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Abstract
We consider geometry theorems whose premises and statement comprise a set of bisector
conditions. Each premise and the statement can be represented as the rows of a “bisector
matrix”: one with three non zero elements per row, one element with value -2 and the others
with value 1. The existence of a theorem corresponds to rank deficiency in this matrix. Our
method of theorem discovery starts with identification of rank deficient bisector matrices.
Some such matrices can be represented as graphs whose vertices correspond to matrix rows
and whose edges correspond to matrix columns. We show that if a bisector matrix which can
be represented as a graph is rank deficient, then the graph is bicubic.We give an algorithm for
finding the rank deficient matrices for a Hamiltonian bicubic graph, and report on the results
for graphswith 6,8,10 and 12 vertices.We discuss amethod of deriving rank deficient bisector
matrices with more than 2 non-zero elements. We extend the work to matrices containing
rows corresponding to angle trisectors.

Keywords Theorem discovery · Automated deduction · Applications of graph theory ·
Cubic graphs · Euclidean geometry

Mathematics Subject Classification (2010) 15A03 · 15B36 · 05C50 · 51-04 · 51M04

1 Introduction

There are a number of methods of automated geometry theorem proving [5, 6, 13, 18]. The
Full Angle Method [7] treats an angle and its supplement as the same thing. It has the benefit
of allowing theorems to be expressed in a more general form, and hence allowing multiple
instances of the same theorem to be proved at once. However, it does not allow theorems to be
expressed which themselves depend on the conventional notion of an angle, as the difference
in the direction of two signed rays. Geometry Expressions employs the Analytical Geometry
Method to derive an expression for outputmeasurements in terms of symbolic values for input
constraints [17]. The method relies on deriving a symbolic Cartesian coordinate description
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754 P. Todd

of the model. When an angle is measured, it is derived from the Cartesian equations of
its lines using inverse trigonometric functions. Simplification of expressions involving such
functions imposes a heavy burden on the algebra system, and results for angle-dominated
diagrams are not satisfactory. This prompted the development of an auxiliary system which
is deployed when the entire computation can be kept in the angle domain. For example, if a
triangle is defined by one side and two angles, and the third angle is measured, the Cartesian
computation involves an inverse trigonometric function (arc trig). However, expressed in
terms of angles the result is simply the difference between π and the sum of the other two
angles. In contrast to the full angle method, this approach considers angles to be signed, and
hence an angle and its supplement are different. Thismeans that theorems are less general, but
has the advantage of corresponding with the conventional notion of angle used by consumers
of mathematics such as students and engineers.

Beyond theorem proving, the topic of automated theorem discovery has attracted a number
of different approaches In [1, 3] the geometric discovery process starts with a given diagram.
Provable geometry statements about the geometric entities or further derived entities are
found by exhaustive or random search. The given diagram can be in fact a parametrized
family of diagrams [12]. Another approach [2] is to start with the statements one wants to
prove, and discover supplementary conditions required to make the theorems true. Again,
however, the geometric context is given. Finding metrics that can be used in filtering the
interesting theorems from a set of automatically generated theorems is an active topic of
research [9, 10].

In this paper, we consider working in reverse and generating the geometric diagram to
match a more abstract form of the theorem, which guarantees both its solution, but also
the absence of redundant premises. The abstract form is developed by analogy with known

Fig. 1 AD′ is the reflection of the altitude AD of triangle ABC in the bisector of∠BAC . O is the circumcenter
of ABC . O lies on AD′
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Automated discovery of angle theorems 755

theorems, considered (by this author) to be aesthetically pleasing. We develop and automate
here a method for generating many new theorems of broadly comparable structure to our
seed theorems.

Our focus will be on theorems which can be stated in terms of angle bisectors. This is
not quite as small a group as one might initially think, as the base of an isosceles triangle is
parallel to the external angle bisector at its apex, and any circle chord defines an isosceles
triangle with the radial lines to its end points. In addition, the axis of a reflection is the angle
bisector of the incident and reflected rays.

For example, the theorem [6] that the reflection of a triangle’s altitude in its angle bisector
passes through its circumcenter, contains only one explicit angle bisector (Fig. 1). However
an angle bisector is implicit in the reflection. In addition, the circumcenter forms isosceles
triangleswith the three sides of the triangle, and the bases of these triangles can be considered,
in a broad sense, angle bisectors. The theorem can then be stated as five angle bisections and
a single angle (the right angle between the altitude and the base). We present algorithms to
discover new theorems of this sort.

We describemodifications in our approach to accommodate angle trisectors, and identify a
pure angle bisector diagramwhich yieldsNapoleon’s Theorem, and amixed bisector/trisector
diagram which yields Morley’s Theorem.

1.1 Bisectors, theorems andmatrices

We define the direction θ(v) of cartesian vector v to be the angle between the direction of
the positive x axis and v. Given two vectors u and v, define the bisector vector B(u, v) to be
the unit vector whose direction is defined by

θ(B(u, v)) = θ(u) + θ(v)

2

Given two lines L1 and L2, let v1 be a vector along L1 and v2 a vector along L2, then
B(v1, v2) is a vector along one of the two angle bisectors of L1 and L2. Let α = θ(v1),
β = θ(v2) and γ = θ(B(v1, v2)), then

α + β − 2 · γ = 0

If w is a vector along one of the bisectors of L1 and L2, and δ = θ(w), then

α + β − 2 · δ = nπ

for some integer n. We define a bisector theorem as one whose premises can be expressed
as a set of angle bisectors. The conclusion may be a further angle bisection relation which is
implied by the premises. Each bisection forms a linear equation whose coefficients are 1, 1
and -2. Viewed as a linear system and expressed in matrix terms, a bisection theorem can be
associated with a matrix whose rows contain three non-zero elements: two 1’s and one -2.

