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Abstract
Being able to understand the logic behind predictions or recommendations on the instance
level is at the heart of trustworthy machine learning models. Inherently interpretable models
make this possible by allowing inspection and analysis of the model itself, thus exhibiting
the logic behind each prediction, while providing an opportunity to gain insights about the
underlying domain. Another important criterion for trustworthiness is the model’s ability to
somehow communicate a measure of confidence in every specific prediction or recommen-
dation. Indeed, the overall goal of this paper is to produce highly informative models that
combine interpretability and algorithmic confidence. For this purpose, we introduce confor-
mal predictive distribution trees, which is a novel form of regression trees where each leaf
contains a conformal predictive distribution. Using this representation language, the pro-
posed approach allows very versatile analyses of individual leaves in the regression trees.
Specifically, depending on the chosen level of detail, the leaves, in addition to the normal
point predictions, can provide either cumulative distributions or prediction intervals that are
guaranteed to be well-calibrated. In the empirical evaluation, the suggested conformal pre-
dictive distribution trees are compared to the well-established conformal regressors, thus
demonstrating the benefits of the enhanced representation.
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1 Introduction

Predictive modeling is increasingly used as a basis for decision support, or even automated
decision-making. Making the resulting predictions, decisions, and recommendations trust-
worthy is a key issue, directly impacting user acceptance and, by extension, how the society
in general will adopt AI-based systems. Actually, the importance of trustworthy AI is obvious
from the Ethics Guidelines for Trustworthy AI [1], released by the European Commission’s
independent High-Level Expert Group on Artificial Intelligence.

One frequently expressed requirement for predictive models deemed to be trustworthy is
that it should be possible to understand the logic behind the predictions or recommendations,
typically on an individual (local) level, i.e., for each instance, but preferably also globally
for the entire model. Consequently, a predictive model needs to be either interpretable or
explainable. Simply put, an interpretable model can be examined and understood “as is”,
while an explainablemodel typically uses an external procedure for the actual explanations. In
recent years, many advanced algorithms, e.g., the LIME framework [2], have been developed
for offering either local or global explanations. The main advantage of these methods is that
they can be applied to all models, including opaque, like ensembles or neural networks. This
is important since opaque models typically outperform inherently transparent alternatives
like rule sets or decision trees [3]. Unfortunately, techniques producing global explanations
that are guaranteed to be faithful to the opaque model are generally lacking. In contrast,
inherently interpretable models make it possible to understand the exact reasoning used for
every single prediction, while simultaneously allowing inspection and analysis of the model
to gain insights about the underlying domain.

Another criterion associated with trustworthiness is algorithmic confidence, i.e., the mod-
els should not only be accurate, but also able to somehow communicate their confidence in
every prediction. Obviously, this requires the confidences to be well-calibrated, if this is not
the case, they actually become misleading.

In [4], it was argued that an accurate interpretable classifier, capable of distinguishing
between predictions where it is certain and not – and communicating this in an exact way –
meets most of the criteria for trustworthy predictive models. Specifically, combining proba-
bility estimation trees [5] with so-called Venn-Abers predictors [6] was suggested. The end
result was a method for producing decision trees, available for inspection and analysis after
the calibration, where each leaf contains a specific prediction, consisting of a label and a
well-calibrated probability interval. An interesting property of these models is the informa-
tion conveyed by the size of the probability intervals; where larger intervals show that the
model is less certain in its confidence estimations.

While both inherently interpretable models and explanation techniques, including rule
extraction (e.g., approximating a strong opaque model with a weaker but transparent) are
more common for classification, there exist several alternatives for predictive regression as
well. In this paper, we will look at regression tree models where the leafs are both well-
calibrated and more informative than just a point prediction. More specifically, we introduce
and evaluate Conformal predictive distribution trees, where every leaf contains a conformal
predictive system [7], i.e., a well-calibrated cumulative probability distribution over the pos-
sible target values. We will contrast and compare the suggested approach to using conformal
regression, which was suggested and evaluated for creating interpretable and informative tree
models in [8].

