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Abstract
We analyse the problem of finding an allocation of resources in a multiagent system that
is as fair as possible in terms of minimising inequality between the utility levels enjoyed
by the individual agents. We use the well-known Atkinson index to measure inequality
and we focus on the distributed approach to multiagent resource allocation, where new
allocations emerge as the result of a sequence of local deals between groups of agents who
agree on an exchange of some of the items in their possession. Our results show that it is
possible to design systems that provide theoretical guarantees for optimal outcomes that
minimise inequality, but also that there are significant computational hurdles to be overcome
in the worst case. In particular, finding an optimal allocation is computationally intractable
and under the distributed approach a large number of structurally complex deals, possibly
involving many agents and items, may be required before convergence to a socially optimal
allocation. This remains true even in severely restricted resource allocation scenarios where
all agents have the same utility function. From a methodological point of view, while much
work in multiagent resource allocation relies on combinatorial arguments, here we instead
use insights from basic calculus.
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1 Introduction

“What thoughtful rich people call the problem of poverty, thoughtful poor people call with
equal justice a problem of riches.”

—Anthony B. Atkinson (1944–2017), Inequality [3]

Allocating resources to agents is one of the central tasks arising in most multiagent sys-
tems [11]. This is true not only for systems of economic agents who need to share the value
they have generated together, but also for distributed systems of problem-solving agents
who need to share the computational resources available to them. What makes a ‘good’
allocation heavily depends on the application at hand, but there is broad consensus in the
multiagent systems research community that, rather than coming up with new ad hoc crite-
ria for optimality for every new application, it is fruitful to base the design of a multiagent
system on well-understood formal criteria originally proposed in the literature on social
choice theory and welfare economics, such as the monograph by Moulin [26].

For instance, if an efficient allocation is sought, both the notion of utilitarian social wel-
fare, measuring quality in terms of the sum of the individual utilities, and the weaker notion
of Pareto optimality have been found to be useful [32]. If fairness is a relevant design objec-
tive, there is a much wider range of concepts to choose from, several of which have been
analysed in the literature on multiagent systems in some detail. Examples include egalitar-
ian social welfare, measuring quality as utility of the worst-off agent, and its refinement
the leximin-ordering, where you try to maximise the utility of each agent subject to the
constraint that no agent already worse off suffers a loss of utility in the process [7, 16];
Nash social welfare, measuring quality as the product of the individual utilities [28, 30];
and the absence of envy, in the sense of no agent preferring another agent’s bundle over her
own [12, 22]. However, fairness criteria based on measuring inequality, which are widely
used in the social sciences [2, 20, 34], to date have received almost no attention in AI and
Computer Science (exceptions include the works of Lesca and Perny [25], Endriss [15], and
Gemici et al. [19]).

To help close this gap, in this paper, we focus on one of the most important representa-
tives of this family of criteria, the Atkinson inequality index [2], and analyse how to achieve
allocations of resources to agents that are optimal relative to this criterion. Our main con-
tributions concern the challenge of ensuring convergence to an optimal allocation under the
distributed approach, where the goal is to obtain a good allocation by means of a sequence
of local exchanges of items between (typically small) groups of agents, starting from a
given initial allocation [12, 14, 16, 31]. In addition, we analyse the price of minimising
inequality, i.e., the loss in economic efficiency incurred as a result of attempting to min-
imise inequality, and the computational complexity of computing an optimal allocation that
minimises inequality. These results, both of which are independent of the specific approach
chosen for performing multiagent resource allocation, highlight the fact that minimising
inequality is a challenging task. Our results regarding the distributed approach to minimis-
ing inequality show that, in principle, an appropriately designed system can be made to
guarantee outcomes with minimal inequality amongst the agents, although in practice signif-
icant computational hurdles may have to be overcome. Specifically, we may require deals of
arbitrarily high structural complexity (i.e., deals involving a large number of agents and/or
items) and we may require an exponential number of deals to be implemented in sequence.
From a methodological point of view, while much work in multiagent resource alloca-
tion relies on combinatorial arguments, here we specifically rely on insights from basic
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calculus, and some of the methods we use and develop here might also be applicable to
other problems in the area of multiagent resource allocation.

This paper extends our original work on the Atkinson index in multiagent resource allo-
cation [33] in a number of ways, most notably by showing that our results illustrating the
computational challenges associated with minimising inequality in a distributed manner
hold up also in highly restricted resource allocation scenarios where all agents have the
same utility function.

The remainder of this paper is organised as follows. In Section 2, we introduce the model
of multiagent resource allocation with indivisible goods we shall be working with and then
recall the relevant definitions from the theory of inequality measurement. Towards the end of
Section 2, we prove two baseline results regarding the price of minimising inequality and the
computational complexity of minimising inequality. Our main contributions are presented in
Section 3, where we set up a resource allocation framework that allows agents to compute an
optimal allocation minimising inequality in a distributed manner, by means of implementing
a number of local deals. Our technical results concern the guaranteed convergence to an
optimal outcome as well as the aforementioned limitations of the framework. We further
show that these limitations persist even for very restricted scenarios. Section 4 concludes
with a brief outlook on future directions of research in this domain.

2 Themodel and basic results

In this section, we first introduce the basic model of multiagent resource allocation we
are going to work with. In this model, which is widely used in the multiagent systems
literature—see, e.g., the surveys by Bouveret et al. [6] and Chevaleyre et al. [11]—a num-
ber of indivisible goods need to be allocated to a group of agents who each have their own
preferences over which bundles of goods they would like to obtain. We then review relevant
definitions regarding inequality measurement from the literature on welfare economics—
pioneered by authors such as Atkinson [2] and Sen [34], and reviewed in depth, for instance,
by Moulin [26]. Following Endriss [15], we then adapt theses notions to the setting of
indivisible goods typically considered in the multiagent systems literature.

Finally, we analyse basic features of our model in view of our objective of minimising
inequality by stating basic results regarding, first, the impact of this objective on economic
efficiency and, second, the computational complexity of implementing this objective. These
basic results underscore the fact that minimising inequality is a demanding requirement
when choosing an allocation of indivisible goods, be it by means of a centralised mechanism
or the kind of distributed mechanism we are going to focus on in later parts of this paper.

2.1 Multiagent resource allocation

Let N = {1, . . . , n} be a finite set of agents, i.e., n = |N |, and let G be a finite set
of goods, with m = |G|. We refer to the elements of the power set 2G as bundles. An
allocation is a function A : N → 2G , mapping agents to the bundles they obtain, with
A(i) ∩ A(j) = ∅ for any i �= j and A(1) ∪ · · · ∪ A(n) = G. Every agent i ∈ N is equipped
with a utility function ui : 2G → R�0, mapping any bundle she might receive to the
(nonnegative) utility she attaches to that bundle. We use ui(A) as a shorthand for ui(A(i)),
the utility enjoyed by agent i under allocation A. Every allocation A induces a utility vector
u(A) = (u1(A), . . . , un(A)). The collection of the utility functions of all agents is denoted
by U . We refer to triples 〈N ,G,U〉 as scenarios.
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Some of our results apply only to scenarios with specific types of utility functions. We
call a utility function u normalised if u(∅) = 0. Furthermore, u is called monotone if B ⊆
B ′ implies u(B) � u(B ′); it is called additive if u(B) = ∑

x∈B u({x}) for all bundles B;
it is called modular if u(B) + u(B ′) = u(B ∪ B ′) + u(B ∩ B ′) for all bundles B and B ′,
and it is called submodular if u(B) + u(B ′) � u(B ∪ B ′) + u(B ∩ B ′) for all bundles B

and B ′. Observe that every modular utility function is also submodular. Furthermore, by a
well-known fact, u is modular if and only if u(B) = u(∅) +∑x∈B(u({x}) − u(∅)) for all
bundles B. Thus, u is additive if and only if it is both modular and normalised. We call a
scenario 〈N ,G,U〉 normalised (or monotone, or additive, or modular, or submodular) if all
utility functions in U have that property. Finally, we call a scenario 〈N ,G,U〉 symmetric if
all agents have the same utility function, i.e., if ui = uj for all i, j ∈ N . When dealing with
utility functions, we sometimes work with their derivatives on an open interval. We use the
notation ]a, b[ or ]a, b] to denote the open interval of real numbers between a and b or the
corresponding half open interval, respectively.

A number of criteria for assessing the quality of a given allocation of resources, be
it in terms of economic efficiency or fairness, have been developed in the literature on
welfare economics [26], some of which are now routinely used in the multiagent sys-
tems literature as well [11]. The utilitarian social welfare of allocation A is defined as
swutil(A) = ∑

i∈N ui(A). Maximising utilitarian social welfare, or equivalently maximis-
ing the mean value μ(A) = 1

n
swutil(A), amounts to maximising total (or average) utility.

Thus, this is a measure of economic efficiency. The Nash social welfare of A is defined as
swnash(A) = ∏

i∈N ui(A). Like utilitarian social welfare, Nash social welfare increases
when we increase the utility of individual agents. But it also encodes a notion of fairness
by also rewarding certain equality-increasing redistributions of utility. For example, in a
scenario with three agents, switching from a state with utility vector (1, 2, 6) to a state
with utility vector (1, 4, 4) increases Nash social welfare from 12 to 16 but does not affect
utilitarian social welfare, which is equal to 9 in both cases.

2.2 Inequality indices

vectors. This is an intuitively appealing idea that goes straight to the core of the concept
of fairness. But it is not easy to give a clear definition of ‘inequality’ and a sizeable litera-
ture in the social sciences, stretching back more than a century, has been dedicated to this
challenge. A common approach is to measure inequality using a so-called inequality index,
which is a function mapping allocations (or, equivalently, utility vectors) to the interval
[0, 1], where 0 stands for perfect equality (meaning that all agents receive the same utility).
High values close or equal to 1 stand for high inequality amongst the agents, while val-
ues close to 0 are reserved for allocations that, intuitively speaking, are ‘almost equitable’.1

Well-known examples of inequality indices include the Gini index [20], the Robin Hood
index [24] (also called the maximum relative mean deviation), and in particular the family
of Atkinson indices [2].

1An alternative approach to formalising this idea of an allocation being close to equitable has been studied
very recently by Gourvès et al. [21] and Freeman et al. [17], amongst others: an allocation A is equitable
up to one good (EQ1) if, for any two agents i, j ∈ N , we can find an item a ∈ G such that ui(A(i)) �
uj (A(j) \ {a}). That is, i is at least as happy as j would be if we were to remove a from j ’s bundle. Thus,
while ‘near equitability’ as characterised by an inequality index is defined in terms of the utility levels of the
agents involved, EQ1 instead defines ‘near equitability’ in terms of the goods inducing those utility levels.
For this reason, at the technical level, there is no immediate link between the two approaches.
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Every Atkinson index relies on a notion of social welfare: For a given function sw map-
ping utility vectors to their social welfare and for a utility vector u(A) of an allocation A, we
first compute the so-called equally distributed equivalent level of income μsw(A), defined
in such a way that the vector (μsw(A), . . . , μsw(A)) has the same social welfare as u(A).
The Atkinson index based on the function sw is then defined as Isw(A) := 1 − μsw(A)

μ(A)
[2].