More generally, we also define as a bisector theorem onewhose premises can be expressed
as a set of angle bisectors and whose conclusion is that the angle between two of the lines has
a specific value. We illustrate the mapping between theorem and matrix and the relationship
between both flavors of bisection theorem in this section.
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756 P. Todd

In Fig. 2, cyclic quadrilateral ABCD has circumcenter O . Vectors v1 . . . v9 are defined
as follows.

v1 = −→
OA v2 = −→

OB v3 = −→
OC v4 = −−→

OD
v5 = B(v1, v2) v6 = B(v2, v3) v7 = B(v3, v4) v8 = B(v4, v1)

v9 = B(v5, v7)

We state as a theorem that:
v9 = B(v6, v8)

The definitions of v5 . . . v9 can each be expressed as a linear equation, as can the conclu-
sion. This yields a system of 6 equations in 9 unknowns,

θ(v1) + θ(v2) − 2θ(v5) = 0
θ(v2) + θ(v3) − 2θ(v6) = 0
θ(v3) + θ(v4) − 2θ(v7) = 0
θ(v1) + θ(v4) − 2θ(v8) = 0
θ(v5) + θ(v7) − 2θ(v9) = 0
θ(v6) + θ(v8) − 2θ(v9) = 0

Fig. 2 Vectors v1, v2, v3 and v4 join the circumcenter O to the vertices of cyclic quadrilateral ABCD. v5 is
B(v1, v2), v6 is B(v2, v3), v7 is B(v3, v4) and v8 is B(v4, v1). v9 is B(v5, v7)
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Automated discovery of angle theorems 757

which can be expressed in matrix form as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −2 0 0 0 0
0 1 1 0 0 −2 0 0 0
0 0 1 1 0 0 −2 0 0
1 0 0 1 0 0 0 −2 0
0 0 0 0 1 0 1 0 −2
0 0 0 0 0 1 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8
θ9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

Such a theorem is true if and only if the conclusion is in the null space of the premises.
An alternative way of stating this is that the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −2 0 0 0 0
0 1 1 0 0 −2 0 0 0
0 0 1 1 0 0 −2 0 0
1 0 0 1 0 0 0 −2 0
0 0 0 0 1 0 1 0 −2
0 0 0 0 0 1 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

is rank deficient.
It is simple to check with a computer that M above has rank 5, whereas its full rank would

be 6, hence it is rank deficient and the theorem is true.
The theorem statement given above is that the bisector vector of v5 and v7 is also the

bisector vector of v6 and v8. An alternate way of phrasing this is to state that the bisector

Fig. 3 Vectors w1, w2, w3 and w4 join the circumcenter O to the vertices of cyclic quadrilateral ABCD. w5

is
−→
BA, w6 is

−→
CB, w7 is

−→
CD, w8 is

−→
DA, w9 is B(w5, w7) ,w10 is B(w6, w8)
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758 P. Todd

vector of v5 and v7 has the same direction as the bisector vector of v6 and v8. This phrasing
would lead us to introduce two vectors:

v9 = B(v5, v7) v10 = B(v6, v8)

We would then add a row to our matrix specifying that θ(v10) − θ(v9) = 0. The resulting
matrix would be

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −2 0 0 0 0 0
0 1 1 0 0 −2 0 0 0 0
0 0 1 1 0 0 −2 0 0 0
1 0 0 1 0 0 0 −2 0 0
0 0 0 0 1 0 1 0 −2 0
0 0 0 0 0 1 0 1 0 −2
0 0 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The rank deficiency of Q can be computed directly or deduced from a consideation of the
coefficients of row 6 of matrix M expressed as a linear sum of the first five rows. Applying
those coefficients to the first five rows of Q and subtracting the sixth row yields a scalar
multiple of the seventh row.

Such 2D theorems in 2D vector space have geometric corollaries, e.g. the theorem of Fig. 3
that the angle bisectors of the opposite sides of a cyclic quadrilateral are perpendicular. In
the figure,

w1 = −→
OA w2 = −→

OB w3 = −→
OC w4 = −−→

OD

w5 = −→
BA w6 = −→

CB w7 = −→
CD w8 = −→

DA
w9 = B(w5, w7) w10 = B(w6, w8)

A chord of a circle is perpendicular to the angle bisector of the lines joining the circle’s
center to the chord’s endpoints. The linear equations defining w5 . . . w8 will therefore be
analogous to those for v5 . . . v8 but with π or −π in the right hand side. The definitions of
w5 . . . w10 can each be expressed as a linear equation. The conclusion of our theorem is a
statement that the angle betweenw9 andw10, is determined by the premises to have a specific
constant value. We denote this value �. This yields a system of 7 equations in 10 unknowns,

θ(w1) + θ(w2) − 2θ(w5) = π

θ(w2) + θ(w3) − 2θ(w6) = π

θ(w3) + θ(w4) − 2θ(w7) = −π

θ(w1) + θ(w4) − 2θ(w8) = π

θ(w5) + θ(w7) − 2θ(w9) = 0
θ(w6) + θ(w8) − 2θ(w10) = 0
θ(w9) − θ(w10) = �
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Automated discovery of angle theorems 759

The matrix equation corresponding to the above theorem is then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −2 0 0 0 0 0
0 1 1 0 0 −2 0 0 0 0
0 0 1 1 0 0 −2 0 0 0
1 0 0 1 0 0 0 −2 0 0
0 0 0 0 1 0 1 0 −2 0
0 0 0 0 0 1 0 1 0 −2
0 0 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8
θ9
θ10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

π

π

−π

π

0
0
ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

As the matrix Q is rank deficient, its final row may be expressed as a linear combination
of the previous rows. Applying these coefficients to the right hand side of the equation and
setting the final value to 0 yields a linear equation for �. In our example, the linear equation
implies that � is π

2 , and our theorem statement is that the bisectors are perpendicular.

