Annals of Mathematics and Artificial Intelligence (2023) 91:569-589
https://doi.org/10.1007/510472-023-09894-7

®

Check for
updates

Automated programming, symbolic computation, machine
learning: my personal view

Bruno Buchberger’

Accepted: 27 March 2023 / Published online: 10 October 2023
© The Author(s) 2023

Abstract

In this note, I present my personal view on the interaction of the three areas Automated
Programming, Symbolic Computation, and Machine Learning. Programming is the activity
of finding a (hopefully) correct program (algorithm) for a given problem. Programming is
central to automation in all areas and is considered one of the most creative human activities.
However, already very early in the history of programming, people started to “jump to the
meta-level” of programming, i.e., started to develop procedures that automate, or semi-
automate, (various aspects or parts of) the process of programming. This area has various
names like “Automated Programming”, “Automated Algorithm Synthesis”, etc. Developing
compilers can be considered an early example of a problem in automated programming.
Automated reasoners for proving the correctness of programs with respect to a specification is
an advanced example of a topic in automated programming. ChatGPT producing (amazingly
good) programs from problem specifications in natural language is a recent example of
automated programming. Programming tends to become the most important activity as the
level of technological sophistication increases. Therefore, automating programming is maybe
the most exciting and relevant technological endeavor today. It also will have enormous impact
on the global job market in the software industry. Roughly, I see two main approaches to
automated programming:

e symbolic computation
e and machine learning.

In this note, I explain how the two approaches work and that they are fundamentally different
because they address two completely different ways of how problems are specified. Together,
the two approaches constitute (part of) what some people like to call “artificial intelligence”.
In my analysis, both approaches are just part of (algorithmic) mathematics. The approaches,
like all non-trivial mathematical methods, need quite some intelligence on the side of the
human inventors of the methods. However, applying the methods is just “machine execution”
of algorithms. It is misleading to call the application “machine intelligence” or “artificial
intelligence”. The analysis of the two approaches to automated programming also suggests
that the two approaches, in the future, should be combined to achieve even higher levels
of sophistication. At the end of this note, I propose some research questions for this new
direction.

B<I Bruno Buchberger
bruno.buchberger @jku.at; buchberger.bruno@gmail.com

I Research Institute for Symbolic Computation (RISC), Johannes Kepler University of Linz, Linz, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-023-09894-7&domain=pdf

570 B. Buchberger

Keywords Automated programming - Symbolic computation - Automated reasoning -
Machine learning - Artificial intelligence - Artificial general intelligence - Pretrained large
language models - Software industry - Programming assistant.

Mathematics Subject Classification (2010) 68T01 - 68W30 - 68N15

1 Automated programming

The process of programming starts from problems in some reality and creates programs
that solve the problems in appropriate finitary models of this reality (i.e., models that can
be stored in a computer). From the model, the solutions can be interpreted back in the
problem reality. Programming has matured from being a kind of magic at the beginning to
a decent engineering discipline called “software engineering”. Programming is at the center
of automating all kinds of processes. In a natural jump to the meta-level, we can try to
automate the process of programming itself (or at least part of it) to make the process more
reliable, provably correct, faster, more flexible, more economic, and ultimately less (brain)
labor intensive.
More formally, for a given programming language, we write:

pld] := the result (a data value) of applying program (algorithm) p
(of the language) to input data d.

Data are numbers and other elementary objects and compositions of objects (like matrices,
trees, etc.).
For a given logic language (like predicate logic), we write:

qld] := the result (a truth value) of evaluating formula g

(of the language) on input data d.

Roughly, a problem can be described (“specified”) by a formula g (in some logic language)
that explains, for all data d and e, whether or not e is an admissible answer to the problem
input (“problem instance”) d. One often presents problems using the following wording:
Given d, find e such that ¢[d, e].

A program p (in a given programming language) solves problem ¢ (described in a given
logic language) iff

foralld, qld, pld]]l. (The “correctness statement” for program p
with respect to problem ¢.)

Problem specifications of the above form are called “explicit” (i.e. they are not in mutual
dependence with other problems) and “general” (i.e. there is the “for all” quantifier at the
beginning of the correctness statement). In practice, problem specifications are not formulated
in formal logic languages but in natural languages. A formal language is a language whose
syntax and semantics is defined in a meta-language. A natural language is a language whose
syntax and semantics is learned by using the language in contexts that are shared by the people
who speak the language. When problem specifications are formulated in natural language,
the universal quantifier in the correctness statement may be hidden. (Problem specifications
in natural language are also the starting point of automated programming by pretrained large
language models, see the last sections of this note.)

@ Springer

Automated programming, symbolic computation... 571

In most cases, problem specifications are explicit. (However, there are important classes
of algorithmic problems that cannot be described in explicit form. For example, a canonical
simplifier A for an equivalence relation P cannot be described in this form. More generally,
for example, the specification of operations on data structures by axioms or the construction
of algorithmic isomorphic representations of mathematical domains are not explicit. Here,
we cannot go into more details about this.) Later, in the section on machine learning, we will
also consider problem specification that are not “general” but “by example”.

Programming can be easy for some problems. (Example: The problem of deciding whether
a given object is in a given list.) Programming may need some well-trained mind. (Example:
The problem of finding shortest paths in graphs. A famous algorithm for this is Dijkstra’s
algorithm.) For some problems, finding an algorithm has been open for many years but,
finally an algorithm was found. (Example: The problem of deciding whether a non-linear
multivariate polynomial system over the complex numbers has a complex solution. Solved
1965 by the author.) For some problems, finding an algorithm is still open. (Example: Collatz’
halting problem: f[n] := if[even[n], n/2, 3n+ 1]; f[1] := 1.) For some problems, finding
a “good” algorithm is still open. (Example: The problem of deciding whether a Boolean
system has a solution, called the SAT (satisfiability) problem). For some problems, finding
an algorithm was proved to be impossible. (Example: The problem of deciding whether a
non-linear multivariate polynomial system over the integer numbers has an integer solution.
Proved impossible in 1971 by Yu. Matiyasevich.)

By the work of millions of “programmers” (algorithm inventors, mathematicians) over the
past centuries and decades: we have thousands of algorithms for fundamental problems (made
available in well-organized algorithm libraries); millions/billions of complex programs for
easy and more and more difficult problems are composed from the fundamental algorithms
and are made available in “software systems” for thousands of “applications”; these programs
are executed on billions of computers (that become faster, bigger, smaller, cheaper, ... at an
impressive rate); a growing flood of data (in/out) is processed and produced; by the internet,
these computers, the software systems, and the data are globally interconnected forming kind
of a “global computer”; the global computer interconnects the billions of users and becomes
the digital memory and the digital processing power of a “global society” in a digital model
of the world; the global society is the global programmer and the global user of the global
computer.

One may argue that “programming” (finding provably correct algorithms for problems)
is the most intelligent human activity: Programming is the abstract form of all problem
solving (= composing solutions for problems from available solutions for sub-problems),
and programming is the essence of mathematics and is essentially mathematics. However, in
a certain sense, by “automated programming”’, low-level programming will be trivialized and
millions of programmers are in danger of losing their jobs. On the other hand, programming
will remain essential and probably the most essential activity on higher and higher levels of
abstraction. (In my view, this is a practical formulation of the incompleteness theorem of
Kurt Godel, who proved this insight 1931, i.e., ten years before the first universal computer
was built!)

