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Abstract
Road network studies attracted unprecedented and overwhelming interest in recent years due to 
the clear relationship between human existence and city evolution. Current studies cover many 
aspects of a road network, for example, road feature extraction from video/image data, road map 
generalisation, traffic simulation, optimisation of optimal route finding problems, and traffic state 
prediction. However, analysing road networks as a complex graph is a field to explore. This study 
presents comparative studies on the Porto, in Portugal, road network sections, mainly of Matos-
inhos, Paranhos, and Maia municipalities, regarding degree distributions, clustering coefficients, 
centrality measures, connected components, k-nearest neighbours, and shortest paths. Further 
insights into the networks took into account the community structures, page rank, and small-
world analysis. The results show that the information exchange efficiency of Matosinhos is 0.8, 
which is 10 and 12.8% more significant than that of the Maia and Paranhos networks, respec-
tively. Other findings stated are: (1) the studied road networks are very accessible and densely 
linked; (2) they are small-world in nature, with an average length of the shortest pathways 
between any two roads of 29.17 units, which as found in the scenario of the Maia road network; 
and (3) the most critical intersections of the studied network are ’Avenida da Boavista, 4100-119 
Porto (latitude: 41.157944, longitude: − 8.629105)’, and ’Autoestrada do Norte, Porto (latitude: 
41.1687869, longitude: − 8.6400656)’, based on the analysis of centrality measures.

Keywords Complex network analysis · Degree centrality · Closeness centrality · 
Betweenness centrality · Eigenvector centrality · Power-law distribution · Community 
detection

1 Introduction

Watts and Strogatz [1], and Barabasi and Albert [2], are among the first to reveal the col-
lective dynamics of small-world and scale-free networks, allowing the complex network 
analysis to gain importance as a new multidisciplinary research direction in network sci-
ence. The analysis of road networks as a complex graph arises from this foundation.
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Roads are commonly spatial networks with nodes and edges embedded in space due to 
their geographical features. The road network model construction considers that the nodes 
represent intersections, and the edges represent the road sections that directly connect two 
intersections. Gao et al. [3], discovered strong signatures in these networks, typically real 
physical entities connecting points in geographic space. Current metropolitan zones as well 
newly proposed urban expansion areas can benefit from modelling and analysing their road 
networks as a complex graph. This approach focuses on understanding, identifying, visual-
ising, and exploring the networks. The term complex refers to the fact that it is impossible 
to predict collective behaviour from individual components. Understanding the overall net-
work makes it capable of predicting and possibly controlling the behaviours such as traffic 
congestion spreading, speed, travel times, trip fares, timings, and headway (Ahmadzai et al. 
[4]).

The study of a road network’s structural characteristics aids in understanding its emer-
gent behaviour. The statistical qualities of a street network, for example, can be used as 
proxies for a city’s growth history, ranging from self-organised to highly planned metro-
politan regions (Duan et al. [5]). Traffic congestion is another intriguing emergent phenom-
enon arising from vehicular network interaction. Interestingly, it can also be analysed using 
graph theory: for example, the centrality metrics of a street network are highly dependent 
on vehicular density. Therefore, recognising critical structural locations is vital for plan-
ning and implementing road infrastructure solutions like inserting overpasses or rounda-
bouts to maintain a smooth traffic flow (Davidovic et al. [6]).

In this study, the road network of Porto, in Portugal, was analysed in terms of the degree 
distribution, power-law fitting and centrality measures: degree, closeness, betweenness, 
and Eigenvector centrality. It also includes a comprehensive exploration of community 
detection and page rank analysis. The results demonstrate beneficial characteristics of the 
studied networks, mainly its high reachability and fluctuation from following the power-
law distribution, unlike other real-world networks, such as the protein-protein interaction 
networks (Khojasteh et al. [7]). In addition, this analysis allows to discover the most criti-
cal intersections of a network and distinguish the groups of highly connected components 
compared to others. The outcomes of this study might be essential for city planners and 
researchers to acquire a deep insight into their domains.

