources useful to them on the group exchange. If the modeller prefers to have reserved
resources that a player can use privately towards his goal, it suffices to pre-process the game
as follows. If a player wants A • R1 • . . . • Rk and is endowed with {A, R′

1 . . . , R′
m}, remove

an occurrence of A from his goal and an occurrence from his endowment.

2.4 Player satisfaction and resource contention

Let G be the RCG (N , γ1, . . . , γn, ε1, . . . , εn), and let P be a profile in ch(G). We say
player i is potentially satisfied by the profile P when the resources available in P can be
transformed into the goal γi , possibly with some left-over resources, that is out(P) � γi .

For every RCG G and player i , we define psat-prof(G, i) to be the set of profiles in G by
which player i is potentially satisfied. Formally:

psat-prof(G, i) = {P ∈ ch(G) | out(P) � γi } .

For convenience, we also write psat-play(G, P) to denote the set of players potentially
satisfied in the profile P ∈ ch(G) of the game G, that is:

psat-play(G, P) = {i ∈ N | out(P) � γi } .

Player i is potentially satisfied in a profile P when the resources in out(P) can be trans-
formed into the resource bundle γi . But it might be that some resources are oversubscribed.
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This yields resource contention. The profile P is contentiouswhen the resource bagout(P)

cannot be transformed into the resource bundle made up of all the objectives of the otherwise
potentially satisfied players. We write cont-prof(G) to denote the set of contentious profiles
in G. Formally:

cont-prof(G) = {
P ∈ ch(G)

∣
∣ out(P) 
� γs1 • . . . • γsk

where {s1, . . . , sk} = psat-play(G, P)} .

Example 2 (continued) In the RCG G̃2 of Example 2, the profile ({3G, 3G}, {4G • 4G}) is
in psat-prof(G̃2, a) and psat-prof(G̃2, b), and it is also in cont-prof(G̃2). Indeed, both
players are potentially satisfied in ({3G, 3G}, {4G • 4G}), but the resources in the profile are
then oversubscribed.

A distinction can now be made between public and private resource contention. That is,
the players might be averse to resource contentions that affect them, but might be indifferent
to resource contentions about resources they personally have no claim about.

Example 4 Consider the RCG G̃c with N = {1, 2, 3}, ε1 = {A • B}, γ1 = A, ε2 = ε3 = ∅,
and γ2 = γ3 = B.

Although the profile ({A • B},∅,∅) is contentious, player 1 should not have to worry
about it, because the contention is about the resource B being disputed between player 2 and
player 3. Player 1 should find a profile containing A perfectly good.

We thus define cont-prof(G, i), the set of profiles that are contentious for player i .

cont-prof(G, i) =
{
P ∈ ch(G)

∣
∣
∣ P ∈ psat-prof(G, i) and out(P) 
� γs1 |γi • . . . • γsk |γi

where {s1, . . . , sk} = psat-play(G, P)} .

Example 4 (continued) The profile ({A • B},∅,∅) is in psat-prof(G̃c, 1), psat-prof(G̃c, 2),
and psat-prof(G̃c, 3). It is contentious: in cont-prof(G̃c), because out(P) 
� A • B • B.
But it is not contentious for player 1: not in cont-prof(G̃c, 1), because γ1|γ1 • γ2|γ1 • γ3|γ1 =
A|A • B|A • B|A = A • λ • λ, and out(P) � A.

To helpwith intuition,we already provide a fewbasic properties about resource contention.

Fact 1 The following statements hold:

1. The profile (∅, . . . ,∅) is never contentious.
2. cont-prof(G) = ⋃

i∈N cont-prof(G, i).
3. If P ∈ cont-prof(G, i) then ∃ j 
= i , P ∈ cont-prof(G, j).

The profile whose outcome is the empty set of resources is not contentious. The set of
contentious profiles is the union of the profiles that are contentious for a player. If a profile
is contentious for a player, then there is another distinct player for whom the profile is also
contentious.

Players are surplus-tolerant. If a player is potentially satisfied in a profile, it will also be
potentially satisfied in a profile resulting from any player adding more resources.

Fact 2 If (P− j , Pj ) ∈ psat-prof(G, i) and Pj ⊆ Q j then (P− j , Q j ) ∈ psat-prof(G, i).

In contrast, resource contention is a non-monotonic property of a profile. From a con-
tentious profile one could add resources and obtain a non-contentious profile. Also, from a
contentious profile, one could remove resources and obtain a non-contentious profile. The
following example illustrates that.
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Example 5 Let G = (N , γ1, γ2, ε1, ε2) be the RCG with N = {1, 2}, γ1 = γ2 = A, ε1 =
{A, A}, and ε2 = ∅. It is the case that ({A},∅) is a contentious profile. However, (∅,∅), and
({A, A},∅) are not. We have cont-prof(G) = {({A},∅)}.

2.5 Preferences

We will consider three kinds of preference: contention-tolerant preferences (ct), (public)
contention-averse preferences (ca), private contention-averse preferences (pca). To each kind
of preferences corresponds a notion of what constitutes a ‘good’ profile for a player.

Definition 2 A profile P is good for player i according to pref if:

(pref = ct) P ∈ psat-prof(G, i).
(pref = ca) P ∈ psat-prof(G, i) and P /∈ cont-prof(G).
(pref = pca) P ∈ psat-prof(G, i) and P /∈ cont-prof(G, i).

That is, with contention-tolerant preferences, a profile is good for a player whenever the
profile potentially satisfies him.With (public) contention-averse preferences, a profile is good
for a player when the profile potentially satisfies him, and the profile is not contentious. With
private contention-averse preferences, a profile is good for a player when the profile poten-
tially satisfies him, and the profile is not contentious for him. We note good-profpref(G, i)
the set of profiles in G that are good for player i according to pref ∈ {ct, ca,pca}. The
following fact is a straightforward consequence of the definitions.

Fact 3 Given a game G and a player i , we have good-profca(G, i) ⊆ good-profpca(G, i)
⊆ good-profct(G, i).

Wecan nowdefine the three kinds of single-minded parsimonious preferences over profiles
used in this paper.

Definition 3 In an RCG G = (N , γ1, . . . , γn, ε1, . . . , εn), we say that player i ∈ N strictly
prefers P ∈ ch(G) over Q ∈ ch(G) according to pref (noted Q ≺pref

i P) iff one of the
following conditions is satisfied:

1. P /∈ good-profpref(G, i), Q /∈ good-profpref(G, i) and Pi ⊂ Qi ;
2. P ∈ good-profpref(G, i), and Q /∈ good-profpref(G, i);
3. P ∈ good-profpref(G, i), Q ∈ good-profpref(G, i) and Pi ⊂ Qi .

3 Nash equilibria and complexity

In this section, we define pure Nash equilibria in RCGs. We show that Nash equilibria may
not exist, and that the sets of Nash equilibria may be distinct for every kind of attitude towards
contention. We show that deciding whether a profile is a Nash equilibrium is coNP-complete
in presence of public and private contention-averse preferences and in PTime in presence of
contention-tolerant preferences.

It is customary to define Nash equilibria in terms of profitable deviations, which we
introduce now.

Definition 4 Let G = (N , γ1, . . . , γn, ε1, . . . , εn) be an RCG. We say that P ′
i ∈ chi (G) is a

profitable deviation, according to pref, from the profile P ∈ ch(G) for player i when player i
strictly prefers (P−i , P ′

i ) over P, according to pref.
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A Nash equilibrium is a profile in which no player has a profitable deviation.

Definition 5 Let G = (N , γ1, . . . , γn, ε1, . . . , εn) be an RCG. A profile P ∈ ch(G) is a
(pure) Nash equilibrium according to pref iff there is no profitable deviation according to
pref from P for any player in N.

Let us noteNEpref(G) the set of profiles in ch(G)which areNash equilibria ofG according
to pref. We can finally illustrate this last definition with our running examples.

Example 1 (continued) If Edward does not join the party, recall that the game is formalized
as G̃1.1 = ({y, b, c}, γy = w • w, γb = w • r • o, γc = w • r • o, εy = {w • w • w • w}, εb =
{r, r, r}, εc = {o, o}). We have: in the case of contention-tolerance NEct(G̃1.1) = {(w • w •

w • w,∅,∅), (w • w • w • w, {r}, {o})}; in both cases of contention-aversity NEca(G̃1.1) =
NEpca(G̃1.1) = {(w • w • w • w,∅,∅), (w • w • w • w, {r, r}, {o, o})}.

Let us seewhy (w•w•w•w, {r}, {o}) is not aNash equilibrium in G̃1.1 for contention-averse
preferences.

In which profiles are the players potentially satisfied?

• psat-prof(G̃1.1, y) contains all the profiles where the choice of y is {w • w • w • w}.
• psat-prof(G̃1.1, b) contains all the profiles where the choice of y is {w • w • w • w}, the

choice of b is at least {r}, and the choice of c is at least {o}.
• psat-prof(G̃1.1, c) = psat-prof(G̃1.2, b).

So all the players are potentially satisfied in (w • w • w • w, {r}, {o}).
As an aside, let us first observe that the profile not being a Nash equilibrium is not because

of you. Indeed, the profile is not contentious for you.

• γy |γy = (w • w)|w•w = w • w,
• γb |γy = (w • r • o)|w•w = w,
• γc |γy = (w • r • o)|w•w = w.

Clearly, one can transform the outcome of (w • w • w • w, {r}, {o}) into a bundle with four
glasses of winew. So cont-prof(G̃1.1, y) does not contain the profile (which is then contained
in good-profpca(G̃1.1, y)). We can also see that if you were not contributing the bottle of
wine, you would not be potentially satisfied anymore. In other words, you have no profitable
deviation from the profile (w • w • w • w, {r}, {o}).

But the profile is contentious for Bob and Carmen:

• γy |γb = (w • w)|w•r•o = w • w,
• γb |γb = (w • r • o)|w•r•o = w • r • o,
• γc |γb = (w • r • o)|w•r•o = w • r • o.

Clearly, it is not possible to transform the outcome of the profile into a bundle with two
portions of rice (and two onions). So, (w • w • w • w, {r}, {o}) is in cont-prof(G̃1.1, b),
and so also in cont-prof(G̃1.1). It means that it is in neither good-profpca(G̃1.1, b) or
good-profca(G̃1.1, b). The exact same is true for agent c.

Finally, (w • w • w • w, {r}, {o}) is not a Nash equilibrium when the preferences are
contention-averse, because it is not good for either Bob or Carmen, and both can profitably
deviate to ∅. Indeed, it would result in another profile that is not good for them either, but
their contribution would be strictly included in their choice in (w • w • w • w, {r}, {o}). That
is, it is the case that:

• (w • w • w • w, {r}, {o}) ≺pref
b (w • w • w • w,∅, {o}),
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• (w • w • w • w, {r}, {o}) ≺pref
c (w • w • w • w, {r},∅).