Fig. 4 A theorem states that BCDE is a cyclic quadrilateral, and BFGC is a second cyclic quadrilateral with
BF the same line as BE , and CG the same line as DC . Under these conditions FG is the same direction
as ED
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1.2 Bisector matrices

We have seen how geometry diagrams containing angle bisectors may be expressed as linear
systems involving the directions of the vectors. We consider a diagram to comprise a theorem
if one of its statements can be deduced from the others, that is if the linear system is rank defi-
cient. Assuming a matrix form of our linear system where columns correspond to directions
in the diagram, and rows correspond to bisection conditions, a single bisection corresponds
to a row with three non zero elements, one -2 and two 1’s. We call a matrix whose every row
contains one -2 and two 1’s as its only non-zero element a bisector matrix.

Our approach to theorem discovery breaks down into two parts: finding rank deficient
bisector matrices, and interpreting these matrices as geometry theorems. Our initial focus in
this paper is on the first task. We allude to some techniques which may be employed for the
second task, but that is properly the topic of further work.

The starting point for this study is the pair of theorems in Figs. 4 and 5. With a judiciously
selected labelling of the lines, thematrices for these two theorems have non-zero entries in the
same places, however the values in those places are not the same. The matrices are different,
but their shape is the same. We develop a graph theoretical characterization of matrix shapes
which yield rank deficient bisector matrices. We further present a graph theoretical criterion
on the assignment of values within these matrix shapes which can be used to accelerate a
search for rank deficient assignments.

2 Motivating examples

Figure 4 illustrates the following theorem ([6] example 1.115): Let BCDE be a cyclic
quadrilateral, and BFGC be a second cyclic quadrilateral with BF the same line as BE ,
and CG the same line as DC . Then FG is the same direction as ED.

Fig. 5 O is the circumcenter of ABC . D lies on the circumcircle of AOC . The reflection of DA in AB is
parallel to the reflection of DC in BC
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Automated discovery of angle theorems 761

Twelve directions are identified in the figure: the direction of eight lines joining the center
of the circle to the vertices of the cyclic quadrilaterals, and four directions for the five lines
of those quadrilaterals (the theorem statement is that two of the lines are parallel; these lines
can be considered as the same direction and labelled accordingly). With this labelling, the
following matrix corresponds to the figure.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 0 0 0 −2
1 −2 0 0 0 0 0 0 1 0 0 0
0 −2 1 0 0 0 0 0 0 1 0 0
0 0 1 −2 0 0 0 0 0 0 1 0
0 0 0 −2 1 0 0 0 1 0 0 0
0 0 0 0 1 −2 0 1 0 0 0 0
0 0 0 0 0 −2 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The eight isosceles triangles in the figure each contribute a row to the matrix. For example
the first row corresponds to the condition that line 12 in the diagram (FG) is the base of an
isosceles triangle with sides 1 and 8 (and hence is parallel to the external angle bisector of
those sides).

It is easy to check that the reduction of this matrix to row echelon form results in a zero
final row, and hence the matrix is rank deficient.

Figure 5 illustrates a theorem from geometrical optics
Parallel rays reflected in a hinged mirror ABC meet on a circle defined as follows. Let

O be the circumcenter of ABC . Then the reflections of the rays meet on the circumcircle of
AOC .

Labelled as given in the diagram, the matrix for this problem is below.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0 0 1 0 0 0 1
−2 1 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 −2 0 0
0 0 −2 1 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 −2 0 0 0
0 0 0 0 1 1 0 −2 0 0 0 0
0 0 0 0 0 1 −2 0 0 0 1 0
0 0 0 0 0 0 1 0 0 −2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first row of this matrix represents the condition that line 12 is the reflection of line
8 in line 1, and hence line 1 is the angle bisector of lines 8 and 12. The second row of the
matrix represents the fact that line 1 is the base of an isosceles triangle with sides 2 and 9.
The third row is derived from the isosceles triangle with sides 2 and 3 and base 10. Rows 4-7
correspond to other isosceles triangles in the figure, while row 8 represents the conclusion
that the reflection of line 7 in line 10 has the direction of line 12.

Again, the row echelon form of this matrix has a zero final row, and hence the matrix is
rank deficient.

With this judicious ordering of the lines, these two theorems correspond tomatrices whose
non-zero values occupy the same positions. This yields an immediate question: in how many
ways can these positions be filled by a 1, 1, -2 in each row so that the matrix is rank deficient?
Each rank deficient matrix can then be interpreted as a theorem by using seven of the bisector
conditions as postulates and the eighth as the theorem statement.

Eachbisection conditionmaybe interpreted in one of several differentways: as an isosceles
triangle, as the chord of a circle, as a reflection; sequences of bisections can yield chords of

123



762 P. Todd

Fig. 6 Three different geometry theorems which share the matrix of Fig. 4. (a) Line pairs (A, B), (B,C),
(C, D) have angle bisectorsU ,V ,W respectively. Likewise line pairs (E, F), (F,G), (G, H). Then the angle
bisector of (A, D) is the same as the angle bisector of (E, H). (b) If you bounce a billiard ball off the four
sides of a cyclic quadrilateral in sequence, then the end track is parallel to the initial track. (c) ABCD is a
quadrilateral with an inscribed circle center E . Let G be the intersection of the line through D parallel with
EC and the line through A parallel to EB. AEDC is cyclic

a common circle, or the angle bisectors joining the center of a circle to the intersection of
two tangents. Figure 6 illustrates three different ways of representing the matrix of Fig. 4.
In Fig. 6a, each bisector relation is represented explicitly as an angle bisection. In Fig. 6b,
four of the relations implicitly define the cyclic quadrilateral, while another four are used
in the reflections. In Fig. 6c, four relations represent the fact that the line joining the center
of a circle to the intersection of two tangents bisects the angle between the tangents, while
four other relations correspond to the cyclic quadrilateral. The parallelisms serve to unify the
directions of two line pairs.