On the way from a problem specification or a collection of problem specifications to a
program or software system that solves the problem(s) there are many creative steps. Each of
these steps can be handled ad hoc for the particular problem(s) at hand by a mathematician,
computer scientist, programmer. Each of these steps, however, can also be considered a
problem on “data” like software requirements, programs, algorithm schemata, verification
conditions, etc. Algorithms for these steps on the meta-level constitute the field of “automated
programming”.

@ Springer

572 B. Buchberger

A simple example: In a calendar software system, typically, we will need one unit to check
whether a proposed new appointment collides with one already stored.

In such a simple example of a problem specification, one normally expects that the natural
language specification is sufficient for a moderately experienced programmer to come up
with a program that solves the problem (hopefully correctly). Recently, I used this simple
problem for some experiments on the attitudes and capabilities of programmers. I found that
most programmers immediately understood that the input data in this problem are the stored
appointments and the new appointment and that the output is a message like “collision” or
“no collision”. They also naturally decomposed the approach into a loop (of some kind)
through all the stored appointments and a collision test between the new appointment and
the appointment considered inside the loop. Furthermore, it was immediate that the collision
test should be done by formulating a condition between the four time moments s1, e1, 52, €2,
i.e., the start time and the end time of the first and the second appointments, respectively,
where we may assume that s; < ej and 52 < e3.

“After some thinking”, the problem was then described by most programmers by a sentence
like this: “The two appointments characterized by s1, ey, 52, €2 collide iff s, < 51 < e or
s1 < 52 < e1.“ Now itis clear that this “specification” of the problem is, basically, already the
solution algorithm. Only some transformation into the syntax of the programming language
used is necessary. No powerful algorithm verification method or algorithm synthesis method
seems to be necessary in such a simple case.

As simple as the example is, it is not simple enough to guarantee the avoidance of serious
programming mistakes. In my systematic experiments with programmers, quite a few came up
with the following specification/code: “The two calendar entries characterized by s1, e1, 52, €2
collide iff either s < s1 < e or sp < e1 < e».” This specification is “incorrect” because
it does not include the case 51 < s2 < e2 < eq, which of course “everybody” would also
consider as a collision, even a “particularly heavy one”. I put “incorrect” in quotation marks
because, at the very first stage of uttering a requirement, the “customer is always right”.
Maybe, he really wants what he tells, or he believes that what the programmer tells him
is what he wants! Alternatively, one may consider the following discussion as a way to
find out what the customer “really wants”. For this, we start a little “earlier” and just say:
“The two calendar entries characterized by sy, ey, 52, €3 collide iff the time interval [s1, e;]
intersects with the time interval [s7, e2].” Now we should discuss the notion “intersects”
and might agree on the following: “The two calendar entries characterized by s, ey, 52, €2
collide iff there is a time moment x such that s; < x < e; and s < x < e,.” (Note that
there is an existential quantifier in the definition!) In this form, we can send the condition
as input to a quantifier elimination algorithm and we will get the result “s, < 51 < ep or
s1 < s2 < e1” or something equivalent. (Please try this out using a symbolic computation
system like Mathematica! It is worthwhile!) Hence, this simple example shows that already in
the very early stage of discussing and clarifying even seemingly simple requirements some
non-trivial systematic/formal reasoning is involved. It is the main question of automated
programming how much of this reasoning can be automated.

The second task in writing a program for the above collision problem is an appropriate
organization of the loop over the stored appointments. It turned out that, of course, all pro-
grammers immediately proposed a trivial loop from the first to the last appointment. Some,
not all, in a second thought, proposed that the stored appointments should be kept sorted
according to the start (or end) times and then an efficient binary search could replace the
trivial loop. I will discuss this part of the programming task below.

In more complicated examples of problems, the task of finding an algorithm that solves
the problem becomes much more challenging and the possibility for committing (not only

@ Springer

Automated programming, symbolic computation... 573

“sloppiness” but) logical mistakes gets drastically bigger and more dangerous. Therefore,
“automated programming” is a worthwhile undertaking: For a particular class of problems
C, instead of

finding a program p; for problem ¢; in C such that, for all d, ¢[d, p1[d]],
finding a program p, for problem g3 in C such that, for all d, g2[d, p2[d]],

try to find a “general program synthesis algorithm” G such that, for all g in C,
for all d, g[d, Glq1ld]l.

Note: the general algorithm G has the problem ¢ as an input parameter! (One also says:
“@G is on the meta-level of the g in C".)

In the subsequent sections, I discuss the two main approaches to automated program-
ming: Automated programming by “symbolic computation” and automated programming
by “machine learning”. Together, the two approaches form (part of) what people like to call
“artificial intelligence” or “machine intelligence”. This terminology, however, is the source
of a big misunderstanding: The algorithms on the meta-level of problem-solving, like any
other algorithms, are the creation of human intelligence. Since some of the problems g on
the object level might have been quite hard and needed quite some “human intelligence” and
the execution of the algorithm G on the meta-level on g does not need any intelligence, one
is tempted to say that “the machine G is intelligent”. However, the only thing one should or
could say is that “the human who invented G is intelligent”.

In other words: There is no race between “human intelligence” and “machine intelligence”
but, rather, there is always a race between “human intelligence spent for finding programs
for individual problems in a class C of problems” and “human intelligence spent for finding
a meta-program G for all the problems in the class C”. In other words: Human intelligence
on the higher level aims at making human intelligence on a lower level superfluous!

Again in other words: It is the goal of mathematics (computer science, ...) to trivialize
itself! Thus, personally, I like to expand the abbreviation “AI”” as “algorithmic intelligence”,
i.e. the human intelligence for finding programs on higher and higher levels!

The individual brain power for problem-solving may vary quite significantly. However,
in my opinion, the following “law" holds:

Brain Power Constancy Hypothesis (“The Reflexion Principle”): The human brain
power for problem-solving did not change over the past, say, ten thousands years
and it will not drastically change over the next ten thousand years. The spectacular
increase in the problem-solving capacity and the dramatic acceleration in the increase
is a consequence of applying the constant brain power in higher and higher rounds of
going from the object level to the meta-level. In one round, the objects of the previous
round become the actors on the next round. (I call this transition “reflexion”.)

I discuss the reflexion principle in more detail and more generality in the first part of [1].

2 Automated programming by symbolic computation
In 1984, Academic Press London issued a call for designing a new journal for a new field that

had emerged approximately since 1960. Various names were used for this field: computer
algebra, symbolic and algebraic manipulation, analytic computation, formula manipulation,

@ Springer

574 B. Buchberger

computation in finite terms, computation in closed form, symbolic computation, and others.
In response to this call, I submitted a proposal to Academic Press for a “Journal of Symbolic
Computation” (JSC). My proposal was selected and my clarification of the scope of “symbolic
computation” also formed the Editorial of the journal, see [2]:

I defined “symbolic computation” as the area that deals with algorithms on symbolic
objects, and I proposed “symbolic objects” to be defined as finitary representations of infinite
mathematical entities (or, in other words, finitary objects with infinite semantics). Here,
“finitary” means “storable in a computer memory”’. For example, finitely many generators
with finitely many relations between words formed from the generators form a finitary object
that may represent an infinite group (or a “large” finite group, i.e., a group whose number
of elements is much larger than the size of the finitary representation). Algorithms can only
work on finitary objects, and the flavor of “symbolic” is exactly the point that we want to
solve problems on infinite (or “large”) mathematical entities by finding algorithms that work
on finitary (small), “symbolic”, representations of these entities.