This article is organised as follows: Section 2 presents a summary of related state-of-
the-art researches along with their limitations and future scopes; Section 3 introduces the 
formulation of the critical adopted concepts; Section  4 presents the experimental setup 
and results; Section  5 is devoted to discussing the overall performance of the proposed 
approach, and finally, Section 6 draws the conclusions.

2  Related works

This section summarises related state-of-the-art works and their limitations and future 
potential. The literature usually analyses road networks based on centrality measures and 
community detection. Although complex network analysis consists of a practical tool to 
extract hidden relationships between the lanes and intersections of a road network, few 
works were found in the literature. However, the proposed work might pave the way for 
attracting more importance to this topic.

Montis et  al. [8], employed a weighted network model to investigate the structure of 
the road network that represents interurban commuting traffic in the Sardinia region, in 
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Italy. The authors quantitatively analysed the topological and weighted properties of the 
resulting network and the interplay between topological and dynamical aspects. The analy-
sis also included the socio-demographic characteristics such as population and monthly 
income.

Masucci et al. [9], studied the growth of London’s street network, in UK, in its dual rep-
resentation. The results revealed that logistic laws could analytically describe the growth of 
the network. Moreover, the robust log-normal distributions govern the network’s proper-
ties, characterising the network’s connectivity and consistent small-world properties over 
time.

A similar kind of approach was adopted by Zheng et al. [10], to analyse the topological 
properties of the Beijing, in China, public transport network. The results demonstrated that 
the both the node strength and cumulative strength follow the power-law distribution, and 
revealed the characteristics of scale-free and small-world phenomena. Although the node 
strength refers to how strongly a node is connected to the others, it can only provide infor-
mation about the importance of a node. And hence, the power-law fitting of the degree dis-
tribution should also be analysed. The proposed work focuses on addressing this drawback.

Sardonic et al. [11], applied centrality analysis to identify critical traffic jam areas of a 
road network. To assess variance in centrality values when a network’s structure changes 
by removing or adding individual nodes, the authors developed the concepts of centrality 
interference and centrality resilience. However, community detection should also occur to 
further verify correlations between different nodes. Yang et al. [12], aimed at solving these 
shortcomings by proposing an improved K-means algorithm to identify the spatial correla-
tion patterns of traffic states in a road network in Beijing. A similar approach was presented 
by Hong et al. [13], but with a different algorithm called hierarchical clustering models: 
Infomap algorithm. The results suggested that community distribution follows the urban 
spatial interaction within suburbs and urban centres, particularly in Guangzhou, in China.

Feng et al. [14], used network science to conduct a statistical analysis to assess the city’s 
size’s effects on its structure and quantify structural characteristics. The findings confirmed 
statistical laws in organising urban spatial components and looked into the relationship 
between topological changes in urban networks. Total et al. [15], analysed transportation 
networks as a complex graph revealing the relationship between several socioeconomic 
frameworks and their usability as economic performance indicators. However, a more in-
depth analysis needs to be performed in community detection or centrality measures sepa-
rately and based on their aggregated analysis.

3  Methodology

This section describes the employed techniques’ formulation and discusses their scopes 
and working principles.

3.1  Centrality measures

In a network, the nodes’ centrality measures their importance. There are various categories 
of centrality measures throughout the literature in network science. The four most widely 
applied centrality measures are: degree centrality, closeness centrality, betweenness cen-
trality, and Eigenvector centrality (Borgatti [16]; Newman [17]; Otte and Rousseau [18]).
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3.1.1  Degree centrality

The most natural and computationally efficient way to convey the relevance of a specific 
node is to use degree centrality (Borgatti [16]), defined as the number of edges that a node 
connects, frequently used in a variety of networks, including biological and social network 
mapping (Otte and Rousseau [18]; Bodendorf and Kaiser [19]). This concept applies to 
urban transportation studies to evaluate road networks (Crucitti et al. [20]), and simulate 
traffic flow characteristics (Jayasinghe et al. [21]).