Our strategy for theorem discovery, then, is to identify rank deficient matrices then extract
correspondinggeometry theorems.With thematrix shape above, there are 38 = 6561different
ways of assigning the numbers to the locations. A simpleMathematica program was written
to compute the matrix rank of each assignment and identify those which are rank deficient.
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Automated discovery of angle theorems 763

Fig. 7 The four different arrow decorations on a cube which satisfy the condition that each circuit of a graph
cycle passes as many arrows in the direction of travel as opposite. Their corresponding matrices are rank
deficient, and represent bisection theorems

There are 33. After removing isomorphic copies, obtainable by reordering rows and columns,
the number is reduced to 4.

The non-zero values in the matrices above are distributed three to a row and two to a
column. The latter fact allows them to be represented by a graph G whose edges correspond
to matrix columns, and whose vertices correspond to rows. The edge corresponding to a
given column is adjacent to the vertices corresponding to the two rows with non-zero values
in that column. The adjacency matrix of G has non-zero values in the same locations as our
matrices. As there are three non zero values to a row, the graph has uniform degree 3, that is
to say: cubic. In fact it can be seen to be archetypal cubic graph: the wireframe of a cube.

Each non-zero entry of the matrix has a row and column corresponding to a vertex and
edge of the graph. We could represent this on the graph by annotating each edge with its
corresponding column’s two non-zero values, placing each annotation at the end of the edge
adjacent to the vertex representing the entry’s row. However, as these values are all either 1
or -2, we simply need to mark the locations of the -2’s. We choose to do this with an arrow-
head pointing away from the vertex. With this convention, the four rank deficient matrices
corresponding to the cube are depicted in Fig. 7. It can readily be verified that pattern A has
12 rotations which yield isomorphic patterns, B has 12 rotations, C has 6 and D has 3. In
total, then, 33 configurations. The matrix corresponding to the geometry of Fig. 4 has pattern
D, while that of Fig. 5 has pattern A. Geometry Theorems with matrices B and C are shown
in Fig. 8.
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764 P. Todd

Fig. 8 Theorems corresponding to the two indicated decorated graphs. (a) ABCDEF is a cyclic hexagon
with AB parallel to DE . The angle bisector of FA and BC is parallel to the angle bisector of EF and CD.
(b) Let ABCDEFGH be a cyclic octagon with AB parallel to DE , BC parallel to GH , and CD parallel to
FG. Then AH is parallel to EF

In this figure, the correspondence between diagram and theorem may be appreciated by
finding a cycle of graph edges with no arrows. Such edges correspond to the radial lines of a
cyclic polygon, while the incident graph edges, adorned with arrows, correspond to the edges
of the cyclic polygon. Graph edges with pairs of arrows correspond to pairs of parallel sides.
Graph edges with a single arrow to a cyclic polygon edge with a further bisection relation.

Our strategy for the automated discovery of angle theorems is this: first discover rank
deficient matrices which can correspond to bisector relationships, then turn those matrices
into geometry theorems. A straightforward automation would generate theorems of the style
of Fig. 6a. Our longer term goal, however, is to automate the creation of more attractive
theorems, such as 6b and 6c. This automation is the subject of ongoing work. In this paper we
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Automated discovery of angle theorems 765

consider the first phase: finding rank deficient matrices. Our initial focus is onmatrices which
share the property that they have two non-zero entries per column, and can be represented
by a graph (which means that no two columns have both non zero entries in the same rows).

3 Bisector matrices with underlying graphs

Definition 1 Given a matrix M , we define the underlying hypergraph GM of M to have
vertices corresponding to the rows of the matrix, hyperedges corresponding to its columns
and an incidence matrix with non-zero elements in the same locations as M .

If the columns of the matrix all have two non-zero elements, and if no pair of columns
have both non-zero elements in the same rows, then the hypergraph is in fact a graph. In such
a case, we’ll refer to it as the underlying graph of the matrix and say that the matrix has an
underlying graph.

Lemma 1 A matrix with connected underlying graph is rank deficient if and only if all the
submatrices corresponding to graph cycles are rank deficient.

Proof Let M be an m × n matrix with connected underlying graph G. As G is connected, M
can only have ranks m or m − 1. Let T be a spanning tree of M . Take a cycle C , length k,
of G and consider MC the submatrix of M corresponding to C . Edges from T can be added
to C to create an m × m graph GC with the same vertex set as G. Let M ′

C be the matrix
corresponding to GC , then

rank(M ′
C ) = rank(MC ) + m − k

IfMC has rank k thenM ′
C has rankm, hence so doesM . Conversely, letMT be them×m−1

submatrix corresponding to T and let Mi be the m × m matrix formed by augmenting MT

with the column corresponding to edge ei which is not a member of the spanning tree. If M
is full rank, then Mi must be full rank for some i . The graph corresponding to Mi contains a
cycle C . Let k be the length of C

rank(Mi ) = rank(MC ) + m − k

rank(Mi ) = m , hence rank(MC ) = k, which is full rank.

Definition 2 Let matrix M have underlying graph G. An edge of G corresponds to a column
of M . If we give the edge a direction, its head and tail correspond to specific matrix rows. For
directed edge ei = (hi , ti ), we define its head weight to be: ai = Mhi ,ei and its tail weight
to be: bi = Mti ,ei

Definition 3 Given a directed cycle C , we define HC to be the product of the head weights
around C and TC to be the product of tail weights around C .

Theorem 2 A matrix with connected underlying graph is rank deficient if and only if any
even cycle has HC − TC = 0 and any odd cycle has HC + TC = 0
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766 P. Todd

Proof Order the rows and columns of the matrix such that e1, e2, . . . , ek corresponds to a
path around the cycle and (h1, t1) = (1, 2). The matrix corresponding to a cycle is:

⎡
⎢⎢⎢⎢⎢⎣

a1 0 . . . 0 bk
b1 a2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ak−1 0
0 0 . . . bk−1 ak

⎤
⎥⎥⎥⎥⎥⎦

For even cycles the determinant is a1a2 . . . ak − b1b2 . . . bk For odd cycles the determi-
nant is a1a2 . . . ak + b1b2 . . . bk By Lemma 1, M is rank deficient if and only if all these
determinants are 0. ��
Definition 4 We’ll define a Bisector Matrix to be a matrix whose rows all contain three
non-zero elements: one -2 and two 1’s.