In essence, the editorial of the JSC still characterizes its scope. Pragmatically, in the edi-
torial of the Journal of Symbolic Computation, I identified three main areas for symbolic
computation: computer algebra, automated reasoning, and “automatic programming”. 1
also emphasized that all aspects of these areas should be in the scope of the Journal of Sym-
bolic Computation: mathematical theory on which symbolic algorithms can be based, the
algorithms with their correctness proofs and complexity analysis, the details of the imple-
mentation of the algorithms, languages and software systems for symbolic computation, and
applications. The three main branches of symbolic computation consider three important
classes of “symbolic objects”:

e computer algebra: symbolic objects that represent algebraic entities like terms that rep-
resent functions, differential operators, etc., or finite relations that represent residue class
structures;

e automated reasoning: symbolic objects containing (quantified) variables that are consid-
ered as statements on (infinite) domains;

e automatic programming: symbolic objects containing variables that are considered pro-
grams that define processes on potentially infinitely many inputs.

(Of course, these three sub-areas of symbolic computation are intimately connected and,
in some precise way, even embedded in each other. The distinction between the three areas
is only a matter of “flavor™.)

In other words, symbolic objects are finitary objects that have “semantics” attached to them
where, typically, the semantics is “large”, even infinite, not tangible by computers, whereas
the symbolic objects are “small”, finitary, tangible by algorithms. Any field of mathematics
can be studied under the “symbolic” aspect: In any field of mathematics, if we want to solve
problems by algorithms, we have to find finitary representations for the objects in the field.
Finding suitable finitary representations, by itself, may be a difficult — sometimes provably
impossible — mathematical problem: Before embarking on deeper algorithmic questions in
some area of mathematics, deciding whether two symbolic objects represent the same abstract
mathematical object and finding “canonical” finitary representatives for symbolic objects
may already be very difficult (sometimes provably impossible). By finding representations of
mathematical objects in any field of mathematics, the field becomes “algebraic”, and problems
in the algebraic disguise of the field, essentially, become combinatorial problems. Thus, very
sketchy, one may say: symbolic computation, ultimately, is the “combinatorization” of all of
mathematics via finitary representations of infinite mathematical entities.

@ Springer

Automated programming, symbolic computation... 575

It is a common misunderstanding that symbolic computation is the trivial side of mathe-
matics, i.e., some people believe that, whereas “pure” mathematics lives in complex spaces
needing deep and difficult thinking, algorithmic mathematics (which must be “symbolic”
in the above sense) “just puts everything to the computer” and presses the start button. The
truth is that the “just” needs more and deeper mathematics than a version of mathematics
that allows non-algorithmic constructions for problem-solving like the unlimited set quan-
tifier, infinite summation, infinite unions, transition to residua class domains, etc. (A trivial
example: In “pure” mathematics, a Grobner basis for given ideal generators can be “easily”
found by “just” taking the ideal generated by the generators. However, the definition of the
ideal generated by generators involves an infinite set construction!) Hence, with some provo-
cation, in my view, mathematics only starts at the moment when we try to solve problems
by “symbolic computation”.

In this section, we assume that all the descriptions on the way from a problem spec-
ification/requirements to an algorithm/software are expressions (i.e., finitary objects) that
describe or at least try to describe something “in general terms”, i.e., they describe infinitely
many possible cases using variables ranging over infinite domains, i.e., they are symbolic
objects. Hence, the entire programming process and various parts and variants of the process
are symbolic computation problems: program synthesis; program verification; analysis of
termination, complexity and other properties of programs; specification extraction from pro-
grams; generation of inductive assertions for programs; program transformation; program
repair; program optimization; model-based programming; component-based programming;
etc.

The literature on symbolic methods in automated programming is huge, see for exam-
ple the review paper [3]. As an example of a symbolic automated programming method
I describe here briefly my “Lazy Thinking” method for general algorithm synthesis. The
method is implemented in the Theorema system, [4]. Roughly, the Lazy Thinking method is
an algorithmic implementation of my personal advice to humans how to invent an algorithm
p for a given problem ¢. The overall strategy of Lazy Thinking is:

e Preparatory step (i.e., a step that is not specific for the particular problem g but refers to the
environment of all notions occurring in the specification g of the problem): Understand
the problem ‘“completely”, i.e. collect and prove all knowledge that you can possibly get
on the notions that occur in the specification g. This includes also a “library” of programs
which are already proven to be correct with respect to certain specifications.

e Program schemes: Consider known fundamental ideas of how to structure programs in
terms of sub-programs. Try one scheme P after the other.

e For the chosen scheme P, try to prove (automatically): for all d, g[d, P[d]]. (The first
proof attempt will normally fail because nothing is known about the sub-programs in P.)

e From the failing proof, construct (automatically) such specifications for the sub-programs
B, ... occurring in P that will turn the failing proof into a successful proof.

e Iterate inductively over the sub-programs B, ... and their specifications until you arrive
at specifications for which a program is available in the program library.

This strategy can be turned into an algorithm if the necessary (inductive) proofs and the
constructions of the specifications for the sub-programs can be automated. The automation of
inductive proving is far advanced, and for the construction of specifications for sub-programs
from failing proofs I developed an algorithm in [5].

Example of a Program Scheme (“Divide and Conquer”):

P[d] = S[d] « isBasic[d]
| MIP[L[d]], P[R[[d]]] < otherwise

@ Springer

576 B. Buchberger

P is the unknown program. S, M, L, R are unknown sub-programs.
Example of a program which we want to synthesize: Synthesize a program “sorted” for
the problem “isSortedVersion”, i.e. a program that satisfies:

for all d, isSortedVersion[d, sorted[d]].

Preparatory step: Collect knowledge on the problem. Of course, we start with the defini-
tion:
isSortedVersionOf[list1, list2] := isSorted[list2] A isPermutation[list], list2]
isSorted[list] := forAll[{i, length[lisf] — 1}, list; < list;+1]

etc. (approx. 20 formulae are needed here.)

‘We now start an attempt to prove the correctness theorem, i.e. the assertion that the program
scheme P solves the problem isSorted Version. The proof will stop at a certain stage indicating
that it would need some knowledge on the (unknown) sub-programs S, M, L, R.

The following rule produces knowledge for an unknown sub-program m that is sufficient
to continue with the proof:

Collect the temporary assumptions T[x0, ..., P[...],...] and
the temporary goals G[x0, ..., m[P[...]]] and produce the specification:

Here, x0 symbolizes the Skolem constants that are generated during the proof. Note that the
specification generated does not anymore contain the program name P, i.e., the specification
is a specification (a requirement) for the sub-program m!

This rule is the essence of my Lazy Thinking method. Lazy Thinking, automatically (in
approx. 1 minute on a laptop using the Theorema system), finds the following specifications
for the sub-algorithms that guarantee the correctness of the above algorithm (scheme):

\)7(’ (isBasic[x] = P[x] = x)

isSorted[y] isSorted[My, z]]
y.z <isSorted[z] Mly,z] = (y < z))

VY (L[x] =< R[X] ~ X)

x

(Here, =< denotes concatenation of lists and ~ denotes that two lists contain the same elements
equally often.) The specification expresses the fact that any sub-programs that satisfy this
specification turn the above divide-and-conquer program scheme into a correct program for
the sorting problem. Note that the specifications generated are not only sufficient, but they are
also natural! They specify merge algorithms M and pairing algorithms L and R! What we got
automatically is a problem reduction! We either have suitable M, L, R in our program library,
or we can apply the Lazy Thinking principle again for M, L, R and their specifications until
we arrive at programs in our library. (Library: Programs with their specifications and, maybe,
other knowledge on the programs.)