If Edward joins the party, recall that the game is formalized as G̃1.2 = ({y, b, c, e}, γy =
w • w, γb = w • r • o, γc = w • r • o, γe = w • w • w, εy = {w • w • w • w}, εb = {r, r, r}, εc =
{o, o}, εe = ∅).

In the case of contention-tolerance NEct(G̃1.2) = {(w • w • w • w,∅,∅,∅), (w • w • w •

w, {r}, {o},∅)};
in both cases of contention-aversity NEca(G̃1.2) = NEpca(G̃1.2) = {(∅,∅,∅,∅)}.

Example 2 (continued) Consider again G̃2 = ({a, b}, γa = 3G • 3G • 4G, γb = 3G • 3G •

4G •4G, εa = {3G, 3G, 3G •3G}, εb = {3G, 4G, 4G •4G}). We have:in the case of contention-
tolerance NEct(G̃2) = {(∅,∅), ({3G, 3G}, {4G •4G}), ({3G}, {3G, 4G •4G}), ({3G, 3G}, {4G •

4G})}; in both cases of contention-aversity NEca(G̃2) = NEpca(G̃2) = {(∅,∅), ({3G, 3G •

3G}, {3G, 4G, 4G • 4G}), ({3G, 3G, 3G • 3G}, {4G, 4G • 4G})}.1

For every kind of preferences, there are games that do not admit any Nash equilibrium.
In fact we prove something stronger: there is a game that does not admit a Nash equilibrium
for any kind of preferences.

Proposition 1 There is a game G such that NEpref(G) = ∅ for every kind of preferences
pref ∈ {ct, ca,pca}.
Proof Consider the game G, with two players 1 and 2, where ε1 = ε2 = {A • B}, γ1 = A,
and γ2 = B • B. An illustration of the four profiles and their outcomes follows.

∅ {A • B}
∅ ∅ {A • B}
{A • B} {A • B} {A • B, A • B}

We have:

• psat-prof(G, 1) = {(∅, {A • B}), ({A • B},∅), ({A • B}, {A • B})},
• psat-prof(G, 2) = {({A • B}, {A • B})}.

By definition we have:

• good-profct(G, 1) = psat-prof(G, 1) and good-profct(G, 2) = psat-prof(G, 2).

But it is also the case that:

• cont-prof(G, 1) = ∅,
• cont-prof(G, 2) = ∅.

Which means that cont-prof(G) = ∅.
Hence, we also have:

• good-profca(G, 1) = psat-prof(G, 1), good-profca(G, 2) = psat-prof(G, 2),
• good-profpca(G, 1) = psat-prof(G, 1) and good-profpca(G, 2) = psat-prof(G, 2).

1 From Fact 1.3, when there are only two players, contention and private contention coincide, and so do the
sets of Nash equilibria.
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It means that inG, the preferences ct, ca, and pca coincide.We argue that there is a profitable
deviation in every profile of G.

• From profile (∅,∅), player 1 prefers ({A • B},∅), because (∅,∅) /∈ good-profpref(G, 1)
and ({A • B},∅) ∈ good-profpref(G, 1).

• From profile (∅, {A • B}), player 2 prefers (∅,∅) because (∅, {A • B}) /∈ good-profpref

(G, 2), (∅,∅) /∈ good-profpref(G, 2), and ∅ ⊂ {A • B}.
• From profile ({A • B},∅), player 2 prefers ({A • B}, {A • B}), because ({A • B},∅) /∈
good-profpref(G, 2) and ({A • B}, {A • B}) ∈ good-profpref(G, 2).

• From profile ({A • B}, {A • B}), player 1 prefers (∅, {A • B}), because ({A • B}, {A • B}) ∈
good-profpref(G, 1), (∅, {A • B}) ∈ good-profpref(G, 1), and ∅ ⊂ {A • B}.

��
The sets of Nash equilibria wrt. two different kinds of preference can be pairwise distinct

and even non-nested.

Proposition 2 For every pair of distinct kinds of preference pref,pref ′ ∈ {ct, ca,pca}, there
is a game G such that NEpref(G) � NEpref

′
(G).

Proof For the cases where pref or pref ′ is ct, c.f. Example 1.
The profile (w•w•w•w, {r}, {o}) is inNEct(G̃1.1) but in neitherNE

ca(G̃1.1) orNE
pca(G̃1.1).

The profile (w • w • w • w, {r, r}, {o, o}) is in both NEca(G̃1.1) and NE
pca(G̃1.1), but it is not

in NEct(G̃1.1).
For the twocaseswherepref = ca andpref ′ = pca, andwherepref = pca andpref ′ = ca,

consider G, where γ1 = A, γ2 = γ3 = B, ε1 = {A • B, B}, ε2 = ε3 = ∅.
We have NEpca(G) = {({A • B},∅,∅)}, and NEca(G) = {({A • B, B},∅,∅)}. We provide

the details.
Player 1 is potentially satisfied when he contributes at least A • B, while player 2 and

player 3 are potentially satisfied when player 1 contributes more than nothing.

• psat-prof(G, 1) = {({A • B},∅,∅), ({A • B, B},∅,∅)}.
• psat-prof(G, 2) = psat-prof(G, 3) = {({B},∅,∅), ({A • B},∅,∅), ({A • B, B},∅,∅)}.

We have γ1|γ2 = γ1|γ3 = λ, and γ2|γ1 = γ3|γ1 = λ, and γ2|γ3 = γ3|γ2 = B.
Hence:

• cont-prof(G, 1) = ∅.
• cont-prof(G, 2) = cont-prof(G, 3) = {({A • B},∅,∅)}. (Because all players are poten-
tially satisfied in ({A • B},∅,∅), but out(({A • B},∅,∅)) 
� γ1|γ2 • γ2|γ2 • γ3|γ2 and
out(({A • B},∅,∅)) 
� γ1|γ3 • γ2|γ3 • γ3|γ3 .)

Which also means that cont-prof(G) = {({A • B},∅,∅)}.
We thus have:

• good-profca(G, 1) = {({A • B, B},∅,∅)},
• good-profpca(G, 1) = {({A • B},∅,∅), ({A • B, B},∅,∅)}.
Since player 2 and player 3 can only choose ∅, they cannot have profitable deviations. So

NEca(G) only contains ({A • B, B},∅,∅), as it is the only good profile for player 1. On the
other hand, with private contention-averse preferences, ({A •B, B},∅,∅) ≺pca

1 ({A •B},∅,∅)

(because both profiles are good for player 1, but he contributes strictly less in ({A • B},∅,∅)),
so NEca(G) only contains ({A • B},∅,∅). ��
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NASH EQUILIBRIUM (NEpref )

(in) A resource contribution game G and a profile P ∈ ch(G).
(out) P ∈ NEpref (G)?

We will investigate the decision problem related to the membership in the set NEpref(G),
for pref ∈ {ct, ca,pca}.

To start, we state the rudimentary results that are instrumental to study the complexity of
our decision problems.

Proposition 3 For every kind of preferences pref ∈ {ct, ca,pca}, the problems of decid-
ing whether P ∈ psat-prof(G, i), i ∈ psat-play(G, P), P ∈ cont-prof(G), P ∈
cont-prof(G, i), P ∈ good-profpref(G, i), and Q ≺pref

i P, are all in PTime.

Proof P ∈ psat-prof(G, i) iff out(P) � γi iff �(γi ) ⊆ �•(out(P)). The functions � and �•
respectively transform bundles and bags into multisets of atomic resources, of size linear in
the size of the input. Checking that a multiset is included in another can be done efficiently.

i ∈ psat-play(G, P) is reducible to P ∈ psat-prof(G, i).
P ∈ cont-prof(G) iff (with psat-play(G, P) = {s1, . . . , sk}) out(P) 
� γs1 • . . . • γsk

iff �(γs1 • . . . • γsk ) � �•(out(P)). We have just seen that we can decide efficiently whether
i ∈ psat-play(G, P), so we can also compute psat-play(G, P) efficiently. Now, it suffices
to check whether a multiset is a subset of another, which can be done efficiently.

P ∈ cont-prof(G, i) iff (with psat-play(G, P) = {s1, . . . , sk}) P ∈ psat-prof(G, i) and
out(P) 
� γs1 |γi • . . . • γsk |γi . We can decide efficiently whether i ∈ psat-play(G, P), so we
can also compute psat-play(G, P) efficiently. We can also efficiently compute the restriction
of multisets γ j |γi . Now, it suffices to check whether a multiset is a subset of another, which
can be done efficiently.

Nomatter the kind of preferencespref, fromDefinition 2 and the previous results, deciding
whether P ∈ good-profpref(G, i) can also be done efficiently.

So, for every profile P ′ in an RCG G, and every player i , we can decide whether
P ′ ∈ good-profpref(G, i) in polynomial time. Also, checking whether a multiset Pi is a strict
subset of another multiset Qi can be done efficiently. Hence, deciding whether Q ≺pref

i P
can be done in polynomial time. ��

3.1 Public and private contention-aversity

As witnessed by Prop. 2, Nash equilibria according to the preference kinds ca and pca
can be distinct, and even non-nested. From the theoretical point of view of computational
complexity, they are similar enough to be studied together. We can indeed solve them and
show their hardness in a rather uniform manner.

Proposition 4 When pref ∈ {ca,pca}, the problem NEpref is in coNP.

Proof To solve P /∈ NEpref(G), simply guess a pair (i, P ′
i ) ∈ N ×chi (G) and check whether

P ≺pref
i (P−i , P ′

i ), which by Prop. 3 can be done in polynomial time. ��
To prove that NEca and NEpca are coNP-hard, we first consider an auxiliary decision

problem. Given a resource contribution game G and a player i , the problem ∃PDpref
∅ asks

whether there is a profitable deviation according to pref from (∅, . . . ,∅) for player i .
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PROFITABLE DEVIATION EXISTENCE FROM (∅, . . . ∅) (∃PDpref
∅ )

(in) A resource contribution game G and a player i .
(out) Is there a profitable deviation according to pref from (∅, . . . , ∅) for player i?

We show that ∃PDca
∅ and ∃PDpca

∅ are NP-complete.

Lemma 1 When pref ∈ {ca,pca}, the problem ∃PDpref
∅ is NP-complete.

Proof In the following, let pref be either ca or pca. For membership, it is enough to non-
deterministically guess a choice Ci ∈ chi (G) and check whether player i strictly prefers
(∅, . . . ,Ci , . . . ∅) over (∅, . . . ∅) according to pref, which can be done in polynomial time
(Prop. 3).

For hardness, we reduce 3-SAT. Let ψ = c1 ∧ . . . ∧ cm be a 3CNF over the set of
propositional variables var(ψ), with ci = li,1 ∨ li,2 ∨ li,3, where every literal li, j is in
var(ψ) ∪ {¬p | p ∈ var(ψ)}.