Let G(V,E) be a graph, where V and E represent nodes and edges, respectively. A single/
isolated node and edge can be represented by v or vi and e or ei, respectively, with i = 1, 
2, 3,...,N, where N is the number of nodes. (Throughout the text, these notations are fol-
lowed.) Hence, the degree of centrality of a v node is determined as:

Now, the degree centrality of a whole graph can be formulated considering the node 
with highest degree centrality. Hence, if v * represents the node with the highest value of 
degree centrality, then, the degree centrality of the entire graph can be calculated as (Free-
man [22]):

3.1.2  Closeness centrality

The concept of farness can be used to explain closeness centrality. For a given network 
node, the summation of the lengths of the shortest pathways from that node to all others 
is called the farness (Borgatti [16]). The reciprocal of farness is, in fact, closeness central-
ity, and the greater a node’s value of closeness centrality, the more likely it is to be closer 
and central to the rest of the nodes in the network. As in the case of degree centrality, 
it is widely used in biological, economic and social network analysis (Chea and Livesay 
[23]; Newman and Mark [17]; Porta et al. [24]). However, an attempt to use it in order to 
explain urban road networks and capture their various elements using closeness centrality 
was made by Crucitti et al. [20], but with less success.

The base of the mathematical formulation of closeness is the average shortest path 
length between a specific node and all other nodes in the network. Suppose N is the total 
number of nodes of G graph; then, in terms of mathematics, for a vi node, the closeness 
centrality is formulated as (Sabidussi [25]):

where i≠j and d(vi,vj) are the shortest distances between vi and vj nodes, respectively.

3.1.3  Betweenness centrality

The percentage of shortest paths that cross through a particular node of interest 
is known as betweenness centrality. It indicates how close a node is to other node 
pairs in the network under analysis. A node with a high betweenness centrality value 

(1)CD(v) = deg(v).

(2)CD(G) =

∑N

i=1
[CD(v ∗) − CD(vi)]

N2 − 3N + 2
.

(3)CC(vi) =
1

∑N

j=1
d(vi, vj)

.
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demonstrates that it is easily reachable to other nodes by the shortest paths or lies on 
many shortest paths. This concept applies in a variety of applications across several 
domains. For example, researchers are using it to understand better land-use intensity 
in different cities across the United States and Europe, and also to disclosure the driv-
ing factors of the evolution of Paris’ urban fabric, in France, (Porta et  al. [24]; Bar-
thelemy et al. [26]). However, Gao et al. [3], have discovered that betweenness central-
ity is not a good predictor of urban traffic flows in transportation-related studies.

The mathematical formulation of the betweenness centrality is as follows. If gvivj are 
the number of shortest paths connecting vi and vj nodes, and gvivj (v) is the number that 
v node is on, then the betweenness centrality is formulated as (Brandes [27]):

3.1.4  Eigenvector centrality

Eigenvector centrality is a measure of a node’s importance that considers the relevance 
of its neighbours. For example, a node with x unpopular Facebook friends would 
have a lower Eigenvector centrality than a node with x famous Facebook friends. The 
algorithm uses a power iteration strategy to calculate the Eigenvalue. The scores of 
its incoming neighbours within each interaction allow obtaining the centrality score. 
The Eigenvector is L2-normalised after each iteration in the power iteration approach, 
resulting in normalised findings by default (Hansen [28]).

If λ is a constant and Avivj
 is the adjacency matrix, its value is 1 (one) if vi and vj 

nodes are connected, otherwise, is 0 (zero); then, the Eigenvector centrality can be for-
mulated as (Newman [17]):

where CE(vj) is the Eigenvector centrality of node vj.
There will be a non-zero Eigenvector solution for many different λ eigenvalues. On 

the other hand, the prerequisite condition that all entries in the Eigenvector have to be 
non-negative means that only the highest Eigenvalue yields the necessary centrality 
score.