Thus, by the Lazy Thinking Method, entire hierarchies of provenly correct algorithms can
be generated in arbitrary domains. Now the question is: Can we automatically synthesize

@ Springer

Automated programming, symbolic computation... 577

algorithms for non-trivial problems? I answered this question positively by showing, in [6],
that with the Lazy Thinking method, it is possible to invent the essential idea of the algorithm
which I invented as a Ph.D. student in 1965 for solving the canonical simplification problem
for non-linear multivariate polynomial ideals. In the conclusion of this note, I will propose
how this research could be continued to develop a combined symbolic/machine-learning
approach to automated programming. It should be clear that, with Lazy Thinking, we could
generate for example various kinds of loops for the above calendar program.

3 Automated programming by machine learning

Undoubtedly, in the past two decades, artificial intelligence has produced impressive results.
This is due to the fact that, by the drastically increased computational power of current
computer systems and the availability of huge databases of “labeled” data, a couple of difficult,
long-standing and important problems have been solved impressively well, for example,
machine translation of natural languages.

Mentioning artificial intelligence, for me, raises some nostalgia because, when I founded
the Research Institute for Symbolic Computation (in 1985), for some time, I was torn between
using “symbolic computation” or “artificial intelligence” as the main notion in the name of
the new institute. At that time, bringing symbolic computation under the umbrella of artificial
intelligence was quite tempting and quite common: For example, finding symbolic integrals
was considered an “artificial intelligence” task like playing chess, with lots of heuristics.
Correspondingly, the most comprehensive symbolic computation software system at that
time, MACSYMA, had “MAC” (= Machine Aided Cognition) in its name! And, of course,
implementing heuristics is still an important approach for improving the practical efficiency
of methods for symbolic computation problems. However, in 1985, I deliberately decided
against having “artificial intelligence” in the name of my institute since I wanted to empha-
size the logical, mathematical, formal approach to problem-solving over the psychological,
experimental aspect, which some people (then and now) believe goes “beyond mathematics”.
I will go deeper into analyzing the relationship between symbolic computation and artificial
intelligence later in this note.

Amazingly, there is still a lot of mystery, nebulosity, and misunderstanding around what
artificial intelligence (Al) is and why it is (is believed to be) essentially different from all
other computational approaches. This nebulosity is all over the place: in politics, the media,
even science, and, of course, with the man on the street. At times, I have the impression that
even quite some researchers in the Al area do not have a very clear picture of the distinctive
characteristics of AI when compared with other computational approaches. Also, labeling
a project with AI may have a beneficial effect when it comes to funding, societal respect,
political influence, etc. Thus, it is tempting to keep the notion ambiguous. What amazes me
even more is that the nebulosity about the essence of Al did not disappear since the field
started in the middle of the fifties. I remember talks of Al evangelists around 1980, i.e. in the
“first wave of Al research”, who believed and spread that “Al can solve hard problems that
cannot be solved by mathematics”. And still, when I participate in political discussions about
the importance of mathematical education (in the sense of training mathematical thinking), I
hear the argument that, actually, the ability to do mathematics will be less and less important
because “tedious” mathematical thinking, in the presence of “artificial intelligences” (plural!),
will not be necessary anymore and that we should teach the youngsters more “creative” things
than mathematics.

@ Springer

578 B. Buchberger

Now all such statements may be true or false according to which notion of artificial
intelligence one has in mind. To clarify this notion, I want to distinguish three possible
characterizations of Al:

Hard Problems:

Artificial Intelligence may be described as the field that tries to solve problems that, at a
certain historic moment, are considered to be “hard” in the sense that they apparently need a
decent amount of (human) “intelligence” to solve them. For example, playing chess or finding
symbolic integrals, at some historic moment, were considered as needing human intelligence.
Algorithms (invented by humans!) that finally were able to solve these problems were then
(and still are) considered to be the result of “Al research”.

Now, in my opinion, this definition of the notion of Al is quite shallow. It is the natural
flow of science and technology that we can solve harder and harder problems automatically,
i.e. by algorithms. However, from some point on, people think that now “algorithms are
taking over”, “artificial intelligence is replacing humans” etc. forgetting that this happened
and happens already since centuries and that this is the very goal of science and technology.
And, of course, whatever the methods behind automation were and are, we humans should
stay in control and decide how far we let problems be solved and decisions be taken by
algorithms. Anyway, the notion of a “hard” problem is relative and “hard” problems for
which an algorithmic solution was finally found very soon are considered to be “easy” by the
consumer. For example, car drivers nowadays take the functionality of a navigation system
for granted. Some thirty years ago, the current functionality of navigation systems would
have been considered unbelievably intelligent. In fact, the stack of scientific findings and
algorithmic techniques involved in a navigation system for guiding a driver from A to B is
quite deep.

In my opinion, one should not use the notion of “artificial intelligence” for “finding
algorithms for hard problems” but rather continue to call this just “mathematical, algorithmic
solution of hard problems”. Attaching the label “AI” to algorithms depending on whether
they solve hard or easy problems is more a question of marketing rather than a logically
sound distinction.

Simulate the Brain:

A completely different view (and branch) of artificial intelligence is artificial intelligence
as the science of understanding and simulating biological structures that show “intelligence”,
notably the human brain. Historically, this type of Al research was one of the origins of the
field of Al that started, maybe 1943, with the investigations of W. McCulloch and W. Pitts,
who introduced a simple mathematical model of the functionality of a neuron. Of course,
understanding and simulating the most complex biological systems, commonly considered
to display “intelligence”, is a fascinating and relevant undertaking. Well, why not call this
type of research “artificial intelligence” in the same way as a technical realization of the
phenomenon of flying could be called “artificial flying”. Also, studying biological structures
(like the brain, swarms of animals, and the evolution of life on earth) motivated some of the
algorithmic methods that today are called “Al methods”, see the next paragraphs.

“Intelligent” Methods:

The third approach to characterizing artificial intelligence is by specifying certain algo-
rithmic methods as “intelligent”. These algorithms would constitute the area of “artificial
intelligence”. I hope I do not overlook something important, but my impression is that,
essentially, “machine learning” is the only such method or, better, class of methods that
has not already been around before the term “artificial intelligence” was coined. The many

@ Springer

Automated programming, symbolic computation... 579

other algorithmic methods that are often labeled as “Al methods”, like automated reasoning,
semantic networks, graph search, expert systems, etc., in my view, are algorithmic methods
that are not specific to Al and, in fact, are all “symbolic computation” methods. They are, so
to speak, usual algorithmic methods and were also applied to “hard” problems that, for some
reason, got the label “Al”, see above.

In my view, machine learning methods cannot be characterized by the way how they
work but, rather, by the way how problems are specified. As we have seen in the previous
sections, the fundamental part of algorithm and software development is the transition from
a given problem specification g to an algorithm (program, system) P that solves the problem
for any admissible input. If the steps for going from a problem specification to a solution
algorithm are done by a human, this is just the “usual business” of mathematics/informatics.
If the problem specification and the intermediate stages from the problem specification to
the program are expressed by symbolic expressions that characterize the stage “in general
terms” and finding the intermediate steps is (partially) supported by algorithms this is what
I call “symbolic computation” methods for “automated programming”. How and when does
“machine learning” come in and why, if at all, is this different from “usual” mathematics and
“usual” (maybe quite sophisticated) symbolic computation for automated programming?