For every 3CNF ψ , we build the RCG Gψ = ({1} ∪ N−, �γ , �ε) over Res = {ci | 1 ≤ i ≤
m} ∪ {p,¬p | p ∈ var(ψ)} as follows:
• The objective of player 1 is γ1 = c1 • . . . • cm . That is, player 1 wants a resource bundle
containing one resource representing every clause. The endowment of player 1 is ε1 =
{ci • li,1, ci • li,2, ci • li,3 | 1 ≤ i ≤ m}. For every clause, player 1 can contribute three or
less of these resources. But every time he contributes one resource representing a clause
resource, he cannot do without providing also one resource representing a literal in the
clause.

• N− = {2, . . . , 1 + 3 · Card(var(ψ))}
• For every variable p ∈ var(ψ), the set N− contains three playerswith objectiveγid(p,1) =

γid(p,2) = γid(p,3) = γ1 • p • ¬p, and with empty endowments. (The function id is an
arbitrary bijection that takes one variable/integer couple in var(ψ)×{1, 2, 3}, and returns
one player in N−.) Every member of N− wants a resource representing a variable and
a resource representing the negation of this same variable, and like player 1, also wants
the resources corresponding to all clauses ci . They are dummy players, having the empty
set as their only action: εid(p,1) = εid(p,2) = εid(p,3) = ∅.
We can show that ∃PDpref

∅ (Gψ, 1) is true iff ψ is satisfiable.
We first sketch the idea of the construction and the proof. The main rationales behind the

construction are that player 1 does not satisfy his objective in (∅, . . . ,∅), and that player 1
must deviate to a non-contentious profile containing one ci • li, j for every clause ci in ψ . We
will argue that such a profitable deviation exists iff ψ is satisfiable. The presence in N− of
players with objective γ1 • p • ¬p, for some p ∈ var(ψ), makes sure that a profile whose
outcome contains all ci ’s but also a p and a ¬p is contentious, and privately contentious to
player 1. Thus, such a deviation from (∅, . . . ,∅) cannot be profitable for player 1. Still, a
deviation containing all ci but not both p and ¬p for some p ∈ var(ψ) remains a profitable
deviation.

Right to left. Let v be a valuation of var(ψ) and assume that v(ψ) = true.
We construct a profile and we will show that it is a profitable deviation for player 1 from

(∅, . . . ,∅).
Let P1 ∈ ch1(Gψ) be the action {li, j • ci | 1 ≤ i ≤ m, v(li, j ) = true}. Let P ∈ ch(Gψ) be
the profile (P1,∅, . . . ,∅).

We claim that:
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1. No player i ∈ N− is potentially satisfied in P. We have v(ψ) = true, so there is no
p ∈ var(ψ) such that {p,¬p} ⊆ out(P). That is, out(P) 
� p • ¬p. This means that
for every player i ∈ N−, P /∈ psat-prof(Gψ, i).

2. (∅, . . . ,∅) is not a good profile for player 1.
⊎

1≤i≤m{ci } � out((∅, . . . ,∅)) = ∅. So,
(∅, . . . ,∅) /∈ psat-prof(Gψ, 1), and so (∅, . . . ,∅) /∈ good-profpref(Gψ, 1).

3. P is a good profile for player 1. For every 1 ≤ i ≤ m, we have P1 � ci , which is simply
{ci } ⊆ P1. Consequently, we have

⊎
1≤i≤m{ci } ⊆ P1, which is exactly P1 � γ1. So

P ∈ psat-prof(Gψ, 1). Moreover, since no player i ∈ N− is potentially satisfied in P
(established in item 1), the profile P is not contentious, and not contentious for player 1.
We thus have P ∈ good-profpref(Gψ, 1).

We conclude that P is a profitable deviation for player 1 from (∅, . . . ,∅).
Left to right. Let P1 ∈ ch1(Gψ) be a profitable deviation from (∅, . . . ,∅) for player 1.

We define P = (P1,∅, . . . ,∅).
Being a profitable deviation for player 1, it means that P ∈ good-profpref(Gψ, 1).
We define the valuation vP of ψ , such that for every p ∈ var(ψ), vP (p) = true iff

out(P) � p. We claim that:

1. For every i , 1 ≤ i ≤ m, there is j ∈ {1, 2, 3} such that ci • li, j ∈ P1. In other words, P1
contains at least m resources, and at least one for each clause. It is a direct consequence
of P ∈ good-profpref(Gψ, 1), which implies out(P) � γ1.

2. For every i ∈ N−, we have out(P) 
� γi . Assume towards contradiction that there is
i ∈ N− such that out(P) � γi . That is, there is p ∈ var(ψ), such that out(P) �
γ1 • p • ¬p. But it also means that there are two other players in N−, also with objective
γ1 • p • ¬p, which are potentially satisfied in profile P . Let N−(p) be this set of players.
For every i ∈ N−(p), we have P ∈ psat-prof(Gψ, i), and γi |γ1 = c1 • . . . • cm = γ1.
Hence, together with player 1 there are four players who have a claim on a resource
bundle γ1. However, for each clause ci , 1 ≤ i ≤ m, there are at most three instances of
the resource representing ci in �•(P1). Hence, out(P) 
� γ1 •γ1 •γ1 •γ1. It means that P is
contentious, and contentious to player 1, and P does not belong to good-profpref(Gψ, 1);
A contradiction. Hence, there is no variable p ∈ var(ψ) and pair of clauses ci and c j
(0 ≤ i, j ≤ m) such that both ci • p ∈ P1 and c j • ¬p ∈ P1.

We conclude that vP (ψ) = true, and ψ is satisfiable. ��
We can now characterize the complexity of NEca and NEpca.

Theorem 1 When pref ∈ {ca,pca}, the problem NEpref is coNP-complete.

Proof Let pref be either ca or pca. NEpref is in coNP (Prop. 4). For hardness, we reduce
∃PDpref

∅ (which is NP-complete according to Lemma 1) to coNEpref . Let G = (N , �γ , �ε) be
an RCG, and let i be a player in N . We construct the RCG G ′ = (N , �γ , �ε′), where ε′

i = εi
and ε′

j = ∅ when i 
= j . That is, G ′ is just like G, except that every player that is not player i
is dummy. Crucially, all players inG ′ keep their objectives fromG. This means that for every
profile P = (Ci ,∅, . . . ,∅) ∈ ch(G ′), we have P ∈ psat-prof(G ′, i) iff P ∈ psat-prof(G, i),
and P ∈ cont-prof(G ′, i) iff P ∈ cont-prof(G, i), for every player i ∈ N . Clearly, we have
∃PDpref

∅ (G, i) iff (∅, . . . ,∅) /∈ NEpref(G ′). ��

3.2 Contention-tolerance

To solve NEct, a non-deterministic algorithm analogous to the one suggested in the proof of
Prop. 4 can be adopted, yielding a procedure in coNP. However, we show here that when the
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players tolerate contentious profiles, then solving the problem NEpref becomes simpler. The
following lemma (a reformulation of [48, Lemma 5.7]), is the basis of an efficient decision
procedure for NEct:

Lemma 2 Let G = (N , γ1, . . . , γn, ε1, . . . , εn) be a resource contribution game. We have
P /∈ NEct(G) iff ∃i ∈ N s.t. either:

1. P /∈ psat-prof(G, i) and Pi 
= ∅;
2. P /∈ psat-prof(G, i) and (P−i , εi ) ∈ psat-prof(G, i);
3. P ∈ psat-prof(G, i) and ∃A ∈ Pi s.t., (P−i , Pi \ {A}) ∈ psat-prof(G, i).

Proof Right to left is immediate. From left to right, suppose P /∈ NEct(G). So there exists
i ∈ N and Ci ∈ chi (G) such that P ≺i (P−i ,Ci ). There are three cases to consider:

i (P−i ,Ci ) /∈ psat-prof(G, i), P /∈ psat-prof(G, i) and Ci ⊂ Pi ;
ii (P−i ,Ci ) ∈ psat-prof(G, i), P /∈ psat-prof(G, i);
iii (P−i ,Ci ) ∈ psat-prof(G, i), P ∈ psat-prof(G, i) and Ci ⊂ Pi .

Suppose (i) is the case. We have P /∈ psat-prof(G, i), and since Ci ⊂ Pi we also have
Pi 
= ∅. So item (1) of the lemma is satisfied. Suppose (ii) is the case. We have, P /∈
psat-prof(G, i). Plus, since (P−i ,Ci ) ∈ psat-prof(G, i) we have out((P−i ,Ci )) � γi , or
�(γi ) ⊆ �•(out((P−i ,Ci ))). Since Ci ⊆ εi , we also have �(γi ) ⊆ �•(out((P−i , ε))), and
thus (P−i , εi ) ∈ psat-prof(G, i). So item (2) of the lemma is satisfied. Suppose (iii) is the
case. We have P ∈ psat-prof(G, i). Plus, Ci ⊂ Pi , so there is a resource A such that A ∈ Pi
and A /∈ Ci . We have Ci ⊆ Pi \ {A}. We also have (P−i ,Ci ) ∈ psat-prof(G, i). Applying
Fact 2, we obtain that (P−i , Pi \ {A}) ∈ psat-prof(G, i) for some A ∈ Pi . So item (3) of the
lemma is satisfied. ��

This comes as an immediate consequence; a particular case of [48, Prop. 4.6].

Theorem 2 The problem NEct is in PTime.

Proof Lemma 2 yields a deterministic algorithm. For every i ∈ N , check whether one of the
three conditions holds, and if one condition holds, then return false. Otherwise return true.
Each condition can be checked efficiently (Prop. 3). Hence, the algorithm runs in polynomial
time. ��

From Fact 1.3, we know that if there is only one player, there cannot be any contention.
This follows from Theorem 2.

Corollary 1 When there is only one player the problem NEpref is in PTime, even when pref ∈
{ca,pca}.

The problem NEct being tractable, we briefly turn our attention to the problem of deciding
whether an RCG admits a Nash equilibrium, according to ct.

Given a resource contribution game G, the problem ∃NEpref asks whether NEpref(G) 
= ∅.

NASH EQUILIBRIUM EXISTENCE (∃NEpref )
(in) A resource contribution game G.
(out) NEpref (G) 
= ∅?

By Theorem 2, ∃NEct is clearly in NP. We can show that ∃NEct is NP-hard via a reduction
from 3-SAT.
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Theorem 3 The problem ∃NEct is NP-complete.
Proof Membership is immediate from Theorem 2. For hardness, we reduce 3-SAT. Let ψ =
c1∧. . .∧cm be a 3CNFover the set of propositional variables var(ψ), with ci = li,1∨li,2∨li,3,
where every literal li, j is in var(ψ) ∪ {¬p | p ∈ var(ψ)}. We build the RCG Gψ =
({1} ∪ N1 ∪ N2, �γ , �ε) over Res = {ci | 1 ≤ i ≤ m} ∪ {p,¬p, p′ | p ∈ var(ψ)} as follows:
• Player 1 wants γ1 = c1 • . . . • cm , and is endowed with ε1 = {ci • li,1, ci • li,2, ci • li,3 |
1 ≤ i ≤ m}.

