
Annals of Mathematics and Artificial Intelligence (2023) 91:563–565
https://doi.org/10.1007/s10472-023-09846-1

Preface

Adel Bouhoula1 · Bruno Buchberger2 · Tetsuo Ida3 · Temur Kutsia2

Accepted: 22 March 2023 / Published online: 2 May 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

This special issue of Annals of Mathematics and Artificial Intelligence is devoted to
theoretical and practical aspects of symbolic computation in software science, combinedwith
recent artificial intelligence techniques. Symbolic Computation is the science of computing
with symbolic objects (terms, formulae, programs, representations of algebraic objects, etc.).
Powerful algorithms have been developed during the past decades for the major subareas of
symbolic computation: computer algebra and computational logic. These algorithms and
methods are successfully applied in various fields, including software science. Meanwhile,
artificial intelligence methods and machine learning algorithms are widely used nowadays in
various domains and, in particular, combinedwith symbolic computation. Several approaches
mix artificial intelligence and symbolic methods and tools deployed over large corpora to
create what is known as cognitive systems.

Software science, broadly understood, covers a wide range of topics, among others: con-
struction, analysis, transformation, and verification of software; programmingmodels; formal
methods for software development; creation and processing knowledge libraries; etc. This
special issue was open to papers about software science-relevant techniques and methods
originating from logic, algebra, and artificial intelligence. We also welcomed submissions
related to knowledge formalization, large-scale computer understanding of mathematics and
science, cognitive computing, etc. Three papers, reflecting various aspects of this understand-
ing of the relationship between symbolic computation, software science, and AI, constitute
this issue.

In the first article, Bruno Buchberger presents his view on the interaction between
automated programming, symbolic computation, and machine learning. Automated pro-
gramming concerns procedures that (semi-)automate various aspects of the programming

B Temur Kutsia
kutsia@risc.jku.at

Adel Bouhoula
a.bouhoula@agu.edu.bh

Bruno Buchberger
Bruno.Buchberger@risc.jku.at

Tetsuo Ida
ida@cs.tsukuba.ac.jp

1 Arabian Gulf University, Manama, Bahrain

2 Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

3 University of Tsukuba, Tsukuba, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-023-09846-1&domain=pdf
http://orcid.org/0000-0003-4084-7380


564

process (“meta-programming”). Buchberger considers automated programming as the “most
exciting and relevant technological endeavor today” that will have “an enormous impact on
the global job market in the software industry”, and looks at symbolic computation and
machine learning as two fundamentally different approaches to automated programming.
In his analysis, both approaches are part of algorithmic mathematics and they, as mathe-
matical methods, require quite some human intelligence while they are being invented or
developed. However, applying the already invented methods can hardly be considered to be
a task that requires “intelligence” (since it is just an execution of algorithms) and, hence,
calling such an application “machine intelligence” or “artificial intelligence” is misleading,
argues the author. Besides the general characterization of the approaches, Buchberger also
reports about his experience in automated programming by symbolic techniques (based on
his own “lazy thinking” algorithm synthesis method) and by a machine learning approach
(synthesizing programs from natural language specifications using ChatGPT). He concludes
the paper with the message that “the next big step forward could and should be to combine
the machine learning approach to generating (maybe not completely perfect) programs from
natural language specifications and the symbolic computation approach to handling various
intermediate steps in the programming process”, describing also a possible way how such a
combination can be achieved.

The second article, authoredby JohannesBlümlein,MarcoSaragnese, andCarstenSchnei-
der, describes new symbolic tools to gain a large-scale computer understanding of processes
in quantum chromodynamics. For the precision calculations in this area, huge expressions
of several GB in size have to be dealt with. The goal is to obtain compact representations
of them that are suitable for further processing and provide further insight within the arising
calculations. More precisely, highly complicated divergent multi-loop Feynman integrals in
the given expressions have to be calculated analytically in order to represent the expressions
more compactly, in terms of special functions and constants. The input is given in the form
of very large sets of (coupled partial) linear differential equations, and the authors describe a
general toolbox for solving them symbolically. They also propose a systematic classification
of partial differential equations for scalar or master integrals (of one or more scales) with
respect to known solutions in the hypergeometric classes. These developments can be consid-
ered as the first steps towards the computerization of knowledge about special function-based
result representations in quantum chromodynamics.

In the third article, Sorin Stratulat proposes a solution to the problemof validation of cyclic
pre-proofs produced by software: cyclic induction reasoner. Cyclic induction is a reasoning
technique used to terminate the proof attempt of certain subgoals if they have been already
generated earlier during the proving process. For first-order logic with inductive definitions
and equality, CLKIDω is the inference system that aims at building (cyclic) proofs using
this technique. Some cyclic derivation trees constructed by CLKIDω in the proving process
might not be sound. Therefore, such trees in general are called pre-proofs rather than proofs.
Cyclist is a theorem prover that implements CLKIDω. Pre-proofs produced by Cyclist
require human validation, which might be quite tedious. To address this problem, Stratulat
proposes an approach that allows certifying cyclic pre-proofs mechanically. It is used to
certify pre-proofs produced by E- Cyclist (a prover that extends Cyclist) using the Coq
proof assistant.

We thank the authors who submitted their papers to this issue and the reviewers who
evaluated the submissions thoroughly and helped the authors to improve their contributions.

123

A. Bouhoula et al.



565

Special thanks go to Martin Golumbic, the editor-in-chief of Annals of Mathematics and
Artificial Intelligence, who was very helpful throughout the editorial process.

Data Availibility This manuscript has no associated data

Declaration

Conflicts of interest The authors declare that they have no conflict of interest

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Preface


	Preface