The point is that, in many situations, when we want to specify a problem, we do not have
a specification “in general terms” available (i.e. an expression with variables that explains
the problem for all infinitely possible input and output cases). For example, let’s consider the
seemingly simple problem of deciding whether a given English sentence contains information
of the type “somebody cooperates with somebody else”. (In the literature, such problems are
called the “relation extraction problems”.) An algorithm for this problem should produce the
answer “YES” and the two “somebodies” if such information is contained in the input sentence
and “NO” otherwise. Now, of course, before trying to invent such an algorithm, we will
ask: What exactly do you mean by ‘“cooperate”? Among the English-speaking community,
under the natural assumption of a long experience of using English in thousands of different
situations, it would be natural the start to explain “cooperate” in terms of a couple of other
notions like “working together”, “having a common goal”, ... Oh, “having a common goal”
may not always be sufficient for speaking about “cooperation”! One may have a common
goal but fight against each other. Thus, “supporting each other”, etc., should be added. Some
more subtle details should be explained, some other things excluded. A long list of sentences
explaining the meaning of “cooperate” would be necessary. Then one could, in the attempt
to find an algorithm for this little problem, try to put these numerous explanations into
algorithmic rules (assuming that we already have access to a powerful grammar parsing
algorithm for all of English). As a result, we would hope that this rule system will be able
to do the job. For example, if we now would input “Peter and Ann found a way to help each
other to pass the exam”, the algorithm should answer (“YES”, “Peter”, “Ann”). If we would
input “Peter and Ann passed the exam on the same day”, it should answer “NO”. Should it
really answer “NO”? Shouldn’t it instead answer “DON’T KNOW” or “COULD BE” or “COULD
BE BUT NOT EXPLICITLY MENTIONED”?

I now want to explain what, in my view, is the essence of the machine learning approach.
For this, we need not at all bother about what “learning” is. I just consider those methods that,
over the years, have been named “machine learning” methods. The common feature of these
methods is not how they proceed but the type of specification of the problems to which they
are applied: Namely, they all are applied to problems of the kind above where a spelled-out
complete specification is not possible or, at least, not feasible. Now, the fundamental idea of
machine learning for solving such problems is:

@ Springer

580 B. Buchberger

e Instead of spending (“endless™!) time trying to specify the problem by a huge number
of general definitions, cases, rules, etc., one spends the time giving a huge number of
examples of input instances together with the answers. (In this paper, we consider only
“supervised learning”.) In this context, the answers are called “labels”.

e One sets up an algorithm (program) from a certain class of relatively simply structured
programs (like the class of neural networks, the class of hyperplanes in a high-dimensional
space, the class of nested if-then-else expressions, etc.) with some constants cy, ..., ¢,
(for example the weights at the inputs of neurons in neural networks) in the algorithm
left unspecified. For each choice of numerical values for the cy, ..., ¢,, the algorithm
would produce an answer for each admissible input for the problem, i.e. the algorithm
would be an attempt to solve the problem. (One can view this also as another application
of the above idea of “program schemes”.)

e One uses techniques of mathematical optimization (or other experimental techniques,
for example, techniques that mimic biological evolution) to change the initial values for
c1, ..., Cy iteratively until the answer of the algorithm to more and more inputs from
the set of labeled data would give the answer specified by the label (or an answer “close
enough” to the label). In the jargon of machine learning, this iteration is called “training
a model”.

e One stops the iteration on the cy, . . . , ¢, when sufficiently many answers are identical (or
close) to the labels. Practically, at the beginning of the whole operation, one partitions
the set of labeled input into a “training set” that is used for the iterations and a “test
set” on which the algorithm with the current values for the ¢y, ..., ¢, — which in the
jargon of machine learning is called the “trained model” — is tested. (Some people like
to call a trained model an “artificial intelligence” so that one can have various “artificial
intelligences” in one’s problem-solving arsenal. In my opinion, this is one of the reasons
for all the “philosophical and political” confusion in the area of “artificial intelligence”.)

e The trained model (which is a program) is then used for all future possible inputs with the
hope (!) that the outputs are what the person who described the problem (by examples)
would probably expect. (If some “general” knowledge is available on the problem domain,
this “hope” may be replaced by “good reasons” or even by a provable statement.)

The impressive success of this approach in the past two decades hinges on three ingredi-
ents:

e a huge amount of mathematical research on good and, partly provably convergent, tech-
niques for improving the algorithm parameters ci, ..., ¢,; such research was already
available in the first phase of Al between 1960 and 1980, but it did not convince because
of the next two ingredients were not available,

e huge corpora of labeled data; for example, in the spectacular application of machine
translation, a huge amount of “labeled data” is now available in the form of files that
contain original texts and their translation - by humans - to some other language,

e high-performance computing; in successful applications, the number of iterations of
the machine learning steps for determining suitable cq, ..., ¢,, the number n, and the
computational effort in each step is huge and is only manageable by recent computers.

More formally, we consider problems ¢, for which no general specification (by a formula
with variables ranging over the infinitely many possible input and output values) can be given
but for which the following is possible:

e one can give a (huge) number of examples of input/output pairs (di, e1), ..., (dy, en)
for which g [dy, e1], ..., q [dy, e;] holds;

@ Springer

Automated programming, symbolic computation... 581

e for any additional d and e, one would be able to decide whether ¢[d, e].

Can one still find a program that solves that problem, i.e., a P such that, for all infinitely
many possible d, g[d, p[d]]? The answer is: In principle ,“no”. Of course, one can give
an algorithm P (e.g., “table-look/up”) that gives output e; for input d;, fori = 1,...,n.
However, how can we be sure that g[d, p[d]] will also be satisfied for all other d, since ¢ is
actually not specified for all d.

Only under some additional assumptions, can one find a suitable program:

e One may know or “one wants to believe” that the algorithm should have some simple
form (the form of a “program scheme”). For example, one may believe that the program
should be a linear function, a polynomial function, or a nested if-then-else expression,
or...

e One may be satisfied if the program produces outputs that are close to the expected result
within some “tolerance”.

In principle, this approach is not at all new. Examples of historical “learning from examples”
problems are: Given points in the plane, find the coefficients cy, ..., ¢, of a polynomial
that goes through the given points (the interpolation problem). Given a function with some
properties on differentiability, an interval, and a distance, find the coefficients cy, ..., ¢, of
a polynomial that is closer to the function than a given distance everywhere on the interval
(approximation problem). Given points in the plane, find the coefficients of a straight line
that minimizes the distance to all points (regression problem). Given a function with certain
differentiability properties, find the coefficients c1, .. ., ¢, of a finite Fourier (Taylor, Walsh,
...) approximate of the function, etc. Finding programs for many classes of such problems,
many such “program schemes” and many such notions of “tolerance”, is an old and rich area
of mathematics with many different variants.

Seen in this way, machine learning falls neatly into the “automated programming” view:
It is the method of choice in cases where the problem is not specified by general (formal
or natural language) statements but, instead, is specified (or can be specified) only by a
(huge) number of examples of admissible input and desired output. In the case of general
specifications of problems, the transition from the problem to a solving algorithm, in principle,
is a reasoning process that is executed by humans or, in the symbolic computation approach,
is a reasoning process (partly) supportable by symbolic computation methods. In the case
of problems that are specified only by examples, this process can still be automated by the
machine learning approach.

From the simple summary of the machine learning approach I gave above, one important
deficiency of the machine learning approach should be clear: The program we get for a given
problem just does the job of delivering (in sufficiently many cases) desired answers. How-
ever, in general, no reason can be given why, for example, the particular neural network that
decides whether or not two sentences express cooperation between two persons mimics cer-
tain fundamental insights about the environment both persons share as their semantics. This
is, in fact, similar to the situation in the historical predecessors of “learning from examples”:
The Fourier analysis just does the job of finding an optimal Fourier sum. In the example,
where the function to be represented is the frequency spectrum of a musical tone, the repre-
sentation by a finite Fourier sum has a reasonable “explanatory” power: The tone is composed
of tones and overtones that occur in the physical “music” world (for example, when picking
the strings of a guitar). However, if a Fourier representation of some arbitrary other function
is executed, there will be some outcome, but there may not be any reasonable interpretation
of what this representation means in the reality from which the function is taken.