Under certain technical assumptions, which are satisfied by all standard notions of social
welfare, we can ensure that 0 � μsw(A) � μ(A) [34], i.e., Isw(A) ∈ [0, 1] as required.
Observe that Isw(A) = 0 whenever A exhibits perfect equality, as then μsw(A) = μ(A).

So why is this a reasonable approach to measuring inequality? The first thing to be
said here is that, of course, the adequacy of Isw depends, in part, on the adequacy of sw

as a means of measuring social welfare. If sw provides a notion of social welfare that
we are willing to accept as relevant, then, for any given allocation A, we can think of
(μsw(A), . . . , μsw(A)) as the utility vector of an imaginary allocation A′ that is as desirable
(i.e., that delivers the same social welfare) as A while also being perfectly equitable. But
A′ achieves this level of social welfare ‘using’ less total utility than A does. For instance,
to recast an example originally given by Atkinson [2], if it is the case that μsw(A)

μ(A)
= 0.7,

then this can be interpreted as indicating that, if utility were transferable and divided equally
amongst all agents, then we would require only 70% of the total utility generated by A to
obtain the same social welfare as we do for A.

In this paper, we are going to focus on the most important representative of this family
of inequality indices, the Atkinson index based on Nash social welfare:

Inash(A) = 1 −
n
√

swnash(A)

μ(A)
= 1 −

n
√∏

i∈N ui(A)

1
n

∑
i∈N ui(A)

,

with Inash(A) = 0 if all individual utilities are 0.
While in the literature the term ‘Atkinson index’ is used both for the entire family and

for this specific instance of an index, from here on we only use it in this latter sense. In what
follows, we write I instead of Inash.

We stress that Nash social welfare and the Atkinson index do not measure the same thing.
For instance, two allocations with utility vectors (2, 2) and (1, 4) yield the same Nash social
welfare but exhibit very different levels of inequality, as measured by the Atkinson index: 0
vs. 0.2. Under the social welfare perspective, the loss in equality when moving from (2, 2)

to (1, 4) is made up for by the gain in total utility, while the Atkinson index does not permit
any such compensation between different social criteria.

It is easy to see that I returns 0 if all the agents receive the same utility. Furthermore, we
can show that it never returns 0 in any other case:

Lemma 1 If I(A) = 0 for an allocation A, then all agents receive the same utility, i.e.,

I(A) = 0 =⇒ ∀i ∈ N : ui(A) = μ(A).

Proof The assertion follows from the following inequality for the arithmetic and the
geometric mean, which holds for any nonnegative real numbers x1, . . . , xn:

1

n

(
n∑

k=1

xk

)

� n

√
√
√
√

n∏

k=1

xk .

Equality holds if and only if x1 = x2 = . . . = xn. A proof of this fact can be found in
Cauchy’s Analyse Algébrique [10, p. 457].
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We focus on the Atkinson index because of its importance in the literature in the social
sciences [1, 2, 26, 34]. While some other indices, notably the Gini index, are more widely
used, the Atkinson index is often considered to be preferable on normative grounds, due to
its principled formulation in terms of a notion of social welfare—in our case, Nash social
welfare, which itself enjoys sound axiomatic foundations, going back all the way to the
seminal work of Nash [9, 26, 27, 34]. Furthermore, the Atkinson index fulfils the common
basic axioms for inequality indices which include the transfer principle, symmetry, and scale
invariance [1, 2, 13].

The transfer principle states that transfers from an agent with a high utility to one with
low utility shall not increase the inequality (provided that transfer is not so significant as to
invert the relative ranking of these two agents). An inequality index is symmetric if it does
not depend on the ordering of the agents, i.e., if it is invariant under permutations of the
utility vector. Finally, scale invariance requires that the level of inequality measured should
not change if we multiply the utility of every agent with the same positive constant. Thus,
inequality should not depend on the ‘currency’ we use to measure individual utility.

Before we turn to our discussion of the challenges involved in finding an allocation of
goods that minimises inequality in view of the Atkinson index, let us go over an extended
example that, not only, illustrates the process of computing the Atkinson index for a given
allocation but that also allows us to contrast this solution concept with the solution concepts
based on the maximisation of either utilitarian or Nash social welfare.

Example 1 Consider the scenario 〈N ,G,U〉, with agents N = {1, 2, 3} and goods G =
{a, b, c}. The collection U of utility functions is defined in terms of the values the agents
assign to each of the eight possible bundles:

U ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
1 : 0 2 1 1 3 3 2 10
2 : 0 0 2 3 2 3 5 10
3 : 0 3 0 2 3 5 2 10

Observe that these utility function are ‘almost additive’. When going over the calucations
that follow, the reader is invited to focus on the bundles with one or three goods, respec-
tively; the three bundles with two goods each do not play a significant role. In the above
scenario . . .

. . . the allocation A with A(1) = {a, b, c}, A(2) = ∅, and A(3) = ∅ maximises swutil .

. . . the allocation A′ with A′(1) = {b}, A′(2) = {c}, and A′(3) = {a} maximises swnash.

. . . the allocation A′′ with A′′(1) = {a}, A′′(2) = {b}, and A′′(3) = {c} minimises I .

The corresponding utility vectors and values of swutil , swnash, and I are are shown in the
following table:

u swutil swnash I

A : (0, 0, 10) 10 0 1 −
3
√

0
1
3 · 10

= 1

A′ : (1, 3, 3) 7 9 1 −
3
√

9
1
3 · 7

≈ 0.11

A′′ : (2, 2, 2) 6 8 1 −
3
√

8
1
3 · 6

= 0
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This example shows that the solution concept of utilitarian social welfare can be highly
unfair. The Nash social welfare is good mixture of efficiency and fairness, but there are
contexts where inequality measurements provide an intuitively fairer solution.

2.3 The price of minimising inequality

As we have seen, despite the fact that the Atkinson index is based on the notion of Nash
social welfare, these two approaches to assessing allocations do not always rank allocations
in the same way. While the Atkinson index focuses on the avoidance of inequality—and
thus on fairness—alone, Nash social welfare combines fairness and efficiency concerns.
Unsurprisingly, fairness and efficiency demands will sometimes be in conflict and require
a certain tradeoff. Caragiannis et al. [8] have introduced the price of fairness as a means of
quantifying this tradeoff. For a given notion of fairness and a given scenario, it is defined as
the ratio between (i) the utilitarian social welfare of the most efficient allocation amongst
all allocations and (ii) the utilitarian social welfare of the most efficient allocation amongst
all fair allocations. The price of fairness of a class of scenarios (e.g., defined in terms of
certain properties of the utility functions) is defined as the maximum price of fairness across
all scenarios belonging to this class. A small price of fairness is desirable, and the best value
the price of fairness can take is 1, which happens when the best allocation according to the
considered fairness concept is also maximally efficient.

Amongst other things, Caragiannis et al. [8] consider the fairness concept of equitability.
An allocation is equitable if the utilities the agents enjoy from the goods received are equal.
For indivisible goods (and additive utility functions that assign utility 1 to the full bundle
of all goods), the price of equitability is finite only for the case of two agents, whereas it is
infinite for n � 3 agents [8]. This result immediately extends to our setting and the fairness
concept of minimising inequality according to the Atkinson index:

Proposition 2 The price of minimising inequality is infinite for scenarios with n � 3
agents, even when restricted to scenarios with additive utility functions that assign utility 1
to the full bundle of all goods.

Proof The claim is an immediate consequence of the quoted result by Caragiannis et al.
[8, Theorem 15] regarding the price of equitability, given that for scenarios for which an
equitable allocation exists that allocation also minimises inequality according to the Atkin-
son index. In their proof, Caragiannis et al. construct a family of scenarios for which the
only equitable allocation is as far removed as possible from the most efficient one: For n

agents and n goods, it is the allocation in which every agent receives a good that has utility
ε, where ε is an arbitrarily small positive real number. The social welfare of this allocation
is then nε, whereas the most efficient allocation has a social welfare of n− (n+1)ε by their
construction. This leads to a price of equitability of Ω( 1

ε
), which implies the claim.

We interpret this result as a first piece of evidence that finding an allocation that min-
imises inequality, our stated objective for this paper, is not an easy task.

We note that Bertsimas et al. [5], independently from Caragiannis et al. [8], also intro-
duced the notion of a price of fairness, albeit defined in a slightly different manner. They
consider the relative reduction in utilitarian social welfare under a fair allocation compared
to the most efficient allocation, expressed as a real number in the interval [0, 1], where 0
corresponds to the most desirable price of fairness. If we use their definition, the price of
minimising inequality for three or more agents is 1.
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2.4 The computational complexity of minimising inequality

It is clearly desirable to find allocations that minimise the inequality amongst the agents.
One might in particular ask whether, for a given scenario, there exists an allocation that
is perfectly equal.2 Next, we consider the computational complexity of this problem when
inequality is measured in terms of the Atkinson index. The PERFECT INDEX OPTIMISATION

problem is defined as follows:

Perfect Index Optimisation PIO

Instance: 〈N ,G,U〉
Question: Is there an allocation A such that I(A) = 0?

Unfortunately, it turns out that this problem is strongly NP-hard:3

Proposition 3 The decision problem PERFECT INDEX OPTIMISATION is strongly NP-hard,
even for additive scenarios with symmetric utility functions.

Proof Before we present the proof, observe that to specify an instance of the problem with
additive utility functions, we need to specify one number for every pair in N × G. That is,
an additive utility function can be specified by fixing the utility for each individual good
(rather than for each bundle of goods).

Now, note that, by Lemma 1, we have I(A) = 0 if and only if all agents enjoy the same
level of utility. We use a reduction from the strongly NP-hard 3-PARTITION problem [18],
which is defined as follows:

Partition

Instance: A finite set X, with |X| = 3q (q ∈ N), a bound T ∈ Z�0
and a size s with s(x) ∈ Z�0 for each x ∈ X such that
T/4 < s(x) < T/2 and

∑
x∈X s(x) = q · T .

Question: Is there a partition X1 ∪· . . . ∪· Xq of X into sets of size 3
such that

∑
x∈Xi

s(x) = T for all i ∈ {1, . . . , q}?

Given an instance 〈X, T , s〉 of the 3-PARTITION problem, we construct an instance 〈N ,

G,U〉 of the PIO problem, where the set of agents is N = {1, . . . , q}, the set of goods cor-
responds to the elements of X to be partitioned, i.e., G = X, and the collection U of utility
functions is defined as follows: the utility of each good is given by the size function s, i.e.,
ui(x) = s(x) for all x ∈ X, i ∈ N , and we further set ui(B) = ∑

x∈B s(x) for all bundles
B ⊆ G = X and i ∈ N . Hence, the constructed scenario is additive and symmetric.