In the next section, we give an overview of conformal regression and conformal pre-
diction systems, as well as a brief summary of related work. In Section 3, we describe the
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experimentation and the evaluation used, including the publicly available data sets. Section 4
demonstrates the merits of the suggested approach, starting with a few detailed examples,
before presenting aggregated results from a large number of benchmark data sets. Finally, we
summarize the main conclusions and suggest some directions for future work in Section 5.

2 Background

2.1 Conformal regression

The conformal prediction framework [9] has the distinguishing characteristic of producing
predictionswith guarantees on the error rate underminimal assumptions. In fact, all conformal
predictors are valid, i.e., given a significance level ε ∈ (0, 1), the error rate of a conformal
predictor will, in the long run, be exactly ε. Conformal predictors output prediction regions;
in classification label sets and in regression prediction intervals. A prediction region not
containing the true target is considered an error.

Inductive conformal prediction (ICP) can be applied on top of any predictivemodel (called
the underlying model), thus turning it into a conformal predictor. For this step, which is per-
formed only once for each model, ICP requires a labeled data set (the calibration set) that
was not used for the training of the underlying model. After the calibration, the conformal
predictor can be used for prediction on novel (test) data, returning valid prediction regions.
Technically, the validity of conformal prediction relies on only one assumption, i.e., that the
calibration and test sets are exchangeable, which is a slightly weaker property than the stan-
dard i.i.d. Here it must be noted that if applied on top of an inherently interpretable underlying
model, the conformal predictor and the associated prediction regions can, after the calibration
step, be inspected and analyzed, typically providing significantly more information than the
underlying model.

While the validity, i.e., the bounded error rate, is guaranteed by the framework, the infor-
mativeness of the models may vary. Specifically, the sizes of the prediction regions, i.e., the
uncertainty exhibited by the conformal predictor, depend on both the quality of the under-
lying model, and on design choices and parameter values in the ICP step. For regression,
which is the focus of this paper, the most important criterion (which in conformal prediction
is referred to as efficiency) is that the prediction intervals are as tight as possible.

All conformal predictors utilize so-called nonconformity functions which are real-valued
functionsmeasuring the strangeness of an instance (x, y). For standard conformal regressors,
the nonconformity of an instance (xi , yi ) is simply defined as the absolute error

A (xi , yi , h) = |yi − h (xi )|, (1)

where h is the underlying predictive regressor providing real-valued predictions. Formally,
ICP constructs a standard conformal regressor as follows:

1. Divide the training set Z tr into two disjoint subsets:
a proper training set Z t and a calibration set Zc.

2. Train the underlying model h on Z t .
3. Measure the nonconformity (the absolute errors Eq. 1) of the examples in the calibration

set Zc to obtain a list of calibration scores S = α1, ..., αq sorted in descending order,
where q = |Zc|.
A standard ICP produces a valid prediction interval for a test instance xl+1 and a specific

confidence level ε as follows:
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1. Obtain a prediction h(xl+1).
2. Find the calibration score αp where p = �ε(q + 1)�.
3. Using the (partial) inverse of the nonconformity function, obtain the largest nonconfor-

mity score that is consistent with ε, i.e., A−1(αp). This is the maximum nonconformity
score for h and xl+1 with confidence 1 − ε.

If the absolute error in Eq. 1 is used as the nonconformity function, the prediction interval
for xl+1 thus becomes

Ŷ ε
l+1 = h (xl+1) ± αp, (2)

with the motivation that the probability for the underlying model h to make an absolute
prediction error greater than αp is exactly ε. With this procedure, i.e., using Eqs. 1 and 2, it
must be noted that the prediction intervals will be of the same size (2αp) for all test instances.
To increase the informativeness, however, we would like the conformal regressors to be more
specific (or sharp), i.e., the interval sizes should differ between easier (where the model is
more certain) and harder instances.