• N1 = {2, . . . , 1 + Card(var(ψ))}
• For every variable p ∈ var(ψ), the set N1 contains one player id1(p) with objective

γid1(p) = p • ¬p • p′, and with the endowment εid1(p) = {p′}. (The function id1 is
an arbitrary bijection between var(ψ) and N1.) Every member of N1 wants a resource
representing a variable, the negation of the variable, and a distinguished copy of the
variable. They are endowed with one occurrence of the distinguished copy.

• N2 = {2 + Card(var(ψ)), . . . , 1 + 2 · Card(var(ψ))}
• For every variable p ∈ var(ψ), the set N2 contains one player id2(p) with objective

γid2(p) = p • ¬p • p′ • p′, and with the endowment εid2(p) = {p′}. (The function id2 is an
arbitrary bijection between var(ψ) and N2.) Every member of N2 wants a resource rep-
resenting a variable, the negation of the variable, and two occurrences of a distinguished
variable. They are endowed with one occurrence of the distinguished copy.

We can show that ∃NEct(Gψ) iffψ is satisfiable. The idea of the reduction is to have player 1
wanting every clause ci . With his endowment, he can achieve it alone, and achieve a profile
P such that P ∈ good-profct(Gψ, 1). But since every ci in his endowment comes simultane-
ously with a literal, it might be that both p and¬p appear in his choice, for some p ∈ var(ψ).
When it happens, it yields a cycle of profitable deviations, by player id1(p) in N1 and by
player id2(p) in N2 alternately.

When for some p ∈ var(ψ) both p and¬p are in the profile, there are four possible cases,
all leading to the existence of a profitable deviation for a player in N1 or N2.

1. There is no occurrence of p′. Then, player id1(p) currently plays ∅, and does not achieve
his goal. He thus has a profitable deviation in playing {p′}. We end in the case of item 2.

2. There is only one occurrence of p′, provided by player id1(p). Then, player id2(p) is
currently playing his empty choice, and does not achieve his goal. Player id2(p) thus has
a profitable deviation in playing {p′}. We end in the case of item 3.

3. There are two occurrences of p′. Then, player id1(p) currently plays {p′}, and has a
profitable deviation in parsimoniously playing ∅. We end in the case of item 4.

4. There is only one occurrence of p′, provided by player id2(p). Player id2(p) does not
achieve his goal, and has a profitable deviation in parsimoniously playing ∅. We end in
the case of item 1.

When for none of p ∈ var(ψ), we have both p and¬p in the profile, there are three cases.

1. Not every ci appears in the profile, so player 1 has a profitable deviation in playing ε1.
We end up in item 3 if ψ is trivial, or in one of the cases above if it is not.

2. Every ci appears in the profile and there is at least one occurrence of p′ for some p ∈
var(ψ). None of player id1(p) and player id2(p) achieve his goal (p and¬p are not both
present). Any one of them who provided p′ has a profitable deviation in parsimoniously
playing ∅.

3. Every ci appears in the profile and there is no occurrence of p′ for some p ∈ var(ψ).
Let v be the valuation for ψ such that v(p) = true iff p is in the outcome of the profile.
Clearly, v(ψ) = true.
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So a Nash equilibrium exists in Gψ iff there is a profile (C1,∅, . . . ,∅), where �•(C1)

contains at least one occurrence of every clause ci , and does not contain both p and ¬p for
any p ∈ var(ψ). This is possible iff there is a satisfying valuation of ψ . ��

4 RCGs with endowments as bags of atomic resources

Lemma 1 is central to prove that NEpref is coNP-complete in presence of contention-averse
preferences. But on inspection, one can observe that the reduction from 3-SAT builds RCGs
where the endowments contain well chosen bundles of resources. The proof does not carry
over to the case of RCGs where the endowments are bags of atomic resources. We introduce
this class of RCGs.

Definition 6 An RCG with endowments as bags of atomic resources (RCGBAR) is an RCG
G = (N , γ1, . . . , γn, ε1, . . . , εn) such that for every i ∈ N, and for every A ∈ εi , A ∈ Res.

RCGBARs are adequate whenever the resources in the objectives and the resources in
the endowments have the same granularity. E.g, on a market, the providers have bottles of
wines in their endowment and acquirers have objectives about bottles of wine. The bottle
is not conceived as a bundle, but as an atomic resource. On the other hand, as a variant of
Example 1 with you, Bruno, and Carmen, as the objectives are about glasses of wine, it is
conceivable that the glasses of wine, and not the bottle, is the relevant resource to consider
to model the interaction.

Example 6 You participate in a bring-your-own-food cooking party. You bring a bottle of
white wine which contains four glasses, and your objective is to enjoy two glasses. Bruno
and Carmen both want a portion of risotto, each portion needing a portion of rice, one onion,
and a glass of white wine. Bruno brings three portions of rice, and Carmen brings two onions.

As before, a glass of wine is represented by w, one portion of rice is represented by r, and
an onion is represented by o.

The game is formally defined as: G̃6 = ({y, b, c}, γy = w • w, γb = w • r • o, γc =
w • r •o, εy = {w,w,w,w}, εb = {r, r, r}, εc = {o, o}). For instance, with contention-averse
preferences, the profile ({w,w},∅,∅) is a Nash equilibrium where you come back home with
half a bottle of wine, and ({w,w,w,w}, {r, r}, {o, o}) is a Nash equilibrium that is good for
everyone and you come home empty-handed.

Example 7 A grandfather owns 4 parcels of land x by the river that he could give to his
grandchildren. Anna already owns 3 parcels of y. Brian owns 1 parcel of x and 2 parcels
of z. Caren owns 1 parcel of z. They all agree to pool their assets in the hope to obtain the
parcels they like. Ann and Brian would like x • y • z. Caren would like x • z. The grandfather
does not want anything, that is λ. This yields the game G̃7. In NE

ca(G̃7), there are two Nash
equilibria (∅,∅,∅,∅), and ({x, x}, {y, y}, {x, z, z}, {z}).

In this section,we show that inRCGBARs, decidingwhether a profile is aNash equilibrium
is in PTime, even in presence of (public and private) contention-averse preferences. (In the
case of contention-tolerant preferences, it already follows from the general case covered by
Theorem 2.) We show that there is always a Nash equilibrium when in presence of public
contention-averse preferences, while it is not the case for contention-tolerant preferences and
private contention-averse preferences.

The notion of minimal profitable deviation will help simplify the presentation. A minimal
profitable deviation is a choice deviation to a strictly preferred profile, that is minimal for
multiset inclusion.
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Definition 7 Let G = (N , γ1, . . . , γn, ε1, . . . , εn) be an RCG, P be a profile in ch(G), and i
a player in N. Aminimal profitable deviation for player i , according to pref, from the profile

P is a choice P ′
i ∈ chi (G) such that P ≺pref

i (P−i , P ′
i ) and there is no P ′′

i ∈ chi (G) such

that P ′′
i ⊂ P ′

i and P ≺pref
i (P−i , P ′′

i ).

Provided a profitable deviation exists, a minimal profitable deviation also exists. Instru-
mentally, we are going to solve in RCGBARs a direct generalization of ∃PDpref

∅ to arbitrary

profiles. For convenience, ∃PDpref is formulated as a function problem, and returns a witness.

FIND PROFITABLE DEVIATION (∃PDpref )

(in) A resource contribution game G, a player i , and a profile P .
(out) Is there a profitable deviation according to pref from P for player i? If yes, find a minimal one.

In a profile of an RCGBAR, a deficit from the point of view of a player, is the amount of
atomic resources necessary to add to a profile in order to avoid the resource contention.

Definition 8 Let G = (N , γ1, . . . , γn, ε1, . . . , εn) be an RCGBAR, i be a player in N, and
P be a profile in ch(G). Let pref ∈ {ca,pca}.
• The set of contenders is

Contenders(G, P,pref) = { j ∈ N | P ∈ cont-prof(G, j)} ;
• The multiset of contended resources is

ContRes(G, P,pref) =
⊎

j∈Contenders(G,P,pref)

{
�
(
γ j

)
if pref = ca

�
(
γ j |γi

)
if pref = pca ;

• The deficit from the point of view of player i in the profile P of the game G, is

Deficit(G, i, P,pref) = ContRes(G, P,pref) \ out(P) .

Algorithm 1 Algorithm to solve ∃PDpref(G, i, (P1, . . . , Pi = ∅, . . . , Pn)) in RCGBARs
with pref ∈ {ca,pca}.
1: miss = �(γi ) \ �•(out((P−i , ∅))) � missing resources in (P−i ,∅) to satisfy i
2: if (miss � εi ): � i cannot potentially satisfy himself with a unilateral deviation
3: return (false, ∅)
4: Pi = miss � i’s current new choice
5: Ei = εi \ Pi � current surplus at i’s disposition
6: deficit = Deficit(G, i, (P−i , Pi ),pref)
7: while (deficit 
= ∅ and deficit ⊆ Ei ): � there is a deficit that can be covered
8: Pi = Pi � deficit
9: Ei = Ei \ deficit
10: deficit = Deficit(G, i, (P−i , Pi ),pref)
11: return ( Pi 
= ∅ and (P−i , Pi ) ∈ good-profpref (G, i) , Pi )

Trying to make a player potentially satisfied and to cover the deficit in a profile with the
resources of the player is exactly what Algorithm 1 is doing. Algorithm 1 partially (when
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the choice from which to find a profitable deviation is empty) solves ∃PDpref in RCGBARs
with contention-averse preferences. It returns a pair of values. With its first returned value,
the algorithm is correct to decide whether a player has a profitable deviation in an RCGBAR,
from a profile in which his choice is ∅. The algorithm’s second returned value is a minimal
profitable deviation if it exists. It runs in polynomial time.

Lemma 3 Algorithm 1 returns true on the instance (G, i, (P1, . . . , Pi = ∅, . . . , Pn)) iff
player i has a profitable deviation from (P1, . . . , Pi = ∅, . . . , Pn) in the RCGBAR G. If it
returns true, it also returns a minimal profitable deviation. Moreover, the algorithm runs in
polynomial time.

Proof Suppose that Algorithm 1 returns true on the instance (G, i, (P1, . . . , Pi =
∅, . . . , Pn)). It means that it does not terminate on line 3. So the test on line 2 fails. So
miss is not empty, meaning that a non-empty multiset of resources must be added to the
profile in order for player i to be potentially satisfied. So P /∈ good-profpref(G, i). It also
means that the execution is terminating on line 11 with (P−i , Pi ) ∈ good-profpref(G, i).
Clearly Pi ⊆ εi . So Pi is a profitable deviation.