Now 〈X, T , s〉 is a yes-instance if and only if 〈N ,G,U〉 is: First, assume that 〈X, T , s〉 is
a yes-instance with partition X1 ∪· . . .∪· Xq of X, then assign to each agent i ∈ N the goods

2Prior work by Endriss [15] has also considered the computational complexity of the task of reducing (but not
necessarily minimising) inequality, albeit not for the specific notion of inequality encoded by the Atkinson
index.
3While we are not aware of a proof of this result in the literature, Proposition 3 is not surprising. Indeed,
remarks by Freeman et al. [17, footnote 7] amount to essentially the same result, hinting at the same kind of
reduction to obtain that result.

346 S. Schneckenburger et al.



corresponding to the elements in the set Xi . Since
∑

x∈Xi
s(x) = T for all i ∈ {1, . . . , q},

each agent receives the same utility, hence the allocation has Atkinson index 0. Conversely,
assume there exists an allocation A of goods with I(A) = 0. By Lemma 1, this means that
each agent enjoys the same utility μ(A) from the goods assigned to her by A. For i ∈ N ,
let Bi be the bundle assigned to agent i by A. Then, for all i ∈ N , we set Xi = Bi , and we
have μ(A) = ui(A) = ∑

x∈Bi
ui(x) = ∑

x∈Xi
s(x) = T . Hence there exists a 3-partition

of X as required.

In our earlier work [33], we instead used a reduction from the PARTITION problem to
show NP-hardness. The advantage of the reduction from 3-PARTITION given here is that it
shows that PIO is NP-hard in the strong sense, meaning that there is no pseudo-polynomial
algorithm to solve it and that there can be no fully polynomial-time approximation scheme
(FPTAS) for this problem, unless P = NP [36].

3 The distributed approach

As we have seen, the problem of deciding whether there exists an allocation with perfect
equality is computationally intractable already for very restricted instances. Thus, comput-
ing such an allocation will be just as hard. Nevertheless, we are interested in minimising
inequality amongst the agents. To this end, we will now explore adapting the so-called dis-
tributed approach formulated by Endriss et al. [16], relying on ideas originally introduced
by Sandholm [31]. Under this approach, starting from some initial allocation, the agents
can decide to arrange exchanges of some of the goods between some of them by means of
so-called deals. The key idea is that the agents are supposed to only use local information:
only some (preferably small number of) agents may be involved in a deal and they only have
access to information on the goods they own and on the goods they exchange, not on the
overall allocation. The goal is to devise a protocol for the agents to follow that, despite this
limitation to local deals, permits them to reach an allocation with good global properties.
This approach has been successfully applied to compute, in a distributed manner, alloca-
tions that are optimal in view of, amongst others, utilitarian social welfare [31], egalitarian
social welfare [16], Nash social welfare [28], and envy-freeness [12].

After defining the notion of a deal formally (in Section 3.1), we first prove that achiev-
ing convergence to an allocation with minimal inequality is impossible for deals that are
local in the narrow sense in which this term has been defined in the literature before (see
Section 3.2). However, we are then going to see that a very mild relaxation of this notion of
locality is sufficient to obtain a convergence result (see Section 3.3). This positive result is
then tempered by two further results. First, we show that we must admit arbitrarily complex
(yet semi-local) deals (see Section 3.4), where the notion ‘complexity’ refers to the num-
ber of agents and goods involved in a single deal. Second, we show that we must allow for
the possibility of exponentially long sequences of deals before convergence is realised (see
Section 3.5). We conclude by demonstrating that these difficulties cannot be significantly
ameliorated even for highly restricted scenarios that are symmetric and in which the utility
functions are monotone and submodular (see Section 3.6).

3.1 Deals and sequences of deals

A deal δ = (A,A′) is a pair of two distinct allocations A and A′. The set of agents involved
in the deal δ is denoted by N δ , i.e., N δ := {i ∈ N | A(i) �= A′(i)}.
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Example 2 Consider the set of goods G = {a, b, c, d}, the set of agents N = {1, 2, 3},
and the two allocations A◦ = ({a, b}, {c}, {d}) and A∗ = ({a, c}, {b}, {d}). The deal
δ = (A◦, A∗) with involved agents N δ = {1, 2}, in which agent 1 gives item b to agent 2
and receives item c in return, is visualised in Fig. 1.

Note that a single deal may include any number of agents and goods (even if we think
of a typical deal as involving just a few of each). We would like the agents to agree on a
sequence of deals that—somehow—converges to an allocation that minimises inequality.
Let us first exclude two approaches that are definitely not useful. First, we could give the
agents complete freedom what deals to negotiate. This protocol cannot ensure convergence,
as we cannot exclude the possibility of loops (e.g., they may indefinitely alternate between
the allocations A◦ and A∗ of Fig. 1). Second, from any given allocation we could only permit
a single deal, namely the deal that takes us straight to the optimal allocation. This also is not
useful, as it would not leverage any of the potential power of the distributed approach and
simply reduce it to a fully centralised optimisation problem.

3.2 No convergence by local deals

We are looking for a criterion to select admissible deals such that (i) the agents involved
in any given deal are able to determine locally whether that deal is admissible and (ii) any
sequence of admissible deals eventually leads to an optimal allocation. Regarding the lat-
ter requirement, we are specifically interested in sequences of deals for which inequality
decreases monotonically along the way, so as to obtain a mechanism with an ‘anytime’ char-
acter, meaning that we can guarantee that the situation will continue to improve as long as
the agents keep on agreeing on deals. But how should we define ‘locality’ in this context?
Endriss et al. [16] call a criterion for determining the admissibility of a deal δ = (A,A′)
local if and only if the question of whether δ is admissible can be answered by looking only
at the set {(i, ui(A), ui(A

′)) | i ∈ N δ}. In other words, admissibility should only depend
on the utility levels of the agents involved before and after the deal.

Unfortunately, it is impossible to define a suitable deal selection criterion that is local in
this sense. As we are going to show next, if we restrict ourselves to deals that satisfy some
criterion that is local, then the agents involved in a deal will not always be able to determine

Fig. 1 Illustration of Example 2: Starting from allocation A◦ which assigns goods a and b to agent 1, good c

to agent 2, and good d to agent 3, respectively, the agents 1 and 2 involved in the deal δ exchange goods b

and c, which results in allocation A∗. Agent 3 is not involved in this deal
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whether a given deal would decrease inequality. Hence, no such local deal criterion can
possibly be used to adequately guide our search for an optimal allocation.

Proposition 4 It is impossible to always decide whether a given deal δ = (A,A′) would
decrease inequality as defined by the Atkinson index by only inspecting the utility levels of
the agents involved in δ in allocations A and A′.

Proof We construct an example where a given deal would decrease inequality in one sce-
nario but increase it in another, while the local information on the utility levels of the agents
involved in that deal is the same in both scenarios. Consider the two scenarios 〈N ,G,U1〉
and 〈N ,G,U2〉, with N = {1, 2, 3} and G = {a, b, c, d}. The additive collections of utility
functions U1 and U2 are defined in terms of the values the agents assign to each of the items:

U1 a b c d U2 a b c d

1 : 2 1 3 4 and 1 : 2 1 3 4
2 : 2 5 2 1 2 : 2 5 2 1
3 : 1 2 1 6 3 : 3 2 3 2

.

Now consider the deal δ = (A◦, A∗) between allocations A◦ = ({a, b}, {c}, {d}) and
A∗ = ({a, c}, {b}, {d}), which is the same deal we had already considered in Fig. 1. Let us
compute the Atkinson index for each of the two allocations in each of the two scenarios:

Scenario 〈N ,G,U1〉 Scenario 〈N ,G,U2〉
I(A◦) : 1 − 3√3·2·6

1
3 ·(3+2+6)

≈ 0.099 1 − 3√3·2·2
1
3 ·(3+2+2)

≈ 0.019

I(A∗) : 1 − 3√5·5·6
1
3 ·(5+5+6)

≈ 0.004 1 − 3√5·5·2
1
3 ·(5+5+2)

≈ 0.079

Thus, in the first scenario, δ decreases inequality, while in the second scenario, δ increases
inequality. Nevertheless, the two agents involved in δ cannot distinguish between the two
scenarios. Hence, there can be no local criterion for the admissibility of deals that would
allow us to always select deals that decrease inequality.

For comparison, when optimality is defined in terms of utilitarian social welfare, egal-
itarian social welfare, or Nash social welfare, local criteria for selecting deals that ensure
a social improvement do exist, as demonstrated by Endriss et al. [16] and Ramezani and
Endriss [28]. When the goal is to compute an envy-free allocation, there exists no suitable
local criterion, but this hurdle can be overcome by slightly relaxing the requirements [12].
The solution proposed by Chevaleyre et al. [12], which concerns a model like ours but per-
mitting monetary side payments, is to allow agents not involved in a deal to receive (but
never make) payments. As all of the agents not involved are required to get the same amount,
this means that the agents involved (who make and compute these payments) must have the
information of how many agents there are overall, i.e., they must know n. In the sequel, we
are going to take a similar route and also break the locality requirement in a very subtle way by
providing some additional information of a global nature to the agents involved in a local deal.

3.3 Convergence by semi-local deals

Recall that the computation of the Atkinson index involves both the geometric mean and the
arithmetic mean of the utilities of all agents. On the one hand, the local information on the
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utility levels of the involved agents is sufficient to determine both whether (i) the geometric
mean increases or decreases, and whether (ii) the arithmetic mean increases or decreases.4

On the other hand, the underlying reason for the impossibility stated in Proposition 4 is that,
nevertheless, this local information is not sufficient to determine which of these two effects
is stronger, and thus whether inequality will increase or decrease.

We now define a semi-local criterion for the admissibility of deals that relaxes the con-
straints on the information available a little and thereby allows us to overcome this problem.
The central idea is to allow the agents to also access μ(A), the (arithmetic) mean of the
utilities of all agents (not just the involved agents) before the deal. Given μ(A) and the
usual local information, we can compute μ(A′) for another allocation A′ reached by the
deal δ = (A,A′) as follows:

μ(A′) = μ(A) + 1

n
·
∑

i∈N δ

(ui(A
′) − ui(A)).

We still do not have full access to the geometric mean of all utilities, but only to the extent
to which it changes during the deal. As will become clear shortly, this is not a problem.

Let us call a deal δ = (A,A′) an Atkinson deal if and only if it satisfies the following
condition:

n
√∏

i∈N δ ui(A)

μ(A)
>

n
√∏

i∈N δ ui(A′)
μ(A) + 1

n
·∑i∈N δ (ui(A′) − ui(A))

.