In essence, the four types of centrality aforementioned describe the network charac-
teristic of a given node as follows:

• Degree centrality: the larger the value, the more edges the node connects;
• Closeness centrality: the larger the value, the more central and closer to other nodes 

in a network a given node is;
• Betweenness centrality: the larger the value, the shortest paths amongst different 

pairs of nodes have to pass through the node;
• Eigenvector centrality: A high eigenvector score means that a node connects to 

many nodes with high scores.

(4)CB(v) =
∑

vi≠vj≠v

gvivj (v)

gvivj

.

(5)CE(vi) =
1

�

∑

vj�G

Avivj
CE(vj).
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3.2  Average nearest neighbour degree

The average nearest neighbour degree (Xia et al. [29]), which can be abbreviated as knn, 
has a substantial effect on whether a given node likes to link to others who likewise have a 
large number of connections:

Hence, it states that to calculate knn of vi node, it is necessary to add the degrees of each of 
their vj neighbours, K(vj), and divide it by the neighbours of vi node, N(vi). On the other 
hand, in case of a weighted graph, if Kw(vi) is the weighted degree of vi node and wvivj

 rep-
resents the weight of the edge linking vi and vj, then, the node’s average nearest neighbour 
degree can be calculated as (Yao et al. [30] & Barrat et al. [31]):

3.3  Community

A community corresponds to a subset of nodes in a graph where connections between 
nodes are denser than connections with the remaining of the network; i.e., groups of nodes 
that are more connected to each other than the rest of the network (Yang et al. [32]). The 
critical feature essential to extract relevant information from networks is community detec-
tion. Some vital aspects of community detection are:

• It permits nodes’ functions to be classified based on their structural placements in their 
communities;

• It demonstrates the hierarchical organisation generally found in real-world networks;
• It boosts the speed and efficiency of network data storage, including its processing and 

analysis (Reddy et al. [33]).

The fact that no standard description of community structure exists (Fortunato and Hric 
[34]) poses the most significant obstacle in community detection. As a result, detecting 
communities in large-scale networks is computationally infeasible.

3.3.1  Girvan‑Newman algorithm

By gradually eliminating edges from the original network, the Girvan–Newman algorithm 
finds communities. The communities are the remaining network’s connected components. 
The Girvan–Newman algorithm, rather than attempting to develop a metric that identifies 
which edges are most vital to communities, concentrates on edges that are most probable 
”between” communities (Girvan and Newman [35]).

The Girvan-Newman algorithm follows four general steps:

• Computing the edge betweenness centrality for every edge in the graph;

(6)Kmnvi =
1

N(vi)

∑

vj�N(vi)

K(vj).

(7)Kmnvi =
1

Kw(vi)

∑

vj

wvivj
K(vj).
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• Deleting the edge with the highest value of betweenness centrality;
• Again, calculating the edge betweenness centrality for every leftover edge;
• Repeating the first three steps until there are no more edges.

3.3.2  Modularity

Modularity refers to how densely connected components can separate into unique com-
munities or clusters that interact more than others. By limiting the transmission of pertur-
bations through the web, the modularity found in empirical data bounds to enhance the 
network stability and robustness (Massol et al. [36]).

By considering a network with V nodes and E edges that is divided into nc communi-
ties, each with Vc nodes connected by Ec edges and c = 1,...,nc communities, the partition’s 
modularity over all nc communities is calculated as (Clauset et al. [37]):

where Dc represents the sum of degrees of V nodes in c community.

3.3.3  Louvain method

The Louvain method is a hierarchical clustering methodology that iteratively integrates 
communities into a single node and performs modularity clustering on condensed graphs 
to detect communities in large networks. It maximises each community’s modularity score, 
which measures the assigned nodes to communities, entailing to calculate how much more 
densely connected a community is than a random network (Lu et al. [38]).

It is a simple, efficient, and easy way to locate communities in large networks, for exam-
ple, a few hundred million nodes to billions of edges. Hence, it aims to identify community 
hierarchies and allow for zooming into communities to find sub-communities and even the 
sub-sub-communities (Blonde et al. [39]).