Suppose that player i has a profitable deviation from (P1, . . . , Pi = ∅, . . . , Pn) in the
RCGBAR G. At each step, Algorithm 1 will add “just enough” resources to satisfy player i ,
and iteratively eliminate the resource contentions. Adding “just enough” resources from a
multiset X to a multiset Y to obtain a multiset Z , simply means to deterministically add
Z \ Y , and there is enough resources to do so when X ⊆ X \ Y .2

The algorithm first tries to satisfy player i by adding just enough resources from his
endowment to potentially satisfy him. Since by hypothesis player i has a profitable deviation,
the player’s endowment contains enough resources to be satisfied, thus, we have miss ⊆ εi .
So the choice of player i receives miss (line 4), and the player is now potentially satisfied
with the profile. But he may not be good for him. But the fact that player i has a profitable
deviation alsomeans that the player’s endowment contains enough resources to avoid resource
contention. The algorithm then iteratively tries to add just enough resources from player i’s
endowment to eliminate the contention. Further resource contention might appear, hence
the iterative process. If one exits the loop because there are not enough resources left in
player i’s endowment, then there is no profitable deviation; the algorithm returns false on
line 11 because (P−i , Pi ) is not in good-profpref(G, i). On the other hand, if one exits the
loop because there is no deficit, then a profitable deviation has been found, we have (P−i , Pi )
ingood-profpref(G, i).We clearly have that Pi is not∅.Moreover Pi is theminimal profitable
deviation, because by addingmiss and iteratively addingdeficitwhenneeded, it is not possible
to remove any resource from Pi without making the profile not good for player i .

Each set-theoretic operation, and every computation of cont-prof(G), cont-prof(G, j),
psat-prof(G, j), good-profpref(G, i) is easy (Prop. 3). The set Ei is initialized with εi \ Pi ,
and strictly decreases at each iteration. Hence, the algorithm runs in polynomial time. ��

Theorem 4 In RCGBARs, the problem NEpref is in PTime, even when pref ∈ {ca,pca}.
Proof Let G = (N , γ1, . . . , γn, ε1, . . . , εn). To decide whether a profile is a Nash equilib-
rium, it suffices to check for each player whether they have a profitable deviation. This can be

2 Observe that if εi were not a bag of atomic resources we would have to non-deterministically add bundles of
resources. E.g., when an A is needed, onemight have a choice between adding A •B or A •C . Non-deterministic
additions of bundles could yield further resource contentions, which could be avoidable by covering the deficit
with a different set of bundles, thus requiring backtracking.
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Algorithm 2 Algorithm to solve ∃PDpref(G, i, P) for RCGBARs with pref ∈ {ca,pca}.
1: if (P /∈ good-profpref (G, i)):
2: if (Pi 
= ∅): � ∅ is a profitable deviation
3: return (true, ∅)
4: else:
5: return ∃PDpref (G, i, (P1, . . . , Pi = ∅, . . . , Pn)) � call Algorithm 1
6: else:
7: if (Pi = ∅): � profile already good for i and Pi = ∅
8: return (false, Pi )
9: if ((P−i , ∅) ∈ good-profpref (G, i)): � ∅ is a profitable deviation
10: return (true, ∅)
11: else:
12: let G′ be the RCG identical to G, except for i’s endowment being Pi
13: (b, c) = ∃PDpref (G′, i, (P1, . . . , Pi−1, ∅, Pi+1, . . . , Pn)) � call Algorithm 1
14: return (b and c 
= Pi , c)

done by calling at most n times a decision procedure for the problem ∃PDpref . In RCGBAR,
it can be solved using Algorithm 2.

Let P be a profile in G, and let i ∈ N be a player. The correctness when P /∈
good-profpref(G, i) is trivial. If P ∈ good-profpref(G, i), we distinguish three cases.

1. If Pi = ∅, there is no profitable deviation.
2. If Pi 
= ∅ but (P−i ,∅) ∈ good-profpref(G, i), then ∅ is a profitable deviation.
3. If Pi 
= ∅ and (P−i ,∅) /∈ good-profpref(G, i), and since P ∈ good-profpref(G, i), if

a profitable deviation exists then it is not ∅, and it is (strictly) included in Pi . In other
words, we must find a profitable deviation P ′

i such that ∅ ⊂ P ′
i ⊂ Pi . We thus define a

new game G ′ = (N ′, γ ′
1, . . . , γ

′
n, ε

′
1, . . . , ε

′
n), where N ′ = N , γ ′

j = γ j , for all j ∈ N ,
and ε′

j = ε j when j 
= i , and ε′
i = Pi . The algorithm then calls Algorithm 1 to find a

profitable deviation for player i from the profile (P−i ,∅). The algorithm then returns true
when Algorithm 1 returns (b, c), b is true, and the profitable deviation c found (profitable
from (P−i ,∅) but not necessarily from (P−i , Pi )) is not the original choice Pi .

We thus need to make only a polynomial number of calls to the subprocedure of Algorithm 1.
Moreover, by Prop. 3, we know that deciding which instances to call is easy. From Lemma 3,
we have thatAlgorithm1 is correct to decidewhether a player in anRCGBARhas an incentive
to deviate from a profile where their choice is ∅, and it runs in polynomial time. Hence, in
RCGBAR, the problem ∃PDpref can be solved in polynomial time, and thus NEpref is also in
PTime. ��

Algorithm 3 Algorithm to find a Nash equilibrium in an RCGBAR, with pref = ca.
1: P = (∅, . . . , ∅)

2: while (P /∈ NEca(G)):
3: for each i ∈ N , from 1 to n, do:
4: (b, c) = ∃PDpref (G, i, (P−i , Pi )) � call Algorithm 2
5: if b:
6: Pi = c
7: return P

The following can be proved by adopting a special best-response dynamics [37] as
described in Algorithm 3.
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Theorem 5 Let G be an RCGBAR. The set NEca(G) is non-empty, and finding a profile in it
can be done in polynomial time.

Proof Algorithm 3 implements a best-response dynamics from the empty profile, with
the players taking turns. One starts in the profile P0 = (∅, . . . ,∅). During the dynamics
P0, P1, . . ., at each step k:

1. Pk is not contentious,
2. out(Pk) = ⊎

i∈psat-play(G,Pk )
γi ,

3. ∀i /∈ psat-play(G, Pk), Pki = ∅.
To see this:

• (∅, . . . ,∅) is not contentious (Fact 1.1). If i ∈ psat-play(G, (∅, . . . ,∅)), then
γi = λ. Also, out(P0) = ∅. So out(P0) = ⊎

i∈psat-play(G,P0)
γi . Clearly ∀i /∈

psat-play(G, Pk), Pki = ∅.
• Suppose Pk satisfies the conditions 1–3. Between Pk and P(k+1), some player j has
changed their choice from ∅ to P(k+1) j 
= ∅. It must be that P(k+1) ∈ good-prof(G, j).

So P(k+1) is not contentious.3 This and Fact 2 imply
⊎

i∈psat-play(G,P(k+1))
γi ⊆

out(P(k+1)). Moreover, the deviations returned by Algorithm 2 are minimal (this fol-
lows from Lemma 3), and because out(Pk) ⊆ ⊎

i∈psat-play(G,Pk )
γi , we also have

out(P(k+1)) ⊆ ⊎
i∈psat-play(G,P(k+1))

γi . Finally, since ∀i /∈ psat-play(G, Pk), Pki =
∅, player j’s choice is the only changes from Pk to P(k+1) and j ∈ psat-play(G, P(k+1)),
we also have ∀i /∈ psat-play(G, P(k+1)), P(k+1)i = ∅.
At every step k, (1) out(Pk) = ⊎

i∈psat-play(G,Pk )
γi , (2) Pk is not contentious, and (3) all

players that are not potentially satisfied in Pk are not contributing anything. It implies that the
players never have an incentive to remove resources during the iterative process. If a profile
is good for a player at some point in the iteration, every subsequent profile will also be good
for this player.

The amount of resources in the current profile strictly increases at every ‘while’ iteration.
This process will eventually terminate in a Nash equilibrium. Because of Lemma 3, it runs
in polynomial time. ��

Observe that line 3 of Algorithm 3 is only an arbitrary way to force a deterministic
procedure. But this is not necessary, as any minimal deviation, by any player, could be taken
at any time.

Using variations of Algorithm 3, we can possibly find several Nash equilibria, simply by
modifying the order of the players. Each permutation of the players would result in a Nash
equilibrium, which must not be unique.

On the other hand, not all Nash equilibria can be found only by permuting the players and
running Algorithm 3.

Example 8 Let the RCG G be ({1, 2, 3}, γ1, γ2, γ3, ε1, ε2, ε3). Player 1, is endowed with
ε1 = {A, B} and has the objective γ1 = A. Player 2 and player 3, both identical, are
endowed with ε2 = ε3 = {A, B, B} and have the objective γ2 = γ3 = B.

Let us assume pref = ca. We start from the profile (∅,∅,∅) consider the natural order
(1, 2, 3) of N. Following Algorithm 3, player 1 deviates from (∅,∅,∅) to ({A},∅,∅). Then,

3 This would not be the case with private contention-averse preferences! One profitable deviation might not
be privately contentious to the deviator but still be privately contentious to some other players.
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player 2 deviates to ({A}, {B, B},∅). Player 3 does not deviate from ({A}, {B, B},∅), which
is a Nash equilibrium.

If instead we permute player 2 and player 3, and thus consider the order (1, 3, 2) of N,
Algorithm 3 results in the Nash equilibrium ({A},∅, {B, B}).

Now, the profile ({A}, {B}, {B}) is a Nash equilibrium in G. However, there is no starting
permutation of the set of players for which Algorithm 3 would result in it.

The Nash equilibrium resulting from Algorithm 3 might not be efficient, if for instance,
efficiency is measured by the number of satisfied players.4

Example 9 Let the RCG G be ({1, 2}, γ1, γ2, ε1, ε2). Player 1 and player 2 are identical:
they are endowed with ε1 = ε2 = {A} and have the objective γ1 = γ2 = A. We have
NEca(G) = {(∅,∅), ({A}, {A})}. Algorithm 3 will return (∅,∅). (Inverting the two identical
players player 1 and player 2 as suggested in Example 8 has no effect.)

The case of contention-tolerant preferences In presence of contention-tolerant preferences,
a pure Nash equilibrium is not guaranteed to exist, even when the endowments are bags
of atomic resources. Algorithm 3 to find a Nash equilibrium, does not work in general if
(mistakenly) applied with contention-tolerant preferences. Indeed, when player i profitably
minimally deviates, it might be the case that some player now has an incentive to withhold
some resources from his current choice.