Corollary 3 Let M be a bisector matrix with connected underlying graph G, then M is rank
deficient if and only if G has only even cycles and each directed cycle has as many head
weights of -2 as tail weights.

Proof For a bisector matrix, head and tail weights are either 1 or -2. For a directed cycle C ,
let p be the number of head weights which are -2, and q be the number of tail weights which
are -2. HC = (−2)p and TC = (−2)q . If M is rank deficient then by Theorem 2, there can
be no odd cycles and for any even cycle p = q . ��

To find rank deficient bisector matrices with underlying graphs, we need first to find cubic
graphs without odd cycles. These are the bicubic graphs, and for small n are catalogued, for
example in [4, 14]. For n = 8, there are 5 cubic graphs, only one of which (the cube) is
bicubic. For n = 6, there are two cubic graphs, one of which is bicubic. Exhaustive search
yields 15 different rank deficient bisector matrices with this underlying graph. Eliminating
isomorphic forms yield the two non-isomorphic matrices depicted in Fig. 9. Corresponding
geometric theorems are depicted in the figure.

We note that Figs. 9b and 8b are special cases of the following general theorem, whose
validity follows from Corollary 3.

Theorem 4 Let a1 . . . a2n be the sides of a cyclic 2n-gon. Let {ai1 , a j1}, . . . , {ain , a jn } be
pairs of sides such that | aik − a jk | is an odd number greater than 1 for each k. Let
{ai1 , a j1}, . . . , {ain−1 , a jn−1} be parallel, then {ain , a jn } are parallel.
Proof A graph corresponding to the theorem has a hamiltonian cycle representing the radial
lines of the cyclic polygon. Parallel pairs correspond to graph edges, each of which is deco-
rated with a pair of arrows. This guarantees condition 2 of Corollary 3. Condition 1 follows
from the restriction that the difference in the indices of the parallel pairs is odd. ��

Corollary 3 may be used as a substitute for explicit rank computation with performance
advantages which become important for larger values of n. A set of cycles which cover the
graph need to be tested. For Hamiltonian graphs (as all of the lower order bicubic graphs
are), such a set may readily be found by taking each edge which is not in the Hamiltonian
circuit, and tracing a cycle containing it. Algorithm 1 can be used to find these matrices.

Theorem 5 Algorithm 1 determines rank deficient bisector matrices.
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Fig. 9 Graphical representation of the two non isomorphic rank deficient bisector matrices with 6 rows along
with geometry theorems with these matrices. a The angle bisectors of the bisectors of opposite angles of a
quadrilateral are perpendicular. b ABCDEF is a cyclic hexagon with BC parallel to EF and AB parallel to
DE Then AF is parallel to CD

Algorithm 1 Find rank deficient bisector matrices
Require: ((u1, v1), . . . , (un , vn)). � off-Hamiltonian edges
1: ans ← {}
2: for k = 0 to 3n − 1 do
3: Let K be the base 3 representation of k padded with zeros to n digits.

4: Let Si = (2Kui + 1) mod 3 + (2Kvi ) mod 3 + ∑vi−1
j=ui+1(K j − 1)

5: if (
∧n

i=1(Si = 0) ∧ (
∑n

j=1(K j − 1) = 0) then
6: ans ← ans ∪ {k}
7: end if
8: end for
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Proof The graph is assumed to contain a Hamiltonian cycle from 1 to n. We can create a
set of cycles which cover the graph by adding a cycle for each off-hamiltonian edge. In
the algorithm we consider the cycle around the Hamiltonian in the positive direction. The
algorithm assigns base 3 digit to each vertex, which should be interpreted as follows:

0 – The tail weight of the preceding edge in the Hamiltonian circuit is -2
1 – The head weight of the next edge in the Hamiltonian circuit is -2
2 – The weight of the off-hamitonian edge at the vertex is -2

With this interpretation, Si counts the difference between the number of -2 head weights
and the number of -2 tail weights in a circuit along the Hamiltonian path from ui to vi
and back along the off-hamiltonian edge. We complete our coverage of the graph with the
Hamiltonian circuit itself, whose count is

∑n
j=1(K j − 1). All these sums need to evaluate

to 0 by Corollary 3. ��
The algorithm outputs a list of integers, each of which corresponds to a particular assign-

ment of -2 to the non-zero locations of a matrix with this shape. Algorithm 2 performs
the mapping from integer to matrix. The performance of Algorithm 1 can be improved by
re-ordering the iteration to facilitate branch cutting in the following way.

1. Decompose the graph into simple cycles.
2. Order the vertices so that one cycle is added at a time.
3. Compute head weight products and tail weight products for each cycle.
4. Branch cut when their difference is non zero for a cycle.

A problem with head weights and tail weights is that if a cycle is traversed in the opposite
direction, the head weights become tail weights and vice versa. In visualizing the distribution
of -2’s on the graph, we use an arrow pointed away from the neighboring vertex (Fig. 7). The
condition of Corollary 3 can then be interpreted visually that any traversal of a cycle will
pass as many arrows in the direction of travel as in the opposite direction.

Algorithm 2 Gets bisector matrix from integer k.
Require: ((u1, v1), . . . , (un , vn)), k. � off-Hamiltonian edges, integer
1: Let K be the base 3 representation of k padded with zeros to n digits.
2: Let M be an n by n zero matrix
3: for i = 1 to n do
4: M(ui , ui ) ← M(ui , ui + 1 mod n) ← M(ui , vi ) ← 1
5: if Ki = 0 then
6: M(ui , ui ) ← −2
7: else if Ki = 1 then
8: M(ui , ui + 1 mod n) ← −2
9: else
10: M(ui , vi ) ← −2
11: end if
12: end for

Theorem 6 Algorithm 2 expands an integer into a bisector matrix, consistent with the rep-
resentation in Algorithm 1.