The algorithm consists of two general steps. The first one allocates each node to its 
community and then tries to discover its highest positive modularity gain by transferring 
each node to its adjacent communities in the second step. The node returns to its original 
community if no positive gain is acquired. The gain in modularity, ΔQ provided by trans-
ferring an isolated v node into a c community can be estimated as (Blondel et al. [39]):

where the graph’s size is s, Wv,in is the total weights of the connections from v node to 
others in c, and the sum of the weights of the links incident to v node is denoted by Wv, and 
γ and Σtot represent the weights’ links and the sum of the weights of the links incident to 
nodes in c, respectively.

For the direct network case, the modularity gain is:

(8)Modularity =

nc
∑

c=1

[

Ec

E
−

(

Dc

2E

)2
]

,

(9)ΔQ =
Wv,in

2s
− �

Σtot ⋅Wv

2s2
.

(10)ΔQ =
Wv,in

s
− �

Wout
v

⋅ Σin
tot

+Win
v
⋅ Σout

tot

s2
,
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where Wout
v

 and Win
v

 are the outer and inner weighted degrees of v node and Σin
tot

 , Σout
tot

 are 
the sum of in-going and out-going links incident to nodes in c, respectively, (Dugue and 
Perez [40]).

The first step will continue until no single step improves the modularity. The second 
step entails creating a new network, the communities from the first step. By adding the 
weights of the links between nodes in the two communities, it is possible to determine the 
weights of the links connecting the new nodes. After completion, the replication of the first 
step can create large communities with more modularity. Repetition of the preceding two 
rounds will occur to reach no modularity gain. The output is a list of sets of the partition of 
G(V,E) graph, where each set suggests a community and its constituent nodes.

4  Experiments

The experiments were conducted on a local device with an IntelⓇ  CoreTM i7-10750H pro-
cessor at 2.6 GHz and 16GB of RAM and without GPU support. The developed code uses 
the Python NetworkX package (Hagberg et al. [41]). The extraction of the Porto road net-
work real-world data was performed using the Python OSMnx module (Boeing [42]). The 
studied network has a total of 17851 nodes and 40091 edges. The comprehensive Compari-
son used three municipalities of the entire network: Matosinhos (11961 nodes and 28459 
edges), Paranhos (1926 nodes and 4508 edges), and Maia (1776 nodes and 4145 edges). 
Figure 1 illustrates the networks of the three studied regions, where the intersections are 
represented in white, while the lanes are in red.

4.1  Results

This section provides this research’s findings and outcomes. The first part consists of pre-
senting the network’s degree distribution study findings. Then, results are obtained based 
on page rank, and average path distance is displayed, followed by centrality measurements 
and community detection findings.

4.1.1  Degree distribution

The degree of a node within a network corresponds to the number of connections it has 
to other nodes, and the distribution degree is the probability distribution of such degrees 

Fig. 1  Visualization of the three studied regions of Porto: (on the left) Matosinhos, (on the middle) Para-
nhos and (on the right) Maia (intersections and lanes are represented in white and red, respectively)
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over the entire network. The network has a binomial distribution of k degrees since each 
of n nodes is individually linked with p probability:

Figure  2 depicts the degree distribution of the Porto road network as a histogram 
and in regular and log scales. The maximum and minimum degrees of the network are 
9 and 1 (one), respectively, with a mean value of 2.83. Nonetheless, for Matosinhos, 
the mean value was 4.76 with maximum and minimum values of 12 and 1, respectively. 

(11)P(k) =

(

n − 1

k

)

pk(1 − p)n−1−k.

Fig. 2  Degree distribution of Porto road network as (on the top) a histogram and also according to (on the 
bottom-left) both normal and (on the bottom-right) log scales
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Contradictorily, for Paranhos and Maia, the maximum and minimum values were 1, 10, 
and 2, 8 with a mean of 4.68 and 4.73, respectively.