Proposition 5 Some RCGBARs do not admit any pure Nash equilibrium in presence of
contention-tolerant preferences.

Proof Consider theRCGBARG,whereγ1 = A,γ2 = A•A, ε1 = {A}, ε2 = {A}. From (∅,∅),
player 1 has a profitable deviation to ({A},∅), from which player 2 has a profitable deviation
to ({A}, {A}). By parsimony, and because the players are contention-tolerant, player 1 has a
profitable deviation from ({A}, {A}) to (∅, {A}). The profile (∅, {A}) is not aNash equilibrium
either because player 2 has a profitable deviation to (∅,∅). ��

The case of private contention-averse preferences Algorithm 3 may not terminate in the
case of ∃NEpca, too.
Example 10 An example in which Algorithm 3 does not terminate when the preferences are
private contention-aversion is the 3-player RCGG,where ε1 = {B, B}, ε2 = ∅, ε3 = {A, A},
γ1 = B, γ2 = A • B, and γ3 = A. Let us assume pref = pca. Algorithm 3 first sees player 1
deviating from (∅,∅,∅), to ({B},∅,∅). Then, it will cycle through this series of profiles, where
each player takes turns to deviate to a minimal profitable deviation when it exists: turn of
player 2, ({B},∅,∅), turn of player 3, ({B},∅, {A, A}), turn of player 1, (∅,∅, {A, A}), turn
of player 2, (∅,∅, {A, A}), turn of player 3, (∅,∅, {A}), turn of player 1, ({B, B},∅, {A}),
turn of player 2, ({B, B},∅, {A}), turn of player 3, ({B, B},∅,∅), turn of player 1, and back
to ({B},∅,∅).

Moving from ({B},∅,∅) to ({B},∅, {A, A}), player 3 ensures that he is potentially satisfied
and that the resulting profile is not privately contentious from his point of view. But the
profile is contentious from the two other players’ point of view. This is the reason why the

4 Algorithm 3 searches for a Nash equilibrium starting from (∅, . . . , ∅). We could think of a different search
starting from (ε1, . . . , εn). Non potentially satisfied players must minimally deviate to ∅, and potentially
satisfied players would remove some resources, trying to remain potentially satisfied and “reducing” the
resource contention.
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algorithm is not fit for pca preferences. Then, instead of monotonically increasing the amount
of resources in the profile, we see next player 1 removing his contribution as his minimal
profitable deviation. (Before the deviation, the profile is not good for him, hence choosing
∅ is profitable. In this case, outside the dictate of the algorithm, he could have covered the
deficit, deviating to {B, B}.)

In fact, in presence of private contention-averse preferences, a pure Nash equilibrium is
not guaranteed to exist, even when the endowments are bags of atomic resources.

Proposition 6 SomeRCGBARs do not admit any pureNash equilibrium in presence of private
contention-averse preferences.

Proof Let us assume pref = pca. Let G be the 4-player RCGBAR, where ε1 = ∅, ε2 = ∅,
ε3 = {B, B}, ε4 = {A, A}, γ1 = A • A • B • B, γ2 = A • B, γ3 = B, and γ4 = A. The game
G does not admit any Nash equilibrium. The following statements hold:

• (∅,∅,∅,∅) ≺pca
3 (∅,∅, {B},∅),

• (∅,∅,∅, {A}) ≺pca
3 (∅,∅, {B, B}, {A}),

• (∅,∅,∅, {A, A}) ≺pca
4 (∅,∅,∅, {A}),

• (∅,∅, {B},∅) ≺pca
4 (∅,∅, {B}, {A, A}),

• (∅,∅, {B}, {A}) ≺pca
3 (∅,∅,∅, {A}),

• (∅,∅, {B}, {A, A}) ≺pca
3 (∅,∅,∅, {A, A}),

• (∅,∅, {B, B},∅) ≺pca
3 (∅,∅, {B},∅),

• (∅,∅, {B, B}, {A}) ≺pca
4 (∅,∅, {B, B},∅),

• (∅,∅, {B, B}, {A, A}) ≺pca
3 (∅,∅,∅, {A, A}).

��

5 Other variants with a tractable problem NE

Before concluding this paper, we present variants for which deciding whether a profile is a
Nash equilibrium can be done in polynomial time, even in presence of (public or private)
contention-aversity. Compared to RCGBAR, their tractability remains very straightforward
observations. Still, these variants can be usefully exploited in specific practical applications.
They also serve the theoretical interest of understanding the sources of computational com-
plexity in the problem NEpref .

5.1 RCGs with independent objectives

We now consider the restricted class of RCGs where the goals of the players are independent.

Definition 9 AnRCGwith independent objectives (RCGIO) is an RCGG = (N , γ1, . . . , γn,

ε1, . . . , εn) such that for every i, j ∈ N, if i 
= j then �(γi ) ∩ �(γ j ) = ∅.
When the objectives of the players are independent, there is no place whatsoever for

contention.

Lemma 4 If G is an RCG with independent objectives, then there is no contentious profile
in G.
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The converse of Lemma 4 does not hold. Take N = {1, 2}, γ1 = A, γ2 = A, ε1 = ∅,
ε2 = ∅. The unique profile (∅,∅) is not contentious (Fact 1). It is also the case with a non-
trivial set of profiles, e.g., with ε′

1 = {A • A}, ε′
2 = {A • A, B}, where none of the profiles are

contentious.

Proposition 7 In RCGs with independent objectives, for every kind of preferences pref, the
problem NEpref is in PTime.

Proof By Lemma 4, we know that resource contention is irrelevant in an RCG G with
independent objectives. Indeed, NEct(G) = NEca(G) = NEpca(G). We can thus decide all
three problems NEpref as if pref = ct. We conclude using Theorem 2, whose proof provides
an algorithm for all the present cases. ��

Independent objectives are not sufficient to guarantee the existence of Nash equilibria.

Proposition 8 For every kind of preferences pref ∈ {ct, ca,pca}, there is an RCG with
independent objectives G such that NEpref(G) = ∅.
Proof Consider the three-player RCG G , where ε1 = {A • B}, ε2 = {B • C}, ε3 = {A • C},
and γ1 = A, γ2 = B, and γ3 = C . The game G is is an RCG with independent objectives.
We have NEct(G) = NEca(G) = NEpca(G) = ∅. ��

However, restricting the endowments to bags of atomic resources, ∃NEpref becomes a
trivial problem. The following proposition characterizes the existence of one and only one
Nash equilibrium.

Proposition 9 Let G be an RCGBAR with independent objectives. For every kind of prefer-
ences pref ∈ {ct, ca,pca}, P ∈ NEpref(G) iff for every i ∈ N, we have

Pi =
{

γi when γi ⊆ εi

∅ otherwise .

5.2 RCGs with explicit choices

A source of computational complexity to decide profitable deviations and Nash equilibria
comes from the fact that the number of distinct choices a player can make in an RCG is
exponential with the size of his endowment. Each player can play unrestrained any subset of
his endowment. This is not always a good assumption either. A player might be subject to
some limitations about the combinations of resources it provides, either in numbers (e.g., no
more than three candies), or in quality (e.g., never molecular hydrogen and oxygen together).

Definition 10 An individual resource game with explicit choices (RCGEC) is a tuple
G = (N , γ1, . . . , γn, ch1, . . . , chn) where:

• N = {1, . . . , n} is a finite set of players;
• γi is a resource bundle (i’s goal, or objective);
• chi is a finite set of resource bags (i’s choices).

In an RCG G we defined the set chi (G) of possible choices of player i as the set of multisets
(Section 2). In an RCGEC, the sets of choices chi are explicitly specified in the model. This
is useful and not unseen before, indeed. Congestion Games [43], archetypal games with
resources, are often presented with such explicit actions.

123



342 N. Troquard

It is easy to see that RCGECs are more general than RCGs. To every RCG G =
(N , γ1, . . . , γn, ε1, . . . , εn), corresponds the RCGEC G ′ = (N , γ1, . . . , γn,P(ε1), . . . ,

P(εn)), where P(εi ) is the powerset of the multiset εi .

Proposition 10 In RCGs with explicit choices, for every kind of preferences pref, the problem
NEpref is in PTime.

5.3 RCGs with bounded-sized endowments

We observed in Section 5.2, that a source of complexity in finding profitable deviations
comes from the number of possible choices of a player being exponential in the size of his
endowment. We can take steps upon this observation, albeit in a different direction.

Definition 11 A resource contribution game with k-bounded endowments (k-RCGBSE) is a
resource contribution game G = (N , γ1, . . . , γn, ε1, . . . , εn), where k is an integer such that
Card(εi ) ≤ k.

Using k-bounded endowments, the number of resource bundles in the endowments is
bounded. But the number of atomic resources that make up these bundles is not bounded.
Indeed, in the definition above, the size of �•(εi ) can still be arbitrarily large.

In k-RCGBSEs, the number of choices available to a player is bounded, although expo-
nentially large wrt. the size of his endowment.

Proposition 11 Let k be a fixed integer. In the class of RCGs with k-bounded endowments,
for every kind of preferences pref, the problem NEpref is in PTime.

6 Conclusions

We introduced a class of non-cooperative games, where players contribute resources, and
consume resources. They are largely inspired from the individual resource games of [46].
Our main conceptual contribution has been to introduce the notion of resource contention,
and to define resource-averse preferences. Our main technical contributions have been about
the computational aspects of Nash equilibria in this setting. We then studied the complexity
of the problem of deciding whether a profile is a Nash equilibrium (NEpref ), and of some
interesting cases of the problem of finding a Nash equilibrium (∃NEpref ).

The main results about the problem NEpref are summarized in Table 1. (The case of
resource-tolerant preferences is only an adaption form [48].) Also notably, in Theorem 5,
using a special best-response dynamics, we establish that in RCGBARs, with public
contention-averse preferences, there is always a pure Nash equilibrium and finding one can
be done in polynomial time. This puts this kind of preferences apart; even in RCGBAR,

Table 1 Complexity of the
problem NEpref in RCG and
RCGBAR when pref is
contention-tolerant (ct), public
contention-averse (ca), and
private contention-averse (pca)

pref RCG RCGBAR

ct PTime (Th. 2, [48]) PTime (Th. 2, [48])

ca coNP-c (Th. 1) PTime (Th. 4)

pca coNP-c (Th. 1) PTime (Th. 4)
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a pure Nash equilibrium may not exist in presence of contention-tolerant preferences and
private contention-averse preferences.

The problemNEpref is also tractable for every kind of preferences inRCGwith independent
objectives (Prop. 7), with explicit choices (Prop. 10), and with bounded-size endowments
(Prop. 11). A Nash equilibrium need not exist in any of these classes.

Related work Deciding whether a profile is a Nash equilibrium and finding a Nash equilib-
rium are natural problems that have been largely studied in a variety of settings.