@ Springer

582 B. Buchberger

The problem of weak explanatory power in the “models” (programs) created in machine
learning is well known. Lots of research was recently started to extract “meaning” and
“reasons” from such models. This research area is called “explainable AI”.

The spectacular success of machine learning is particularly impressive in natural language
problems like machine translation or composition of texts on given topics. Very recently,
ChatGPT of OpenAl, [7], demonstrates the dramatic leap in sophistication that has been
achieved in the past few years by machine learning for processing knowledge expressed in
natural languages. The pretrained language model GPT-3 on which ChatGPT is based is
a neural model with 175 billion parameters, trained on a very large corpus consisting of
publicly available datasets such as CommonCrawl 1, WebRText dataset, two internet-based
books corpora, and English Wikipedia. For the topic of this note, ChatGPT adds another
dimension: ChatGPT can produce programs (in a wide range of programming languages)
specified “in general terms” in (a wide range of) natural languages.

Example 1 Enter a natural language specification of the above collision test problem to Chat-
GPT: “Write a program for the following task: Given a set of appointments in a calendar and a
new appointment, check whether the new appointment collides with any of the appointments
in the calendar. An appointment consists of a start time, an end time, and a text describing the
topic of the appointment. Code in your favorite programming language.* In a few seconds,
ChatGPT will answer something like the following. (I say “something like the following”
because, next time ChatGPT will be asked the same question, the answer may be different
since it may have learned from your reaction to the current answer.)

Sure, here is a solution in Python:

class Appointment:
def _ init_ (self, start, end, text):
self.start = start
self.end = end
self.text = text

def check_collision (appointments, new_appointment) :
for appointment in appointments:
if (appointment.start < new_appointment.end and
appointment.end > new_appointment.start) :
return True
return False

Example usage

appointments =[Appointment (10, 11, "Doctor'’s appointment"),
Appointment (12, 13, "Lunch with John")]

new_appointment = Appointment (11, 12, "Meet with Jane")

if check _collision(appointments, new_appointment) :
print ("Collision detected")

else:
print ("No collision detected")

This solution creates an Appointment class to represent an appointment, with
start, end, and text as its attributes. It then defines the check_collision

@ Springer

Automated programming, symbolic computation... 583

function which takes in a list of appointments and a new appointment and checks
whether there is a collision by iterating through the list of appointments and checking
if the start or end time of any of the appointments fall within the start and end time of
the new appointment. If a collision is detected, the function returns True, otherwise
it returns False.

I hope this helps! Let me know if you have any questions.

The answer is not only correct, it is also documented. (Note, however, that the explanation
of the collision condition in the documentation is logically wrong whereas the formulation of
the condition in the program is correct! The logical mistake in the documentation is exactly
the one which I encountered a couple of times in my experiment with human programmers,
see above. I find this really somewhat hilarious: ChatGPT gets a vague natural language
specification of a problem as input which is logically correct since it avoids to go into any detail
about what “collision” means, but relies on common sense. ChatGPT produces a logically
correct program for the problem, which is really an impressive achievement. However, it
then produces a natural language documentation that is logically incorrect! Please compare
this with the potential of quantifier elimination (a powerful symbolic computation method),
which is able to start from the “common sense” explanation of the notion of collision (which
involves a hidden existential quantifier, as I have explained above) and, from there, produces
the correct condition on the start and end times of the two appointments.

Anyway, ChatGPT is aware of it and speaks modestly about its own automated program-
ming capabilities: If one asks ChatGPT about this, it answers:

It’s worth noting that GPT-3’s code generation capabilities are not perfect, and the
generated code may require some manual editing or tweaking to be fully functional.
However, it can still be a powerful tool for developers and non-technical users alike,
allowing them to quickly prototype and test ideas without having to write code from
scratch.

In my experiment with ChatGPT, see [8], I continued with the question: “Have you got any
idea how the computation time of the program check_col1isioninyour previous answer
could be improved significantly?” In a dialogue, ChatGPT came up with the idea of keeping
the stored appointments sorted and using a binary search approach. In fact, in [8], I challenged
ChatGPT by asking all the questions I normally ask informatics master’s candidates for a
fellowship and, impressively, ChatGPT did much better than the average students and ranked
among the top candidates. Only if it came to proving simple things about, for example, the
O-notation, it became clear that ChatGPT just tried to imitate usual proving patterns even
in cases where the formula to be proved was actually wrong. For the details, see [8]. This
can be easily explained because the approach to programming (and proving) of ChatGPT
is machine learning from millions of examples. In the case of programming, this means:
learning from millions of examples of problem specifications (in natural language) labeled
by programs written by human programmers for this specification. Millions of training data
for this are available, for example, in GitHub, where programs are stored together with
their documentation in natural language. In other words, ChatGPT is training the automated
programming capability as a translation process between two languages: A natural language
for specifying problems and a programming language for formulating the program.

The automated programming capability of ChatGPT is also methodologically interesting
for the following reason that shows the power of the Brain Power Constancy Hypothesis

@ Springer

584 B. Buchberger

(“The Reflexion Principle”), i.e. the power of always trying to go to the meta-level as soon
as sufficiently many instances on the object level can be mastered:

For a problem like the sorting problem, it would not make sense (at least not at first sight)
to use machine learning for solving it because it can be specified “in general terms” (i.e. by a
“symbolic object”), see the problem specification above. Why should one give, say, thousand
examples of input/output pairs to the sorting problem and then set on a neural network (i.e.,
mathematically, a nested in-then-else expression with some unknown numerical weights) and
train it with the thousand input/output pairs to get the weights fixed to some values that will
make the neural network produce the desired outputs in thousand examples hoping that, from
now on, it would produce the sorted version of an input list in all infinitely many possible
cases? Instead, a human programmer or a symbolic reasoning method (for example, my Lazy
Thinking approach) will produce a sorting program (a symbolic object) together with a proof
(another symbolic object) that the program will meet the specification for all infinitely many
possible input lists.

As explained above, there are millions of problems, however, for which we do not have
a specification in general terms, like the relation extraction problem discussed above or, for
example, the problem of predicting the time of a malfunction of a brake in a car from the
values of some sensors in millions of past time moments. For any such problem ¢, in order to
apply a machine learning method (like neural networks) for composing a program, we need
a (huge) number of examples of input/output pairs (“labeled inputs”) (dy, e1), ..., (dn, en)
for which g [dy, e1], ..., q [dy, e,] holds.

When using ChatGPT for automated programming, the machine learning method imple-
mented in ChatGPT was also trained on finitely many (billions) of labeled inputs. However
the labeled inputs were of the kind (g1, p1), ..., (qn, pn) Where both the ¢g; and the p; are
symbolic (!) objects, namely (natural language) problem specifications ¢; “in general terms”
and programs p; (in a formal programming language) that appear together as specification
and corresponding program in some program library. Note that, among the ¢;, there may
appear, for example, the specification (or various specifications) of the sorting problem. Note
also that the specifications of problems by huge number of examples and their correspond-
ing program (“model”) generated by machine learning do not appear among the g;! (As a
“gedankenexperiment”, think about what would happen if ChatGPT trained its automated
programming power by using in its training set also problems that are not given in general
terms but by huge labeled training sets. We would get something like a very general “univer-
sal model”. I do not know whether this gedankenexperiment, or at least an attempt at it, has
already been carried out. It could be considered a path toward AGI (artificial general Al)).