The power-law fitting of the network was also analysed. Figure  3 illustrates the 
power-law fit of the degree distribution compared with Log-normal and Stretched-expo-
nential distribution. The calculated best minimal value for power-law fit was − 55.32, 
which further indicates the rarity of full power low fit of the real-world transportation 
network, as can be seen by the dotted red line in the figure. The degree distribution anal-
ysis demonstrates that only a few intersections possess a high number of connections 
compared to the others. Also, the power-law analysis depicts that the road networks are 
not scale-free and should not be expected to follow such distribution.

4.1.2  Average neighbour degree

Calculating the average nearest neighbour degree allows for evaluating whether a given 
node prefers to connect to others with many connections. The results showed the value 
of the average nearest neighbour degree of the road network of Maia to be 2.6 and 7.5% 
higher than that of Matosinhos and Paranhos (Figs. 4 and 5), respectively.

It means that the intersections of Maia are more dependent on their neighbouring 
counterparts than in the other studied networks.

The box-plot analysis of the average nearest neighbour degree of the Paranhos road 
network follows a normal distribution, and the other two possess either positive or nega-
tive skews. In addiction, many outliers for the Matosinhos road network depict a large 
numerical fluctuation compared to the values within the inter-quartile range.

Fig. 3  Degree distribution of Porto road network as a power-law fit according to Log-normal and Stretched-
exponential distributions
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4.1.3  Centrality measures

The Maia road networks degree centrality’s maximum and minimum values were 0.0294 
and 0.0074, respectively, with an average value of 0.017, which is 97.7 and 86.5% higher 
relatively to the networks of Matosinhos and Paranhos, respectively. In the case of close-
ness centrality, the Paranhos road network showed an average value of 0.0344, with a max-
imum and minimum of 0.051 and 0.0, respectively. The average value of closeness cen-
trality of Paranhos is 42.4% higher and 128.78% lower than that of Matosinhos and Maia, 
respectively.

Figure 6 illustrates the visualization of the three studied networks in terms of closeness 
centrality. Following the analysis of the closeness centrality, it can be observed that the 
intersections of the Matosinhos road network are closer to each other than of the other two 
networks.

Fig. 4  Box plot of the average 
neighbor degrees of the road 
network of Matosinhos, Paranhos 
and Maia

Fig. 5  Comparative analysis of the average neighbor degrees of the road networks of Matosinhos, Paranhos 
and Maia
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The average Eigenvector centrality of the Maia road network is 0.0256, which is 96.9 and 
88.04% higher than that of Matosinhos and Paranhos, respectively, as is illustrated in Fig. 7. 
Table 1 presents the summary of Eigenvector centrality of the three studied regions. In sum-
mary, the Eigenvector of the Matosinhos road network indicates that it contains the most 
intersections that are better connected to other vital intersections within the network.

It statistically depicts the Eigenvector centrality values for the three studied sub-regions. 
For the road network of Maia, most of its values are close to zero. While the other two net-
works do not follow a normal distribution, they illustrate positively skewed distributions.

In the case of betweenness centrality, the Maia road network possessed a value of 
0.02065, which is 91.3 and 70.9% greater than the road networks of Matosinhos and 
Paranhos, respectively, as is illustrated in Fig. 8. Table 2 presents more insights into the 
betweenness centrality of the road networks. The analysis of betweenness centrality dem-
onstrates that the intersections of the Matosinhos road network have less influence over the 
flow of information within the network.

Fig. 6  Visualization of the three studied regions in terms of closeness centrality: (on the left) Matosinhos, 
(on the middle) Paranhos and (on the right) Maia

Fig. 7  Box plot of the Eigenvec-
tor centrality of the studied three 
regions

Table 1  Eigenvector Centrality 
of studied network

Eigenvector Centrality Max Min Average

Matosinhos 0.27 5.7e− 272 0.000789
Paranhos 0.263 5.4e− 97 0.00306
Maia 0.272 9.4e− 06 0.0256
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Fig. 8  Comparison of the betweenness centralities of Matosinhos, Paranhos, and Maia

Table 2  Betweenness Centrality 
of studied road networks

Betweenness Centrality Max Min Average

Matosinhos 0.198 0.0 0.00179
Paranhos 0.123 0.0 0.0060
Maia 0.130 1.34e− 05 0.02065

Fig. 9  Comparison of four centrality measures calculated for Maia road network (in each case, the first 50 
readings were took into account)
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Finally, to have a broader look at how different centrality measures evolves, a graphical 
comparison is shown in Fig. 9, which allows to perceive the four types of centrality meas-
ures of the road network of Maia.