Nash’s seminal articles [39, 40] demonstrate that a mixed-strategy equilibrium that now
bears his name always exists. A celebrated result of computational game theory estab-
lishes that finding amixed-strategyNash equilibrium in traditionally-defined non-cooperative
games (with an explicit set of pure strategies and utilities) is PPAD-complete [18]; On the
other hand, checking whether a profile is a Nash equilibrium is an easy task.

Pure-strategy Nash equilibrium synthesis in games with temporal objectives has also
attracted a lot of attention in theoretical computer science andmultiagent systems, e.g., [8, 11,
13, 15, 16, 24, 29], where a significant part of the works focuses on combined qualitative and
quantitative objectives. The complexity varies widely depending on the exact models and the
specification language of the objectives. Model checking techniques have been successfully
adapted to the verification of Nash equilibria [28, 50].

These problems have been studied in models of games which share closer similarities with
ours.

In congestion games (CGs) [32, 43], the players choose a set of resources to use, and
their utility depends on the ‘delays’ of shared resources, which depend on the number of
players choosing them. Although delays can be arbitrarily large, the resources do not become
oversubscribed, and they are not subject to contention. Despite some apparent similarities
between RCGs and CGs, they are rather superficial. Players in CGs are not producers of
resources, and do not have endowments per se. Players’ actions in CGs consist in choosing
a subset of an already available common pool of resources to use. In RCGs, players are
consumers but also producers of resources; their actions consist inmaking resources available
in the common pool. Unlike CGs, the existence of a pure NE is not guaranteed in general
in RCGs. Finding a Nash equilibrium in CGs is PLS-complete [22], and a socially optimal
Nash equilibrium can be found in polynomial time in singleton CGs [32].

Somehow, also in boolean games [6, 30, 31] the players produce and consume ‘resources’.
Each player controls a set of boolean variables and produces truth values which can be used
without restriction towards the boolean goal of all the players. But we do not think that there
are immediate natural correspondences between RCGs and boolean games. Boolean states
of affairs are non-rivalrous resources by nature, so a player using the truth of a propositional
variable to achieve their boolean goal does not prevent another player to also do so. As
such, resource contention is absent from boolean games. So players in boolean games could
as well be contention-tolerant. As in boolean games, we could force the endowments to be
non-overlapping (for exclusive control over a resource). Under these conditions, a connection
would then exist if we allowed the players in our games to have preferences about the absence
of a resource. The main focus of boolean games is also on pure-strategy Nash equilibria.
Deciding whether a profile is a Nash equilibrium in a boolean game is coNP-complete and
deciding whether one exists is �

p
2 -complete.

There is of course a neat relationship with [46], which defines parameterized individual
resource games. The parameter can be any resource-sensitive logic, specifically variants of
Linear Logic [26]. The language of the logic is then used to represent resources of varying
complexity. Our games are like those of [46], called individual resource games (IRGs),
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parameterized with a logic corresponding to the fragment A ::= 1 | p | A ⊗ A where p is
an atomic variable, 1 is the empty resource bundle λ, and a formula A ⊗ B corresponds to
the resource bundle A • B. Our resource transformation Bag � Bundle is nothing but the
entailment Bag � Bundle in the Linear Logic. The games from [46] are studied only with
contention-tolerant players. In IRGs, the complexity of deciding whether a profile is a Nash
equilibrium depends on the variant of Linear Logic that is used to represent the resources. It
varies from PTime (when usingMULT like in our case with contention-tolerant preferences),
to undecidable (when using full Linear Logic).

Outside of non-cooperative game theory, our games have some connections with other
models of resource-sensitive interactions of agents

The classes of games presented in [20, 44, 47] are models where the players are both
consumers and producers of resources. In these games, the players have resource endowments
which can be combined so as to achieve resource objectives. These games are cooperative,
and the authors study the computational aspects of cooperative solution concepts.

The notion of competition over resources is ubiquitous in social choice (e.g., [1, 3, 7, 9, 14,
17]). The models of our games bear a resemblance with combinatorial exchanges [33] and
with mixed multi-unit combinatorial auctions (MMUCAs) [12, 25], where the agents can be
both sellers and buyers. In MMUCAs, as in RCGs, bundles of goods can be transformed into
different bundles of goods. The study of MMUCAs focuses on determining the sequences of
bids to be accepted by an auctioneer.

Open problems and future workWe have focused more closely on the problem of deciding
whether a profile is a pure Nash equilibrium. In the future work, we will look more closely
at the problem of finding Nash equilibria. In particular, for contention-averse preferences,
∃NEpref is in�

p
2 , but no lower bound is known. In RCGBARs, we proved that ∃NEca is trivial

and that finding one can be done in polynomial time (Theorem 5). But characterizing the
complexity of ∃NEpca and ∃NEct remains to be done; although they are both inNP (Theorem3,
and as a corollary of Theorem 4). It would also be interesting to consolidate existing results.
The hardness of NEca and NEpca relies on Lemma 1. But it does not carry through when we
have a bounded supply of players, or when the size of goals is bounded.

Working with our definition of preferences (Definition 3) has the advantage to make
all assumptions about the motivations of the players explicit. Undeniably, a utility model
would be useful for further investigations of RCGs. However, ≺pref

i does not satisfy negative

transitivity, and thus cannot be represented by a utility function [34].We can redefine Q ≺pref
i

P as:

1. P /∈ good-profpref(G, i), Q /∈ good-profpref(G, i) and |Pi | < |Qi |;
2. P ∈ good-profpref(G, i), and Q /∈ good-profpref(G, i);
3. P ∈ good-profpref(G, i), Q ∈ good-profpref(G, i) and |Pi | < |Qi |.
We can also define for every player i , and P ∈ ch(G):

uprefi (P) =
{
2 · |εi | + 1 − |Pi | when P ∈ good-profpref(G, i)

|εi | − |Pi | otherwise .

For pref ∈ {ct, ca,pca}, we now have that Q ≺pref
i P iff uprefi (P) > uprefi (Q). Interestingly,

it can be shown that the set of Nash equilibria, in RCGBARswith any kind of attitude towards
contention, remains unchanged when adopting these new definitions.

We showed in Theorem 5 that a best-response dynamics can be applied from the empty
profile and will converge to a Nash equilibrium. Showing it from an arbitrary profile remains
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a challenge. We conjecture that RCGBARs with public contention-averse preferences are a
class of (generalized ordinal) Potential Games [38], and thus that the best-response dynamics
can be applied from any profile. The formulation of preferences as utility function equips us
with better tools to investigate this. But settling the question has eluded us so far. We leave
it for future work and we also hope that others will find the problem worth investigating.

Our models assume that the contributed resources are distributed non-cooperatively and
without supervision. In fact, single-mindedness makes the allocation of the contributed
resources a nonissue in RCGs with contention-averse preferences: distribute the resources
available to the players who find the profile good, and leave the remaining resources unas-
signed.

However, an occasion will come to enrich the preferences beyond single-mindedness and
let the players enjoy partial satisfaction when they receive some but not all of the resources
in their objective. Instead of having preferences about a raw profile P , the player’s prefer-
ences could be raised over the result of the (fair, envy-free, efficient, etc) allocation of the
resources [7] contributed in out(P). A utility model in the vein of what is proposed above
should help us in this direction.

In general, the study of RCGs with other alternative preferences would be interesting.
Having at disposition the notions of resources, satisfaction, contention, andprivate contention,
it becomes rather tempting to think of other kind of preferences that might be fitting to model
agents’ attitudes in some application domain. Such alternative preferences could for instance
consider the maximisation of potentially satisfied players, or the minimisation of players in
private contention.

This paper made no attempt at designing mechanisms to achieve ‘good’ equilibria. We are
interested in using resource contribution games in problems of gamification. Gamification
refers to the broad application of game-design techniques in contexts that do not otherwise
present game-like features [42]. Gamification aims at incentivizing an intended behavior by
introducing rewards for specific tasks. Rewards often present themselves as virtual resources
such as achievement badges. Formally, they might be nothing more than distinguished tokens
of resources. In Example 2, we saw that the profile where all companies refrain from pro-
viding any resources, (∅,∅), is a Nash equilibrium. Also in Example 7, we saw that the
profile where everyone refrains from providing any resources is a Nash equilibrium. Nash
equilibria in RCGs are in fact only faithful to the expected behaviours in resource-driven
non-cooperative interactions. It is a phenomenon observed also in experiments with public
good games, demonstrating that voluntary private provisions of public goods typically remain
underfunded [35]. This can be an undesirable behaviour that policy makers might be able to
anticipate by using the analytical tools defined in this paper, and to avoid by using advanced
gamification methods which must be the object of future research.

A Software implementation: examples, and proofs details

An implementation is available at https://bitbucket.org/troquard/irgpy/src/master/. Suffixes
pct stand for (parsimonious) contention-tolerant preferences (ct), pca for (parsimonious
public) contention-averse preferences (ca), and ppca for (parsimonious) private contention-
averse preferences (pca).
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A.1 Simple example

We begin with a simple series of examples. Based on the same RCG (more precisely, an
RCGBAR), we examine the differences in the sets of Nash equilibria when changing the
kind of preferences.

Example 11 Player 1, Ann, is endowed with ε1 = {A, B} and has the objective γ1 = A.
Player 2 and player 3, both identical Bob, are endowed with ε2 = ε3 = {A, B, B} and have
the objective γ2 = γ3 = B.

The following script shows how the software can be used to determine the set of Nash
equilibria in the game when considering (public) contention-averse preferences.

1 $ python3
2 >>> from irg import Player , Game
3 >>> ann = Player("Ann", ['A','B'], ['A'])
4 >>> bob = Player("Bob", ['A', 'B', 'B'], ['B'])
5 >>> game = Game(ann , bob , bob)
6 >>> print(game)
7 Game: [
8 '(1, Player: Name: Ann. Endowment: {A, B}. Goal: {A}.)',
9 '(2, Player: Name: Bob. Endowment: {A, B, B}. Goal: {B}.)',
10 '(3, Player: Name: Bob. Endowment: {A, B, B}. Goal: {B}.)']
11 >>> for p in game.nash_generator_generic(game.prefers_pca):
12 ... print("Nash:", p)
13 ...
14 Nash: Profile: [(1, '{A}'), (2, '{}'), (3, '{B, B}')]
15 Nash: Profile: [(1, '{A}'), (2, '{B}'), (3, '{B}')]
16 Nash: Profile: [(1, '{A}'), (2, '{B, B}'), (3, '{}')]
17 Nash: Profile: [(1, '{A, B}'), (2, '{}'), (3, '{B}')]
18 Nash: Profile: [(1, '{A, B}'), (2, '{B}'), (3, '{}')]

Example 11 (continued) Continuing Example 11, we can see the effect on the set of Nash
equilibria of a change from contention-averse preferences to contention-tolerant preferences.