Theway tomake conformal regressors specific is by including a difficulty estimation of the
instances in the nonconformity function. This addition to the procedure, called normalization,
will result in the conformal regressor producing tighter intervals for easier instances and larger
for harder. In addition to making the predictions specific, previous studies, e.g., [10, 11] show
that normalization also leads to tighter prediction intervals on average. So, normalization both
makes the conformal regressor more efficient and provides additional information on a per-
instance basis.

Several ways of performing the difficulty estimation have been proposed. One early alter-
native was to use an additional model g trained on the residual errors of h see e.g., [10].
Other options, using just the underlying model, include taking the standard deviation of the
predicted values from the members of an ensemble [11] or looking at the spread of true target
values in each leaf of a regression tree [8].

With normalization, the nonconformity of an instance is defined as

A (xi , yi , h) = |yi − h (xi )|
σi + β

, (3)

where σi is the difficulty estimation of xi , and β is a sensitivity parameter where lower values
put a greater emphasis on the difficulty estimation, relative to the absolute error.

With the normalized nonconformity function, the valid prediction intervals are calculated
like:

Ŷ ε
l+1 = h (xl+1) ± αp (σl+1 + β) . (4)

2.2 Conformal predictive systems

Conformal predictive systems [12] generalize conformal regressors in that they output cumu-
lative distribution functions, referred to as conformal predictive distributions, instead of
prediction intervals. As will be shown, prediction intervals for specified confidence levels
may be derived from such distributions, but there are several other usages. A predictive dis-
tribution can be used to obtain a threshold value, such that the probability of the true target
falling below (or above) it is larger than a specified probability, e.g., what is the highest inter-
est rate such that the probability of the true value exceeding it is less than 0.01. Conversely,
the distribution provides probabilities for that the true target falls below (or above) specified
thresholds, e.g., what is the probability that the temperature of the engine does not exceed 220
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degrees. This is in rather sharp contrast to the prediction intervals in conformal regressors
that, even if the are guaranteed to be valid, do not provide information on how values within
and outside the intervals are distributed.

The standard, and computationally efficient, approach to forming inductive (often called
split) conformal predictive systems [7] is very similar to the standard approach of forming
inductive conformal regressors.One small, but important, difference is that the nonconformity
scores are calculated by considering actual and not absolute values of the residuals:

A (xi , yi , h) = yi − h (xi )
σi + β

, (5)

where σi , xi , and β are defined as before. The prediction for a test instance xi , with esti-
mated difficulty σi , then becomes the following cumulative distribution function (conformal
predictive distribution):

Q(y) =
{

n+τ
q+1 , if y ∈ (

C(n),C(n+1)
)
, for n ∈ {0, ..., q}

n′−1+(n′′−n′+2)τ
q+1 , if y = C(n), for n ∈ {1, ..., q} (6)

whereC(1), . . . ,C(q) are obtained from the calibration scoresα1, . . . , αq , sorted in increasing
order:

C(i) = h (x) + σαi

and C(0) = −∞ and C(q+1) = ∞. τ is sampled from the uniform distribution U(0, 1) and
its role is to allow the p values of target values to be uniformly distributed. n′′ is the highest
index such that y = C(n′′), while n′ is the lowest index such that y = C(n′) (in case of ties).
For a specific value y, the function returns the estimated probability P(Y ≤ y), where Y is
a random variable corresponding to the true target.

Given a conformal predictive distribution, a prediction interval for a chosen significance
level ε can be obtained by [C�ε(q+1)/2�,C�(1−ε/2)(q+1)	]. Similarly, a point prediction corre-
sponding to the median of the distribution can be obtained by C�0.5(q+1)	.

2.3 Related work

Recent work in conformal regression proposes many different improvements to the frame-
work. Two specific examples are adaptive and distribution-free prediction intervals for deep
neural networks [13] and distribution-free predictive inference [14]. Other important con-
tributions are the utilization of root-finding approaches to efficiently compute conformal
prediction sets [15] and conformal histogram regression, which is able to adapt automati-
cally to skewed data [16]. A very interesting paper is [17], presenting an alternate view on
conformal regression based on nested sets. Application papers are also frequent, see e.g.,
[18, 19].