4.1.4  Connected components

An induced subgraph is a component of an undirected graph where pathways connect any 
two vertices, but not to any other vertices in the graph. Connected components form a par-
tition of the graph vertices, meaning that the connected components are non-empty, pair-
wise disjoint, and the union of connected components forms the set of all vertices. Porto 
road network is a connected graph, and the number of the connected component is 1 (one), 
which indicates the reachability of the network, implying that one can reach all other nodes 
by traversing edges from any network node.

4.1.5  Community analysis

Using the Louvain algorithm, the modularity value of the network was found to be 0.9469, 
which indicates that it has dense connections between the nodes within modules, but sparse 
connections between nodes in different modules. The number of communities of the Par-
anhos road network found by the Girvan–Newman algorithm was 3. However, it should 
not be so small; thus, it indicates the algorithm’s shortcomings. On the other hand, the 
most effective community detection algorithm was the Louvain method, which was used 
to found the total of the communities of Porto, Matosinhos, Paranhos and Maia of 147, 19, 
24, and 16, respectively, Figs. 10 and 11.

From the analysis of the community detection concepts, it can be realized that the road 
network of Paranhos contains more structural similarities and is very tightly bound within 
those detected regions than the others.

4.1.6  PageRank

PageRank computes a ranking of the nodes in the graph based on the structure of the 
incoming links. The maximum and minimum page rank values of the Matosinhos road 
network were calculated as 0.0002 and 1.68e− 05, respectively, with an average of 8.36e− 05. 

Fig. 10  Visualization of found 
communities of Porto road 
network (found communities 
are highlighted using different 
colours)
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Compared with Paranhos and Maia road networks, it was 18472.7 and 18473.2% lower 
than of Paranhos and Maia networks, respectively. Table 3 presents more insights into the 
networks under analysis.

From the analysis of the obtained values, it can be concluded that the intersections of 
the Maia road network possess a higher rank than of the other regions, which indicates 
their importance within the network. It also suggests that one intersection will likely 
receive more lanes from other intersections.

4.1.7  Average path distance

The average path distance between the nodes of each studied network was also measured. 
The average shortest path of the Matosinhos, Paranhos and Maia road networks were 
50.09, 26.74, and 29.17 units, respectively. Figure 12 illustrates the analysis of path dis-
tances of the road network of Maia with the help of a histogram.

The low values of average path distance of the three studied networks demonstrate that 
they facilitate quick transfer of traffic and, hence, reduce transportation costs.

5  Discussion

A comprehensive analysis of Porto’s road network consisted of the degree distribution, 
including power-law fitting, centrality measures, degree centrality, closeness centrality, 
betweenness centrality, eigenvector centrality, community detection, and page rank.

The degree distribution showed that most nodes possess a relatively small degree, but 
a few nodes have a considerable degree connected to many other nodes. The best minimal 
value of power-law fit was − 55.32, which indicates that the networks do not fully follow 
the power-law distribution.

Fig. 11  Additional visualization of found communities of studied networks: (on the left) Matosinhos, (on 
the middle) Paranhos and (on the right) Maia (found communities are highlighted using different colours)

Table 3  PageRank values of 
studied networks

Page Rank Max Min Average

Matosinhos 0.0002 1.68e− 05 8.36e− 05 
Paranhos 0.0013 0.000106 0.000519
Maia 0.0061 0.00182 0.00366
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The nodes of the Maia road network seemed to have the strongest tendencies to connect 
to others who are also popular, while the nodes of the Matosinhos road network displayed 
the weakest such tendencies, as indicated by the box plot diagram of Fig. 4.