Observe that we can determine whether a given deal is an Atkinson deal using semi-local
information only: we require the utility levels in A and A′ for the involved agents as well as
the mean value of the entire society in A. The good news is that this is sufficient to allow us
to compute an optimal allocation in a distributed manner:

Theorem 5 For every scenario and initial allocation, every sequence of Atkinson deals will
eventually result in an allocation that minimises inequality, as defined by the Atkinson index.

Proof First, observe that a deal decreases inequality if and only if it is an Atkinson deal
(this is immediate from the definitions of the Atkinson index and Atkinson deals).

As there are only a finite number of allocations, any sequence without cycles has to ter-
minate eventually. As every deal in the sequence strictly decreases inequality, there cannot
be any cycles, which proves termination. Finally, it is impossible for the terminal allocation
A to not have minimal inequality, as then there would have to exist another allocation A′
with lower inequality, which would make the deal δ = (A,A′) an Atkinson deal, i.e., A

could not have been terminal in the first place.

Similar convergence results have been proved for a number of other criteria for social
optimality [12, 16, 28, 31]. In some cases, notably for utilitarian social welfare and envy-
freeness [12, 31], the admissibility criterion for deals has an attractive interpretation as a
rationality criterion for selfish agents. For example, in the case of utilitarian social welfare,
we obtain convergence by means of deals for which myopic agents with quasi-linear utili-
ties can negotiate prices that benefit all agents involved in the deal. In other cases, notably
for egalitarian social welfare and Nash social welfare [16, 28], just as for our result here,

4This is precisely the reason why it is possible to design local criteria for agents wishing to compute
allocations with maximal Nash and utilitarian social welfare, respectively.
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convergence theorems should be interpreted as showing that cooperative agents can col-
lectively compute an optimal outcome without requiring global coordination to guide their
search. Specifically, Theorem 5 shows that agents can freely contract deals with their neigh-
bours, safe in the knowledge that every single deal will improve the global situation and no
deal will cut them off from a route to an optimal allocation.

3.4 Necessity of complex deals

Theorem 5 shows that we will always reach an allocation with minimal inequality, provided
we keep on contracting new Atkinson deals as long as any such deals exist. But our result
does not say anything about how complex these deals are. Ideally, we would prefer deals that
involve the exchange of only a small number of goods between a small number of agents.
So we may ask whether a given deal, particularly a deal of high structural complexity, might
ever become necessary for reaching an allocation with minimal inequality.

Next, we show that, unfortunately, for every deal that is not ‘independently decompos-
able’ (to be defined shortly) there exists a scenario such that this deal is necessary for
reaching an allocation with minimal inequality. In this context, following Endriss et al. [16],
we call a deal δ = (A,A′′) independently decomposable if it concerns two separate sets of
transactions between two disjoint sets of agents, i.e., if there exists a third allocation A′ such
that, for the deals δ1 = (A,A′) and δ2 = (A′, A′′), it is the case that N δ1 ∩ N δ2 = ∅. To
prove necessity of all independently decomposable deals, we make use of the fact that the
Atkinson index can assume any arbitrary value in the interval [0, 1], which can be shown
by proving surjectivity of a correspondingly defined function. This is done in the following
technical lemma.

Lemma 6 For every n ∈ N>1 and 1 � d � n, the function

T : [0, 1] → [0, 1]
x �→ 1 −

n
√

(1 − x)d

1 − x·d
n

is strictly monotonically increasing and thus bijective.

Proof T is well-defined, continuous and in particular differentiable for all x ∈]0, 1]. Fur-

thermore T (0) = 0, T (1) = 1, and
d

dx
T (x)= (n−d)dx(1−x)(

d
n −1)

(n−dx)2 >0 holds for all x ∈ ]0, 1[,
which implies the claim.

We can now show that every deal that is not independently decomposable is necessary in
the above sense:

Theorem 7 For every deal δ = (A, A′) that is not independently decomposable, there exist
utility functions (ui)i∈N and a starting allocation, such that δ is necessary for reaching an
allocation that minimises inequality, as defined by the Atkinson index, by means of Atkinson
deals only.

Proof For the given deal δ = (A,A′), we construct a utility function for every agent in
such a way that I(A′) = 0, and that I(A) is strictly smaller than the inequality of any
allocation different from A and A′. This will imply that, starting from allocation A, the
deal δ = (A,A′) is the only Atkinson deal reducing I , and hence necessary.
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Since A and A′ are different, there is at least one agent j with A(j) �= A′(j). We fix
this j and let 0�x�1. We now define the utility functions for any given bundle B ∈ 2G as

ui(B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if A′(i) = B,

1 if (i �= j) and A(i) = B,

1 − x if (i = j) and A(i) = B,

i + 1 otherwise.

This implies I(A′) = 0 and

I(A) = 1 −
n
√

1 − x

1 − x
n

.

We now compare I(A) to the inequality of all other possible allocations and show that
the value of the variable x appearing in I(A) can be set such that I(A) is stricly greater
than 0, but strictly smaller than the inequality of any other allocation. Apart from A and A′,
there are two different types of allocations with respect to the designated agent j and the
allocation A. Allocations of the first type coincide with allocation A for agent j , allocations
of the second type do not.

Consider an allocation of the first type, which we will denote by Ã. As x is not fixed yet,
we can interpret each I(Ã) as a function I(Ã) : [0, 1] → [0, 1] with

I(Ã)(x) = 1 −
n

√
(1 − x) ·∏i∈N\{j} ti

1
n

(
1 − x +∑i∈N\{j} ti

) ,

where ti � 1 holds for all i �= j , and ti > 1 holds for at least one i �= j . We have
0 < I(Ã)(0), which can be shown with the inequality of the arithmetic and geometric

mean as in the proof of Lemma 1. Furthermore, it is easy to check that
d

dx
I(Ã)(x) > 0

for all x ∈ [0, 1], hence I(Ã) is a strictly monotonically increasing function on [0, 1] with
I(Ã)(0) > 0, which means that the family of functions {I(Ã)}

Ã
is bounded from below,

i.e., there is a real number ε1 > 0 such that 0 < ε1 < I(Ã)(x) for all I(Ã) and all
x ∈ [0, 1].

Next, we show that for any allocation A∗ of the second type we have I(A∗) > 0. As
the deal δ is not independently decomposable, there is at least one pair of agents k, � with
uk(A

∗) �= u�(A
∗): otherwise, we would have ui(A

∗) = 1 for all i ∈ N , meaning that A∗
coincides with either A or A′ for every agent, i.e., δ would be independently decomposable
into the deals (A,A∗) and (A∗, A′), contradicting our assumptions. Thus, by Lemma 1, we
must have that I(A∗) > 0. As there are only finitely many possible allocations, we get

min
A∗ �=A,A′ I(A∗) > 0.

We now choose some ε2 with 0 < ε2 < minA∗ �=A,A′ I(A∗) and then set x such that
I(A) = ε := min{ε1, ε2}, which is possible due to Lemma 6. Hence, we have 0 = I(A′) <

I(A) � ε2 < minA∗ �=A,A′ I(A∗) as well as I(A) � ε1 < I(Ã) for any allocation Ã of the
first type. Thus, in this scenario, starting from allocation A, δ = (A,A′) is the only deal
reducing I , and thus the only Atkinson deal.

Theorem 7 is bad news since it shows that, if we want to reach an optimal alloca-
tion by using Atkinson deals, it might be unavoidable to use very complex deals—even
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involving all agents and all items. Our construction used in the proof of Theorem 7 is sim-
ilar to the construction used to derive necessity results for utilitarian and egalitarian social
welfare [16] as well as Nash social welfare [28]. In those other settings, not only are all
non-independently decomposable deals necessary, but these are the only such deals. Sur-
prisingly, in the present setting the situation is worse and even deals that are independently
decomposable are necessary, as the following example demonstrates:

Example 3 Consider the additive scenario 〈N ,G,U〉, with N = {1, 2, 3, 4} and G =
{a, b, c, d}. The collection U of additive utility functions is defined in terms of the values
the agents assign to each of the items:

U a b c d

1 : 4 10 4 4
2 : 10 3 3 3
3 : 2 2 2 10
4 : 1 1 10 1

Now consider the deal δ = (A,A′) between allocations A = ({a}, {b}, {c}, {d}) and
A′ = ({b}, {a}, {d}, {c}). This deal is decomposable; there are two possible decompo-
sition sequences, (A,Ai1 , A′) and (A,Ai2 , A′) with Ai1 = ({a}, {b}, {d}, {c}) and Ai2 =
({b}, {a}, {c}, {d}).

As U is additive, only allocations which assign exactly one item to each agent are not
completely unfair. So there are only 4! allocations with inequality not equal to 1, but from
these, only Ai1 , Ai2 , and A′ have an inequality different from the one of A. The values of I
for these four allocations are as follows:

I(A) : 1 −
4
√

4 · 3 · 2 · 1
1
4 · (4 + 3 + 2 + 1)

≈ 0.115

I(Ai1)1 −
4
√

10 · 10 · 2 · 1
1
4 · (10 + 10 + 2 + 1)

≈ 0.346

I(Ai2)1 −
4
√

4 · 3 · 10 · 10
1
4 · (4 + 3 + 10 + 10)

≈ 0.128

I(A′)1 −
4
√

10 · 10 · 10 · 10
1
4 · (10 + 10 + 10 + 10)

= 0

So in this example, given the allocation A, the (independently decomposable) deal δ =
(A,A′) is necessary.

In fact, we are able to strengthen Theorem 7 and show that every deal is necessary. We
again begin by establishing a technical lemma.

Lemma 8 For a, b ∈ R>0 and two numbers d, n ∈ N with 1 � d < n we have that

lim
x→∞

n
√

a · xd

1
n
(b + d · x)

= 0.
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Proof As
n
√

a · xd −→
x→∞ +∞ and 1

n
(b + d · x) −→

x→∞ +∞ we can apply L’Hôpital’s rule:

lim
x→∞

n
√

a · xd

1
n
(b + d · x)

= lim
x→∞

d
dx

(
n
√

a · xd
)

d
dx

(
1
n
(b + d · x)

)

= lim
x→∞

d
n

· n
√

a · x
d
n
−1

d
n

= lim
x→∞

n
√

a · x( d
n
−1) d<n= 0.

This proves the claim.

Now we can prove a stronger version of Theorem 7, by building both on that theorem
and the lemma above:

Theorem 9 For every deal δ, there exist utility functions and a starting allocation, such
that δ is necessary for reaching an allocation that minimises inequality, as defined by the
Atkinson index, by means of Atkinson deals only.