Conformal predictive systems were introduced fairly recently, originally in a symposium
paper [20] presented in 2017, which was extended to a journal paper [12]. One of the most
important contributions to the area is the computationally efficient approach called split
conformal predictive systems [7], which was described in the previous section. Other key
contributions include techniques for combining multiple such systems into so-called cross-
conformal predictive systems [21] and decision procedures to be used on top of conformal
predictive systems [22]. The idea of using out-of-bag predictions for calibration, rather than
requiring a separate calibration set, has been transferred from the context of conformal regres-
sion [23] also to conformal predictive systems [24]. Finally, the idea of employing Mondrian
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conformal prediction, which has been used both in the context of conformal classification
[25] and conformal regression [26], was recently proposed also for conformal predictive
systems [27]. In that study, it was shown that by forming Mondrian categories by binning
the predictions of the underlying model, and forming one conformal predictive system per
category, predictive performance, as measured by continuous ranked probability score, was
significantly improved compared to using one single conformal predictive system.

3 Method

The overall purpose of the empirical study is to demonstrate the usage of conformal predic-
tion systems when applied to regression trees. We also conduct an outright comparison to
conformal regression trees, where the four setups evaluated are:

• CR: Standard conformal regression, i.e., using no normalization.
• CRn: Conformal regression with normalization.
• CPS: Standard conformal predictive systems, i.e., without normalization.
• CPSn: Conformal predictive systems, with normalization.

For the normalized settings, σ was set to the standard deviation of the true targets (from the
training set) in each leaf. It must be noted that with these setups, the result of the calibration
is a fixed and interpetable model that can be inspected and analyzed. For the conformal
regressors, every leaf would be associated with a prediction interval, and for the conformal
predictive systems, every leaf would contain a cumulative distribution function.

All experimentation was performed using scikit-learn. The underlying models were
regression trees and all parameters were left at the default values, with the exception of
min_samples_lea f , which was set to 25.

Thenumber of calibration instanceswas selected as k·100−1,where k is the largest number
making the calibration set less than 1/3 of the training data available. For the evaluation,
standard 10x10-fold cross-validation was used, so all results reported are averaged over the
100 folds.

The 20 publicly available data sets used in the experimentation range from approximately
1400 to 10000 instances. All but one data set, mg from [28], are from theUCI [29], Delve [30]
or KEEL [31] repositories. The data sets are described in Table 1 below, where #inst. is the
number of instances and #att. is the number of input attributes. Before the experimentation,
all target values were normalized to [0, 1], thus making comparisons over the data sets easier.

4 Results

4.1 Demonstration of the suggested approach

Before presenting experimental results,we demonstrate the flexibility of conformal predictive
systems and the suggested approach. Figure 1 illustrates how different prediction intervals –
both one-sided and two-sided – can be chosen using the percentiles, and how the probability
distribution can be used to find the probability for the true target being higher or lower than
a specific threshold value.

The next part of the demonstration uses the comp-activ (comp) data set, which is a collec-
tion of a computer systems activity measures. The data was collected from a Sun Sparcstation
20/712 with 128 Mbytes of memory running in a multi-user university department. Users
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Table 1 Data set descriptions

Name #inst. #att. Origin Name #inst. #att. Origin

Abalone 4177 8 UCI kin8fh 8192 8 Delve

Airfoil 1503 6 UCI kin8fm 8192 8 Delve

Bank8fh 8192 8 Delve kin8nh 8192 8 Delve

Bank8fm 8192 8 Delve kin8nm 8192 8 Delve

Bank8nh 8192 8 Delve mg 1385 6 Flake

Bank8nm 8192 8 Delve puma8fh 8192 8 Delve

Comp 8192 12 Delve puma8fm 8192 8 Delve

DeltaA 7129 5 KEEL puma8nh 8192 8 Delve

DeltaE 9517 6 KEEL puma8nm 8192 8 Delve

Friedm 1200 5 KEEL wizmir 1460 2 KEEL

would typically be doing a large variety of tasks ranging from accessing the internet, edit-
ing files or running very cpu-bound programs. The data was collected continuously on two
separate occasions. On both occasions, system activity was gathered every 5 seconds. The
final data set is taken from both occasions with equal numbers of observations coming from
each collection epoch in random order. The target is the portion of time (%) that CPUs run
in user mode. The three features used in our example tree are sread - number of system read
calls per second, swrite - number of system write calls per second, and runqsz - process run
queue size [30].