In other words, the automated programming power of ChatGPT does not come from
particularly deep insights into the peculiarities of the programming process (insights into
the semantic or reasoning aspects of programming) but, instead, from applying a successful
machine learning method for generating programs from finite labeled input sets to training
sets on the meta-level consisting of specifications labeled by programs!

In the frame of the analysis of this paper, [summarize: The machine learning approach can
be well subsumed under the general target of (semi-) automating the software development
process (“automated programming”). It can be viewed as a numerical, rather than a symbolic,
approach to automatic programming, for example, as an interpolation approach. What is new
is that some new “program schemes” are used, e.g., neural networks, which mathematically
can just be seen as nested if-then-else expressions (maybe with some “recurrence links”
in richer versions of neural networks). Since the choice of these program schemes was
motivated by biological neural networks, some people believe/wish/think that these networks
and the algorithms (“models”) produced by them contain/mimic/grasp/“are” intelligence or

@ Springer

Automated programming, symbolic computation... 585

“intelligences”. However, the algorithmic process based on these terms works (well or badly)
independently of whether or not one considers these networks and the models produced as
being intelligent or not. Also, the nested if-then-else expressions describe “real” biological
neural networks only in a very superficial way. In fact, what happens in real neural networks
and, in particular, the human brain and, actually, in the entire human “system” is much more
complicated: Current biological research is far from “understanding the brain”. (Anyway,
biological research is much more advanced than, say, thirty years ago and advances at high
speed.) The people who invented the neural network approach to “machine learning” and are
refining it permanently, though, are quite intelligent. Thus, neural networks based “machine
learning” is another example of “human algorithmic intelligence”. In contrast, the machines
(computers) that execute the approach are as dull as ever.

Implicitly, I expressed this view already in the early days of Al, see [9]. At the “Spring
School on AI” in Teisendorf (Germany), 1982, I contributed a long article summarizing
the most important “symbolic” methods for automating the algorithm/software development
process that were known at that time. And we had long, intensive, and quite controversial
discussions at this conference on the question of whether Al is something that goes beyond
mathematics. As you may guess, my answer then was “no” with essentially the arguments
which I gave above. In my hectic years of researching methods for “algorithmic intelligence”
and research management, I never found the time and occasion to spell out these arguments
in a paper. Thus, I am grateful that I am given the opportunity here.

Personally, when speaking to people who do not (want to) understand the timeless, uni-
versal, always new, creative power of mathematics, I like to use the term “algorithmic
intelligence” for what we are doing: Algorithmic intelligence is the human intelligence
that produces algorithms for more and more challenging problems in all areas of human
activity. By an algorithm, an infinite class of individual problem instances can then be treated
by a completely unintelligent machine. People who do not really understand what is going
on may believe that these machines display “intelligence”. The algorithmic intelligence -
by reflection, i.e. jumps to higher and higher meta-levels - also provides more and more
sophisticated algorithms for producing algorithms. Symbolic computation is a jump to the
meta-level of programming (that can be iterated), and so is machine learning (which we saw
can also be iterated!) The incompleteness theorem of Kurt Godel (1931), in a somewhat lib-
eral interpretation, shows that this tour through higher and higher levels of algorithmization
has no upper bound.

4 Conclusion: automated programming by symbolic computation
and machine learning

In this note, I explained that automated programming is the algorithmic production of pro-
grams that solve specified problems. Then I identified symbolic computation and machine
learning as (the) two approaches to automated programming and explained why they are
fundamentally different: Symbolic methods are applied to problems specified “in general
terms”, i.e., by formal expressions that involve input and output variables that range over
infinitely many possible values. In contrast, machine learning methods are applied to prob-
lems specified by a finite (typically large) number of input/output pairs (also called “labeled
inputs”). Note that both the formal specifications and the labeled inputs are “finitary” objects
that are hence amenable to programs (on the meta-level).

@ Springer

586 B. Buchberger

Both approaches to automated programming have their pros and cons. For discussing the
pros and cons, it may be useful to distinguish between the following quite different situations:

e Finding algorithms (programs) for fundamental, non-trivial, algorithmic problems (or
hierarchies of such problems inside a well-defined formal theory): In this case, the
problem specification and the solution algorithm and everything that happens between
problem and solution could, in principle be formulated by completely formal and general
expressions (i.e., by “symbolic objects”). Hence, the process from the problem speci-
fications to the solution algorithms is, in principle, amenable to algorithmic treatment
on the meta-level, i.e. to symbolic computation methods. Examples of such problems:
the problem of sorting; the problem of finding shortest paths; the problem of finding
symbolic integrals; the problem of finding Grébner bases; etc.

e Developing software for a typical every-day application (like a calendar application, a
search engine, an office administration system, etc.): In this case, the individual parts of
the system (called “units”) should implement a (big) number of functionalities, most of
which are notreally difficult. Only some of the functionalities may involve the algorithmic
solution of fundamental problems. The algorithms for these advanced functionalities,
typically, are known and can be taken from reliable libraries (with some syntactical
changes). Writing programs for the other units is not a big logical challenge but, still,
error-prone. The complexity of such systems originates from the huge number of units,
the many possibilities to commit small errors, and the various (desired and undesired)
interactions of the units.

This distinction is important for the following reason: The application of formal methods for
establishing the steps between problem and algorithm (e.g. the proof of the correctness of
algorithms) only makes sense if we consider non-trivial algorithmic problems. In contrast, for
most of the millions of units to be developed in large software systems a formal specification
of the problem to be solved by the unit is often essentially identical to the code to be developed.
In other words, a proposal for the code of a unit, in the case of “easy” problems, is a way for
describing the problem to be solved.

In fact, I think it is fair to say that symbolic computation has not played any role in
automating programming for every-day applications. In history, symbolic computation did
not play a big role in establishing new algorithms for fundamental algorithmic problems
either because the reasoning process for finding these algorithms was “brain-crafted” for
each of these individual problems. Anyway, the power of symbolic computation methods for
automated programming became evident in some attempts to build up coherent algorithmic
mathematical theories consisting of definitions, problem specifications, theorems, algorithms,
and the proofs of theorems and algorithms in the context of the entire theory, see for example
the Coq proof assistant by Thierry Coquand, Gérard Huet, et al. [10], and the Isabelle proof
assistant by Tobias Nipkov, Lawrence Paulson, et al. [11]. There were also some spectacular
examples about how formal methods may guarantee the correctness of programs, for example
the use of Grobner bases for proving the correctness the switching circuits in multipliers, see
[12].

PTLMs (Pre-Trained Language Models) like GPT by OpenAl shows that obtaining pro-
grams from problem specifications in natural language is feasible and this is a real game
changer. Even if a lot of criticism is being voiced about the fact that many of the programs
generated have flaws, it is a big step forward. Playing with ChatGPT and watching the demo
video [13] is a real thrill. The criticism goes mainly into the direction that the objects going
into the machine learning approach of automated programming (as input and output) do
not contain any “semantics”, i.e., they do not say anything about a common model world,

@ Springer

Automated programming, symbolic computation... 587

see for example the interview [14]. In contrast, symbolic expressions in a symbolic com-
putation approach “contain semantics”. (Note that the semantics of symbolic expressions is
contained, implicitly, in the applicable reasoning rules.) Most applications of machine learn-
ing are semantic-free in the input, in the intermediate process, and in the output. However, in
the application of machine learning to automated programming, the input is a problem spec-
ification formulated in natural language and the output is a program. Both have semantics.
Although the semantics is not used in the automated programming process, the semantics
of the input and the output are available in exactly the same sense as if a human program-
mer reads a specification and finally delivers a program. Thus, one could and should apply
the same (practical and theoretical) methods for verifying the correctness of the programs
generated in the frame of PTLMs as with programs generated by human programmers.