The most critical nodes from the centrality measures are indicated in Table  4. The 
most critical nodes of the networks based on betweenness centrality measures were the 
’Avenida da Boavista, 4100-119 Porto (latitude: 41.157944, longitude: − 8.629105)’, and 
’Autoestrada do Norte, Porto (latitude: 41.1687869, longitude: − 8.6400656)’, respectively.

Fig. 12  All shortest path distances of the Maia road network

Table 4  Top three most important nodes (latitude and longitude) of each studied network measured using 
the betweenness centrality

Network Best (Lat. and Lon.) 2nd Best (Lat. and Lon.) 3rd Best (Lat. and Lon.)

Porto 41.162321,− 8.6554258 41.1616354,− 8.6513866 41.1618465,− 8.652652 
Matosinhos 41.1889938,− 8.6714335 41.1896475,− 8.6758741 41.2013094,− 8.6566653 
Paranhos 41.1736115,− 8.6058176 41.1831689,− 8.6134596 41.1742979,− 8.6103207 
Maia 41.2449145,− 8.1803343 41.2536122,− 8.1781785 41.2533825,− 8.178357 
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The Porto road network possesses 147 communities from the Louvain community 
detection algorithm, which means that there are 147 groups of nodes with dense con-
nections with similar structural properties.

Only one connected network component exists, indicating that the network is highly 
accessible; i.e., from any node in the network, all other nodes may be reached by tra-
versing edges from any node in the network.

The achieved modularity values was equal to 0.9469, which is relatively high and 
indicates dense connections between the network nodes. The page rank analysis found 
that the Maia road network nodes have higher values than of the Matosinhos and Para-
nhos networks. Moreover, the average path distance revealed low values, which indi-
cates the small world characteristic of the road network.

The same experiments using identical parameters were performed on the Ingolstadt 
road network, a city of Bavaria, in Germany, and the results were consistent with those 
obtained as to the Porto road network. For example, the degree distribution did not fol-
low the power-law, as shown in Fig. 13. Interestingly, the minimal value for power-law 
fit was − 248.71, which is much less than the one of the Porto road network. However, 
different outcomes are expected for road networks of sub-continent regions like India 
and Bangladesh, because of their different structural properties, which is part of the 
future scope of this study.

6  Conclusions

From a network science perspective, analysing road networks is fundamental for inves-
tigating valuable insights of a current and future urban settlement. It is a compelling 
approach to identify, visualise and explore different network behaviours that can even 
serve to their prediction and controlling purposes. The beautiful and historic city of 
Porto, in Portugal, and its three sub-parts: Matosinhos, Paranhos, and Maia, were 
selected to conduct this study. The three sub-parts were selected to find valuable insights 
within the each sub-urban area as they might possess different structures and character-
istics compared to the whole city network. Python OSMnx module aimed to capture the 
network data, and the NetworkX package of Python allowed for analysis of the results. 
Some beneficial insights found into the studied network are:

Fig. 13  Power-law fitting of the 
degree distribution of the Ingol-
stadt road network
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• Most nodes of the studied road networks have a relatively small degree while a few 
have a considerable degree;

• The studied networks do not fully follow the power-law distribution;
• The bigger the network, the lower the tendency to connect to other popular nodes;
• The higher the value of modularity, the higher the reachability of the network;
• The smaller the average path distance, the higher the representability of small-world 

phenomena.

This information can be beneficial in modelling real-world road networks. Although the 
current analysis only considered the Porto road network, it can efficiently analyse other 
road networks in any part of the world. For example, the Ingolstadt road network, in Ger-
many, was also analyzed using a similar approach. Interestingly, the outcomes were found 
to be identical to the ones of the presented results. However, road networks of Africa and 
other less developed parts of the world should also be studied in the near future.

Particular concentration on finding the road network’s subgraph patterns will be neces-
sary for future works. Also, more analysis should be performed on small-world phenom-
ena; for example, by studying small-world coefficients (sigma, omega) and the congestion 
spreading analysis.
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