Fig. 1 A Conformal Predictive Distribution with three different intervals defined: : more than the 10th

percentile; : between the 5th and the 95th percentiles; : less than the 90th percentile. The black
dotted lines indicate how to determine the probability of the true target being smaller than 0.5, which in this
case would be 92%
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Fig. 2 Regression tree for the
comp-active data set

r unq s z = 202 .50
l e a f 1 : [ 0 . 6 9 ]

r unq s z 202 .50
sw r i t e = 2 .10

s r e a d = 106 .50
l e a f 2 : [ 0 . 9 5 ]

s r e a d 106 .50
l e a f 3 : [ 0 . 8 9 ]

sw r i t e 2 . 10
l e a f 4 : [ 0 . 7 9 ]

The data is divided 50/50 into a training and a test set. The training set is further divided
into a proper training set (2/3) and a calibration set (1/3). To ensure that the tree is small
enough for the demonstration, the min_samples_leaf was set to 20%. Figure 2 shows the
induced tree used as the underlying model. Obviously, this standard regression tree provides
information about the split criteria and the predicted values, but does not provide any further
information about the predictions or the associated confidence.

Figure 3 shows the conformal predictive distributions for each of the leaves using standard
conformal predictive distributions. Since the tree was forced to be so small, each leaf contains
many training and calibration instances, leading to wide intervals and distributions.

Since these conformal predictive distributions are not normalized, all of the distributions
are identical, but of course centered around different values in the four leaves. In each sub-
figure, we have inserted the interval defined by conformal regression using ε = 0.1. As a

(a) leaf 1 (b) leaf 2

(c) leaf 3 (d) leaf 4

Fig. 3 The conformal predictive distributions for the four different leaves in Fig. 2
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comparison, we have also inserted lines for the 5th and 95th percentiles. While the conformal
regressor is centered around the prediction h(x), we can see that the corresponding intervals
defined from the predictive distribution are adjusted upwards. Furthermore, we can also
see that the median of the distribution is higher than the predicted value for the leaf, i.e.,
the underlying model is most likely underestimating in the predictions. If the conformal
predictive distribution is forced to make a point prediction, it would in this case change the
prediction upwards, compared to the underlying model.

The normalized conformal predictive distributions for the four leaves are shown in Fig. 4.
The most important difference is that the distributions are now adapted to the difficulty of
each leaf. Consequently, it is easy to see that both leaves 2 and 3, shown in Fig. 4b and
c, have very narrow distributions, providing the user with a very clear picture of what to
expect from instances predicted in these leaves. The distribution in leaf 4, shown in Fig. 4d,
is also compact, whereas leaf 1, shown in Fig. 4a, is very wide, informing the user that
predictions made by that leaf are muchmore uncertain. The normalized conformal regressors
for ε = 0.1 are also shown. Interestingly enough, while the intervals defined by the 5th

and 95th percentiles are clearly lower than the ones produced by the normalized conformal
regressor, the median in the distribution is clearly higher than the point prediction from
the underlying model.

(a) leaf 1 (b) leaf 2

(c) leaf 3 (d) leaf 4

Fig. 4 The normalized conformal predictive distributions for the four different leaves in Fig. 2
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4.2 Aggregated results

Table 2 shows Mean Absolute Errors (MAE) and tree sizes. The MAE is calculated using:

MAE = 1

n

n∑
i=1

|ŷi − yi | (7)

where ŷi is the predicted value and yi the target.
While all setups use the same trees as underlying models, the CPS setups predict the

median instead of the tree prediction.
Regarding MAEs, we see that while the differences are very small in absolute numbers,

the mean ranks indicate that the CPS variants have slightly smaller errors on most data sets.
Looking at the tree sizes, the larger models are arguably too complex to allow for a complete
understanding of the underlying relationships. Still, it must be noted that individual leaves
could be inspected with ease, and specific predictions analyzed or explained.