My main message in this note is: I think the next big step forward could and should be
to combine the machine learning approach to generating (maybe not completely perfect)
programs from natural language specifications and the symbolic computation approach to
handling various intermediate steps in the programming process. This could be done, for
example, in the following three stages:

e The translation of problem specifications in natural language to formal specifications. It
is not clear how good the current PTLMs are in the translation of natural language text
to a formal logic language (like predicate logic). My experiments in [8] (towards the end
of the report) indicate that this translation is not very reliable. Actually, the translation
of individual natural language statements to, say, predicate logic is not really meaning-
ful because both natural language statements, and formal statements need contexts for
obtaining semantics. Thus, translation from natural language to a logic language should
be undertaken in a systematic way that considers entire corpora of text on certain subject
areas like, for example, “handling calendars”.

e Assoon as formal expressions are available, symbolic methods could be used for getting
over the individual steps of program development. (I gave a tiny example of the power
of symbolic methods above in the calendar program: The application of a quantifier
elimination algorithm to a formal statement of the collision problem that involves an
existential quantifier in a natural way and yields, automatically, a condition on the start
and end times of two intervals to be collision-free.)

o If, instead, machine learning methods are used for program development from (natural
language or formal) specifications, at the end one could try to apply symbolic methods
to improve the proposed programs or, at least, to check correctness. A first step in this
direction is, for example, described in [15]. The “symbolic” method developed in this
paper is just a bunch of rules of how two eliminate frequent semantic errors in the
programs generated by ChatGPT.

Summarizing, we can consider the entire development of methods for supporting, improv-
ing, semi-automating or automating the programming process as a path to establish an
“assistant programmer” for programmers that takes more and more of the work from the
programmer. As we know “by Godel”, at a certain historical moment of our technological
evolution, the human programmer will be necessary - and is fundamentally desirable - on the
current top level of programming; however, this level will grow higher and higher in the next
stage. At the moment, the “assistant programmer” consists of various successful techniques
and tools in “software engineering”, powerful stacks and libraries, powerful testing strategies
and tools, networks of programmers that act as a big programming consulting machines, etc.
We propose and envisage that symbolic computation and machine learning methods should
and could be combined in order to increase the level of sophistication which we can make

@ Springer

588 B. Buchberger

available in the “assistant programmer”. It can be predicted that the efficiency of program-
ming will increase drastically within the next few years with dramatic consequences on the
software industry, in particular the job market in this area.

Funding Open access funding provided by Johannes Kepler University Linz.

Data availability statement Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.

Declarations

Conflict of Interest The author declares that he has no conflict of interest.

Remark This note is a significant extension of [16], which was written for a different purpose and at a time
when ChatGPT was not yet available.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Buchberger, B.: Meditation in Today’s World. Part I: Science, Technology, Economy, Welfare: The Reflex-
ion Principle. (2022). Video on Youtube: https://youtu.be/NhRn7WMT_U

2. Buchberger, B.: Symbolic computation (an editorial). J. Symb. Comput. 1(1), 1-6 (1985). https://doi.org/
10.1016/S0747-7171(85)80025-0

3. Grover, A., Thornton, C., Singh, P.: Automated algorithm synthesis: A survey. ACM Comput. Surv. 54(2),
1-36 (2021)

4. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema 2.0: Computer-assisted
natural-style mathematics. J. Formaliz. Reason. 9(1), 149-185 (2016). https://doi.org/10.6092/issn.1972-
5787/4568

5. Buchberger, B.: Algorithm invention and verification by lazy thinking. In: Petcu, D., Negru, V., Zaharie,
D., Jebelean, T. (eds.) Proceedings of SYNASC 2003 (5th International Workshop on Symbolic and
Numeric Algorithms for Scientific Computing), Timigoara, Romania, October 1-4, 2003, pp. 2-26. Mirton
Publisher, Timigoara (2003). ISBN: 973-661-104-3

6. Buchberger, B., Craciun, A.: Algorithm synthesis by lazy thinking: Examples and implementation in The-
orema. In: Kamareddine, F., Proc. of the Mathematical Knowledge Management Workshop, Edinburgh,
November 25, 2003, EPTCS, vol. 93, pp. 24-59. (2003). ISBN: 044451290X

7. ChatGPT: Optimizing Language Models for Dialogue. (2022). https://openai.com/blog/chatgpt/

8. Buchberger, B.: Is ChatGPT Smarter Than Master’s Applicants? RISC Report Series 23-04, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Altenberger Strafie 69,
4040 Linz, Austria (2023)

9. Buchberger, B.: Computer-unterstiitzter Algorithmenentwurf (computer-aided algorithm design). In:
Bibel, W., Siekmann, J.H. (eds.) Proceedings of the “Friihjahrsschule Kiinstliche Intelligenz” (Spring
School in Artificial Intelligence), Teisendorf, Germany, March 15-24, 1982. Informatik-Fachberichte,
vol. 59, pp. 141-202. Springer, (1982)

10. Coquand, T., Huet, G.: The Coq Proof Assistant. (2022). https://coq.inria.fr/

11. Nipkov, T., Paulson, L.: The Isabelle Proof Assistant. (2022). https://isabelle.in.tum.de/

12. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining SAT and computer algebra.
In: Barrett, C.W., Yang, J. (eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://youtu.be/rNhRn7WMT_U
https://doi.org/10.1016/S0747-7171(85)80025-0
https://doi.org/10.1016/S0747-7171(85)80025-0
https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.6092/issn.1972-5787/4568
https://openai.com/blog/chatgpt/
https://coq.inria.fr/
https://isabelle.in.tum.de/

Automated programming, symbolic computation... 589

13.
14.

Jose, CA, USA, October 22-25, 2019, pp. 28—-36. IEEE, (2019) https://doi.org/10.23919/FMCAD.2019.
8894250

Codex.: (2022). https://openai.com/blog/openai-codex

Marcus, G.: Transcript of an Interview with Ezra Klein. (2023). https://www.nytimes.com/2023/01/06/
podcasts/transcript-ezra-klein-interviews- gary-marcus.html

. Jain, N., Vaidyanath, S., Iyer, A.S., Natarajan, N., Parthasarathy, S., Rajamani, S.K., Sharma, R.: Jigsaw:

Large language models meet program synthesis. In: 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,2022, pp. 1219-1231. ACM, (2022).
https://doi.org/10.1145/3510003.3510203

Buchberger, B.: Symbolic computation in software science: My personal view. In: Kutsia, T. (ed.) Pro-
ceedings of the 9th International Symposium on Symbolic Computation in Software Science, SCSS 2021,
Hagenberg, Austria, September 8-10, 2021. EPTCS, vol. 342, pp. 1-13 (2021). https://doi.org/10.4204/
EPTCS.342.1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.23919/FMCAD.2019.8894250
https://openai.com/blog/openai-codex
https://www.nytimes.com/2023/01/06/podcasts/transcript-ezra-klein-interviews-gary-marcus.html
https://www.nytimes.com/2023/01/06/podcasts/transcript-ezra-klein-interviews-gary-marcus.html
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.4204/EPTCS.342.1
https://doi.org/10.4204/EPTCS.342.1

	Automated programming, symbolic computation, machine learning: my personal view
	Abstract
	1 Automated programming
	2 Automated programming by symbolic computation
	3 Automated programming by machine learning
	4 Conclusion: automated programming by symbolic computation and machine learning
	References