Proof In row ui of the matrix, the tail weight of the preceding edge in the Hamiltonian circuit
appears in column ui . The head weight of the next edge in the Hamiltonian circuit appears
in column ui + 1 mod n, and the weight of the adjacent end of the off-Hamiltonian edge
appears in column vi ��
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Fig. 10 There are 2 bicubic graphs on 10 vertices. Displayed are the arrow patterns of the nineteen non-
isomorphic rank deficient bisector matrices

To eliminate the isomorphicmatrices from our answer set, we compute the graph automor-
phism group G of B, then apply the elements of the group in turn to the matrices represented
by our answer set, eliminating duplicates.

There are 2 bicubic graphs on 12 vertices [4, 14, 16]. The results of applying Algorithm
1, and pruning isomorphic matrices yields the 19 rank deficient matrices depicted in Fig. 10.
A theorem corresponding to one of these matrices is presented in Fig. 11(b).

There are 5 bicubic graphs on 12 vertices [4, 14, 16]. Running Algorithm 1 and pruning
the isomorphic matrices yields 111 rank deficient matrices.

4 Coalescing lines

Figure 11b shows a geometry theorem corresponding to the 10 row matrix diagrammed in
Fig. 11a. This could be criticized for being rather complicated. In this section, we explore
how we can reduce the geometric complexity by coalescing lines in the diagram, which is
equivalent to summing columns in the matrix. We show that summing columns which share
a bisection relation generally preserves rank deficiency. We further show that successive
summation of columns starting from a rank deficient bicubic can generate all rank deficient
bisector matrices whose underlying hypergraphs contains 2-edges and sufficiently sparse
3-hyperedges.

The following theorem circumscribes this process

Theorem 7 Let A be a rank deficient matrix. Formmatrix B by replacing a number of columns
of A with their sum, and matrix C by removing any zero rows from B. If the rows of A which
are thus removed are linearly independent, then C is rank deficient.
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Fig. 11 a One of the 19 different rank deficient patterns for bisector matrices with 10 rows. b A geometry
theorem with this underlying matrix: ABEF and ECDG are cyclic, G is the intersection of BD and EF .
ABK is isosceles. L is the intersection of AK and DC . The theorem states that ADL is isosceles

Proof As A is rank deficient, there exists weights, not all zero, such that the weighted sum
of the rows is zero. These same weights provide a zero weighted sum for matrix B, and for
matrix C. As the rows removed in the transition from B to C are linearly independent, at least
one non-zero weight must survive. ��

Take a rank deficient bisector matrix with an underlying graph. Pick one of the rows and
sum the three columns with non-zero entries in that row and remove the (now zero) row. By
Theorem 7, the new matrix is rank deficient. Viewed geometrically, this process gives us a
method of creating new geometry theorems by coalescing lines. Given a bisector theorem
whose matrix has an underlying graph, consider a diagram where the three lines involved
in one of the bisector relationships have been merged. That bisector relationship has gone,
but the new line is involved in the three other bisector relationships which the merged lines
belonged to. As the original matrix has an underlying graph, no pair of geometric lines can
share more than one bisector relationship. From a matrix perspective then, merging the lines
is equivalent to adding the corresponding columns. Hence we can apply Theorem 7 to show
that the new matrix is rank deficient, and a reduced geometry theorem holds.

This process is illustrated in Fig. 12. Figure 12(a) is derived from Fig. 11(b) by merging
three lines which form an isosceles triangle in the original. Figure 12(b) is derived from Fig.
12(a), again by merging three lines which form an isosceles triangle. We note that the merged
line family is a pair of perpendicular lines.

Fig. 12 a A reduction of the theorem of Fig. 11b by merging the lines AD, AK and DC . bA further reduction
by merging lines OD and OG. The theorem now states that OD is perpendicular to BD
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We now introduce a theorem which gives a conditional guarantee that a rank deficient
matrix whose underlying hypergraph has 2-edges and 3-edges can be found by coalescing
lines on a graph with one less 3-hyperedge.

Theorem 8 Let M be a matrix with an underlying hypergraph H containing 2-edges and
3-edges, where the 2-edges contain a spanning tree. Let G be the graph formed by replacing
each 3-hyperedge with a vertex and 3 graph edges joining it to the vertices adjacent to the
hyperedge. If M is rank deficient then there is a matrix with underlying graph G from which
M can be formed by summing columns and removing zero rows.

Proof Given a spanning tree T comprised of 2-edges, we order the matrix so that the first
n-1 columns correspond to the edges of T. We add one of the columns corresponding to a
3-hyperedge. An efficient algorithm for the reduction to row echelon form of such a matrix
is given in [15]. Every non-zero element in the resulting row-echelon form is a linear combi-
nation of the elements in that column in the full matrix with coefficients which are products
of matrix elements of the first n-1 columns and their inverses, perhaps with a minus sign.

Let the elements of the final column be f ,g,h. Then the final element of the leading
diagonal of the row echelon matrix is F f + Gg + Hh, where F ,G and H are products of
powers of ai , bi , a

−1
i , b−1

i and -1
For a bisector matrix F f , Gg and Hh are all integer powers of (-2), perhaps multiplied

by -1. Hence

F f + Gg + Hh = (−1)u(−2)p + (−1)v(−2)q + (−1)w(−2)r

Without loss of generality, assume p ≤ q ≤ r
If the matrix is rank deficient, then

F f + Gg + Hh = 0

Hence
1 + (−1)v−u(−2)q−p + (−1)w−u(−2)r−p = 0

As the right hand side is even, we require (−2)q−p = 1. As the final term cannot be
zero (−1)v−u = 1, which then implies (−1)w−u(−2)r−p = −2. Hence (F f ,Gg, Hh) =
K (̇1, 1,−2) for some scalar K.

Hence the following transformation preserves the rank deficiency of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎣

f
...

g
...

h

⎤
⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 0 0
...

...
...

0 g 0
...