As described above, a conformal prediction distribution could provide many different
prediction intervals; both one-sided and two-sided. In the following comparison, the most
straightforward option is used, i.e., for ε = 0.1, the interval is between the 5th and 95th

percentiles. Table 3 shows the empirical error rates for ε = 0.05 and ε = 0.1.

Table 2 MAE and tree size MAE Size
CPS CPSn CR Tree

Abalone .058 .057 .058 156

Airfoil .090 .090 .090 57

Bank8fh .072 .072 .073 304

Bank8fm .035 .035 .035 304

Bank8nh .082 .081 .084 306

Bank8nm .040 .039 .040 305

Comp .025 .025 .025 299

DeltaA .028 .028 .028 264

DeltaE .042 .042 .042 350

Friedm .086 .086 .086 47

Kin8fh .074 .074 .074 301

Kin8fm .062 .062 .062 300

Kin8nh .116 .116 .116 304

Kin8nm .107 .107 .107 305

Mg .086 .086 .086 52

Puma8fh .118 .118 .118 305

Puma8fm .051 .051 .051 302

Puma8nh .107 .107 .107 305

puma8nm .046 .046 .046 305

wizmir .028 .028 .028 55

Mean .068 .067 .068 246

Mean Rank 2.10 1.40 2.50

123



Table 3 Error rates

ε = 0.05 ε = 0.10
CR CRn CPS CPSn CR CRn CPS CPSn

Abalone .049 .049 .049 .049 .098 .097 .097 .098

Airfoil .049 .049 .049 .049 .097 .097 .099 .100

Bank8fh .050 .050 .050 .050 .099 .099 .100 .100

Bank8fm .051 .051 .051 .051 .099 .099 .099 .099

Bank8nh .050 .050 .049 .049 .099 .099 .100 .099

Bank8nm .052 .051 .052 .052 .100 .101 .101 .101

Comp .050 .050 .051 .051 .099 .099 .100 .099

DeltaA .049 .049 .048 .049 .099 .099 .099 .099

DeltaE .050 .050 .050 .050 .100 .100 .100 .100

Friedm .050 .052 .049 .049 .098 .100 .102 .102

Kin8fh .050 .050 .050 .050 .101 .101 .101 .101

Kin8fm .050 .051 .051 .050 .100 .100 .100 .100

Kin8nh .049 .050 .049 .049 .101 .100 .101 .101

Kin8nm .049 .050 .050 .050 .098 .099 .098 .099

Mg .048 .047 .048 .047 .092 .094 .095 .095

Puma8fh .049 .049 .049 .049 .099 .099 .099 .100

Puma8fm .050 .050 .050 .050 .101 .101 .101 .101

Puma8nh .051 .051 .050 .051 .099 .099 .100 .100

Puma8nm .050 .050 .050 .050 .100 .099 .100 .100

Wizmir .053 .053 .052 .051 .096 .097 .100 .099

Mean .050 .050 .050 .050 .099 .099 .100 .100

As expected, the observed error rates are very close to the significance level, on each
and every data set. While validity is guaranteed for conformal regression and conformal
predictive systems, as long as the data set is i.i.d., it is of course important to see that all
setups evaluated here are valid not only in theory and in the long run, but also in practice.

Looking finally at the efficiency, Table 4 below shows the mean interval sizes for ε = 0.05
and ε = 0.1. First of all, it is interesting to see that despite the low significance levels, the
intervals are fairly tight. For ε = 0.1 and ε = 0.05 the intervals cover approximately 28%
and 34% of the total range, respectively.When comparing the different setups, there is a clear
ordering, showing the importance of the normalization. As a matter of fact, CRn is often the
most efficient, followed by CPSn, CR and CPS. Consequently, Friedman tests [32], followed
by Bergmann-Hommel’s dynamic procedure [33] to establish all pairwise differences at
α = 0.05, show all these differences to be significant when ε = 0.05. For ε = 0.1, the only
significant differences are between the two normalized and the two standard setups.