Proof If δ is not independently decomposable, the statement is covered by Theorem 7. So
we suppose δ is independently decomposable. Then it is always possible to find a sequence

(A = A1, A2, . . . , Ad, Ad+1 = A′)
of allocations such that each pair (A�, A�+1) consisting of two consecutive allocations of
the sequence is a deal that is not independently decomposable, and furthermore for any two
deals δa and δb, each consisting of two consecutive allocations of the sequence, we have
N δa ∩ N δb = ∅. Such a sequence can be constructed iteratively in the following manner.
We start with the sequence (A,A′). If a pair (A�,A�+1) of consecutive allocations in the
current sequence is independently decomposable, there is an allocation A�′

/∈ {A�,A�+1}
such that N (A�,A�′ ) ∩ N (A�′ ,A�+1) = ∅ and N (A�,A�′ ) ∪ N (A�′ ,A�+1) = N (A�,A�+1), then we
insert this allocation A�′

into the sequence between A� and A�+1 and relabel the allocations.
We repeat this until the sequence fulfills the conditions.

For any pair (A�, A�+1), we choose an agent j ∈ N (A�,A�+1) and denote the set of all
these agents by D (by construction no agent can be chosen twice and |D| = d), and let x, y

be real numbers with 0 � x � 1 < y (the exact values of x and y will be defined later). We
now define the utility functions in a bundlewise way as

ui(B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y if A′(i) = B,

1 if (i /∈ D) and A(i) = B,

1 − x if (i ∈ D) and A(i) = B,

i + 1 otherwise.

Analogously to the construction in the proof of Theorem 7, we have I(A′) = 0 and

I(A) = 1 −
n
√

(1 − x)d

1 − x·d
n

.

In this proof, we will distinguish three types of allocations (apart from A and A′) with
respect to the designated agents j ∈ D and the allocations A and A′: allocations of the first
type coincide with A for some of the agents in D and furthermore do not coincide with A′
for any agent i ∈ N ; allocations of the second type do not coincide with A for any of the
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agents in D and furthermore do not coincide with A′ for any agent i ∈ N \D; the third type
of allocations contains all allocations which coincide with A′ for at least one agent.

Concerning the variables x and y, this means the following: variable x is relevant for
type 1, variable y is not; neither x or y are relevant for type 2; finally, even though the
variable x might occur, only variable y will be relevant for type 3.

Consider an allocation of the first type, which we will denote by Ã. We have Ã(j) �=
A′(j) for all j ∈ D and Ã �= A, but Ã(j) = A(j) for at least one j ∈ D. Analogously
to the proof of Theorem 7, it can be shown that there is a real number ε1 > 0 such that
0 < ε1 < I(Ã) for all possible values of x. (Please note that the values of the utilities in this
case are restricted to 1, 1 − x, and i + 1 for some i ∈ N , and that the latter type of value
occurs at least once.)

Next, we show that for any allocation A∗ of the second type, we have I(A∗) > 0. Again,
there is at least one pair of agents k, � with uk(A

∗(k)) �= ul(A
∗(�)), which implies that

I(A∗) �= 0. As there are only finitely many allocations, we have

min
A∗ �=A,A′ I(A∗) > 0.

We now choose some ε2 with 0 < ε2 < minA∗ �=A,A′ I(A∗) and then set x such that
I(A) = ε := min{ε1, ε2}, which is possible due to Lemma 6. Hence, we have 0 = I(A′) <

I(A) � ε2 < minA∗ �=A,A′ I(A∗) as well as I(A) � ε1 < I(Ã) for any allocation Ã of the
first type.

Now we focus on the remaining type 3 of allocations which we denote by A◦. These are
the allocations in which some, but not all agents receive the same bundle as in allocation A′.
For any of these allocations A◦, we have

I(A◦) = 1 −
n

√
yd ′ ·∏n−d ′

i=1 ti

1
n
(y · d ′ +∑n−d ′

i=1 ti )

for some 1 < d ′ < d and 0 < ti . We remark that ti = 1−x is possible for some i, but at this
stage of the construction x is a constant. Since this term converges to 1 as y goes to infinity
by Lemma 8, we can set y such that I (A◦) > ε = I(A). Therefore, in this scenario, if the
allocation A is given, the deal (A,A′) is the only deal reducing I .

Finally, we are able to show that deals involving all agents and all goods can become
necessary even for additive scenarios—at least when the number of goods equals or exceeds
the number of agents. This mirrors a known result by Ramezani and Endriss [28] for the
case of Nash social welfare.

Theorem 10 For any n ∈ N there are additive scenarios 〈N ,G,U〉 with |N | = n = |G|
and an allocation A such that a deal involving all agents and goods is necessary for reach-
ing an allocation that minimises inequality, as defined by the Atkinson index, by means of
Atkinson deals only.

Proof Consider the additive scenario 〈N ,G,U〉, with |N | = n = |G| for some n ∈ N

with n > 1. We denote N = {1, . . . , n} and G = {g1, . . . , gn}. The collection U of additive
utility functions is defined in terms of the values the agents assign to each of the items via

ui(gk) =
⎧
⎨

⎩

1

i + 1
, if k �= (i + 1) mod n,

y , otherwise,
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for some y ∈ R. Now consider the two scenarios A and A′ with A(i) = {gi} and A′(i)
= {g(i+1) mod n}. Obviously 0 < I(A) < 1 and I(A′) = 0. The deal (A,A′) is illustrated
in Fig. 2. For all allocations A∗ with A∗(i) = ∅ for some agent i ∈ N , we have I(A∗) = 1.
For all allocations A∗ in which no agent receives the same item as in A′, but all agents
receive exactly one item, we have I(A∗) = I(A). For all other allocations A◦, we have

I(A◦) = 1 −
n

√
yd ′ ·∏n−d ′

i=1 ti

1
n
(y · d ′ +∑n−d ′

i=1 ti )

for some 1 < d ′ < n and 0 < ti < 1. Analogously to the proof of Theorem 9, this term
converges to 1 as y goes to infinity, so again we can set y such that I(A◦) > I(A) for all
allocations A◦ of this particular type. Therefore, in this scenario, if the allocation A is given,
the deal (A,A′) (which involves all agents and all goods) is the only deal reducing I .

The proof of Theorem 10 can easily be generalised to scenarios where the number of
goods exceeds the number of agents.

3.5 Path length to convergence

In this section, we are interested in the number of deals needed to reach an optimal alloca-
tion. It is clear that, given a starting allocation A, it is always possible to reach an optimal
allocation Aopt with at most one Atkinson deal: just use the deal as δ = (A,Aopt)—unless
A already is optimal and no deal is needed. It thus is more interesting to ask how long a
sequence of Atkinson deals from an initial to an optimal allocation can be in the worst case.
It is easy to establish an upper bound: First, observe that there are nm possible allocations
(recall that n = |N | and m = |G|). Second, observe that, since every Atkinson deal strictly
reduces inequality, we cannot visit any allocation twice. Hence, there can be at most nm − 1
deals in total. We will show that there are scenarios for which this theoretical maximum can
in fact be reached. To do so, we will construct a scenario where no two allocations produce
the same inequality. We start showing this for the case of two agents in Lemma 11, before
we proceed to the general case of n agents in Lemma 14.

Lemma 11 For two agents and m goods, m ∈ N, it is possible to define utility functions
such that any two distinct allocations have a different value of I .

Proof The proof of this lemma is inspired by the proof of Lemma 1 in the work of Ramezani
and Endriss [28] for the Nash social welfare. We assign to agents 1 and 2 the prime numbers
2 and 3, respectively. Now suppose each agent has an ordering on all possible 2m bundles,
and u1(B) = 2j if B is the j th bundle in the first agent’s ordering. Analogously, let u2(C) =
3j if C is the j th bundle in the second agent’s ordering. In an allocation A, agent i receives

Fig. 2 An illustration of the deal used in the proof of Theorem 10. Each agent transfers the one good she
owns to another agent in a cyclic manner. Hence, all agents and all goods are involved in this deal
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the (j i
A)

th
bundle in his ordering. It is easy to see that any two allocations A and A′ have

different Nash social welfare, since

swnash(A) = 2j1
A · 3j2

A = 2j1
A′ · 3j2

A′ = swnash(A
′)

would imply directly j1
A = j1

A′ and j2
A = j2

A′ due to the unique prime factorisation of every
integer.

Now we will show that also I(A) = I(A′) implies A = A′:

I(A) = I(A′)

=⇒ 1 −
√

swnash(A)

μ(A)
= 1 −

√
swnash(A′)
μ(A′)

=⇒
√

2j1
A · 3j2

A

1
2 · (2j1

A + 3j2
A)

=
√

2j1
A′ · 3j2

A′

1
2 · (2j1

A′ + 3j2
A′ )

=⇒ 2j1
A · 3j2

A · (2j1
A′ + 3j2

A′ )2 = 2j1
A′ · 3j2

A′ · (2j1
A + 3j2

A)2.

As (2j + 3j ′
) ≡ 0 mod 2 can never hold for any (j, j ′) ∈ {1, . . . , 2m}2 and also

(2j + 3j ′
) ≡ 0 mod 3 can never hold for any (j, j ′) ∈ {1, . . . , 2m}2 , the unique prime

factorisation of each side of the last equation leads again directly to j1
A = j1

A′ and j2
A = j2

A′
which implies A = A′.

The proof of Lemma 11 cannot easily be generalised to more than two agents, as the
argumentation with the modulo calculation does not hold any longer if we use more than two
prime numbers. For instance, for three agents, (2i + 3j + 5k) mod 5 can be congruent to 0
for i = j = k, e.g., (21 + 31 + 51) mod 5 = 0. To nevertheless obtain a generalisation, we
require the following two technical lemmas, the first of which can be proven by proceeding
analogously to the reasoning in the proof of Lemma 11.

Lemma 12 Let n ∈ N�2 and j1, j2, k1, k2 > 0. Then

1 −
n
√

2j1 · 3k1

1
n
(2j1 + 3k1)

= 1 −
n
√

2j2 · 3k2

1
n
(2j2 + 3k2)

holds if and only if j1 = j2 and k1 = k2.

Lemma 13 Real functions g
(k)
a,b : R>0 → R (here a, b > 0 and k ∈ N) given by

g
(k)
a,b(x) = a · x

(b + x)k

can be interpolated exactly by using just two points (x1, c1), (x2, c2) of the graph of the
function.

Proof Given the two equations a·x1
(b+x1)

k = c1 and a·x2
(b+x2)

k = c2, eliminating a leads to

c1x2
c2x1

=
(

b+x2
b+x1

)k

. This equation can be solved via

k

√
c1x2

c2x1
︸ ︷︷ ︸

τ

= b + x2

b + x1
⇒ τx2 − x1

1 − τ
= b,
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so the interpolation is unique (i.e., the equation has a unique solution (a, b) ∈ R
2
>0).

This means that, if two functions of the above type agree on their values for two values
of x, then they already have to be identical. We will need this property for construct-
ing utility functions that imply different values of I for each possible allocation in the
corresponding scenario.