...
...

0 0 h
1 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Applying this transformation toMyields a rank deficientmatrixwith one less 3-hyperedge,
which produces M when the columns involved with the added bisection are summed. ��

5 Angles from angle bisector theorems

So far, we have discussed pure angle bisection theorems; where both the statement and con-
clusion can be made in terms of angle bisection, or perhaps more strictly direction bisection.
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In some cases an angle conclusion was indirectly obtained by applying a single direction to
two or more lines in the diagram, and obtaining a conclusion that a pair of lines are parallel.
In this section, we discuss deriving other angles from bisector matrices. We do this in the
context of a bisector theorem which yields Napoleon’s Theorem.

In the diagram of Fig. 13, point P lies inside triangle DEF . Points A,B,C are the reflec-
tions of P in DF , DE and EF respectively. We further require triangles ADB, BEC and
AFC to be isosceles, and DBE , ECF , FAD to have the same angle bisectors as ABC ,
BCA, CAB respectively.

Such a large sparse matrix is conveniently expressed in a condensed form. We represent
the matrix by a sequence of triples, where the first two elements of the triple are the indexes
of the columns containing the number 1 in that row of the matrix, and the third element of
the triple is the column containing -2.

((1, 17, 2), (5, 9, 4), (12, 15, 11), (1, 5, 3), (2, 4, 3),

(5, 7, 6), (7, 9, 8), (9, 12, 10), (4, 11, 10), (12, 13, 8),

(13, 15, 14), (11, 2, 16), (15, 17, 16), (18, 17, 14), (18, 1, 6))

Fig. 13 In the above diagram, we require ADB, BEC and AFC to be isosceles, DE to be the angle bisector
of PDB and PEB, DF to be the angle bisector of PDA and PFA and EF the angle bisector of PEC and
PFC . The angle bisector of ABC also bisects DBE , the angle bisector of BCA also bisects ECF , while the
angle bisector of CAB also bisects DAF
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With directions of line in a particular (though arbitrary) sense, the right hand side of the
bisection equations form the following vector:

(−2π, 0, 0, 0, π, π, 0,−π,−π, π, 0,−π,−2π,−π, 2π)T

(Straightening out the effect of the sense of the lines on the bisector equations is a very
good reason why these techniques are much more suitable for use by a computer than by a
human.)

A 15 × 18 matrix M can be formed by expanding the above tuple. For example row 1 of
the matrix has a 1 in columns 1 and 17 and a -2 in column 2 and 0 elsewhere, row 2 of the
matrix has 1’s in column 5 and 9 and a -2 in column 4, and so on.

A number of the columns of M have three non-zero elements, and hence M does not have
an underlying graph. The 3-hyperedges of M are dense enough that there is no spanning
tree of 2-edges, so it is not necessarily (and not, in fact) obtainable by merging columns of
a matrix with underlying bicubic graph. However, it is easy to check by computer that M
has rank 14 rather than 15, and hence this matrix represents a theorem: one of the bisector
conditions can be derived from the others.

Running a symbolic linear equation solver on this underdetermined system yields solu-
tions where indeterminates have been added for directions 10,14,16, and 18. If we take
differences between pairs of directions, any difference which does not contain any of the
added indeterminates corresponds to an angle which is determined by the diagram. In this
case a number of differences are constant.

⎡
⎢⎢⎢⎢⎢⎢⎣

d1 − d2
d17 − d2
d5 − d4
d9 − d4
d12 − d11
d15 − d11

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

5
6π
7
6π
1
6π− 1
6π

1
6π− 1
6π

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎣
d6 − d8
d8 − d14
d14 − d6

⎤
⎦ =

⎡
⎣

2
3π
2
3π− 4
3π

⎤
⎦

The initial set shows that the angles in the isosceles triangles are π
6 , while the second set

shows that the angles of triangle DEF are π
3 . Matrix M, then, determines both the premises

and conclusion of Napoleon’s Theorem.

6 Mixed bisector / trisector matrices

If direction γ is the trisector closer to direction β of the angle between β and α then α +
2β − 3γ = 0

Definition 5 A bisector/trisector matrix contains both bisector rows and trisector rows.

A bisector/trisector matrix can contain elements with value 2 and -2, hence it is possible
for the sum of the head weight product and the tail weight product to be zero. By theorem 2,
the underlying graph of a rank deficient bisector/trisector can have an odd cycle C , so long
as

HC + TC = 0

This is possible if head weights of 2 are balanced by tail weights of -2, and vice versa. In
our decorated graph, we indicate a value of +2 by putting an asterisk next to the arrow. We
depict a value of -3 using a hollow arrow (Fig. 14a).
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Fig. 14 (a) A representation on the triangular prism graph of a rank deficient bisector/trisector matrix. (b)
A geometry theorem with this matrix. Diagonal AC trisects the angles of quadrilateral ABCD, O is the
circumcenter of ABC . Then the angle bisector of DAO is perpendicular to the angle bisector of DCO

The rule for visually checking that a cycle conforms with Theorem 2 now depends on
whether the cycle is even or odd. Odd cycles should contain an odd number of asterisks while
even cycles should contain an even number of asterisks. In any case, there should be as many
solid arrows and as many hollow arrows in the direction of travel as in the opposite direction.

Figure 14 shows the triangular prism graph with decorations which satisfy these con-
ditions, and which therefore illustrate a rank deficient matrix. Figure 14(b) is a geometry
theorem which has this matrix.

Wefinish by formulatingMorley’sTheorem ([6, 8, 11] example 3.53) as a bisector/trisector
matrix. Morley’s Theorem states that the triangle joining the intersections of the angle tri-
sectors of a general triangle is equilateral. it is most frequently illustrated with internal angle
trisectors, however it is also true when the angle trisectors are external, and this orientation
has more space to show subsidiary lines.