While the intervals were marginally larger for the two CPS setups than for the CR counter-
parts, it must be noted that the intervals used for the comparison were the simplest possible.
It would most likely be fairly straightforward to design a heuristics for finding tighter inter-
vals based on the cumulative distributions. Still, it should be remembered that converting the
cumulative distribution into an interval was done just for the comparison. In most situations,
it is the distribution itself that should be inspected and analyzed.
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Table 4 Interval sizes

ε = 0.05 ε = 0.10
CR CRn CPS CPSn CR CRn CPS CPSn

Abalone .351 .326 .357 .332 .263 .246 .271 .255

Airfoil .469 .449 .471 .450 .390 .377 .386 .372

Bank8fh .346 .342 .354 .352 .284 .280 .292 .289

Bank8fm .185 .178 .187 .181 .150 .145 .151 .147

Bank8nh .366 .358 .413 .414 .294 .286 .325 .325

Bank8nm .219 .196 .234 .214 .160 .148 .167 .157

Comp .136 .133 .140 .136 .108 .106 .110 .109

DeltaA .165 .158 .166 .160 .127 .124 .127 .124

DeltaE .225 .223 .225 .223 .182 .181 .182 .181

Friedm .427 .428 .435 .434 .359 .358 .356 .356

Kin8fh .376 .370 .377 .371 .309 .306 .310 .307

Kin8fm .315 .309 .315 .309 .259 .255 .259 .256

Kin8nh .572 .565 .571 .564 .479 .475 .480 .475

Kin8nm .551 .535 .549 .533 .452 .441 .454 .443

Mg .486 .447 .491 .450 .393 .360 .390 .357

Puma8fh .571 .562 .572 .564 .484 .474 .484 .474

Puma8fm .264 .258 .264 .258 .217 .213 .217 .213

Puma8nh .545 .525 .547 .527 .454 .439 .454 .439

Puma8nm .247 .239 .248 .240 .201 .195 .200 .195

Wizmir .140 .138 .140 .138 .116 .115 .116 .115

Mean .348 .337 .353 .343 .284 .276 .286 .279

Mean Rank 2.95 1.15 3.80 2.10 3.25 1.45 3.50 1.80

Summarizing the experiments, we first showed that the empirical error rates for all setups
were very close to the significance levels. When comparing the efficiencies, it was obvious
that normalization will not only produce more specific models, but also tighter intervals on
average. Finally, the intervals produced from the more informative CPS models, even when
using the most straightforward approach, were almost as tight as the ones produced by the
conformal regressors.

5 Concluding remarks

We have in this paper introduced conformal predictive distribution trees that combine
interpretabilitywith algorithmic confidence to provide highly informativemodels. As demon-
strated, the suggested approach allows very versatile analyses of individual leaves in
regression trees. Specifically, a user could be provided with many different, but all valid,
prediction intervals; one-sided as well as two-sided. Naturally, the probability distribution
can also used to find the probability for the true target being either higher or lower than a
specific threshold value.

In the experiments, it was shown that all empirical error rates are very close to the chosen
significance levels. Having the validity guarantees from the conformal framework, together
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with the inherently interpretable and very versatile representation language, are the key
properties of the suggested method.

Finally, the valid prediction intervals produced by the novel regression tree variant were
compared to the counterparts in conformal regression trees. Here, the efficiency was found
to be comparable, despite the fact that a very straightforward procedure was used to select
the intervals from the conformal predictive distribution trees.

For future work, Mondrian CPS, where the guarantees apply locally since a separate
calibration set is used for each category, should be applied to tree models using the leaves
as the categories. This would potentially produce even more specialized predictions, while
providing guarantees for each leaf. Another suggestion is investigating systematic approaches
to selecting intervals from the CPS optimizing the efficiency while keeping the validity
guarantees.
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