Now we are ready to generalise Lemma 11 to arbitrary numbers of agents.

Lemma 14 For any numbers n,m ∈ N, there exists a scenario 〈N ,G,U〉 with |N | = n

and |G| = m such that any two distinct allocations have a different value of I .

Proof We consider the scenario 〈N ,G,U〉 and construct utility functions that fulfill the
claim. As the elements of U are the functions ui : 2G → R�0, it is possible to store all the

information of U in the n × 2m matrix P = (pi,j )
j=1,...,2m

i=1,...,n with pij = ui(Bj ). Herby we

suppose some arbitrary but given ordering (B1, . . . , B2m) of the elements of 2G . For given
n, m ∈ N, we fill this matrix recursively to obtain the desired result. We start the recursion
with the first two rows and the following entries:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

21 22 . . . 22m

31 32 . . . 32m

∗ ∗ . . . ∗
...

... . . .
...

∗ ∗ . . . ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The symbol ∗ means that we have not yet fixed a value for the corresponding entry. We
notice an interesting property of this collection of 2m+1 real numbers. Let p = (p(1), p(2))

and q = (q(1), q(2)) be elements of

{21, 22, . . . , 22m} × {31, 32, . . . , 32m}.
Then, with the shorthand notation

∏
p =∏2

i=1 p(i) and
∑

p =∑2
i=1 p(i), we see that

1 −
2
√∏

p

1
2

∑
p

= 1 −
2
√∏

q

1
2

∑
q

implies, by Lemma 12, that p = q.5

We generalise this property to bigger collections of entries of the matrix P . Let 1 �
� � n and 1 � k � 2m. Suppose we have already fixed values for the entries of the
first � − 1 rows and for the first k − 1 entries of the �th row. For every 1 � i � � − 1,
we define Pi := {pi,j : 1 � j � 2m} ⊂ R as the set of entries in the ith row of P ,
corresponding to the utilities that agent i assigns to the possible bundles, and the Cartesian
product P (�−1) := P1 × . . . × P�−1. For the elements p = (p(1), p(2), . . . , p(� − 1)) of

5This means, sloppily speaking, that similarly as in Lemma 11, if utilities are given by the already existing
entries of P , any two different ‘allocations’ exhibit a different level of inequality—they only have the same
level if they are the same. At this stage, we cannot speak of real allocations and I yet, since we are only
considering the utilities of bundles for a subset consisting of two agents—furthermore the considered bundles
might intersect. We will use the name ‘potential partial allocations’. Note that allocations are a special case
of potential partial allocations, therefore properties which hold with respect to potential partial allocations in
particular hold with respect to allocations. We therefore also cannot compute I, but a similar value, by taking
into account only those agents that are already involved. We make this more formal below.
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P (�−1) (consisting of one entry from each of the already filled rows of P ), we use the
shorthand notation

∏
p =∏�−1

i=1 p(i) and
∑

p =∑�−1
i=1 p(i).

We call a collection of the first ((� − 1) · 2m + k − 1) entries from P feasible, if—
sloppily speaking—for every choice of one entry from each already filled row, i.e., for each
set of utilities for the possible bundles, any two ‘potential partial allocations’ would exhibit
a different value of inequality (again, we cannot really speak of I yet). More formally, this
means in the case of k = 1 (when the first entry of each row is computed) that

1 −
�−1
√∏

p

1
�−1 (

∑
p)

= 1 −
�−1
√∏

q

1
�−1 (

∑
q)

implies p = q and i = j for any p, q ∈ P (�−1) and 1 � i, j � 2m. If k � 2, we call the
collection of the (� − 1) · 2m + k − 1 already fixed entries of P feasible if

1 −
�

√∏
p ·p�,i

1
�
(
∑

p +p�,i)
= 1 −

�

√∏
q ·p�,j

1
�
(
∑

q +p�,j )

implies p = q and i = j for any p, q ∈ P (�−1) and 1 � i, j < k.
We now give a precise definition of our recursion. Let a denote the number of entries of

P already fixed.

Recursion start a0 = 2 · 2m: We already constructed the first two rows of the matrix
as a feasible set. So our recursion starts with a0 = 2 · 2m. As the first two rows contain
2 · 2m = (3− 1) · 2m + 1− 1 elements, the correct values for � and k are �0 = 3 and k0 = 1.

For the recursion step a �→ a + 1, we have two different cases, depending whether or
not k = 1.6 In the case of k = 1, we set the first entry of a new row; in the case of k > 1,
the first k − 1 entries of the specific row already have been set properly.

The recursion step now is to fix the value for p�,k such that the new collection of the
(�−1) ·2m+k−1+1 then fixed entries of P is also feasible. Table 1 illustrates the situation
of the recursion step. The entry to be fixed is marked by an x.

As we have seen in the remark after Lemma 11, just taking powers of primes is not
helpful. We therefore define real functions that feature the property used in Lemma 13.

Recursion step a �→ a + 1 if k = 1: We will start with the recursion step for k = 1. We
now have to fix the value for p�,1. We define the family of functions (fp)p∈P (�−1) with

fp : [0, ∞[ → [0, 1]

x �→ 1 −
�

√∏
p ·x

1
�
(
∑

p +x)
.

Obviously, fp(0) = 1 for any p ∈ P (�−1), but restricted to the interval ]0, ∞[, any pair
of distinct functions of this family cannot intersect more than once. To see this, we observe
the connection to Lemma 13. For p, q ∈ P (�−1) and x ∈ ]0, ∞[, the equation

1 −
�

√∏
p ·x

1
�
(
∑

p +x)
= 1 −

�

√∏
q ·x

1
�
(
∑

q +x)

6Please note that this is not a two-variable recursion; we do not independently iterate over � and k.
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Table 1 The partially filled
matrix P in the recursion step in
the proof of Lemma 14

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1,1 . . . . . . . . . . . . . . . p1,2m

...
. . .

. . .
. . .

. . .
. . .

...

p�−1,1 . . . p�−1,k−1 p�−1,k p�−1,k+1 . . . p�−1,2m

p�,1 . . . p�,k−1 x ∗ . . . ∗
∗ . . . ∗ ∗ ∗ . . . ∗
...

. . .
. . .

. . .
. . .

. . .
...

∗ . . . ∗ ∗ ∗ . . . ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is equivalent to
∏

p ·x
(
∑

p +x)�
=

∏
q ·x

(
∑

q +x)�
.

We are thus in the situation described in Lemma 13. Therefore, if p, q ∈ P (�−1) are
given, and fp(x1) = fq(x1) and fp(x2) = fq(x2) for two distinct values x1, x2 ∈]0, ∞[,
we have p = q.

Now, considering all functions of the family (fp)p∈P (�−1) , let π be the largest x-value
for which two of these functions intersect. By choosing a value greater than π for p�,1, we
obtain that

1 −
�

√∏
p ·p�,1

1
�
(
∑

p +p�,1)
= 1 −

�

√∏
q ·p�,1

1
�
(
∑

q +p�,1)

implies p = q for any p, q ∈ P (�−1).

Recursion step a �→ a+1 if k > 1: The recursion step for k > 1 is almost the same. We
basically just have to replace p�,1 by p�,k . Furthermore, we have to choose for p�,k a value
not only greater than the corresponding π , but also greater than some other lower bound
implicitly given by the set

W =

⎧
⎪⎨

⎪⎩
1 −

�

√∏
q ·p�,i

1
�
(
∑

q +p�,i)

⎫
⎪⎬

⎪⎭
q∈P (�−1),1�i<k

.

As max W < 1, choosing x large enough will result in 1 > fp(x) > w for all p ∈ P (l−1)

and w ∈ W . This can be done since

(i) limx→∞ fp(x) = 1, and
(ii) fp(0) = 1 if an only if x = 0 holds for all fp ∈ (fp)p∈P (�−1) .

So, choosing x large enough to obtain 1 > fp(x) > w for all p ∈ P (l−1) and w ∈ W is
possible. We refer to Fig. 3 for an intuition: All functions fp have the shape of the function
shown in the plot. In particular, all functions of this type are differentiable with

d

dx
fp(x) = − �

√∏

p

·
⎛

⎜
⎝

�
√

x
�

(
(
∑

p +x)

�·x − 1
)

( 1
�+1 )2(

∑
p +x)2

⎞

⎟
⎠ ,
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Fig. 3 A sketch of the function fp ∈ (fp)p∈P (�−1) with � = 3 and p = (2, 3). All functions used in the proof
of Lemma 14 have a similar shape, in particular we use that limx→∞ fp(x) = 1 for all fp

so the sign of
d

dx
fp(x) is determined by the term

(
(
∑

p +x)

(�+1)x
− 1
)

. It is easy to check that

d

dx
fp(x)

⎧
⎪⎪⎨

⎪⎪⎩

< 0 if x ∈ ]0,
∑

p /�[,
= 0 if x =∑p /� and

> 0 if x ∈ ]∑p /�,∞[.

Now let us check P = (pi,j )
j=1,...,2m

i=1,...,n . By construction, the function

F : P (n) → [0, 1], p �→ 1 −
n

√∏
p

1
n
(
∑

p)

is injective. We define UN ,G := {u(A) : A is an allocation in 〈N ,G,U〉}. Then UN ,G ⊆
P (n) and F |UN ,G =I|UN ,G , completing the proof.

The uniqueness property just established now is the key to proving the result announced
earlier (recall once more that n is the number of agents and m is the number of goods):

Theorem 15 A sequence of Atkinson deals leading to an allocation that minimises inequal-
ity, as defined by the Atkinson index, can consist of up to nm − 1 deals, but not more.

Proof There are nm possible allocations (each of the m items may be given to any of the
n agents). By Lemma 14, there exist scenarios for which each of these allocations has a
unique value of I . Then, by ordering all allocations in descending order by their value of
I and by defining the corresponding deals between these allocations, we obtain a sequence
of nm − 1 deals. Each of these deals decreases inequality and therefore is an Atkinson deal.
The argument for why there can never be more than nm − 1 Atkinson deals in a row has
been given at the beginning of Section 3.5.
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3.6 Symmetric scenarios withmonotone and submodular utilities

While we have seen that, in principle, an allocation minimising inequality can be achieved
by a sequence of uncoordinated Atkinson deals, we have also seen that, in practice, it will
usually be difficult to take advantage of this theoretical possibility, given that structurally
highly complex deals as well as very large numbers of deals might be required to attain
an optimal outcome. To some extent, these negative results can be traced back to the high
generality of our framework: agents may have arbitrary utility functions. Next, we explore
whether better results can be obtained when we impose certain restrictions on utility func-
tions. Specifically, we investigate restrictions that are directly inspired by the kinds of
scenarios for which inequality indices were developed originally, namely the assessment
of different policies for income distribution [20, 34]. Thus, for the restricted scenario stud-
ied here, we assume that all agents have the same utility function u (symmetry), which is
normalised (i.e., u(∅) = 0), that agents always prefer to obtain additional goods (mono-
tonicity), and agents who already own a lot of goods derive less marginal utility from a
new item than agents who own only very few goods (submodularity). Indeed, all of these
assumptions would be reasonable in the context of allocating money rather than arbitrary
indivisible goods.