In Fig. 15, lines 1, 2 and 3 form a general triangle. Lines 4 and 11 are the external trisectors
of lines 1 and 2, and line 6 is the bisector of lines 4 and 5. Line 7 is defined to lie in a position
such that line 6 trisects the angle between a perpendicular to line 1 and line 7. Line 7 is
also the bisector of lines 8 and 9. Line 23 is the bisector of lines 8 and 4, and line 22 is the
bisector of 5 and 9. Adding symmetric conditions on the lines defined on the other sides of
the triangle yields the matrix whose sparse representation is:

Bisector Rows:

[4, 5, 6] [8, 9, 7] [9, 5, 22] [8, 4, 23]
[10, 11, 12] [14, 15, 13] [11, 14, 23] [10, 15, 24]
[16, 17, 18] [20, 21, 19] [16, 20, 22] [17, 21, 24]

Trisector rows:
[2, 1, 4] [3, 1, 5] [7, 1, 6]
[3, 2, 10] [1, 2, 11] [13, 2, 12]
[1, 3, 16] [2, 3, 17] [19, 3, 18]
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Fig. 15 A diagram for Morley’s Theorem. Lines 4 and 11 are the external trisectors of lines 1 and 2, and 6 is
the bisector of 4 and 5. 7 is defined by the fact that line 6 trisects the angle between line 7 and a perpendicular
to line 1. 7 is the bisector of lines 8 and 9. 23 is the bisector of lines 8 and 4, and 22 is the bisector of 5 and 9.
Symmetric conditions apply to the other lines in the figure

The triple representing a trisector row gives the column index of the 1, followed by the
column index of the 2, followed by the column index of the -3. This matrix turns out to be
full rank, and so there is not a true Bisector/Trisector theorem in the sense that one of the
bisection or triection conditions can be deduced from the others. However solving the linear
system symbolically yields values of ±π

3 for the differences between directions 22, 23 and
24. Inspection of the solution reveals other line pairs in the diagram whose angle is ±π

3 ,
namely the following set of line pairs;

(4, 21), (5, 15), (11, 20), (10, 9), (17, 8), (16, 14)

However, the differences between directions 1,2 and 3 retain 2 indeterminates, hence
the triangle which they define is general and this bisector/trisector matrix implies Morley’s
Theorem.
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7 Conclusion

“Chasing angles” is a favorite technique for the solution of a class of geometry problems.
Our research focuses on the automated generation of new geometry problems which can be
solved in this manner.

7.1 A simple approach to problem generation involving only angles

There are simple angle chasing problems where the premises specify the values of given
angles either directly, or implicitly (as is the case, for example, between the tangent of a
circle and a line joining its center to the point of tangency). We can represent the directions
of the vectors in such a problem as vertices of a graph, and for every given angle create an
edge of the graph between the vertices corresponding to the lines bracketing that angle. If
the problem asks for the computation of a derived angle from the drawing, the conclusion
can also be represented as an edge of the graph. The problem is solvable if the addition of
the conclusion forms a cycle in the graph, and the angle chasing can be viewed as traversing
the path through the premise edges joining the vertices adjacent to the conclusion edge.

Applying the approach of this paper to those simple problems, we might initially create
a representation of the problem as a graph. As the graph would be a cycle, and as there is
only one cycle for a given number of vertices this part of the program would be trivial. We
might then automate the process of converting our graph to a specific geometry problem. One
edge of the cycle would be selected as the conclusion. Removing this edge from the graph
would leave a single path between the vertices. To create a geometry problem, we would
represent each edge of the path by a perpendicular or parallel constraint, by a tangency, or
by a specified angle measure. The conclusion would state the value of the angle between the
lines corresponding to the end vertices of the path.

We note that in this approach the geometry diagram is being created to conform to the
graph, and the structure of the graph (the fact that it is a cycle) guarantees that the problem
is solvable, and the solution requires all the premises.

7.2 Adding angle bisectors

Richer angle chasing problems can be obtained by considering angle bisectors, which can
appear in the guise of circle chords, reflections and isosceles triangles. In this paper we
have concentrated on problems where both premises and statement can be phrased as angle
bisectors, although problem statements are frequently extracted in the form of parallelism
or perpendicularity. We address the first step: generating matrices which, when interpreted
as geometric theorems, guarantee the truth of the theorem. The second part of the program:
automatically generating elegant instances of these theorems is a topic of ongoing work. The
examples in this paper which are matched with matrices were constructed by hand using
heuristics which we will in future work attempt to mechanize.

While our technique is motivated by analogy with existing theorems, the bisector matrices
derived above do not conform to any pre-existing geometry theorem, but can be considered
newly discovered by the algorithm. Geometry theorems with these matrix patterns are there-
fore entirely new discoveries (within the system), no longer tied by direct analogy to existing
theorems.

An approach to theorem discovery which pulls together the various elements we discuss
above is as follows for a bisector theorem.
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1. Start with a bicubic graph.
2. Use Algorithm 1 to find non-isomorphic rank deficient matrices with this underlying

graph.
3. Perhaps reduce the size of the matrix by removing a row, summing the 3 columns impli-

cated. (this step may be repeated).

If we are looking for a bisector/trisector theorem, the first two steps are replaced by these
three:

1. Start with a cubic graph.
2. Assign values to the edges of any odd cycles. As these must contain a balance of 2’s and

-2’s and no -3’s, there are limited options.
3. Assign values to edges of even cycles to conform to the odd cycles.

Once we have a matrix, we need to create a geometric diagram conforming to the matrix and
then to assign right hand sides to the bisectors. In the manual process used here, this was
done by creating an instance of the drawing in a dynamic geometry system and extracting
the numeric values for the directions of the vectors. A vector of these values was multiplied
by the matrix and rounded to multiples of π .

With these values in place a symbolic linear solver could be invoked, and pairs of directions
subtracted to ascertain if the value of any angles were fortuitously determined by the diagram.
In any case, as the matrix is rank deficient, one of the bisector conditions can be derived from
the others. The theorem can be presented with any condition as the statement and the rest as
the premises.

Code Availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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