1
2 >>> for p in game.nash_generator_generic(game.prefers_pct):
3 ... print("Nash:", p)
4 ...
5 Nash: Profile: [(1, '{A}'), (2, '{}'), (3, '{B}')]
6 Nash: Profile: [(1, '{A}'), (2, '{B}'), (3, '{}')]

Example 11 Continuing Example 11, we can see the effect on the set of Nash equilibria of a
change from (public) contention-averse preferences to private contention-averse preferences.

1 >>> for p in game.nash_generator_generic(game.prefers_ppca):
2 ... print("Nash:", p)
3 ...
4 Nash: Profile: [(1, '{A}'), (2, '{}'), (3, '{B, B}')]
5 Nash: Profile: [(1, '{A}'), (2, '{B}'), (3, '{B}')]
6 Nash: Profile: [(1, '{A}'), (2, '{B, B}'), (3, '{}')]
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A.2 Back to Example 1

We now demonstrate how the motivating example Example 1 is implemented in the software.

Example 1 (continued) In the first part of the example, with you, Bruno, and Carmen the
game is formally defined as: G̃1.1 = ({y, b, c}, γy = w •w, γb = w • r •o, γc = w • r •o, εy =
{w • w • w • w}, εb = {r, r, r}, εc = {o, o})
1 $ python3
2 >>> from irg import Player , Game
3 >>> you = Player("you", [('w','w','w','w')], 'ww')
4 >>> bruno = Player("bruno", ['r','r','r'], 'wro')
5 >>> carmen = Player("carmen", ['o','o'], 'wro')
6 >>> game11 = Game(you , bruno , carmen)
7 >>> for p in game.nash_generator_generic(game.prefers_pca):
8 ... print("Nash (pca):", p)
9 ...
10 Nash (pca): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{}'),

(3, '{}')]
11 Nash (pca): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{r, r}'

), (3, '{o, o}')]
12 >>> for p in game11.nash_generator_generic(game11.prefers_ppca):
13 ... print("Nash (ppca):", p)
14 ...
15 Nash (ppca): Profile: [(1, "{('w', 'w', 'w', 'w')}"), (2, '{}'),

(3, '{}')]
16 Nash (ppca): Profile: [(1, "{('w', 'w', 'w', 'w')}"), (2, '{r, r}

'), (3, '{o, o}')]
17 >>> for p in game11.nash_generator_generic(game11.prefers_pct):
18 ... print("Nash (pct):", p)
19 ...
20 Nash (pct): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{}'),

(3, '{}')]
21 Nash (pct): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{r}'),

(3, '{o}')]

In the second part of the example, when Edward joins the party, the game is formally
defined as: G̃1.2 = ({y, b, c, e}, γy = w •w, γb = w • r •o, γc = w • r •o, γe = w •w •w, εy =
{w • w • w • w}, εb = {r, r, r}, εc = {o, o}, εe = ∅)

Continuing the previous execution, we simply add a player and define a new game with
the four players.

1 >>> edward = Player("edward", '', 'www')
2 >>> game12 = Game(you , bruno , carmen , edward)
3 >>> for p in game12.nash_generator_generic(game12.prefers_pca):
4 ... print("Nash (pca):", p)
5 ...
6 Nash (pca): Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{}')]
7 >>> for p in game12.nash_generator_generic(game12.prefers_ppca):
8 ... print("Nash (ppca):", p)
9 ...
10 Nash (ppca): Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{}')

]
11 >>> for p in game12.nash_generator_generic(game12.prefers_pct):
12 ... print("Nash (pct):", p)
13 ...
14 Nash (pct): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{}'),

(3, '{}'), (4, '{}')]
15 Nash (pct): Profile: [(1, "{('w', 'w', 'w', 'w ')}"), (2, '{r}'),

(3, '{o}'), (4, '{}')]
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A.3 Back to Example 2

We now demonstrate how our running example Example 2 is implemented in the software.

Example 2 (continued) The scenario was formalized into the RCG G̃2 = ({a, b}, γa =
3G • 3G • 4G, γb = 3G • 3G • 4G • 4G, εa = {3G, 3G, 3G • 3G}, εb = {3G, 4G, 4G • 4G}).
1 $ python3
2 >>> from irg import Player , Game
3 >>> A = Player("Company A", ['3G', '3G', ('3G', '3G')], ['3G', '3

G', '4G'])
4 >>> B = Player("Company B", ['3G', '4G', ('4G', '4G')], ['3G', '3

G', '4G' ,'4G'])
5 >>> game = Game(A, B)
6 >>> print(game)
7 Game: ["(1, Player: Name: Company A. Endowment: {3G, 3G, ('3G',

'3G')}.
8 Goal: {3G, 3G, 4G}.)",
9 "(2, Player: Name: Company B. Endowment: {3G, 4G, ('4G', '4G')}.
10 Goal: {3G, 3G, 4G, 4G}.)"]
11 >>> for p in game.nash_generator_generic(game.prefers_pca):
12 ... print("Nash:", p)
13 ...
14 Nash: Profile: [(1, '{}'), (2, '{}')]
15 Nash: Profile: [(1, "{3G, ('3G', '3G')}"), (2, "{3G, 4G, ('4G',

'4G')}")]
16 Nash: Profile: [(1, "{3G, 3G, ('3G', '3G')}"), (2, "{4G, ('4G',

'4G')}")]
17 >>> for p in game.nash_generator_generic(game.prefers_ppca):
18 ... print("Nash:", p)
19 ...
20 Nash: Profile: [(1, '{}'), (2, '{}')]
21 Nash: Profile: [(1, "{3G, ('3G', '3G')}"), (2, "{3G, 4G, ('4G',

'4G')}")]
22 Nash: Profile: [(1, "{3G, 3G, ('3G', '3G')}"), (2, "{4G, ('4G',

'4G')}")]
23 >>> for p in game.nash_generator_generic(game.prefers_pct):
24 ... print("Nash:", p)
25 ...
26 Nash: Profile: [(1, '{}'), (2, '{}')]
27 Nash: Profile: [(1, "{('3G', '3G ')}"), (2, "{('4G', '4G ')}")]
28 Nash: Profile: [(1, '{3G}'), (2, "{3G, ('4G', '4G')}")]
29 Nash: Profile: [(1, '{3G, 3G}'), (2, "{('4G', '4G')}")]
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A.4 Deviations explanations of Proposition 1

We can use the verbose mode of our implementation to repeat the proof of Proposition 1.

Example 12 We considered the RCG G, with two players 1 and 2, where ε1 = ε2 = {A • B},
γ1 = A, and γ2 = B • B, and showed that NEpref(G) = ∅ for every kind of preferences. This
can be also verified programmatically as follows.

1 $ python3
2 >>> from irg import Player , Game
3 >>> one = Player("one", [('A', 'B')], ['A'])
4 >>> two = Player("two", [('A', 'B')], ['B', 'B'])
5 >>> game = Game(one , two)
6 >>> for p in game.nash_generator_generic(game.prefers_pct ,

verbose=True):
7 ... print("Nash:", p) # there won't be any
8 ...
9 From Profile: [(1, '{}'), (2, '{}')]
10 one prefers Profile: [(1, "{('A', 'B')}"), (2, '{}')]
11 From Profile: [(1, '{}'), (2, "{('A', 'B')}")]
12 two prefers Profile: [(1, '{}'), (2, '{}')]
13 From Profile: [(1, "{('A', 'B')}"), (2, '{}')]
14 two prefers Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B ')}")]
15 From Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B')}")]
16 one prefers Profile: [(1, '{}'), (2, "{('A', 'B')}")]
17 >>> for p in game.nash_generator_generic(game.prefers_pca ,

verbose=True):
18 ... print("Nash:", p) # there won't be any
19 ...
20 From Profile: [(1, '{}'), (2, '{}')]
21 one prefers Profile: [(1, "{('A', 'B')}"), (2, '{}')]
22 From Profile: [(1, '{}'), (2, "{('A', 'B')}")]
23 two prefers Profile: [(1, '{}'), (2, '{}')]
24 From Profile: [(1, "{('A', 'B')}"), (2, '{}')]
25 two prefers Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B ')}")]
26 From Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B')}")]
27 one prefers Profile: [(1, '{}'), (2, "{('A', 'B')}")]
28 >>> for p in game.nash_generator_generic(game.prefers_ppca ,

verbose=True):
29 ... print("Nash:", p) # there won't be any
30 ...
31 From Profile: [(1, '{}'), (2, '{}')]
32 one prefers Profile: [(1, "{('A', 'B')}"), (2, '{}')]
33 From Profile: [(1, '{}'), (2, "{('A', 'B')}")]
34 two prefers Profile: [(1, '{}'), (2, '{}')]
35 From Profile: [(1, "{('A', 'B')}"), (2, '{}')]
36 two prefers Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B ')}")]
37 From Profile: [(1, "{('A', 'B')}"), (2, "{('A', 'B')}")]
38 one prefers Profile: [(1, '{}'), (2, "{('A', 'B')}")]
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A.5 Deviations explanations of Proposition 6

We can use the verbose mode of our implementation to repeat the proof of Prop. 6.

Example 13 We consider the RCGBAR G where ε1 = ∅, ε2 = ∅, ε3 = {B, B}, ε4 = {A, A},
γ1 = A • A • B • B, γ2 = A • B, γ3 = B, and γ4 = A. NEpca(G) is empty.

1 $ python3
2 >>> from irg import Player , Game
3 >>> one = Player("one", '', 'AABB')
4 >>> two = Player("two", '', 'AB')
5 >>> three = Player("three", 'BB', 'B')
6 >>> four = Player("four", 'AA', 'A')
7 >>> game = Game(one , two , three , four)
8 >>> for p in game.nash_generator_generic(game.prefers_ppca ,

verbose=True):
9 ... print("Nash: ", p) # there won't be any
10 ...
11 From Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{}')]
12 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '

{}')]
13 From Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A}')]
14 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{B, B}'), (4,

'{A}')]
15 From Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A, A}')]
16 four prefers Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A}

')]
17 From Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '{}')]
18 four prefers Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '{A

, A}')]
19 From Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '{A}')]
20 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A

}')]
21 From Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '{A, A}')]
22 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A

, A}')]
23 From Profile: [(1, '{}'), (2, '{}'), (3, '{B, B}'), (4, '{}')]
24 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{B}'), (4, '

{}')]
25 From Profile: [(1, '{}'), (2, '{}'), (3, '{B, B}'), (4, '{A}')]
26 four prefers Profile: [(1, '{}'), (2, '{}'), (3, '{B, B}'), (4,

'{}')]
27 From Profile: [(1, '{}'), (2, '{}'), (3, '{B, B}'), (4, '{A, A}')

]
28 three prefers Profile: [(1, '{}'), (2, '{}'), (3, '{}'), (4, '{A

, A}')]
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