It is useful to speak of equivalent allocations in this context. We say two allocations A

and A′ are equivalent if there is a permutation π : N → N such that for any i ∈ N we have
A(π(i)) = A′(i). Due to the symmetry of the restricted framework we consider, no social
welfare criterion or inequality index can distinguish between equivalent allocations.

We first remark that PIO remains an NP-hard problem in the considered restricted sce-
nario: in Proposition 3, we have shown hardness of PIO even for additive utility functions,
and these are a special case of submodular utility functions. As before, we want to reach
an optimal allocation starting from an arbitrary one by means of Atkinson deals. How long
may this take, i.e., how many Atkinson deals might be necessary to reach an allocation with
minimal inequality?

Next, we will see in Theorem 16 that also in this restricted framework, deals of high
structural complexity might be necessary. Furthermore, we show that the worst case number
of necessary deals from Theorem 15 is lower in this framework—this is due to the symmetry
of the utility functions. However, as Theorem 18 shows for the special case of two agents,
this number still is exponential in the number of goods. If we abstain from the requirement
of normalisation (i.e., if we allow u(∅) �= 0), then we can expand the latter result to Theo-
rem 17 which covers the case of an arbitrary number of agents and modular utilities (while
we still assume the utility functions to be symmetric and monotone).

We start our investigation of the restricted framework with a result on the necessity of
deals. As it turns out, again highly complex deals involving all agents may be necessary.

Theorem 16 For any n ∈ N there are symmetric scenarios 〈N ,G,U〉 with |N | = n and
|G| = 2 · n and utility functions that are normalised, monotone, and submodular as well as
an allocation A such that a deal including all n agents and n of the 2n goods is necessary
for reaching an allocation that minimises inequality, as defined by the Atkinson index, by
means of Atkinson deals only.

sketch The proof follows a similar analysis as the proof of Theorem 10. We omit the details
and only describe the main necessary technical adaptations. Consider the scenario 〈N ,G,

U〉, with |N | = n and |G| = 2 ·n for some n ∈ N with n > 1. Let N = {1, . . . , n} and G =
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{g1, . . . , g2n}. As we want U to be symmetric, we only have to define one utility function
u. We do this in a bundlewise way. For each B ∈ G, let

u(B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if B = ∅
1 if |B| = 1

2 − ε if |B| = 2 and ∃i ∈ {1, . . . , n} : B = {gi, gi+n}
2 − εi if |B| = 2 and B = {gi, gn+1+(i mod n)}
2 − εi,j if |B| = 2 and B = {gi, gi+k}

for some k �= n

3 − δ if |B| > 3

.

With similar techniques as used in the proofs of Theorems 7, 9 and 10, we can derive
values for ε, εi, εi,j and δ such that the above function u is monotone and submodular:
One first has to fix values for all εi,j , then for all εi , then for ε, and at last for δ, with
0 < ε � εi � εi,j � δ � 1. Given the allocation A where A(i) = {gi, gn+1+(i mod n)} we
define A′(i) = {gi, gn+i}. The only deals reducing inequality as measured by the Atkinson
index are of the form δ = (A, Ã′) where Ã′ is a allocation equivalent to A′. In any of those
deals all agents and at least half of the goods are included.

For the construction, monotonicity and continuity of the induced functions are needed
as well. We omit the technical details. Please see Fig. 4 for an illustration of the highly
complex deal δ.

As an aside, we note that Theorem 16 is also true for symmetric scenarios with utility
functions that are normalised, monotone, and supermodular (instead of submodular), i.e.,
when u(B) + u(B ′) � u(B ∪ B ′) + u(B ∩ B ′) for all bundles B,B ′. In the construction
used in the proof of Theorem 16, replacing the minus signs in the definition of the function
values of u(B) by plus signs leads to the desired result.

For the remainder of this section, we are going to restrict the class of scenarios we con-
sider even further and assume that the single utility function modelling the preferences of all
agents not only is submodular but even modular. Interestingly, for symmetric scenarios with
modular utility functions the Nash social welfare criterion and the Atkinson index always
agree on the manner in which they rank alternative allocations.

Lemma 17 For symmetric scenarios with modular utility functions, the Nash social welfare
swnash and the Atkinson index I are equivalent in the sense that for any two allocations
A1, A2 we have

swnash(A1) � swnash(A2) ⇐⇒ I(A1) � I(A2).

Fig. 4 An illustration of the highly complex deal δ defined in the proof of Theorem 16. Each agent initially
holds two goods, one of which is transferred to another agent in a cyclic manner in the course of the deal
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Proof Recall how I is defined in terms of swnash and μ. We are done if we can show that
μ is a constant function, returning the same mean value μ(A) for every allocation A. But
this is clearly the case for symmetric scenarios with a single modular utility function u:

μ(A) = 1

n

∑

i∈N
u(A(i))

= 1

n

∑

i∈N

⎛

⎝u(∅) +
∑

x∈A(i)

(u({x}) − u(∅))

⎞

⎠

= u(∅) + 1

n

∑

x∈G
(u({x}) − u(∅))

Observe that this sum, indeed, does not depend on A.

As we have seen, in the general setting, there are nm possible allocations (n = |N |, m =
|G|), each of which may be part of a sequence of deals in the worst case. In the restricted
scenario, due to symmetry, we cannot distinguish all nm allocations, but just all possible
partitions of the set G into n bundles. Moreover, since for the case of a normalised utility
function an agent derives zero utility from the empty set (which leads to I(A) = 1 if
an agent receives no item), we cannot distinguish between allocations where one or more
agents receive the empty set.

Our next result shows that, nevertheless, all of these seemingly strong restrictions still
can give rise to exponentially long sequences of deals (see Theorem 15). We prove this for
the special case of two agents.

Theorem 18 For symmetric scenarios with additive (i.e., normalised and modular) utility
functions and two agents, a sequence of Atkinson deals leading to an allocation that min-
imises inequality, as defined by the Atkinson index, can consist of up to 2m−1 − 1 deals, but
not more.

Proof Let N = {1, 2} and G = {g1, . . . , gm}. There are 2m subsets of an m-element set,
which means that there are 2m allocations. Due to the symmetry requirement, only half of
them are distinguishable. Hence, there are 2m−1 equivalent classes of allocations.

As in the proof of Lemma 14, we show that there exist scenarios for which each of these
allocations (modulo equivalence of the allocations) has a unique value of I , so that this
upper bound of deals is attained. We construct the utility function as follows. Any bundle
B ⊆ G can be identified with a binary vector x = (x1, . . . , xm) ∈ {0, 1}m of length m by
setting xi = 1 if and only if gi ∈ B. Motivated by this, we identify any bundle B with
a number xB ∈ {0, . . . , 2m − 1} via xB = ∑

gi∈B 2i−1. So, for example, the empty set
is identified with the number 0, and the bundle containing the second and the third item
corresponds to the number 6 = 2 + 4 = 22−1 + 23−1. The (additive) utility function u is
then defined as u(B) = xB .

Since we only have two agents, any allocation A is fully described by the bundle that the
first agents holds. For A = B1 ∪· B2 we have B2 = G \ B1 and xB2 = 2m − 1 − xB1 . Hence,
for some allocation A = B1 ∪· B2, the Nash social welfare swnash(A) only depends on the
value of x := xB1 , and we obtain

swnash(A) =
∏

i∈N
ui(A) = x · (2m − 1 − x)
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In order to show that the function swnash is injective on the set of allocations where
x ∈ {0, . . . , 2m−1 − 1} (which is a representative system for the equivalent classes), we
consider the corresponding real (and continuous) function Nm : R → R with Nm(x) =
x · (2m − 1 − x), which is a second-degree parabola with maximum turning point at x∗ =
2m−1 − 1

2 . Therefore, when restricted to the interval [0, 2m−1 − 1], Nm is monotonically
increasing and hence injective. Figure 5 provides an intuition.

Since swnash and I are equivalent as described in Lemma 17, this completes the proof.

On top of our restriction to symmetric scenarios with a modular utility function, Theo-
rem 18 imposes the additional restriction of that single utility function being normalised and
it only applies to the case of two agents. For our final result, we drop the latter two restric-
tions and show that the maximum number of deals in a path is still exponential. This result
crucially depends on a lemma, which we prove first, that shows there are scenarios where
any two partial allocations differ in the resulting Nash social welfare, unless the two partial
allocations are equivalent.

In this context, a function Z : N → 2G is called a partial allocation if Z(i) ∩ Z(j) = ∅
for any i �= j . In contrast to an allocation, we do not require all goods to be allocated
(i.e., we allow Z(1) ∪ . . . ∪ Z(n) � G). Every partial allocation Z induces a utility vec-
tor u(Z) = (u1(Z), . . . , un(Z)), and the Nash social welfare of a partial allocation Z is
swnash(Z) = ∏

i∈N ui(Z). Our equivalence relation for allocations also directly transfers
to partial allocations (i.e., we say two partial allocations Z and Z′ are equivalent if there is
a permutation π : N → N such that for any i ∈ N , we have Z(π(i)) = Z′(i)).

Lemma 19 For any numbers n,m ∈ N, there exists a symmetric scenario 〈N ,G,U〉
with |N | = n, |G| = m and modular utility functions such that any two distinct partial
allocations are either equivalent or differ in the resulting Nash product.

Fig. 5 Sketch of the function N3 : R → R with N3(x) = x · (23 − 1 − x) as a member of the family of
functions Nm used in the proof of Theorem 18, providing an intuition of why the constructed functions in Nm

are injective on the considered intervals. The depicted function N3 is injective on the interval [0, 23−1 −1] =
[0, 3]. The values of the corresponding function swnash : {0, . . . , 23 − 1} → [0, 1] are marked with circles
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The structure of the following proof is similar to the structure of the proof of Lemma 14.
For given agents N and goods G we construct a suitable collection U of utility functions
in a recursive way. In the proof of Lemma 14, we identified U with an n × 2m matrix P

and filled in the entries of P with the help of a family of functions induced by the already
fixed entries of P . Lemma 19 treats scenarios with a single modular utility function (which
is identical for all agents. In order to fully determine this utility function it is sufficient to
specify the value of u(∅) and for any g ∈ B the value of u({g}). We again make use of
a family of functions constructed recursively, here the recursion is on the elements of G.
The values will be induced by those utility vectors which are already fully specified at the
current stage of the recursion.

In the following, for the sake of readability, we will use a simplified notation. For a partial
allocation Z, we denote by z the induced utility vector, i.e., u(Z) = z = (z1, . . . , zn). We
introduce the equivalence relation ∼ on the set of utility vectors via z ∼ z′ if and only if Z

and Z′ are equivalent. (Note that this implies that z′ is a permutation of z.) In order to prove
the lemma, we have to show that there is a scenario with

n∏

i=1

zi =
n∏

i=1

z′
i =⇒ z∼z′. (1)

for any pair Z, Z′ of partial allocations (with induced utility vectors z = (z1, . . . , zn) and
z′ = (z′

1, . . . , z
′
n), respectively) in this scenario.

of Lemma 19 Consider the scenario 〈N ,G,U〉, with N = {1, . . . , n} and |G| = m. We
assume a fixed ordering of the goods G = {g1, . . . , gm}. We construct U by finding feasible
values for the marginal utilities of the goods.

Let Z� be the space of all partial allocations that allocate the goods {g1, . . . , g�} to the
agents. Hence, by Z ∈ Z�, we mean that

⋃
i∈N Z(i) ⊆ {g1, . . . , g�}.

For some � and already fixed values u(∅), u({g1}), . . . , u({g�}), we say Z� is feasible if
and only if Statement (1) is true for any pair Z,Z′ ∈ Z�.

Let Z0 be the empty allocation (Z0(i)=∅ for all i ∈ N ) and Z1 such that Z1(1) = {g1}
and Z1(i)=∅ for all i �= 1. The partition of Z1 into equivalence classes contains only two
equivalence classes of partial allocations. The first is [Z0] and only contains the empty
allocation, the second is [Z1] and contains the n partial allocations that allocate the good g1
to one of the agents and the empty set to the remaining agents.

We start the recursion with � = 1: If we set u(∅) = 1 and u({g1}) = 2, then Z1 is
feasible. We hence have the following two cases.

Z ∈ [Z0] : Z(i)
∀i= ∅ , z = z0 = (1, 1, . . . , 1) , swnash(Z) = ∏

i∈N
zi = 1,

Z ∈ [Z1] : Z(j)
∃j= {g1}

Z(i)
∀i �=j= ∅

, z ∼ z1 = (2, 1, . . . , 1) , swnash(Z) = ∏

i∈N
zi = 2.

To gain an intuition for the recursion step, we set u({g2}) = x + u(∅) = x + 1 for a
real number x yet to be defined and show the current state of Z2. The partition of Z2 into
equivalence classes contains five equivalence classes: [Z0] and [Z1] are the same as before.
Furthermore, we have [Z2], [Z3], [Z4], where

Z2 : Z2(1)={g2} Z2(i)
∀i �=1= ∅,

Z3 : Z3(1)={g2} Z3(2)={g1} Z3(i)
∀i �=1,2= ∅,

Z4 : Z4(1)={g1, g2} Z4(i)
∀i �=1= ∅.
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Hence, we obtain

Z ∈ [Z0] : z = z0 = (1, 1, . . . , 1) swnash(Z) = ∏

i∈N
zi = 1,

Z ∈ [Z1] : z ∼ z1 = (2, 1, . . . , 1) swnash(Z) = ∏

i∈N
zi = 2,

Z ∈ [Z2] : z ∼ z2 = (1 + x, 1, . . . , 1) swnash(Z) = ∏

i∈N
zi = 1 + x,

Z ∈ [Z3] : z ∼ z3 = (1 + x, 2, . . . , 1) swnash(Z) = ∏

i∈N
zi = (1 + x) · 2,

Z ∈ [Z4] : z ∼ z4 = (2 + x, 1, . . . , 1) swnash(Z) = ∏

i∈N
zi = 2 + x.

Clearly, we cannot set x = 0 or x = 1 if we want to fulfill (1). But if, for instance, we
set u({g2}) = 2, then Z2 is feasible.

The idea is hence to fix new values of x that are ‘big enough’ (again similar to the
approach we used in Lemma 14).

We now describe the recursion step. Assume we have v(g1), . . . , v(g�) such that Z� is
feasible. We have to define a value for u({g�+1}) such that Z�+1 is feasible as well. For any
Z ∈ Z� and i ∈ {1, . . . , n} we define a function F i

z as

F i
z : R → R,

x �→
(∏

j �=i zj

)
· (zi + x).

Thus, F i
z (x) =∏n

i=1 zi +
(∏

j �=i zj

)
·x, so any member of the family {F i

z } is of the form

ax + b with a, b � 1 and therefore a strictly increasing linear function. Because of this, for

any Z,Z′ ∈ Z� and 1 � jz, jz′ � n, the functions F
jz
z and F

jz′
z′ only intersect twice if they

are identical, which means that their coefficients are the same, hence only if
n∏

i=1
zi =

n∏

i=1
z′

i and
∏

i �=jz

zi = ∏

i �=jz′
z′

i (2)

holds. So by assumption, in this case we already have z ∼ z′.
Let x1 be the biggest value such that two elements of {F i

z } which do not fulfill (2)
intersect in x1. We calculate x0 ∈ R�1 with

x0 = max
z=u(Z), Z∈Z��

n∏

i=1

zi (3)

and set v(g�+1) = max {x0, x1 + 1}.7 To show that Z�+1 is feasible, we have to show that
for any pair Z,Z′ ∈ Z�+1, Statement (1) is true. For any pair Z,Z′ ∈ Z�

� Z�+1, this is
true by assumption.

For the following, note that by construction, for any Z and i with g� ∈ Z(i), we have
swnash(Z) = ∏

j �=i zj · (zi + v(g�)). As v(g�+1) � x1, Statement (1) is also true for any

pair Z,Z′ ∈ Z�+1 \ Z�. Finally, as v(g�+1) � x0 for any Z ∈ Z� and Z′ ∈ Z�+1 \ Z�,
we have

swnash(Z) =
n∏

i=1

zi � x0 < x0 + 1 �
n∏

i=1

z′
i = swnash(Z

′).

This completes the proof.

7For � = 1 this would be v(g2) = max {2, 0 + 1} = 2.
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We are now ready to state our result on the maximal path length to an optimal allocation
for restricted scenarios with arbitrary numbers of agents. Note that the number of equiva-
lence classes of allocations is equal to the number of possible partitions of G of size at most
|N |. Under the assumption of |G|=m>n=|N | we denote this number by Bn

m. We have

Bn
m =

n∑

k=1

Sm
k ,

where Sm
k is the number of ways to partition a set of cardinality m into exactly k nonempty

subsets. Note the connection to the Stirling numbers and the Bell numbers [4, 23, 29]. In
particular Bn

m grows exponentially (at least with respect to m).

Theorem 20 In a symmetric scenario 〈N ,G,U〉 with modular utility functions and |G| =
m > n = |N |, a sequence of Atkinson deals leading to an allocation that minimises
inequality, as defined by the Atkinson index, can consist of up to Bn

m −1 deals, but not more.

Proof The set of all allocations corresponds to the set Zm \ Zm−1 described in the proof of
Lemma 19. Hence, the Nash product of any two allocations differs, unless the two alloca-
tions are equivalent. As the scenario fulfils the conditions of Lemma 17, the Nash product
and the Atkinson index rank allocations consistently, so it also is the case that any two allo-
cations differ in terms of their Atkinson index unless they are equivalent. The claim then
follows from the fact that Bn

m is the number of equivalence classes of allocations.

4 Conclusion

We have shown that the Atkinson index, one of the most important social fairness criteria
in the literature, can be optimised in a distributed manner (Theorem 5) and thus is suitable
for implementation as an objective in a multiagent system. We have been able to do so
despite two inherent difficulties: the fact that the problem of finding an optimal allocation
(with perfect equality) is NP-hard (Proposition 3), and the fact that the essence of what it
means to reduce inequality cannot be captured locally (Proposition 4). While most other
social criteria studied in the context of multiagent resource allocation also require us to
solve computationally intractable optimisation problems [11], the only other such criterion
that also shares the second difficulty and that nevertheless has been analysed successfully
using the distributed approach is envy-freeness [12].

While Theorem 5 is encouraging, our additional results show that implementing this
solution still comes with significant practical challenges. First, agents must be able to agree
on arbitrarily complex exchanges of resources, without any limits on either the number of
agents or the number of resources involved (Theorem 9). Second, the number of exchanges
implemented before an optimal allocation is reached can get very high and in the most
extreme case we might end up visiting every logically possible allocation along the way
(Theorem 15). These negative results do not change significantly even in very restricted sce-
narios, motivated by models of income distribution, where all agents have the same utility
function. For these negative results, in particular, we have made use of analytical tech-
niques from the basic calculus toolbox, which is unusual in the field of multiagent resource
allocation and which we hope might be useful to others working on related problems.

We also hope that our work will inspire other researchers in multiagent systems, first, to
use the formal notion of social inequality in the design of practical multiagent systems and,
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second, to further advance our state of knowledge regarding the algorithmic challenge of
minimising inequality in a multiagent system. Both aspects are currently underrepresented
in multiagent systems research, and research in AI and Computer Science more generally.
The very few exceptions include the works of Lesca and Perny [25], Endriss [15], and
Gemici et al. [19]. This is so despite the fact that inequality indices are widely studied and
used in practice across much of the social sciences.

Our work suggests a number of very concrete avenues for future research. First, we
may ask whether a similar analysis is possible for other inequality indices. For the Gini
index [20]—which is the most widely used index in practice, even if it is generally consid-
ered inferior to the Atkinson index from a normative point of view [34]—we conjecture that
it would be difficult to achieve optimisation in a distributed manner without making major
concessions regarding the definition of the ‘locality’ of a deal. For the Theil index [35],
another popular inequality index, our own preliminary results show that distributed optimi-
sation likely will be possible, but in a less elegant manner than for the Atkinson index.

Second, one may ask how obstructive our negative results are in practice. To address
this question, one might generate a large set of scenarios (using synthetic preferences or
preferences extracted from a specific real-world problem) and simulate what happens when,
at every stage in the process, the agents choose one of the Atkinson deals currently available
to them. This choice could be random (possibly giving higher weight to structurally simpler
deals) or reflect some suitable behavioural assumptions about agents. One could investigate
how often such a system gets stuck in a state where all available deals exceed some given
structural complexity threshold (to assess the practical relevance of Theorem 9). Similarly,
one could analyse the average structural complexity of deals, such as the average maximal
number of agents involved in any one deal in a sequence leading to an optimal allocation,
or one could count the average number of deals contracted in such a system (to assess the
practical relevance of Theorem 15). All of these are important questions of a more empirical
nature than the fundamental analysis we have carried out in this paper. Addressing these
questions would require significant original research to arrive at reasonable models about
agent preferences and agent behaviour in specific application domains of interest, but we
believe that such an investment would have the potential to be very fruitful and encourage
the research community to take up this challenge.
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